Cuestiones de Álgebra Lineal

Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que aparecen en el enunciado son convertidos en números enteros, adecuados al enunciado y entre -9 y 9, de modo que la respuesta del alumno es comprobada a partir de la fórmula de solución que aparece encuadrada al final del enunciado.

1.	Si tres vectores e_1, e_2, e_3 de un espacio vectorial E verifican $3e_1 + 4e_2 - e_3 = 0$; entonces, se verifica
	a) $\boxed{\mathbf{x}} \operatorname{dim}\langle e_1, e_2, e_3 \rangle \leq 2.$ b) $\boxed{\mathbf{dim}}\langle e_1, e_2, e_3 \rangle = 3.$ c) $\boxed{\mathbf{dim}}\langle e_1, e_2, e_3 \rangle = 2.$
2.	Sea \mathbb{P}_2 el espacio vectorial de los polinomios de grado menor o igual que 2 y $B=\{x^2+1,2x^2-1\}$. Entonces:
	a) \square B es una base de \mathbb{P}_2 .
	b) \square B es un sistema de generadores de \mathbb{P}_2 .
	c) $\boxed{\mathbf{x}}$ B es un sistema de vectores linealmente independientes de \mathbb{P}_2 .
3.	Si un espacio vectorial ${\cal E}$ tiene dimensión finita, entonces:
	$a) \ \square \ E$ tiene un número finito de vectores.
	$b) \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$c)$ $\boxed{\mathbf{x}}$ Ninguna de las anteriores.
4.	Consideramos el espacio vectorial real \mathbb{R}^3 . Se pide, marcar todas las afirmaciones ciertas de entre las siguientes:
	a) \square Cualquier familia $\{f_1, f_2, f_3\}$ de tres vectores constituye base de \mathbb{R}^3 .
	b) $\boxed{\mathbf{x}}$ Si tres vectores f_1, f_2, f_3 de \mathbb{R}^3 verifican $4f_1 + 4f_2 - f_3 = 0$; entonces, $\dim_{\mathbb{R}} \langle f_1, f_2, f_3 \rangle \leq 2$.
	c) $\boxed{\mathbf{x}}$ Todas las bases de \mathbb{R}^3 tienen tres elementos.
	d) $\boxed{\mathbf{x}}$ $\{(1,0,0),(1,1,0),(1,1,1)\}$ constituye una base de \mathbb{R}^3 .
	$e)$ \square \mathbb{R}^3 sólo tiene un número finito de subespacios vectoriales.
	f) El subconjunto $H = \{(x, y, z) \colon x + y = 1\}$ de \mathbb{R}^3 es un subespacio vectorial.

5.	En \mathbb{R}^3 consideramos la base $B = \{u_1, u_2, u_3\}$ con $u_1 = (1, 2, 0)$ y $u_2 = (4, 3, 7)$. Poner en el siguiente recuadro, con dos cifras decimales, el valor de la tercera componente de u_3 teniendo en cuenta que las coordenadas del vector $e = (3, 2, a)$ en la base B son $(1, 2, 4)$. $\boxed{a/4 - 3.5}$
6.	Si $\{u_1, u_2, u_3\}$ no es una base de \mathbb{R}^3 , entonces:
	a) $\boxed{\mathbf{x}}$ $\{u_1, u_2, u_3\}$ no es un sistema de vectores linealmente independientes.
	b) $ [u_1, u_2, u_3] $ se puede completar hasta formar una base de \mathbb{R}^3 .
	c) $x \{u_1, u_2, u_3\}$ no es un sistema de vectores generadores.
7.	Un espacio vectorial de dimensión 3, ¿puede tener un subespacio vectorial de dimensión 4?
	a) Sí.
	$b)$ $\boxed{\mathbf{x}}$ No.
8.	Consideramos dos subespacios H_1, H_2 de \mathbb{R}^4 de dimensión dos, entonces:
	a) $[x]$ Si $H_1 + H_2 = \mathbb{R}^4$ entonces $H_1 \cap H_2 = (0)$.
	$b) \ \overline{\qquad} \ \dim(H_1 \cap H_2) = 1.$
	$c) \dim(H_1 + H_2) \le 3.$
9.	Sea $T \colon E \to F$ una aplicación lineal entre los espacios vectoriales $E, F.$ Entonces,
	$a) \Box \dim E = \dim F.$
	b) \prod range $T = \dim F$.
	$c)$ $\boxed{\mathbf{x}}$ Ninguna de las anteriores.
10.	Sea $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ una aplicación lineal, entonces:
	a) $\boxed{\mathbf{x}}$ T no puede ser epiyectiva.
	$b) \boxed{} T \text{ es inyectiva.}$
	c) \square dim Im $T=2$.
11.	Sea $T \colon \mathbb{R}^3 \to \mathbb{R}^4$ una aplicación lineal, entonces:
	a) $\boxed{\mathbf{x}}$ T no es epiyectiva.
	b) \square Si $\{e_1, e_2, e_3\}$ es un sistema de vectores linealmente independientes entonces también lo es $\{T(e_1), T(e_2), T(e_3)\}$.

