
Last revision: Tuesday, February 15, 2011

Fundamentals of Computer Design

Technology, Cost, Performance, Power

Readings: H&P Chapter 1 



This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications (already covered)

• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost

• Performance

• Power

• Reliability

Fundamentals of Computer Design 2



What is Computer Architecture? 
(review)

• Design of interfaces and implementations…

• Under constantly changing set of external forces…
• Applications: change from above (discussed last time)

• Technology: changes transistor characteristics from below

• Inertia: resists changing all levels of system at once

• To satisfy different constraints
• This course mostly about performance

• Cost 

• Power

• Reliability 

• Iterative process driven by empirical evaluation

• The art/science of tradeoffs

Fundamentals of Computer Design 3



Abstraction and Layering

• Abstraction: only way of dealing with complex systems
• Divide world into objects, each with an…

• Interface: knobs, behaviors, knobs  behaviors

• Implementation: “black box”

• Specialists deal with implementation; others interface

• Example: car drivers vs. mechanics

• Layering: abstraction discipline makes life even simpler

• Removes need to even know interfaces of most objects

• Divide objects in system into layers

• Layer X objects

• Implemented in terms of interfaces of layer X-1 objects

• Don’t even need to know interfaces of layer X-2 objects

• Example: cab driver vs. mechanics
Fundamentals of Computer Design 4



Abstraction, Layering, and Computers

• Computers are complex systems, built in layers
• Applications

• O/S, compiler

• Firmware, device drivers

• Processor, memory, raw I/O devices

• Digital circuits, digital/analog converters

• Gates

• Transistors

• 99% of users don’t know hardware layers implementation

• 90% of users don’t know implementation of any layer

• That’s OK, world still works just fine
• But unfortunately, the layers sometimes breakdown

• Someone needs to understand what’s “under the hood”

Fundamentals of Computer Design 5



A Computer Architecture Picture

• Computer architecture
• Definition of ISA to facilitate implementation of software layers

• This course mostly on computer micro-architecture

• Design CPU, Memory, I/O to implement ISA …

Hardware

Software

Instruction Set Architecture (ISA)

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Fundamentals of Computer Design 6



Aside: Semiconductor Technology Background

• Transistor (1947)

• A key invention of 20th century

• Fabrication

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Fundamentals of Computer Design 7



A Transistor Analogy: Computing with 
Air

• Use air pressure to encode values 
• High pressure represents a “1” (blow)

• Low pressure represents a “0” (suck)

• Valve can allow or disallow the flow of air
• Two types of valves

8

High (On) High (Off)

N-Valve P-Valve

Low (On)Low (Off)

hole

Fundamentals of Computer Design



Pressure Inverter

9

High

Low

Out

N-Valve

P-Valve

In

Fundamentals of Computer Design



Pressure Inverter (Low to High)

10

High

Low

Low

N-Valve

P-Valve

High

Fundamentals of Computer Design



Pressure Inverter

11

High

Low

N-Valve

P-Valve

Fundamentals of Computer Design



Pressure Inverter (High to Low)

12

Low

High

Low

High

N-Valve

P-Valve

Fundamentals of Computer Design



Analogy Explained

• Pressure differential  electrical potential (voltage)
• Air molecules  electrons

• High pressure  high voltage

• Low pressure  low voltage

• Air flow  electrical current
• Pipes  wires

• Air only flows from high to low pressure

• Electrons only flow from high to low voltage

• Flow only occurs when changing from 1 to 0 or 0 to 1 (valvevalve)

• Valve  transistor
• The transistor: one of the century’s most important inventions

13Fundamentals of Computer Design



Transistors as Switches

• Two types
• N-type

• P-type

• Properties
• Solid state (no moving parts)

• Reliable (low failure rate)

• Small (32nm channel length)

• Fast (<0.1ns switch latency)

14

N-Valve

P-Valve

N-MOSFET

P-MOSFET

Fundamentals of Computer Design



Shaping Force: Technology

• Basic technology element: MOSFET

• MOS: metal-oxide-semiconductor

• Conductor, insulator, semi-conductor

• FET: field-effect transistor

• Solid-state component acts like electrical switch

• Channel conducts sourcedrain when voltage applied to gate

• Channel length: characteristic parameter (short  fast)
• Aka “feature size” or “technology”

• Currently: 32 nm (0.032 micron) i.e. in 1 cm  ~300.000 trans.

• Continued miniaturization (scaling) known as “Moore’s Law”

• Won’t last forever, physical limits approaching (or are they?)

channel

source

drain

gate

Fundamentals of Computer Design 15



Complementary MOS (CMOS)

• Voltages as values
• Power (VDD) = 1, Ground = 0

• Two kinds of MOSFETs
• N-transistors

• Conduct when gate voltage is 1

• Good at passing 0s

• P-transistors

• Conduct when gate voltage is 0

• Good at passing 1s

• CMOS: complementary n-/p- networks form boolean logic 

power (1)

ground (0)

input output

(“node”)

n-transistor

p-transistor

Fundamentals of Computer Design 16



CMOS Examples

• Example I: inverter
• Case I: input = 0

• P-transistor closed, n-transistor open

• Power charges output (1)

• Case II: input = 1

• P-transistor open, n-transistor closed

• Output discharges to ground (0)

• Example II: look at truth table

• 0, 0  1         0, 1  1

• 1, 0  1         1, 1  0

• Result: this is a NAND (NOT AND)

