Last revision: Tuesday, February 15, 2011

Fundamentals of Computer Design

{\“

Technology, Cost, Performance, Power

Readings: H&P Chapter 1

“This Unit

e What is a computer and what is computer architecture

e Forces that shape computer architecture

e Applications (already covered)
e Semiconductor technology

e Evaluation metrics: parameters and technology basis
e Cost
e Performance
e Power
e Reliability

Fundamentals of Computer Design

What iIs Gomputer Architecture:

“treview)

e Design of interfaces and implementations...

e Under constantly changing set of external forces...
e Applications: change from above (discussed last time)
e Technology: changes transistor characteristics from below
e |nertia: resists changing all levels of system at once

e To satisfy different constraints

e This course mostly about performance
e (Cost

e Power
e Reliability

e |terative process driven by empirical evaluation
e The art/science of tradeoffs

Fundamentals of Computer Design

‘Abstraction and Layering

e Abstraction: only way of dealing with complex systems
e Divide world into objects, each with an...
e Interface: knobs, behaviors, knobs — behaviors
* Implementation: “black box”
e Specialists deal with implementation; others interface
e Example: car drivers vs. mechanics

e Layering: abstraction discipline makes life even simpler
e Removes need to even know interfaces of most objects
e Divide objects in system into layers
e Layer X objects
e Implemented in terms of interfaces of layer X-1 objects
e Don’t even need to know interfaces of layer X-2 objects
e Example: cab driver vs. mechanics

Fundamentals of Computer Design

~"Abstraction, Layering, and Computers

e Computers are complex systems, built in layers

Applications

0/S, compiler

Firmware, device drivers

Processor, memory, raw |/O devices
Digital circuits, digital/analog converters
Gates

Transistors

e 99% of users don’t know hardware layers implementation

e 90% of users don’t know implementation of any layer

e That’s OK, world still works just fine

But unfortunately, the layers sometimes breakdown
Someone needs to understand what’s “under the hood”

Fundamentals of Computer Design

*A Computer Architecture Picture

Application
0sS

Compiler \ I

A

y

Software

e INStruction Set Architecture (ISA)

1/0

Digital Circuits

Gates & Transistors

e Computer architecture

A

A

Hardware

e Definition of ISA to facilitate implementation of software layers

e This course mostly on computer micro-architecture

e Design CPU, Memory,

Fundamentals of Computer Design

to implement ISA ...

-

wwAside: Semiconductor Technology Background

Application e Transistor (1947)
OS e Akey invention of 20th century
Compiler Firmware Fabrication
CPU /O

Memory

Digital Circuits

Fundamentals of Computer Design

nalogy: Computing wit

e Use air pressure to encode values

e High pressure represents a “1” (blow)
e Low pressure represents a “0” (suck)

e Valve can allow or disallow the flow of air

e Two types of valves

N-Valve P-Valve

Low (Off) Low

hole

Fundamentals of Computer Design

High

P-Valve

Out

N-Valve

Low

Fundamentals of Computer Design

“ﬁressure Inverter (Low to. High)

Low

N-Valve

Fundamentals of Computer Design

~'Pressure Inverter

High

P-Valve

N-Valve

Low

Fundamentals of Computer Design

“ﬁressure Inverter (High to Low)

High

P-Valve

High Low

N-Valve

Low

Fundamentals of Computer Design

"'Analggy Explained

e Pressure differential —> electrical potential (voltage)
e Air molecules — electrons
e High pressure — high voltage
e Low pressure — low voltage

e Air flow — electrical current
e Pipes — wires
e Air only flows from high to low pressure
e Electrons only flow from high to low voltage
e Flow only occurs when changing from 1 to 0 or O to 1 (valve—>valve)

e Valve — transistor

e The transistor: one of the century’s most important inventions

Fundamentals of Computer Design

Sdransistors as Switches

e Two types
e N-type
e P-type

e Properties
e Solid state (no moving parts)
e Reliable (low failure rate)
e Small (32nm channel length)
e Fast (<0.1ns switch latency)

Fundamentals of Computer Design

N-Valve

P-Valve

N-MOSFET

=)

P-MOSFET

=)

“'éhapjng Force: Technology

e Basic technology element: MOSFET J
e MOS: metal-oxide-semiconductor gate4| Ichannel
e Conductor, insulator, semi-conductor
e FET: field-effect transistor _‘
e Solid-state component acts like electrical switch source

e Channel conducts source—drain when voltage applied to gate

e Channel length: characteristic parameter (short — fast)
e Aka “feature size” or “technology”
e Currently: 32 nm (0.032 micron) i.e. in 1 cm = ~300.000 trans.
e Continued miniaturization (scaling) known as “Moore’s Law”
e Won't last forever, physical limits approaching (or are they?)

