• General

    Ampliación de Matemáticas G1140 (2012)

    • Programa

      programa

       

       

      Datos identificativos de la Asignatura

      • Asignatura: Ampliación de Matemáticas G1140

      • Código: G1140

      • Departamento / Área: Departamento de Matemática Aplicada y Ciencias de la Computación

      • Título: Grado en Ingeniería de los Recursos Mineros

      • Centro: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos

      • Créditos ECTS: 6

      • Idioma de impartición: Español

      • Profesora responsable: Amparo Gil Gómez

      • Otros profesores: Eladio Moreno Andrés, Ángel Barón Caldera y Francisco Javier González Ortiz

       

       

       

          Programa de la asignatura    

       

      Bloque Temático I. Ampliación de cálculo integral

      • Tema 1.1. Repaso de conceptos básicos de integración en una y varias variables.

      • Tema 1.2. Integrales triples: cambios de variable habituales y ejemplos.

      • Tema 1.3. Integrales de línea: parametrización de curvas (ejemplos); integral de línea de una función escalar; integral de línea de una función vectorial: regla de Barrow, concepto de campo conservativo, cálculo de la función potencial de un campo conservativo.

      • Tema 1.4. Integrales de superficie: parametrización de superficies (ejemplos); integral de una función escalar sobre una superficie parametrizada; integración de funciones vectoriales sobre superficies; Teoremas fundamentales del cálculo vectorial: Teoremas de Green, de Gauss y de Stokes.

       

      Bloque Temático II. Series de Fourier

      • Tema 2.1. Definición y propiedades.

      • Tema 2.2. Series de Fourier seno y coseno.

       

      Bloque Temático III. Resolución de ecuaciones diferenciales ordinarias: métodos analíticos y numéricos

      • Tema 3.1. Introducción a las ecuaciones diferenciales. Ejemplos de aplicaciones y conceptos básicos.

      • Tema 3.2. Métodos analíticos elementales de integración para ecuaciones diferenciales ordinarias: ecuaciones de variables separables y/o reducibles a éstas; ecuaciones diferenciales exactas y factor integrante; ecuación diferencial lineal de primer orden.

      • Tema 3.3. Métodos numéricos elementales para resolver problemas de valores iniciales de ecuaciones diferenciales ordinarias: método de Euler explícito, trapezoidal, métodos de Taylor y Runge-Kutta.

      • Tema 3.4. Resolución de ecuaciones diferenciales lineales y sistemas: teoría básica; ecuaciones de orden n con coeficientes constantes; ecuaciones de orden n con coeficientes variables; ecuación de Euler-Cauchy; reducción de orden; método de variación de parámetros; sistemas de ecuaciones diferenciales lineales. Resolución de ecuaciones diferenciales en términos de series.

      • Tema 3.5. Métodos analíticos y numéricos para resolver problemas de contorno.

       

      Bloque Temático IV. Resolución de ecuaciones diferenciales en derivadas parciales

      • Tema 4.1. Introducción y conceptos básicos.

      • Tema 4.2. Problemas de valores iniciales de ecuaciones diferenciales en derivadas parciales con una dimensión espacial.

      • Tema 4.3. Ecuaciones en derivadas parciales con dimensiones espaciales superior a uno: esquemas de diferencias finitas.