c) Si $T(e_1-3e_2+e_3)=0$ entonces $\{e_1,e_2,e_3\}$ es un sistema de vectores linealmente

d) $\boxed{\mathbf{x}}$ Si $e_1-3e_2+e_3=0_E$ entonces $\{T(e_1),T(e_2),T(e_3)\}$ es un sistema de vectores

dependientes.

linealmente dependientes.

12. Para $T: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación definida por la igualdad T(x, y, z) = (z - y, 3x + 2y - z), se verifica que su matriz asociada, respecto a las bases estándar, es:

a)
$$\square$$
 $\begin{pmatrix} 0 & -1 & 1 \\ 3 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$; b) $\boxed{\mathbf{x}}$ $\begin{pmatrix} 0 & -1 & 1 \\ 3 & 2 & -1 \end{pmatrix}$; c) \square $\begin{pmatrix} 0 & 3 \\ -1 & 2 \\ 1 & -1 \end{pmatrix}$

13. Consideramos las matrices

$$A = \begin{pmatrix} 1 & 2 & 3 & a \\ 2 & 3 & 1 & b \\ 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & -6 \end{pmatrix}; \quad B = A^{-1}$$

Se pide calcular el elemento (3,4), tercera fila cuarta columna, de la matriz B. Poner, con dos cifras decimales, la solución en el recuadro siguiente:

$$(-1-b+a)/(13+b-4a)$$
, siempre que $4a-b \neq 13$

14. Consideramos las matrices

$$A = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}; \qquad B = \begin{pmatrix} 14 & 16 & 18 \\ 9 & 10 & a \end{pmatrix}$$

y la matriz X que verifica $A \cdot X = B$. Poner en el siguiente recuadro, con dos cifras decimales, el valor del elemento (2,3), segunda fila tercera columna, de la matriz X.

$$\boxed{5a - 54}$$

15. Denotamos por P_3 el espacio real de los polinomios de grado menor o igual que 3 y por S el sistema

$$S = \{1, x + 1, (x + 1)^2, (x + 1)^3\}$$

Marcar todas las afirmaciones ciertas:

- a) \square S es una base y las coordenadas de $x^3 + 1$ respecto a S son (1, -3, 3, 0).
- b) La aplicación D: $P_3 \to P_3$ que a cada polinomio le asigna su derivada es epiyectiva.
- c) $\boxed{\mathbf{x}}$ Consideramos la aplicación $T \colon P_3 \to P_3$ que a cada polinomio p le asigna p' + 2p, la suma de la derivada de p y del doble de p. Entonces, el sistema $T(\mathcal{S}) = \{T(1), T(x+1), T((x+1)^2), T((x+1)^3)\}$ es una base de P_3 .
- 16. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal caracterizada por ser

$$T(1,-1,2) = (2,1)$$

 $T(2,2,-1) = (1,0)$
 $T(3,3,1) = (-3,a)$

Poner, en el siguiente recuadro, con dos cifras decimales, el valor del elemento (2,2), segunda fila segunda columna, de la matriz asociada a T respecto a la base estándar.