Fundamentals of Computer Design

e \oltages as values

e Power (Vpp) =1, Ground =0

e Two kinds of MOSFETSs power (1)
° p-transistor
e Conduct when gate voltage is 1 _ _CI
: Input output
e Good at passing Os — (node”)

- =

Conduct when gate voltage is O

Good at passing 1s

n-transistor

ground (0)

e CMOS: complementary n-/p- networks form boolean logic

Fundamentals of Computer Design

MOS Examples

e Example I: inverter
e Casel:input=0
e P-transistor closed, n-transistor open 0

e Power charges output (1)
e Casell:input=1

e P-transistor open, n-transistor closed
e Qutput discharges to ground (0)

e Example ll: look at truth table
e 0,001 0,1—-1
e 1,01 1,1->0
e Result: thisisa NAND (NOT AND)

e NAND is universal (can build any logic function)

Fundamentals of Computer Design

"‘Mpre About CMOS and Technology

e Two different CMOS families

SRAM (logic): used to make processors
e Storage implemented as inverter pairs
e Optimized for speed

DRAM (memory): used to make memory
e Storage implemented as capacitors
e Optimized for density, cost, power

e Conventional Disk is also a “technology”, but isn’t transistor-
based (except Solid State Disks-SSD or other non volatile tech
Phase-RAM or PRAM , MMRAM, etc...)

Fundamentals of Computer Design

~"Aside: VLS| + Manufacturing

e VLSI (very large scale integration)
e Transistor manufacturing process
e |ntegrated Circuit (1958) as important as transistor itself
e Multi-step photochemical and electrochemical process
e Fixed cost per step
e Cost per transistor shrinks with transistor size

From Computer Desktop Bncyclopedia
Feproduced with permission.
2000 Texas Instrumerts, Inc.

e Other production costs
e Packaging
e Test
e Mask set
e Design

Fundamentals of Computer Design

OSFET Side View

insulator

e MOS: three materials needed to make a transistor
e Metal — Poli-silicon, Aluminum, Tungsten, Copper: conductor
e Oxide -- Silicon Dioxide (SiO,): insulator
. - doped Si: conducts under certain conditions
e FET: field effect (the mechanism) transistor

e Voltage on gate: current flows source to drain (transistor on)
e No voltage on gate: no current (transistor off)

Fundamentals of Computer Design

-T his Unit

e Evaluation metrics: parameters and technology basis
e Cost
e Performance

e Power
e Reliability

Fundamentals of Computer Design

"A:Manufacturing Steps

Silicon ingot
20 to 40 !
| processing steps :
Y
Tested dies Patterned wafers
O
S DDE]EDDDEEJ | L o
ond die to fak] I | afer
package OOXOO | Shagt e tester
oooO | b |
l OO N
Packaged dies Tested packaged dies
Part E“@ Ship to
tester [e] customers Source: P&H

http://www.intel.com/pressroom/kits/chipmaking/index.htm

Fundamentals of Computer Design

http://www.intel.com/pressroom/kits/chipmaking/index.htm

Fundamentals of Computer Design

Start with silicon wafer

“Grow” photo-resist

e Molecular beam epitaxy

Burn positive bias mask
e Ultraviolet light lithography

Dissolve unburned photo-resist

e Chemically

Bomb wafer with negative ions (P)
e Doping

Dissolve remaining photo-resist

e Chemically

Continue with next layer

Manufacturing Process

|

 Grow SiO,
e Grow photo-resist

e Burn “via-level-1” mask

e Dissolve unburned photo-resist
e And underlying SiO,

e Grow tungsten “vias”

e Dissolve remaining photo-resist
e Continue with next layer

Fundamentals of Computer Design

Grow SiO,
Grow photo-resist
Burn “wire-level-1” mask

Dissolve unburned photo-resist
e And underlying SiO,

Grow copper “wires”
Dissolve remaining photo-resist
Continue with next wire layer...