• NAND is universal (can build any logic function)

0
1

1 0

BA

A

B

Fundamentals of Computer Design 17



More About CMOS and Technology

• Two different CMOS families

• SRAM (logic): used to make processors

• Storage implemented as inverter pairs

• Optimized for speed

• DRAM (memory): used to make memory
• Storage implemented as capacitors

• Optimized for density, cost, power

• Conventional Disk is also a “technology”, but isn’t transistor-
based (except Solid State Disks-SSD or other non volatile tech 
Phase-RAM or PRAM , MMRAM, etc…)

Fundamentals of Computer Design 18



Aside: VLSI + Manufacturing

• VLSI (very large scale integration)

• Transistor manufacturing process

• Integrated Circuit (1958) as important as transistor itself

• Multi-step photochemical and electrochemical process

• Fixed cost per step

• Cost per transistor shrinks with transistor size

• Other production costs

• Packaging

• Test

• Mask set

• Design

Fundamentals of Computer Design 19



MOSFET Side View

• MOS: three materials needed to make a transistor
• Metal – Poli-silicon, Aluminum, Tungsten, Copper: conductor

• Oxide -- Silicon Dioxide (SiO2): insulator

• Semiconductor - doped Si: conducts under certain conditions

• FET: field effect (the mechanism) transistor
• Voltage on gate: current flows source to drain (transistor on)

• No voltage on gate: no current (transistor off)

channel
source drain

insulator
gate

Substrate

Fundamentals of Computer Design 20



This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications

• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost

• Performance

• Power

• Reliability

Fundamentals of Computer Design 21



Fundamentals of Computer Design 22

A:Manufacturing Steps

Source: P&H

http://www.intel.com/pressroom/kits/chipmaking/index.htm

http://www.intel.com/pressroom/kits/chipmaking/index.htm


A:Manufacturing Process

• Start with silicon wafer

• “Grow” photo-resist
• Molecular beam epitaxy

• Burn positive bias mask
• Ultraviolet light lithography

• Dissolve unburned photo-resist
• Chemically

• Bomb wafer with negative ions (P)
• Doping

• Dissolve remaining photo-resist
• Chemically

• Continue with next layer

Fundamentals of Computer Design 23



A:Manufacturing Process

• Grow SiO2

• Grow photo-resist

• Burn “via-level-1” mask

• Dissolve unburned photo-resist
• And underlying SiO2

• Grow tungsten “vias”

• Dissolve remaining photo-resist

• Continue with next layer

Fundamentals of Computer Design 24



A:Manufacturing Process

• Grow SiO2

• Grow photo-resist

• Burn “wire-level-1” mask

• Dissolve unburned photo-resist
• And underlying SiO2

• Grow copper “wires”

• Dissolve remaining photo-resist

• Continue with next wire layer…

• Typical number of wire layers: 3-11

Fundamentals of Computer Design 25



A:Defects

• Defects can arise
• Under-/over-doping

• Over-/under-dissolved insulator

• Mask mis-alignment

• Particle contaminants

• Try to minimize defects
• Process margins

• Design rules

• Minimal transistor size, separation

• Or, tolerate defects
• Redundant or “spare” memory cells

Defective:

Defective:

Slow:

Fundamentals of Computer Design 26



Empirical Evaluation

• Metrics
• Cost 

• Performance

• Power 

• Reliability

• Often more important in combination than individually
• Performance/cost (MIPS/$)

• Performance/power (MIPS/W)

• Basis for
• Design decisions

• Purchasing decisions

Fundamentals of Computer Design 27



Cost

• Metric: $

• In grand scheme: CPU accounts for fraction of cost

• Some of that is profit (Intel’s, Dell’s)

• We are concerned about chip cost 
• Unit cost: costs to manufacture individual chips

• Startup cost: cost to design chip, build the fab line, marketing

Desktop Laptop PDA Phone

$ $100–$300 $150-$350 $50–$100 $10–$20

% of total 10–30% 10–20% 20–30% 20-30%

Other costs Memory, display, power supply/battery, disk, packaging, 
software

Fundamentals of Computer Design 28



Unit Cost: Integrated Circuit (IC)

• Chips built in multi-step chemical processes on wafers
• Cost / wafer is constant, f(wafer size, number of steps)

• Chip (die) cost is proportional to area

• Larger chips means fewer of them

• Larger chips means fewer working ones

• Why? Uniform defect density

• Chip cost ~ chip areaa

• a = 2-3

• Wafer yield: % wafer that is chips

• Die yield: % chips that work

• Yield is increasingly non-binary - fast vs slow chips

Fundamentals of Computer Design 29



Yield/Cost Examples

• Parameters
• wafer yield = 90%, a = 2, defect density = 2/cm2

Die size (mm2) 100 144 196 256 324 400

Die yield 23% 19% 16% 12% 11% 10%

6” Wafer 139(31) 90(16) 62(9) 44(5) 32(3) 23(2)

8” Wafer 256(59) 177(32) 124(19) 90(11) 68(7) 52(5)

10” Wafer 431(96) 290(53) 206(32) 153(20) 116(13) 90(9)

Wafer 
Cost

Defect 
(/cm2)

Area 
(mm2)

Dies Yield Die 
Cost

Package 
Cost (pins)