$$(a-1)/2$$

JUSTIFICACIÓN: Las condiciones T(1,-1,2)=(2,1), T(2,2,-1)=(1,0), T(3,3,1)=(-3,a), se pueden escribir, las tres a la vez, poniendo:

$$\begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 3 \\ 2 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 0 & a \end{bmatrix}$$

deduciéndose, para las incógnitas y_1, y_2, y_3 , el siguiente sistema:

$$\begin{cases} y_1 - y_2 + 2y_3 &= 1 \\ 2y_1 + 2y_2 - y_3 &= 0 \\ 3y_1 + 3y_2 + y_3 &= a \end{cases}$$

y resolviendo que $y_2 = (a-1)/2$.

- 17. Si A es una matriz cuadrada de orden 3 con coeficientes reales entonces:
 - a) \Box $\det(-3A) = -3 \det A.$
 - b) $\boxed{\mathbf{x}} \det(-3A) = -27 \det A$
- 18. ¿Es diagonalizable un endomorfismo $T: \mathbb{R}^4 \to \mathbb{R}^4$ del que se sabe que $C_T(x) = x^2(x-1)(x-3)$ es su polinomio característico y que dim Ker T=2?.
 - a) x Sí.
 - b) No.
 - c) Depende.
- 19. Si E es un espacio vectorial real y T un endomorfismo de E, entonces:
 - a) \square 0 es un valor propio de T.
 - b) $\boxed{\mathbf{x}}$ Si 0 es valor propio de T entonces T no es inyectivo.
 - c) \square Si T es inyectivo entonces 0 es un valor propio de T.
- 20. Consideramos P_4 el espacio vectorial de los polinomios reales de grado menor o igual que cuatro y el endomorfismo $T\colon P_4\to P_4$ definido por la igualdad $T(p(x))=x\cdot\frac{d}{dx}(p(x))$

Marcar todas las afirmaciones ciertas:

- a) x T es diagonalizable.
- b) \bigcap det T=0.
- c) $\boxed{\mathbf{x}}$ T es un isomorfismo.
- d) \square Im $T = P_3$, para P_3 los polinomios de grado menor o igual que tres.
- 21. De un endomorfismo $T: \mathbb{R}^3 \to \mathbb{R}^3$ sabemos:

a) $\ker T$ es el espacio vectorial de ecuaciones:

$$\begin{cases} x+y+z &= 0\\ 2x-y &= 0 \end{cases}$$

b) (1,0,1) y (2,1,a) son vectores propios de valores propios 1 y b respectivamente.

Poner, en el siguiente recuadro, con dos cifras decimales, el valor del elemento (1,2), primera fila segunda columna, de la matriz asociada a T respecto a la base estándar

$$(-(a+6)/2+4b)/a$$

Justificación: Se tiene Ker $T = \langle (1, 2, -3) \rangle$. Ahora, las condiciones del enunciado se pueden escribir

$$T \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & a & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \cdot (b) & 0 \\ 0 & b & 0 \\ 1 & (a) \cdot (b) & 0 \end{pmatrix}$$

ya que las condiciones equivalen a que el transformado por T de la i-ésima columna de la primera matriz escrita en la igualdad anterior sea igual a la i-ésima columna de la segunda matriz.

Si denotamos (t_1, t_2, t_3) a la primera fila de la matriz de T, de la igualdad anterior, se deduce el sistema

$$\begin{cases} t_1 + t_3 &= 1\\ 2t_1 + t_2 + (a) \cdot t_3 &= 2 \cdot (b)\\ t_1 + 2t_2 - 3t_3 &= 0 \end{cases}$$

resolviendo se deduce que $t_2 = (-(a+b)/2 + 4b)/a$.