Typical number of wire layers: 3-11

A:Defects

sl 7

. e Defects can arise
Defective:

e Under-/over-doping
E e Over-/under-dissolved insulator

e Mask mis-alignment

Defective: e Particle contaminants

e Try to minimize defects

* Process margins
Slow;

e Design rules
E e Minimal transistor size, separation

e Or, tolerate defects

e Redundant or “spare” memory cells

Fundamentals of Computer Design

~'Empirical Evaluation

e Metrics
e Cost
e Performance
e Power
e Reliability

e Often more important in combination than individually
e Performance/cost (MIPS/S)
e Performance/power (MIPS/W)

e Basis for
e Design decisions
e Purchasing decisions

Fundamentals of Computer Design

e Metric: S

e |n grand scheme: CPU accounts for fraction of cost

e Some of that is profit (Intel’s, Dell’s)

Desktop Laptop PDA Phone
$ $100-$300 $150-$350 $50-$100 $10-$20
% of total 10-30% 10-20% 20-30% 20-30%

Other costs

Memory, display, power supply/battery, disk, packaging,
software

e We are concerned about chip cost

e Unit cost: costs to manufacture individual chips

e Startup cost: cost to design chip, build the fab line, marketing

Fundamentals of Computer Design

"l:lnit Cost: Integrated Circuit (IC)

e Chips built in multi-step chemical processes on wafers

e Cost / wafer is constant, f(wafer size, number of steps)

e Chip (die) cost is proportional to area

e Larger chips means fewer of them /1

Larger chips means fewer working ones
Why? Uniform defect density

Chip cost ~ chip area®
o=2-3

e Wafer yield: % wafer that is chips

e Die yield: % chips that work
e Yield is increasingly non-binary - fast vs slow chips

Fundamentals of Computer Design

leld/Cost Examples

e Parameters
e waferyield =90%, o = 2, defect density = 2/cm?

Die size (mm?) 100 144 196 256 324 400
Die yield 23% 19% 16% 12% 11% 10%
6” Wafer 139(31) |90(16) 62(9) 44(5) 32(3) 23(2)
8” Wafer 256(59) |177(32) |124(19) |90(11) 68(7) 52(5)
10” Wafer 431(96) |290(53) |206(32) |153(20) |116(213) |90(9)
Wafer |Defect |Area Dies |Yield |Die Package Test |Total
Cost (/cm?) |(mm?) Cost |[Cost (pins) |Cost
Intel 486DX2 151200 |1.0 31 181 |54% |S12 |S11(168) |[S12 |S35
IBM PPC601 $1700 (1.3 196 66 |27% |S95 |[S3(304) S§21 |S119
DEC Alpha $1500 |1.2 234 53 |19% |$149 [S30(431) |S23 [S202
Intel Pentium |$1500 |1.5 296 40 (9% |S417 |S19(273) [S37 |S473

Fundamentals of Computer Design

‘éparl,;up Costs

e Startup costs: must be amortized over chips sold
e Research and development: ~S100M per chip (optimistic)
e 500 person-years @ $200K per
e Fabrication facilities: ~$2000 M per new line (optimistic)
e Clean rooms (bunny suits), lithography, testing equipment

e |f you sell 10M chips, startup adds ~$200 to cost of each
e Companies (e.g., Intel) don’t make money on new chips
e They make money on proliferations (shrinks and frequency)
e No startup cost for these

Fundamentals of Computer Design

“‘Mpore’s Effect on Cost

e Scaling has opposite effects on unit and startup costs
+ Reduces unit integrated circuit cost
e Either lower cost for same functionality...
e Or same cost for more functionality
— Increases startup cost
e More expensive fabrication equipment
e Takes longer to design, verify, and test chips

Fundamentals of Computer Design

-T his Unit

e Evaluation metrics: parameters and technology basis
e Cost
e Performance

e Power
e Reliability

Fundamentals of Computer Design

~'Performance

e Two definitions

Latency (execution time): time to finish a fixed task
Throughput (bandwidth): number of tasks in fixed time
Very different: throughput can exploit parallelism, latency cannot
Often contradictory (latency vs. throughput)
e Will see many examples of this
Choose definition that matches goals (most frequently throughput)
e Scientific program: latency; web server: throughput?