Test 
Cost

Total

Intel 486DX2 $1200 1.0 81 181 54% $12 $11(168) $12 $35

IBM PPC601 $1700 1.3 196 66 27% $95 $3(304) $21 $119

DEC Alpha $1500 1.2 234 53 19% $149 $30(431) $23 $202

Intel Pentium $1500 1.5 296 40 9% $417 $19(273) $37 $473

Fundamentals of Computer Design 30



Startup Costs

• Startup costs: must be amortized over chips sold
• Research and development: ~$100M per chip (optimistic)

• 500 person-years @ $200K per

• Fabrication facilities: ~$2000 M per new line (optimistic)

• Clean rooms (bunny suits), lithography, testing equipment

• If you sell 10M chips, startup adds ~$200 to cost of each
• Companies (e.g., Intel) don’t make money on new chips

• They make money on proliferations (shrinks and frequency)

• No startup cost for these

Fundamentals of Computer Design 31



Moore’s Effect on Cost

• Scaling has opposite effects on unit and startup costs
+ Reduces unit integrated circuit cost 

• Either lower cost for same functionality…

• Or same cost for more functionality

– Increases startup cost

• More expensive fabrication equipment

• Takes longer to design, verify, and test chips

Fundamentals of Computer Design 32



This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications

• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost

• Performance

• Power

• Reliability

Fundamentals of Computer Design 33



Performance

• Two definitions
• Latency (execution time): time to finish a fixed task

• Throughput (bandwidth): number of tasks in fixed time

• Very different: throughput can exploit parallelism, latency cannot

• Often contradictory (latency vs. throughput)

• Will see many examples of this

• Choose definition that matches goals (most frequently throughput)

• Scientific program: latency; web server: throughput?

• Example: move people from A to B, 10 miles
• Car: capacity = 5, speed = 60 miles/hour

• Bus: capacity = 60, speed = 20 miles/hour

• Latency: car = 10 min, bus = 30 min

• Throughput: car = 15 PPH (count return trip), bus = 60 PPH
Fundamentals of Computer Design 34



Performance Improvement

• Processor A is X times faster than processor B if
• Latency(P,A) = Latency(P,B) / X

• Throughput(P,A) = Throughput(P,B) * X

• Processor A is X% faster than processor B if
• Latency(P,A) = Latency(P,B) / (1+X/100)

• Throughput(P,A) = Throughput(P,B) * (1+X/100)

• Car/bus example

• Latency? Car is 3 times (and 200%) faster than bus

• Throughput? Bus is 4 times (and 300%) faster than car

Fundamentals of Computer Design 35



What Is ‘P’ in Latency(P,A)?

• Program
• Latency(A) makes no sense, processor executes some program

• But which one?

• Actual target workload?
+ Accurate

– Not portable/repeatable, overly specific, hard to pinpoint problems

• Some representative benchmark program(s)?
+ Portable/repeatable, pretty accurate

– Hard to pinpoint problems, may not be exactly what you run

• Some small kernel benchmarks (micro-benchmarks)

+ Portable/repeatable, easy to run, easy to pinpoint problems

– Not representative of complex behaviors of real programs

Fundamentals of Computer Design 36



SPEC Benchmarks

• SPEC (Standard Performance Evaluation Corporation)
• http://www.spec.org/

• Consortium of companies that collects, standardizes, and distributes 
benchmark programs

• Post SPECmark results for different processors

• 1 number that represents performance for entire suite

• Benchmark suites for CPU, Java, I/O, Web, Mail, etc.

• Updated every few years: so companies don’t target benchmarks

• SPEC CPU 2006
• 12 “integer”: bzip2, gcc, perl, xalancbmk (xml), h264ref (VC), etc.

• 17 “floating point”: povray(openGL), namd (biology), weather, etc. 

• Written in C, C++ and Fortran

Fundamentals of Computer Design 37

http://www.spec.org/


Other Benchmarks

• Parallel benchmarks
• SPLASH2/ PARSEC – Shared memory numerical multithread benchmarks

• NAS – More general numerical multithread benchmarks

• SPEC’s – OpenMP benchmarks

• SPECjbb – Java multithreaded database-like workload

• Transaction Processing Council (TPC)
• TPC-C: On-line transaction processing (OLTP)

• TPC-H/R: Decision support systems (DSS)

• TPC-W: E-commerce database backend workload

• Have parallelism (intra-query and inter-query)

• Heavy I/O and memory components

• Graphics, Network, Disk, etc…
Fundamentals of Computer Design 38



SPECmark

• Reference machine: Sun Ultra Enterprise II (1997/ 297 Mhz USII)

• Latency SPECmark (SPECint & SPECfp)
• For each benchmark

• Take odd number of samples: on both machines

• Choose median

• Take latency ratio (Sun Ultra Enterprise II / your machine)

• Take GMEAN of ratios over all benchmarks

• Throughput SPECmark (SPECint_rate & SPECfp_rate)

• Run multiple benchmarks in parallel on multiple-processor system

• Recent (latency) leaders
• SPECint: Intel Core 7i EE 3.2GHz (33.6)

• SPECfp: Intel Core 7i EE 3.2GHz (33.6)

Fundamentals of Computer Design 39



Example Report

Fundamentals of Computer Design 40



Adding/Averaging Performance 
Numbers

• You can add latencies, but not throughput
• Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A)

• Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

• 1 km@ 30 km+ 1 mile @ 90 km/hour

• Average is not 60 km/hour

• 0.033 hours at 30 km/hour + 0.01 hours at 90 km/hour 

• Average is only 47 km/hour! (2 km/ (0.033 + 0.01 hours))

• Throughput(P1+P2,A) =

1 / [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))]

• Same goes for means (averages)
• Arithmetic: (1/N) * ∑P=1..N Latency(P)

• For units that are proportional to time (e.g., latency)

• Harmonic: N / ∑P=1..N 1/Throughput(P)

• For units that are inversely proportional to time (e.g., throughput)

• Geometric: N√∏P=1..N Speedup(P)

• For unitless quantities (e.g., speedups, normalized performance)

Fundamentals of Computer Design 41



CPU Performance Equation

• Multiple aspects to performance: helps to isolate them

• Latency(P,A) = seconds / program =
• (instructions / program) * (cycles / instruction) * (seconds / cycle)

• Instructions / program: dynamic instruction count
• Function of program, compiler, instruction set architecture (ISA)

• Cycles / instruction: CPI
• Function of program, compiler, ISA, micro-architecture

• Seconds / cycle: clock period
• Function of micro-architecture, technology parameters

• For low latency (better performance) minimize all three
• Hard: often pull against the other

Fundamentals of Computer Design 42



Danger: Partial Performance Metrics

• Micro-architects often ignore dynamic instruction count
• Typically work in one ISA/one compiler  treat it as fixed

• CPU performance equation becomes
• seconds / instruction = (cycles / instruction) * (seconds / cycle)

• This is a latency measure, if we care about throughput …

• Instructions / second = (instructions / cycle) * (cycles / second)

• MIPS (millions of instructions per second)
• Instructions / second * 10-6

• Cycles / second: clock frequency (in MHz)

• Example: CPI = 2, clock = 500 MHz, what is MIPS?

• 0.5 * 500 MHz * 10-6 = 250 MIPS

• Example problem situation: 

• compiler removes instructions, program faster

• However, “MIPS” goes down (misleading)

Fundamentals of Computer Design 43



MIPS and MFLOPS (MegaFLOPS)

• Problem: MIPS may vary inversely with performance
– Some optimizations actually add instructions

– Work per instruction varies (e.g., FP mult vs. integer add)

– ISAs are not equivalent

• MFLOPS: like MIPS, but counts only FP ops, because…
+ FP ops can’t be optimized away

+ FP ops have longest latencies anyway

+ FP ops are same across machines

• May have been valid in 1980, but today…
– Most programs are “integer”, i.e., light on FP

– Loads from memory take much longer than FP divide

– Even FP instructions sets are not equivalent

• Upshot: MIPS not perfect, but (usually) more useful than 
MFLOPS

Fundamentals of Computer Design 44



Danger: Partial Performance Metrics II

• Micro-architects often ignore dynamic instruction count…

• … but general public (mostly) also ignores CPI
• Equates clock frequency with performance!!

• Which processor would you buy?
• Processor A: CPI = 2, clock = 500 MHz

• Processor B: CPI = 1, clock = 300 MHz

• Probably A, but B is faster (assuming same ISA/compiler)

• Classic example

• 800 MHz PentiumIII faster than 1 GHz Pentium4

• Same ISA and compiler

Fundamentals of Computer Design 45



Cycles per Instruction (CPI)

• This course is mostly about improving CPI
• Cycle/instruction for average instruction

• IPC = 1/CPI

• Used more frequently than CPI, but harder to compute with

• Different instructions have different cycle costs

• E.g., integer add typically takes 1 cycle, FP divide takes > 10

• Assumes you know something about instruction frequencies

• CPI example
• A program executes equal integer, FP, and memory operations

• Cycles per instruction type: integer = 1, memory = 2, FP = 3

• What is the CPI? (0.33 * 1) + (0.33 * 2) + (0.33 * 3) = 2

• Caveat: this sort of calculation ignores dependences completely

• Back-of-the-envelope arguments only

Fundamentals of Computer Design 46



Another CPI Example

• Assume a processor with instruction frequencies and costs
• Integer ALU: 50%, 1 cycle

• Load: 20%, 5 cycle

• Store: 10%, 1 cycle

• Branch: 20%, 2 cycle

• Which change would improve performance more?
• A. Branch prediction to reduce branch cost to 1 cycle?

• B. A bigger data cache to reduce load cost to 3 cycles?

• Compute CPI
• Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2

• A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8

• B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6  (winner)

Fundamentals of Computer Design 47



Increasing Clock Frequency: Pipelining

• CPU is a pipeline: compute stages separated by latches

• Clock period: maximum delay of any stage
• Number of gate levels in stage

• Delay of individual gates (these days, wire delay more important)

PC
Insn

Mem

Register

File

s1 s2 d

Data

Mem

a

d

+

4

Fundamentals of Computer Design 48



Increasing Clock Frequency: Pipelining

• Reduce pipeline stage delay
• Reduce logic levels and wire lengths (better design)

• Complementary to technology efforts (described later)

• Increase number of pipeline stages (multi-stage operations)

– Often causes CPI to increase

– At some point, actually causes performance to decrease

• “Optimal” pipeline depth is program and technology specific

• Remember example
• PentiumIII: 12 stage pipeline, 800 MHz

faster than

• Pentium4: 22 stage pipeline, 1 GHz

• Actual Intel designs: more like PentiumIII

Fundamentals of Computer Design 49



CPI and Clock Frequency

• System components “clocked” independently
• E.g., Increasing processor clock frequency doesn’t improve memory 

performance

• Example
• Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz

• What is the speedup if we double clock frequency?

