

Capítulo 3. Medidas de forma y concentración

Carmen Trueba Salas
Lorena Remuzgo Pérez
Vanesa Jordá Gil
José María Sarabia Alegría

DPTO. DE ECONOMÍA

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

Capítulo 3. Medidas de forma y concentración

Medidas de forma

Las medidas de forma proporcionan información sobre el aspecto de la distribución de frecuencias (sin representarla gráficamente).

Medidas de asimetría

- Coeficiente de asimetría de Fisher
- Coeficiente de asimetría de Yule-Bowley

Medidas de curtosis

Coeficiente de curtosis

Capítulo 3. Medidas de forma y concentración

Coeficiente de asimetría de Fisher

$$g_1 = \frac{m_3}{S^3} = \frac{\frac{1}{N} \sum_{i=1}^k (x_i - \overline{x})^3 n_i}{(S^2)^{3/2}}$$

Coeficiente = $0 \rightarrow$ distribución simétrica.

Coeficiente < 0 → distribución asimétrica negativa.

open course ware

Capítulo 3. Medidas de forma y concentración

Coeficiente de asimetría de Yule-Bowley

$$AB = \frac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1}$$

Coeficiente = $0 \rightarrow$ distribución simétrica.

Coeficiente < 0 → distribución asimétrica negativa.

Capítulo 3. Medidas de forma y concentración

Coeficiente de curtosis

$$g_2 = \frac{m_4}{S^4} - 3 = \frac{m_4}{(S^2)^2} - 3 = \frac{\frac{1}{N} \sum_{i=1}^k (x_i - \overline{x})^4 n_i}{(S^2)^2} - 3$$

Coeficiente = $0 \rightarrow$ distribución mesocúrtica.

Coeficiente > 0 → distribución leptocúrtica.

Coeficiente < 0 → distribución platicúrtica.

open course ware

Capítulo 3. Medidas de forma y concentración

Medidas de concentración

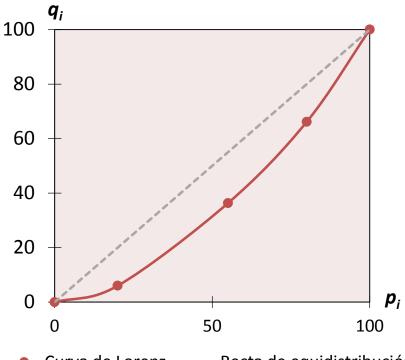
Las medidas de concentración proporcionan información sobre la desigualdad en la distribución (desigualdad en el reparto de los valores que toma la variable).

- Curva de Lorenz
- Índice de Gini

open course ware

Capítulo 3. Medidas de forma y concentración

Cálculo


- 1. Ordenar los valores de la variable de estudio (x_i) de menor a mayor
- 2. Obtener n_i y N_i .
- 3. Calcular $pi = (N_i/N) \cdot 100$.
- 4. Obtener $x_i n_i$.
- 5. Calcular $q_i = (u_i/u_k) \cdot 100$.

Capítulo 3. Medidas de forma y concentración

Curva de Lorenz

——Curva de Lorenz ----Recta de equidistribución

Capítulo 3. Medidas de forma y concentración

Índice de Gini

$$IG = \frac{\sum_{i=1}^{k-1} (p_i - q_i)}{\sum_{i=1}^{k-1} p_i}$$

Índice = 0 -> concentración mínima.

Índice > 0 -> concentración intermedia.

Índice < 0 → concentración máxima.