e Example: move people from A to B, 10 miles
e Car: capacity =5, speed = 60 miles/hour

e Bus: capacity = 60, speed = 20 miles/hour

e Latency: car = 10 min, bus =30 min
e Throughput: car = 15 PPH (count return trip), bus = 60 PPH

Fundamentals of Computer Design

~'Perfarmance Improvement

e Processor A is X times faster than processor B if
e Latency(P,A) = Latency(P,B) / X
e Throughput(P,A) = Throughput(P,B) * X
e Processor A is X% faster than processor B if
e Latency(P,A) = Latency(P,B) / (1+X/100)
e Throughput(P,A) = Throughput(P,B) * (1+X/100)

e Car/bus example
e Latency? Caris 3 times (and 200%) faster than bus
e Throughput? Bus is 4 times (and 300%) faster than car

Fundamentals of Computer Design

“What Is ‘P’ in Latency(P,A)?

e Program
e Latency(A) makes no sense, processor executes some program
e But which one?
e Actual target workload?
+ Accurate
— Not portable/repeatable, overly specific, hard to pinpoint problems
e Some representative benchmark program(s)?
+ Portable/repeatable, pretty accurate
— Hard to pinpoint problems, may not be exactly what you run
e Some small kernel benchmarks (micro-benchmarks)

+ Portable/repeatable, easy to run, easy to pinpoint problems
— Not representative of complex behaviors of real programs

Fundamentals of Computer Design

"éPEG Benchmarks

e SPEC (Standard Performance Evaluation Corporation)

Consortium of companies that collects, standardizes, and distributes
benchmark programs

Post SPECmark results for different processors

e 1 number that represents performance for entire suite
Benchmark suites for CPU, Java, I/0, Web, Mail, etc.
Updated every few years: so companies don’t target benchmarks

e SPEC CPU 2006

12 “integer”: bzip2, gcc, perl, xalancbmk (xml), h264ref (VC), etc.
17 “floating point”: povray(openGL), namd (biology), weather, etc.

e Written in C, C++ and Fortran

Fundamentals of Computer Design

http://www.spec.org/

"61;her Benchmarks

e Parallel benchmarks
e SPLASH2/ PARSEC — Shared memory numerical multithread benchmarks
e NAS — More general numerical multithread benchmarks
e SPEC’s — OpenMP benchmarks
e SPECjbb —Java multithreaded database-like workload

e Transaction Processing Council (TPC)
e TPC-C: On-line transaction processing (OLTP)
e TPC-H/R: Decision support systems (DSS)
e TPC-W: E-commerce database backend workload
e Have parallelism (intra-query and inter-query)
e Heavy |/O and memory components

e Graphics, Network, Disk, etc...

Fundamentals of Computer Design

e Reference machine: Sun Ultra Enterprise Il (1997/ 297 Mhz USII)
e Latency SPECmark (SPECint & SPECfp)

e For each benchmark

e Take odd number of samples: on both machines

e Choose median

e Take latency ratio (Sun Ultra Enterprise Il / your machine)
e Take GMEAN of ratios over all benchmarks

e Throughput SPECmark (SPECint_rate & SPECfp rate)

e Run multiple benchmarks in parallel on multiple-processor system

e Recent (latency) leaders
e SPECint: Intel Core 7i EE 3.2GHz (33.6)
e SPECfp: Intel Core 7i EE 3.2GHz (33.6)

Fundamentals of Computer Design

~'Example Report

SPEC® CFP2006 Result

Primary Cache

Secondary Cache

Auto Parallel:
File System

32 KBI+32KB D on chip per core
256 KB I+D on chip per core

Fundamentals of Computer Design

spec® Copynight 2006-2008 Standard Performance Evaluation Corporation
A - 2

ASUSTeK Computer Inc. = 33.6

Asus P6T Deluxe (Intel Core i7-965 Extreme < _

B (SPECtp base2006 = 31.7
CPU2006 license: 13 Test date: Oct-2008
Test sponsor: Intel Corporation Hardware Availability: Now-2008
Tested by: Intel Corporation Software Availability: Now-2008