• Base: CPI = 2  IPC = 0.5  MIPS = 250

• New: CPI = 3  IPC = 0.33  MIPS = 333

• Clock *= 2  CPIMEM *= 2

• Speedup = 333/250 = 1.33 << 2

• What about an infinite clock frequency?
• Only a x2 speedup 

Fundamentals of Computer Design 50



Measuring CPI

• How are CPI and execution-time actually measured?
• Execution time: time (Unix): wall clock + CPU + system

• CPI = CPU time / (clock frequency * dynamic insn count)

• How is dynamic instruction count measured?

• Want CPI breakdowns (CPICPU, CPIMEM, etc.) to see what to fix

• CPI breakdowns
• Hardware event counters

• Calculate CPI using counter frequencies/event costs

• Cycle-level micro-architecture simulation (e.g., Simics)

+ Measures breakdown “exactly” provided

+ Models micro-architecture faithfully

+ Ran realistic workload

• Method of choice for many micro-architects (and you)

Fundamentals of Computer Design 51



Improving CPI

• This course is more about improving CPI than frequency
• Historically, clock accounts for 70%+ of performance improvement (some 

exceptions)

• Achieved via deeper pipelines

• That will (have to) change

• Deep pipelining is not power efficient

• Physical speed limits are approaching

• 1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 3.2GHz: 2008

• Techniques we will look at

• Caching, speculation, multiple issue, out-of-order issue

• Multiprocessing, Vectors more…

• Moore helps because CPI reduction requires transistors
• The definition of parallelism is “more transistors”

• But best example is caches

Fundamentals of Computer Design 52



Fundamentals of Computer Design 53

Performance Trends

386 486 Pentium PentiumII Pentium4 Core2

Year 1985 1989 1993 1998 2001 2006

Technode (nm) 1500 800 350 180 130 65

Transistors (M) 0.3 1.2 3.1 5.5 42 291

Clock (MHz) 16 25 66 200 1500 3000

Pipe stages “1” 5 5 10 22 ~15

(Peak) IPC 0.4 1 2 3 3 “8”

(Peak) MIPS 6 25 132 600 4500 24000



Performance Rules of Thumb

• Make common case fast
• Sometimes called “Amdahl’s Law”

• Speedupoverall = 1 / ((1 – fractionx) + fractionx/Speedupx)

• Corollary: don’t optimize 5% to the detriment of other 95%

• Speedupoverall = 1 / ((1 – 5%) + 5%/infinity) = 1.05

• Build a balanced system
• Don’t optimize 1% to the detriment of other 99%

• Don’t over-engineer capabilities that cannot be utilized

• Design for actual, not peak, performance
• Peak performance: “Performance you are guaranteed not to exceed”

• Greater than “actual” or “average” or “sustained” performance

• Why? Caches misses, branch mispredictions, limited ILP, etc.

• For actual performance X, machine capability must be > X

Fundamentals of Computer Design 54



This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications

• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost

• Performance

• Power

• Reliability

Fundamentals of Computer Design 55

& speed



Transistor Speed, Power, and Reliability

• Transistor characteristics and scaling impact:
• Switching speed

• Power

• Reliability

• Simplistic gate delay model for architecture
• Each Not, NAND, NOR, AND, OR gate has delay of “1”

• Reality is not so simple

Fundamentals of Computer Design 56



Fundamentals of Computer Design 57

Technology Basis of Transistor Speed

• Physics 101: delay through an electrical component ~ RC
• Resistance (R)

• Slows rate of charge flow

• ~ length / cross-section area

• Capacitance (C)

• Stores charge

• ~ surface-area / distance-to-other-plate

• Voltage (V)

• Electrical pressure

• Threshold Voltage (Vt)

• Voltage at which a transistor turns “on”



Fundamentals of Computer Design 58

Analogy Extended

• Physics 101: delay through an electrical component ~ RC
• Resistance (R)

• Slows rate of charge flow

• ~ length / cross-section area

• Analogy: the friction of air flowing through a tube 

• Capacitance (C)

• Stores charge

• ~ surface-area / distance-to-other-plate

• Analogy: volume of tubes

• Voltage (V)

• Electrical pressure

• Analogy: compressed air pressure

• Threshold Voltage (Vt)

• Voltage at which a transistor turns “on”

• Analogy: pressure at which valve switches

High (Off)

Low (On)



Capacitance Analogy: Air Capacity

• More “load”, higher capacitance
• Large volume of air to pressurize

• More “air” or electrons to move

• Result: takes longer to switch
• “switch time” is time to reach the 

threshold pressure/voltage

• The “fan-out” of the device impacts its 
switching speed

59

High

Low

High

Low

High

Low

High

Low

High

Low

Fundamentals of Computer Design



Fundamentals of Computer Design 60

10

I
01

10

10

Capacitance

• Gate capacitance

• Source/drain capacitance

• Wire capacitance 

• Negligible for short wires

1

1



Fundamentals of Computer Design 61

Which is faster?  Why?