22. Denotamos por $C(x) = \det(x \operatorname{Id} - T) = x^3 + c_2 x^2 + c_1 x + c_0$ al polinomio característico del endomorfismo $T : \mathbb{R}^3 \to \mathbb{R}^3$ cuya matriz asociada respecto a la matriz estándar es

$$\begin{bmatrix}
 1 & -2 & a \\
 b & -1 & 2 \\
 2 & 2 & -1
 \end{bmatrix}$$

Poner, en el siguiente recuadro, con dos cifras decimales, el valor del coeficiente c_1 del polinomio C(x).

$$\boxed{-2a - 5 + 2b}$$

- 23. De un endomorfismo $T: \mathbb{R}^3 \to \mathbb{R}^3$ sabemos que $C(x) = x^3 5x^2 + 6x$ es su polinomio característico. Marcar todas las afirmaciones correctas que se deducen de lo anterior:
 - a) [x] Los valores propios del endomorfismo $(1/3) \cdot T$ son 0, 1 y 2/3.
 - b) \square T no es diagonalizable.
 - c) T es un isomorfismo.
 - d) $\boxed{\mathbf{x}}$ El núcleo de T contiene un vector distinto de cero.

Justificación: De la igualdad C(x) = x(x-3)(x-2) se deduce:

- a) KerT=V(0) es un espacio vectorial distinto del cero y, por tanto, que la afirmación cuarta es cierta.
- b) Si e es un vector propio de T de valor propio λ entonces $[(1/3) \cdot T](e) = (\lambda/3)e$ de donde se deduce que si λ es un valor propio de T entonces $\lambda/3$ lo es de $(1/3) \cdot T$. De aquí se deduce que la primera afirmación del enunciado es cierta ya que 0, 3, 2 son los valores propios de T.
- c) T es diagonalizable porque todas las raíces de C(x) son reales y distintas.
- d) $\det T = -C(0) = 0$ y, por tanto, T no es un isomorfismo.
- 24. ¿Existe algún sistema lineal de ecuaciones con coeficientes reales que tenga exactamente dos soluciones?.
 - $a) \square Si.$
 - b) x No.
- 25. Se consideran los sistemas de ecuaciones $Ax = B_1$ y $Ax = B_2$, donde el primero es incompatible y el segundo es compatible determinado, entonces siendo $B = B_1 + B_2$, el sistema Ax = B es:
 - a) Homogéneo.
 - b) Compatible indeterminado.
 - c) $\boxed{\mathbf{x}}$ Incompatible.
- 26. Sea Ax = B un sistema lineal incompatible de 5 ecuaciones con 4 incógnitas del que sabemos que rango A = 4. Entonces:
 - $a) \square A$ es una matriz cuadrada.
 - b) \square Existe $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ de modo que Ax = B.
 - c) $\boxed{\mathbf{x}}$ Si A^* es la matriz ampliada del sistema Ax = B entonces rango $A^* = 5$.
- 27. El siguiente sistema de ecuaciones lineales

$$\begin{cases} x_1 + 2x_2 + x_3 &= 4 \\ 2x_1 + 4x_2 + 3x_3 &= b \\ x_1 + 3x_2 + 5x_3 &= 3 \end{cases}$$

posee una única solución $s = (s_1, s_2, s_3)$. Se pide calcular el valor de la expresión $s_1 + s_2 - 2s_3$ y ponerlo, con dos cifras decimales, en el recuadro siguiente:

$$b-3$$

28. El siguiente sistema de ecuaciones lineales

$$\begin{cases} 7.09x_1 + 1.17x_2 - 2.23x_3 &= -4.75\\ 0.43x_1 + 1.4x_2 - 0.62x_3 &= -1.05\\ 3.21x_1 - 4.25x_2 + 2.13x_3 &= a \end{cases}$$

posee una única solución $s = (s_1, s_2, s_3)$. Se pide poner, con dos cifras decimales, en el siguiente recuadro el valor de s_3 .