‘G E,IOO EPD 9 ‘GG 12|,0 IS‘D ',EIS 21|(] llIO]T;S SGI(] EEI,O 36|D SQID 42‘0 JEID iS‘ 0 51‘0 51‘,0] BD‘G GEI,O 55‘0 720
410.bwaves i
416.gamess ‘ =
176
o 370
433.mile } 4
37
434.zeusmp } h, ¢
. | 218
435.gromacs }
216
632
436.cactusADM | '
! 634
- 313
437 leslie3d ‘ i
| 183
444.namd } N
182
| 274
447 .deallT | . 1
! 43)
450.soplex } "
f 206
| 333
453 povray |
! 174
.| 254
454.calculix |
! 215
— | 386
459.GemsFDTD | "
I 375
| 260 o
465.tanto | . 1
! 232
[}
470.1bm } wh
| 313
481.wrf | 1
! 313
. | 444
482.sphinx3 | 1
I 430
SPECTp_base2006 = 31.7
SPEC{p2006 = 33.6
Hardware Software
CPU Name: Intel Core 17-965 Extreme Edition Operating System: Windows Vista Ultimate w/ SP1 (64-bit)
CPU Characteristics Compiler Intel C++ Compiler Professional 11.0 for [A32
CPU MHz: 3200 Build 20080930 Package ID: w_cproc_p_11.0.054
FPU Integrated Intel Visual Fortran Compiler Professional 11.0
y = 32
CPU(s) enabled 4 cores, 1 chip, 4 cores/chip, 2 threads/core g‘lu{';'zfmgug;u Package ID: w_cprof p_11.0.054
CPU(s) orderable: 1 chup Microsoft Visual Studio 2008 (for libraries)

Yes
NTFS

averaging ¥erformance

* You can add latencies, but not throughput
e Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A)
e Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)
e 1km@ 30 km+ 1 mile @ 90 km/hour
e Average is not 60 km/hour
e 0.033 hours at 30 km/hour + 0.01 hours at 90 km/hour
e Average is only 47 km/hour! (2 km/ (0.033 + 0.01 hours))
e Throughput(P1+P2,A) =
1/ [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))]

e Same goes for means (averages)
e Arithmetic: (1/N) * 3,_, \ Latency(P)
e For units that are proportional to time (e.g., latency)
e Harmonic: N/ 3,_; y 1/Throughput(P)
e For units that are inversely proportional to time (e.g., throughput)
e Geometric: "WTT,_; y Speedup(P)
e For unitless quantities (e.g., speedups, normalized performance)

Fundamentals of Computer Design

"'éPU Performance Equation

e Multiple aspects to performance: helps to isolate them

e Latency(P,A) = seconds / program =

e (instructions / program) * (cycles / instruction) * (seconds / cycle)
e Instructions / program: dynamic instruction count

e Function of program, compiler, instruction set architecture (ISA)
e Cycles / instruction: CPI

e Function of program, compiler, ISA, micro-architecture

e Seconds / cycle: clock period
e Function of micro-architecture, technology parameters

e For low latency (better performance) minimize all three
e Hard: often pull against the other

Fundamentals of Computer Design

~'Danger: Partial Performance Metrics

e Micro-architects often ignore dynamic instruction count
e Typically work in one ISA/one compiler — treat it as fixed

e CPU performance equation becomes
e seconds /instruction = (cycles / instruction) * (seconds / cycle)
e Thisis a latency measure, if we care about throughput ...
e Instructions / second = (instructions / cycle) * (cycles / second)

e MIPS (millions of instructions per second)

e |Instructions / second * 10

e Cycles / second: clock frequency (in MHz)

e Example: CPI = 2, clock = 500 MHz, what is MIPS?
e 0.5 * 500 MHz * 10°® = 250 MIPS

e Example problem situation:
e compiler removes instructions, program faster
e However, “MIPS” goes down (misleading)

Fundamentals of Computer Design

IPS and MFLOPS (MegaFLOPS)

e Problem: MIPS may vary inversely with performance
— Some optimizations actually add instructions
— Work per instruction varies (e.g., FP mult vs. integer add)
— |ISAs are not equivalent

e MFLOPS: like MIPS, but counts only FP ops, because...