(Assume wires are short enough to have negligible resistance/capacitance)



Trans. Resistance Analogy: Valve 
Friction

• Increase valve “width”, lower resistance

• Decrease valve “length”, lower resistance

• Main source of transistor resistance

• Result: faster switching

63Fundamentals of Computer Design



Fundamentals of Computer Design 64

Transistor Geometry: Width

• Transistor width, set by designer on a per-transistor basis

• Wider transistors:

• Lower resistance of channel (increases drive strength)

• But, increases capacitance of gate/source/drain

• Result: set width to balance these conflicting effects

Gate

Source
Drain

Bulk Si

Width

Length

Length

WidthSource Drain

Gate

Diagrams © Krste Asanovic, MIT



Fundamentals of Computer Design 65

Transistor Geometry: Length & Scaling

• Transistor length: characteristic of “process generation”

• 90nm refers to the transistor gate length, same for all transistors

• Shrink transistor length:

• Lower resistance of channel (shorter)

• Lower gate/source/drain capacitance

• Result: transistor drive strength linear as gate length shrinks

Gate

Source
Drain

Bulk Si

Width

Length

Length

WidthSource Drain

Gate

Diagrams © Krste Asanovic, MIT



Wire Resistance Analogy: Tube Friction

• Longer wires, higher resistance

• Thinner wires, higher resistance

• Result: takes longer to switch
• But, majority of resistance in transistor

• Silicon in transistor much worse 
conductor than metal in wires

• So, only significant for long wires

66

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

Fundamentals of Computer Design



Fundamentals of Computer Design 67

Wire Geometry
Pitch

Width

Length
Height

• Transistors 1-dimensional for design purposes: width

• Wires 4-dimensional: length, width, height, “pitch”
• Longer wires have more resistance

• “Fatter” wires have less resistance

• Closer wire spacing (“pitch”) increases capacitance

From slides © Krste Asanovic, MIT



Fundamentals of Computer Design 68

Wire Delay

• RC Delay of wires
• Resistance proportional to length / cross section

• Wires with smaller cross section have higher resistance

• Type of metal (copper vs aluminum)

• Capacitance proportional to length

• And wire spacing (closer wires have large capacitance)

• Type of material between the wires

• Result: delay of a wire is quadratic in length
• Insert “inverter” repeaters for long wires to

• Bring it back to linear delay, but repeaters still add delay

• Trend: wires are getting relatively slow to transistors
• And relatively longer time to cross relatively larger chips



Fundamentals of Computer Design 69

10

I
01

10

10

RC Delay Model Ramifications

• Want to reduce resistance
• Wide drive transistors (width specified per device)

• Short gate length

• Short wires

• Want to reduce capacitance
• Number of connected devices

• Less-wide transistors 
(gate capacitance 
of next stage)

• Short wires

1

1



Fundamentals of Computer Design 70

Moore’s Law: Technology Scaling

• Moore’s Law: aka “technology scaling”
• Continued miniaturization (esp. reduction in channel length)

+ Improves switching speed, power/transistor, area(cost)/transistor

– Reduces transistor reliability

• Literally: DRAM density (transistors/area) doubles every 18 months

• Public interpretation: performance doubles every 18 months

• Not quite right, but helps performance in three ways

channel

source drain

gate



Moore’s Effect #1: Transistor Count

• Linear shrink in each dimension
• 180nm, 130nm, 90nm, 65nm, 45nm, 32nm, …

• Each generation is a 1.414 linear shrink

• Shrink each dimension (2D)

• Results in 2x more transistors (1.414*1.414)

• More transistors reduces cost

• More transistors can increase performance
• Job of a computer architect: use the ever-increasing number of 

transistors

• Examples: caches, exploiting parallelism (ILP, TLP, DLP)

Fundamentals of Computer Design 71



Fundamentals of Computer Design 72

Moore’s Effect #2: RC Delay

• First-order: speed scales proportional to gate length
• Has provided much of the performance gains in the past

• Scaling helps wire and gate delays in some ways…

+ Transistors become shorter (Resistance), narrower (Capacitance)

+ Wires become shorter (Length  Resistance)

+ Wire “surface areas” become smaller (Capacitance)

• Hurts in others…

– Transistors become narrower (Resistance)

– Gate insulator thickness becomes smaller (Capacitance)

– Wires becomes thinner (Resistance)

• What to do?
• Take the good, use wire/transistor sizing & repeaters to counter bad

• Exploit new materials: Aluminum  Copper, metal gate, high-K 



Moore’s Effect #3: Psychological

• Moore’s Curve: common interpretation of Moore’s Law
• “CPU performance doubles every 18 months”

• Self fulfilling prophecy: 2X every 18 months is ~1% per week

• Q: Would you add a feature that improved performance 20% if it 
would delay the chip 8 months?

• Processors under Moore’s Curve (arrive too late) fail spectacularly

• E.g., Intel’s Itanium, Sun’s Millennium

Fundamentals of Computer Design 73



Moore’s Law in the Future

• Won’t last forever, approaching physical limits

• But betting against it has proved foolish in the past

• Likely to “slow” rather than stop abruptly

• Transistor count will likely continue to scale

• “Die stacking” is on the cusp of becoming main stream

• Uses the third dimension to increase transistor count

• But transistor performance scaling?

• Running into physical limits

• Example: gate oxide is less than 10 silicon atoms thick!