0.7161870323a - 0.4222443524

29. El siguiente sistema de ecuaciones lineales

$$\begin{cases} x_1 + 2.1x_2 + 3x_3 &= 4 \\ x_2 - 1.41x_3 &= a \\ -x_1 + 1.3x_2 - 2.52x_3 &= b \end{cases}$$

posee una única solución $s = (s_1, s_2, s_3)$. Se pide calcular el valor de s_3 y ponerlo, con dos cifras decimales, en el recuadro siguiente:

0.758437 - 0.644671a + 0.1896094b

- 30. Sea $\langle u,v\rangle$, $u\neq 0$, un subespacio de dimensión uno del espacio euclídeo \mathbb{R}^3 .
 - a) $\boxed{\mathbf{x}}$ Si $w \in \mathbb{R}^3$ es perpendicular a u, entonces es perpendicular a v.
 - b) \square Si $w \in \mathbb{R}^3$ es perpendicular a u, entonces $\{u, v, w\}$ forma una base de \mathbb{R}^3 .
 - c) Ninguna de las anteriores.
- 31. En \mathbb{R}^2 consideramos una métrica * que verifica $e_1 * e_1 = e_2 * e_2 = 0$ para $e_1 = (1,0)$ y $e_2 = (0,1)$. De ello se deduce:
 - a) * es la métrica cero.
 - b) x No es una métrica euclídea.
- 32. De un tetraedro OABC sabemos que la base $\mathcal{B} = \{e_1, e_2, e_3\}$ del espacio vectorial definida por la igualdades

$$e_1 = \overrightarrow{OA}; \quad e_2 = \overrightarrow{OB}; \quad e_3 = \overrightarrow{OC}$$

verifica que la matriz G del producto escalar en la base $\mathcal B$ está dada por la igualdad

$$G = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right)$$

Marcar las afirmaciones ciertas que se deducen de lo anterior:

- a) OABC es una tetraedro regular cuyas aristas miden 4 unidades de longitud.
- b) \square El ángulo formado entre las caras OAB y OAC es de 60° .
- c) $\boxed{\mathbf{x}}$ El vector $e_1 + e_2 3e_3$ es normal a la cara OAB.
- d) [x] Los segmentos OA y BC son perpendiculares.
- 33. En MAPLE realizamos la sesión que aparece reflejada a continuación

>with(linalg):

> M:= matrix(3,4,[[7,2,1,6],[2,4,3,1],[1,3,5,3]]);

$$M := \left[\begin{array}{rrrr} 7 & 2 & 1 & 6 \\ 2 & 4 & 3 & 1 \\ 1 & 3 & 5 & 3 \end{array} \right]$$

>T:=hermite(M,x,'F'); F:=evalm(F);

$$T := \left[\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$F := \begin{bmatrix} 11/65 & -7/65 & 2/65 \\ -7/65 & 34/65 & -19/65 \\ 2/65 & -19/65 & 24/65 \end{bmatrix}$$

Teniendo en cuenta que denotamos por m_1, m_2, m_3 las tres filas de la matriz M, por t_1, t_2, t_3 las tres filas de T y por M_1, M_2, M_3, M_4 y T_1, T_2, T_3, T_4 las cuatro columnas de M y T, respectivamente.

- a) $\boxed{\mathbf{x}}$ T_4 es la única solución del sistema de tres ecuaciones y tres incógnitas cuya matriz ampliada es M.
- b) \square El determinante de M vale 65.
- c) \square F es la matriz inversa de M.
- d) \square rango M < 3.
- e) $\boxed{\mathbf{x}}$ $t_1 = \frac{1}{65} \cdot (11m_1 7m_2 + 2m_3), t_2 = \frac{1}{65} \cdot (-7m_1 + 34m_2 19m_3), t_3 = \frac{1}{65} \cdot (2m_1 19m_2 + 24m_3).$
- f) $\boxed{\mathbf{x}}$ $\langle m_1, m_2, m_3 \rangle = \langle t_1, t_2, t_3 \rangle.$

JUSTIFICACIÓN: Se tiene

$$F \cdot \left[\begin{array}{c} m_1 \\ m_2 \\ m_3 \end{array} \right] = \left[\begin{array}{c} t_1 \\ t_2 \\ t_3 \end{array} \right]$$