+ FP ops can’t be optimized away
+ FP ops have longest latencies anyway
+ FP ops are same across machines

e May have been valid in 1980, but today...
— Most programs are “integer”, i.e., light on FP
— Loads from memory take much longer than FP divide
— Even FP instructions sets are not equivalent

e Upshot: MIPS not perfect, but (usually) more useful than
MFLOPS

Fundamentals of Computer Design

~'Danger: Partial Performance Metrics I

e Micro-architects often ignore dynamic instruction count...
e ... but general public (mostly) also ignores CPI

e Equates clock frequency with performance!!

e Which processor would you buy?
e Processor A: CPl =2, clock = 500 MHz
e Processor B: CPl =1, clock =300 MHz
e Probably A, but B is faster (assuming same ISA/compiler)

e (Classic example
e 800 MHz Pentiumlll faster than 1 GHz Pentium4
e Same ISA and compiler

Fundamentals of Computer Design

‘éyclgs per Instruction (CPI)

e This course is mostly about improving CPI
e Cycle/instruction for average instruction
e |IPC=1/CPI
e Used more frequently than CPI, but harder to compute with
e Different instructions have different cycle costs
e E.g., integer add typically takes 1 cycle, FP divide takes > 10
e Assumes you know something about instruction frequencies

e CPl example
e A program executes equal integer, FP, and memory operations
e Cycles per instruction type: integer =1, memory =2, FP =3
e Whatis the CPI? (0.33 *1)+(0.33*2)+(0.33*3)=2
e (Caveat: this sort of calculation ignores dependences completely
e Back-of-the-envelope arguments only

Fundamentals of Computer Design

"'Another CPI Example

e Assume a processor with instruction frequencies and costs
e |nteger ALU: 50%, 1 cycle
e Load: 20%, 5 cycle
e Store: 10%, 1 cycle
e Branch: 20%, 2 cycle

e Which change would improve performance more?
e A.Branch prediction to reduce branch cost to 1 cycle?
e B. A bigger data cache to reduce load cost to 3 cycles?

e Compute CPI
e Base=0.5*1+0.2*5+0.1*1+0.2*%2=2
e A=05*1+0.2*5+0.1*1+0.2*1=1.8
e B=0.5*1+0.2*3+0.1*1+0.2*2=1.6 (winner)

Fundamentals of Computer Design

icreasing Clock Frequency: Pipelining

| Register
Mem File ‘
o .
e CPUis a pipeline: stages separated by latches

e Clock period: maximum delay of any stage
e Number of gate levels in stage
e Delay of individual gates (these days, wire delay more important)

Fundamentals of Computer Design

e Reduce pipeline stage delay
e Reduce logic levels and wire lengths (better design)

e Complementary to technology efforts (described later)

e |Increase number of pipeline stages (multi-stage operations)
— Often causes CPI to increase

— At some point, actually causes performance to decrease

e “Optimal” pipeline depth is program and technology specific

e Remember example
e Pentiumlll: 12 stage pipeline, 800 MHz
faster than
e Pentium4: 22 stage pipeline, 1 GHz
e Actual Intel designs: more like Pentiumll|

Fundamentals of Computer Design

"éPI and Clock Frequency.

e System components “clocked” independently

e E.g., Increasing processor clock frequency doesn’t improve memory
performance

e Example
e Processor A: CPl.p, = 1, CPlyem = 1, clock = 500 MHz
e Whatis the speedup if we double clock frequency?
e Base:CPI=2 —> IPC=0.5—> MIPS = 250
e New:CPI=3 —>IPC=0.33 > MIPS =333
e Clock *=2 — CPlygy *=2
e Speedup =333/250=1.33<<?2

e What about an infinite clock frequency?
e Only a x2 speedup

Fundamentals of Computer Design

“Mgasuring CPI

e How are CPl and execution-time actually measured?
e Execution time: time (Unix): wall clock + CPU + system
e CPl=CPU time / (clock frequency * dynamic insn count)
e How is dynamic instruction count measured?
e Want CPI breakdowns (CPl,,, CPly,e\, €tc.) to see what to fix

e CPIl breakdowns

e Hardware event counters
e Calculate CPI using counter frequencies/event costs

e Cycle-level micro-architecture simulation (e.g., Simics)
+ Measures breakdown “exactly” provided
+ Models micro-architecture faithfully
+ Ran realistic workload
e Method of choice for many micro-architects (and you)

Fundamentals of Computer Design

“I‘mprgving CPI

e This course is more about improving CPI than frequency

e Historically, clock accounts for 70%+ of performance improvement (some
exceptions)

e Achieved via deeper pipelines
e That will (have to) change
e Deep pipelining is not power efficient
e Physical speed limits are approaching
e 1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 3.2GHz: 2008
e Technigues we will look at
e Caching, speculation, multiple issue, out-of-order issue
e Multiprocessing, Vectors more...