• Can’t decrease it much further

• Power is becoming a limiting factor (next) 

Fundamentals of Computer Design 74



Fundamentals of Computer Design 75

Power/Energy: Increasingly Important

• Battery life for mobile devices
• Laptops, phones, cameras

• Tolerable temperature for devices without active cooling
• Power means temperature, active cooling means cost

• No room for a fan in a cell phone, no market for a hot cell phone

• Electric bill for compute/data centers
• Pay for power twice: once in, once out (to cool) 

• Environmental concerns
• “Computers” account for growing fraction of energy consumption



Energy & Power 

• Energy: measured in Joules or Watt-seconds
• Total amount of energy stored/used

• Battery life, electric bill, environmental impact

• Instructions per Joule (car analogy: miles per gallon)

• Power: energy per unit time (measured in Watts) 
• Related to “performance” (which is also a “per unit time” metric)

• Power impacts power supply and cooling requirements (cost)

• Power-density (Watt/mm2): important related metric

• Peak power vs average power

• E.g., camera, power “spikes” when you actually take a picture

• Joules per second (car analogy: gallons per hour)

• Two sources:
• Dynamic power: active switching of transistors

• Static power: leakage of transistors even while inactive

Fundamentals of Computer Design 76



Fundamentals of Computer Design

77

Recall: Tech. Basis of Transistor Speed

• Physics 101: delay through an electrical component ~ RC
• Resistance (R)

• Slows rate of charge flow

• Analogy: the friction of air flowing through a tube 

• Capacitance (C)

• Stores charge

• Analogy: volume of tubes

• Voltage (V)

• Electrical pressure

• Analogy: compressed air pressure

• Threshold Voltage (Vt)

• Voltage at which a transistor turns “on”

• Analogy: pressure at which valve switches

• Switching time ~ to (R * C) / (V – Vt)

• Analogy: the higher the pressure, the faster it switches

High (Off)

Low (On)



Fundamentals of Computer Design 78

Dynamic Power

• Dynamic power (Pdynamic): aka switching or active power

• Energy to switch a gate (0 to 1, 1 to 0)

• Each gate has capacitance (C)

• Charge stored is ~ C * V

• Energy to charge/discharge a capacitor is ~ to QV which is ~C * V2

• Pdynamic ~ N * C * V2 * f * A

• N: number of transistors

• C: capacitance per transistor (size of transistors)

• V: voltage (supply voltage for gate)

• f: frequency (transistor switching freq. is ~ to clock freq.)

• A: activity factor (not all transistors may switch this cycle)

0

1



Reducing Dynamic Power

• Target each component:  Pdynamic ~  N * C * V2 * f * A

• Reduce number of transistors (N)
• Use fewer transistors/gates

• Reduce capacitance (C)
• Smaller transistors (Moore’s law)

• Reduce voltage (V)
• Quadratic reduction in energy consumption!

• But also slows transistors (transistor speed is ~ to V)

• Reduce frequency (f)
• Slower clock frequency (reduces power but not energy)  Why?

• Reduce activity (A)
• “Clock gating” disable clocks to unused parts of chip 

• Don’t switch gates unnecessarily

Fundamentals of Computer Design 79



Fundamentals of Computer Design 80

Static Power

• Static power (Pstatic): aka idle or leakage power

• Transistors don’t turn off all the way

• Transistors “leak”

• Analogy: valves are not perfectly sealed

• Pstatic ~ N * V * e–Vt

• N: number of transistors

• V: voltage

• Vt (threshold voltage): voltage at which
transistor conducts (begins to switch)

• Switching speed vs leakage trade-off 

• The lower the Vt:

• Faster transistors (linear)

• Transistor speed ~ to V – VT

• Leakier transistors (exponential) 

1
0

0
1



Reducing Static Power

• Target each component:  Pstatic ~  N * V * e–Vt

• Reduce number of transistors (N)

• Use fewer transistors/gates

• Reduce voltage (V)

• Linear reduction in static energy consumption

• But also slows transistors (transistor speed is ~ to V)

• Disable transistors (also targets N)

• “Power gating” disable power to unused parts (long latency to power up)

• Power down units (or entire cores) not being used

• Dual Vt – use a mixture of high and low Vt transistors

• Use slow, low-leak transistors in SRAM arrays

• Requires extra fabrication steps (cost)

• Low-leakage transistors

• High-K/Metal-Gates in Intel’s 45nm process 

• Note: reducing frequency can actually hurt static energy. Why?
Fundamentals of Computer Design 81



Dynamic Voltage/Frequency Scaling

• Dynamically trade-off power for performance
• Change the voltage and frequency at runtime

• Under control of operating system

• Recall: Pdynamic ~ N * C * V2 * f * A
• Because frequency ~ to V…

• Pdynamic ~ to V3

• Reduce both V and f linearly
• Cubic decrease in dynamic power

• Linear decrease in performance

• Thus, only about quadratic in energy

• Linear decrease in static power

• Thus, only modest static energy improvement

• Newer chips can do this on a per-core basis

Fundamentals of Computer Design 82



Fundamentals of Computer Design 83

Dynamic Voltage/Frequency Scaling

• Dynamic voltage/frequency scaling
• Favors parallelism

• Example: Intel Xscale

• 1 GHz  200 MHz reduces energy used by 30x

• But around 5x slower

• 5 x 200 MHz in parallel, use 1/6th the energy

• Power is driving the trend toward multi-core 

Mobile PentiumIII 
“SpeedStep”

Transmeta 5400      
“LongRun”

