

Estadística I

Grado en Administración y Dirección de Empresas

Resumen de los contenidos básicos

Tema 4. Distribuciones de frecuencias bidimensionales



Carmen Trueba Salas Lorena Remuzgo Pérez

DEPARTAMENTO DE ECONOMÍA

Este tema se publica bajo Licencia: Creative Commons BY-NC-SA 4.0

Estadística I

Grado en Administración y Dirección de Empresas

Contenidos

- 4.1 Tabla de correlación
- 4.2 Distribuciones marginales
- 4.3 Distribuciones condicionadas
- 4.4 Independencia estadística
- 4.5 Relación lineal o correlación
- 4.6 Diagrama de dispersión o nube de puntos

Estadística I

Grado en Administración y Dirección de Empresas

Sean X e Y dos variables cuyos valores son $x_1, ..., x_i, ..., x_k$ e $y_1, ..., y_j, ..., y_h$, respectivamente. La observación conjunta de ambas variables proporciona pares de observaciones (x_i, y_i) .

4.1 Tabla de correlación

Permite presentar la información relativa a las variables *X* e *Y* de manera ordenada.

$x_i \setminus y_j$	\mathcal{Y}_1	 y_j	 ${\cal Y}_h$	$n_{i.}$
x_1	n_{11}	 n_{1j}	 n_{1h}	$n_{1.} = n_{11} + \ldots + n_{1h}$
x_2	n_{21}	 n_{2j}	 n_{2h}	$n_{2.} = n_{21} + \ldots + n_{2h}$
:	:	:	:	:
x_{i}	n_{i1}	 n_{ij}	 n_{ih}	$n_{i.}=n_{i1}+\ldots+n_{ih}$
:	:	:	:	:
x_k	n_{k1}	 n_{kj}	 n_{kh}	$n_{k.} = n_{k1} + \ldots + n_{kh}$
$n_{.j}$	$n_{.1}=n_{11}+\ldots+n_{k1}$	 $n_{.j} = n_{1j} + \ldots + n_{kj}$	 $n_{.h} = n_{1h} + \ldots + n_{kh}$	$\sum_{i=1}^k \sum_{j=1}^h n_{ij} = N$

La distribución de frecuencias bidimensional de (X, Y) viene dada por el conjunto de pares de valores junto con sus correspondientes frecuencias absolutas conjuntas $(x_i, y_j; n_{ij})$ o frecuencias relativas conjuntas $(x_i, y_j; f_{ij})$.

Carmen Trueba y Lorena Remuzgo

Resumen de los contenidos básicos. Tema 4

Estadística I

Grado en Administración y Dirección de Empresas

4.2 Distribuciones marginales

Permiten estudiar el comportamiento de cada variable de forma aislada.

Distribución marginal de X

x_i	$n_{i.}$
x_1	$n_{1.}$
x_2	$n_{2.}$
:	:
x_i	$n_{i.}$
:	:
x_k	n_{k}
	N

Distribución marginal de Y

y_j	$n_{.j}$
\mathcal{Y}_1	$n_{.1}$
\mathcal{Y}_2	n _{.2}
:	•
y_j	$n_{.j}$
:	:
${\cal Y}_h$	$n_{.k}$
	N

4.3 Distribuciones condicionadas

Permiten estudiar el comportamiento de cada variable cuando la otra permanece constante.

Distribución de X condicionada por $Y = y_i$

$x_i \mid Y = y_j$	$n_{i j}$
x_1	n_{1j}
x_2	n_{2j}
i	:
x_i	n_{ij}
:	:
\mathcal{X}_k	n_{kj}
	$n_{.j}$

Distribución de Y condicionada por $X = x_i$

$y_j \mid X = x_i$	$n_{j i}$
\mathcal{Y}_1	n_{i1}
y_2	n_{i2}
:	:
y_j	n_{ij}
:	:
${\cal Y}_h$	n_{ik}
	$n_{i.}$

Carmen Trueba y Lorena Remuzgo

Resumen de los contenidos básicos. Tema 4

Estadística I

Grado en Administración y Dirección de Empresas

Sea la distribución de frecuencias bidimensional $(x_i, y_j; n_{ij})$.

4.4 Independencia estadística

Dos variables son estadísticamente independientes cuando la variación de una de ellas no influye sobre la variación de la otra.

Condición de independencia estadística

$$n_{ij} = \frac{n_{i.} \cdot n_{.j}}{N} \quad \forall i, j$$

4.5 Relación lineal o correlación

Covarianza

Proporciona información acerca de la existencia de relación lineal entre las variables X e Y.

$$S_{XY} = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{h} (x_i - \overline{x}) (y_j - \overline{y}) n_{ij} = \frac{1}{N} \sum_{i=1}^{k} x_i \sum_{j=1}^{h} y_j n_{ij} - \overline{xy}$$

Interpretación

Si $S_{XY} = 0$, no existe relación lineal entre X e Y.

Si $S_{XY} > 0$, existe relación lineal positiva entre X e Y.

Si $S_{XY} < 0$, existe relación lineal negativa entre X e Y.

Carmen Trueba y Lorena Remuzgo

Resumen de los contenidos básicos. Tema 4

Estadística I

Grado en Administración y Dirección de Empresas

4.5 Relación lineal o correlación

Coeficiente de correlación lineal

Proporciona información acerca del grado de relación lineal existente entre las variables X e Y.

$$r_{XY} = \frac{S_{XY}}{S_X \cdot S_Y} - 1 \le r_{XY} \le 1$$

Interpretación

Si $r_{XY} = 0$, no existe relación lineal entre X e Y.

Si r_{XY} = 1, existe relación lineal perfecta positiva entre X e Y.

Si r_{XY} = -1, existe relación lineal perfecta negativa entre X e Y.

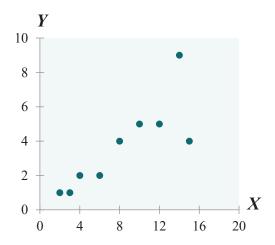
Si $0 < r_{XY} < 1$, existe relación lineal positiva entre X e Y.

Si -1 < r_{XY} < 0, existe relación lineal negativa entre X e Y.

Estadística I

4.6 Diagrama de dispersión o nube de puntos

Representación de los pares de observaciones (x_i, y_j) mediante puntos en el espacio bidimensional.



Carmen Trueba y Lorena Remuzgo

Resumen de los contenidos básicos. Tema 4