e Moore helps because CPI reduction requires transistors
e The definition of parallelism is “more transistors”
e But best example is caches

Fundamentals of Computer Design

erfarmance Trends

386 486 Pentium | PentiumIl | Pentium4 | Core2
Year 1985 1989 1993 1998 2001 2006
Technode (nm) 1500 800 350 180 130 65
Transistors (M) 0.3 1.2 3.1 5.5 42 291
Clock (MHz) 16 25 66 200 1500 3000
Pipe stages 1" 5 5 10 22 ~15
(Peak) IPC 0.4 1 2 3 3 8"
(Peak) MIPS 6 25 132 600 4500 24000

Fundamentals of Computer Design

erformance Rules of Thumb

e Make common case fast
e Sometimes called “Amdahl’s Law”
e Speedup,,...; =1/ ((1—fraction,) + fraction /Speedup,)
e Corollary: don’t optimize 5% to the detriment of other 95%
e Speedup,,..;=1/((1-5%)+5%/infinity) = 1.05
e Build a balanced system

e Don’t optimize 1% to the detriment of other 99%
e Don’t over-engineer capabilities that cannot be utilized

e Design for actual, not peak, performance
e Peak performance: “Performance you are guaranteed not to exceed”

III

e Greater than “actual” or “average” or “sustained” performance
e Why? Caches misses, branch mispredictions, limited ILP, etc.

e For actual performance X, machine capability must be > X

Fundamentals of Computer Design

-T his Unit

e Evaluation metrics: parameters and technology basis
e Cost
e Performance

e Power & speed
e Reliability

Fundamentals of Computer Design

> Transistor Speed, Power, and. Reliability

e Transistor characteristics and scaling impact:
e Switching speed
e Power

e Reliability

e Simplistic gate delay model for architecture
e Each Not, NAND, NOR, AND, OR gate has delay of “1”
e Reality is not so simple

Fundamentals of Computer Design

> Technology Basis of Transistor Speed

e Physics 101: delay through an electrical component ~ RC

e Resistance (R) JVV\/_

e Slows rate of charge flow
e ~|ength / cross-section area

e (Capacitance (C) _”_
e Stores charge
e ~surface-area / distance-to-other-plate

e Voltage (V)
e Electrical pressure

* Threshold Voltage (V)
e \oltage at which a transistor turns “on”

Fundamentals of Computer Design

"'Analggy Extended

e Physics 101: delay through an electrical component ~ RC
e Resistance (R) JVV\/—
e Slows rate of charge flow
e ~|ength / cross-section area
e Analogy: the friction of air flowing through a tube
e (Capacitance (C) _”_
e Stores charge
e ~surface-area / distance-to-other-plate
e Analogy: volume of tubes
e Voltage (V)
e Electrical pressure
e Analogy: compressed air pressure
e Threshold Voltage (Vt)
e \oltage at which a transistor turns “on”
e Analogy: pressure at which valve switches

Low (On)

High

Fundamentals of Computer Design

apacitance Analogy: Air Capacity

e More “load”, higher capacitance

e Large volume of air to pressurize

e More “air” or electrons to move

Result: takes longer to switch

e “switch time” is time to reach the
threshold pressure/voltage

e The “fan-out” of the device impacts its
switching speed

Fundamentals of Computer Design

"'égpacitance

e (Gate capacitance
e Source/drain capacitance
e Wire capacitance

e Negligible for short wires

1

ﬂd?%L
_|

N

Fundamentals of Computer Design

1-0

“Wihich is faster?. Why?

Do

e Y Y
YYYYYYYY

ERrYYYYY
14

(Assume wires are short enough to have negligible resistance/capacitance)

Fundamentals of Computer Design

e |ncrease valve “width”, lower resistance
e Decrease valve “length”, lower resistance
e Main source of transistor resistance

e Result: faster switching

S dransistor Geometry: Width

Gate Drain

Source
/ Width

Bulk Si

Length

Diagrams © Krste Asanovic, MIT

e Transistor width, set by designer on a per-transistor basis
e \Wider transistors:

e Lower resistance of channel (increases drive strength)
e But, increases capacitance of gate/source/drain
e Result: set width to balance these conflicting effects