Intel X-Scale 
(StrongARM2)

f (MHz) 300–1000 (step=50) 200–700 (step=33) 50–800 (step=50)

V (V) 0.9–1.7 (step=0.1) 1.1–1.6V (cont) 0.7–1.65 (cont)

High-speed 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W 

Low-power 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W



Fundamentals of Computer Design 84

Moore’s Effect on Power

+ Moore’s Law reduces power/transistor…
• Reduced sizes and surface areas reduce capacitance (C)

– …but increases power density and total power

• By increasing transistors/area and total transistors

• Faster transistors  higher frequency  more power

• Thermal cycle: hotter transistors leak more

• What to do? Reduce voltage (V)
+ Reduces dynamic power quadratically, static power linearly

• Already happening: 486 (5V)  Core2 (1.1V)

• Trade-off: reducing V means either…

– Keeping Vt the same and reducing frequency (F)

– Lowering Vt and increasing leakage exponentially

• Pick your poison … or not: new techniques like high-K



Fundamentals of Computer Design 85

Trends in Power

• Supply voltage decreasing over time

• Emphasis on power starting around 2000
• Resulting in slower frequency increases

386 486 Pentium PentiumII Pentium4 Core2

Year 1985 1989 1993 1998 2001 2006

Technode (nm) 1500 800 350 180 130 65

Transistors (M) 0.3 1.2 3.1 5.5 42 291

Voltage (V) 5 5 3.3 2.9 1.7 1.1

Clock (MHz) 16 25 66 200 1500 3000

Power (W) 1 5 16 35 80 75

Peak MIPS 6 25 132 600 4500 24000

MIPS/W 6 5 8 17 56 320



Fundamentals of Computer Design 86

Processor Power Breakdown

• Power breakdown for IBM POWER4
• Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2

• Big power components are L2, D$, out-of-order logic, clock, I/O

• Implications on complicated versus simple cores



Implications on Software

• Software-controlled dynamic voltage/frequency scaling
• OS?  Application?

• Example: video decoding

• Too high a frequency – wasted energy (battery life)

• Too low a frequency – quality of video suffers

• Managing low-power modes
• Don’t want to “wake up” the processor every millisecond

• Tuning software

• Faster algorithms can be converted to lower-power algorithms

• Via dynamic voltage/frequency scaling

• Exploiting parallelism

Fundamentals of Computer Design 87



This Unit

• What is a computer and what is computer architecture

• Forces that shape computer architecture

• Applications

• Semiconductor technology

• Evaluation metrics: parameters and technology basis
• Cost

• Performance

• Power

• Reliability

Fundamentals of Computer Design 88



Reliability

• Mean Time Between Failures (MTBF)
• How long before you have to reboot or buy a new one

• CPU reliability small in grand scheme
• Software most unreliable component in a system

• Much more difficult to specify & test

• Much more of it

• Most unreliable hardware component … disk

• Subject to mechanical wear

Fundamentals of Computer Design 89



Moore’s Bad Effect on Reliability

• CMOS devices: CPU and memory
• Historically almost perfectly reliable

• Moore has made them less reliable over time

• Two sources of electrical faults
• Energetic particle strikes (from sun)

• Randomly charge nodes, cause bits to flip, transient

• Electro-migration: change in electrical interfaces/properties 

• Temperature-driven, happens gradually, permanent

• Large, high-energy transistors are immune to these effects
– Scaling makes node energy closer to particle energy

– Scaling increases power-density which increases temperature

• Memory (DRAM) was hit first: denser, smaller devices than SRAM

Fundamentals of Computer Design 90



Moore’s Good Effect on Reliability

• The key to providing reliability is redundancy
• The same scaling that makes devices less reliable…

• Also increase device density to enable redundancy

• Classic example
• Error correcting code (ECC) for DRAM

• ECC also starting to appear for caches (Power7 in L3)

• Today’s big open questions
• Can we protect logic?

• Can architectural techniques help hardware reliability?

• Can architectural techniques help with software reliability?

Fundamentals of Computer Design 91



Summary: A Global Look at Moore

• Device scaling (Moore’s Law)
+ Increases performance

• Reduces transistor/wire delay

• Gives us more transistors with which to reduce CPI

+ Reduces local power consumption

– Which is quickly undone by increased integration

– Aggravates power-density and temperature problems

– Aggravates reliability problem

+ But gives us the transistors to solve it via redundancy

+ Reduces unit cost

– But increases startup cost

• Will we fall off Moore’s Cliff? (for real, this time?)
• What’s next: nanotubes, quantum-dots, optical, spin-tronics, DNA? 

Fundamentals of Computer Design 92



More than Moore

• Before physical limits: IC fab Cost-wall
• Last 32nm: 2000 M$ Next 22 nm : 8000 M$

• 3D-Stacking
• Is happening now!

• Samsung is selling FLASH 3D stacked 

• Next big thing

Fundamentals of Computer Design 93

Through

Silicon Via

(TSV)



A Computer Archtecture Picture

• Mostly about micro-architecture

• Mostly about CPU/Memory

• Mostly about general-purpose

• Mostly about performance

• We’ll still only scratch the surface

Fundamentals of Computer Design

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

94



Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania 
with sources that included University of Wisconsin slides by 
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources 
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen, 
Smith, Sohi, Vijaykumar, and Wood

• Slides re-enhanced by V.Puente of Universidad de Cantabria

Fundamentals of Computer Design 95