Fundamentals of Computer Design

> Fransistor Geometry: Length & Scaling

Gate Drain

Source
/ Width

Bulk Si

Length

Diagrams © Krste Asanovic, MIT

e Transistor length: characteristic of “process generation”
e 90nm refers to the transistor gate length, same for all transistors

e Shrink transistor length:
e Lower resistance of channel (shorter)
e Lower gate/source/drain capacitance

e Result: transistor drive strength linear as gate length shrinks

Fundamentals of Computer Design

Longer wires, higher resistance
Thinner wires, higher resistance
Result: takes longer to switch

e But, majority of resistance in transistor

e Silicon in transistor much worse
conductor than metal in wires

e So, only significant for long wires

Fundamentals of Computer Design

> »
<)

A4 Width

From slides © Krste Asanovic, MIT

e Transistors 1-dimensional for design purposes: width

e Wires 4-dimensional: length, width, height, “pitch”
e Longer wires have more resistance
e “Fatter” wires have less resistance
e Closer wire spacing (“pitch”) increases capacitance

Fundamentals of Computer Design

“\i\[ire- Delay

e RC Delay of wires

e Resistance proportional to length / cross section

e Wires with smaller cross section have higher resistance
e Type of metal (copper vs aluminum)

e Capacitance proportional to length
e And wire spacing (closer wires have large capacitance)
e Type of material between the wires

e Result: delay of a wire is quadratic in length
e Insert “inverter” repeaters for long wires to
e Bring it back to linear delay, but repeaters still add delay

e Trend: wires are getting relatively slow to transistors

e And relatively longer time to cross relatively larger chips

Fundamentals of Computer Design

“RC Delay Model Ramifications

e \Want to reduce resistance

e Wide drive transistors (width specified per device)

e Short gate length
e Short wires
e Want to reduce capacitance

e Number of connected devices
e Less-wide transistors

1-0

(gate capacitance 1
of next stage) (
e Short wires 'CI | 0—1
1—-0 =

Fundamentals of Computer Design

&

R (R R,

1-0

"‘Mgore’s Law: Technology Scaling

gate ‘

source drain

)
channel

e Moore’s Law: aka “technology scaling”

4

Continued miniaturization (esp. reduction in channel length)
Improves switching speed, power/transistor, area(cost)/transistor
Reduces transistor reliability
Literally: DRAM density (transistors/area) doubles every 18 months
Public interpretation: performance doubles every 18 months

e Not quite right, but helps performance in three ways

Fundamentals of Computer Design

~"Moore’s Effect #1: Transistor Count

e Linear shrink in each dimension
e 180nm, 130nm, 90nm, 65nm, 45nm, 32nm, ...
e Each generation is a 1.414 linear shrink
e Shrink each dimension (2D)
e Results in 2x more transistors (1.414*1.414)

e More transistors reduces cost

e More transistors can increase performance

e Job of a computer architect: use the ever-increasing number of
transistors

e Examples: caches, exploiting parallelism (ILP, TLP, DLP)

Fundamentals of Computer Design

oore’s Effect #2: RC Delay

e First-order: speed scales proportional to gate length

e Has provided much of the performance gains in the past

e Scaling helps wire and gate delays in some ways...
+ Transistors become shorter (Resistance<), narrower (Capacitancey)
+ Wires become shorter (Lengthl — Resistancel)
+ Wire “surface areas” become smaller (Capacitancey)

e Hurts in others...
— Transistors become narrower (ResistanceT)
— Gate insulator thickness becomes smaller (CapacitanceT)
— Wires becomes thinner (ResistanceT)

e What to do?

e Take the good, use wire/transistor sizing & repeaters to counter bad
e Exploit new materials: Aluminum — Copper, metal gate, high-K

Fundamentals of Computer Design

“Moore’s Effect #3: Psychological

e Moore’s Curve: common interpretation of Moore’s Law
e “CPU performance doubles every 18 months”
o Self fulfilling prophecy: 2X every 18 months is ~¥1% per week

e Q: Would you add a feature that improved performance 20% if it
would delay the chip 8 months?

e Processors under Moore’s Curve (arrive too late) fail spectacularly
e E.g., Intel’s Itanium, Sun’s Millennium

Fundamentals of Computer Design

“Mpone’s Law in the Future

e Won't last forever, approaching physical limits
e But betting against it has proved foolish in the past
e Likely to “slow” rather than stop abruptly

e Transistor count will likely continue to scale
e “Die stacking” is on the cusp of becoming main strea