
Instruction Set Architecture

Principles and Examples

Readings: H&P Appendix B (paper)

H&P Appendix J.2 for RISC, J.3 for x86 (CD-ROM)

Instruction Set Architecture 1

Last revision: Tuesday, February 22, 2011

Instruction Set Architecture 2

Instruction Set Architecture (ISA)

• What is a good ISA?

• Aspects of ISAs

• RISC vs. CISC

Hardware

Software

Instruction Set Architecture (ISA)

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

ISA DESIGN GOALS

Instruction Set Architecture 3

Instruction Set Architecture 4

What Is An ISA?

• ISA (instruction set architecture)
• A well-defined hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage locations
supported by hardware

• Precise description of how to invoke, and access them

• Not in the “contract”: non-functional aspects

• How operations are implemented

• Which operations are fast and which are slow and when

• Which operations take more power and which take less

• Instruction Insn
• ‘Instruction’ is too long to write in slides

Instruction Set Architecture 5

A Language Analogy for ISAs

• Communication
• Person-to-person software-to-hardware

• Similar structure

• Narrative program

• Sentence insn

• Verb operation (add, multiply, load, branch)

• Noun data item (immediate, register value, memory value)

• Adjective addressing mode

• Many different languages, many different ISAs
• Similar basic structure, details differ (sometimes greatly)

• Key differences between languages and ISAs
• Languages evolve organically, many ambiguities, inconsistencies

• ISAs are explicitly engineered and extended, unambiguous

Instruction Set Architecture 6

RISC vs CISC Foreshadowing

• Recall performance equation:
• (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC (Complex Instruction Set Computing)
• Reduce “instructions/program” with “complex” instructions

• But tends to increase CPI or clock period

• Easy for assembly-level programmers, good code density

• RISC (Reduced Instruction Set Computing)

• Improve “cycles/instruction” with many single-cycle instructions

• Increases “instruction/program”, but hopefully not as much

• Help from smart compiler

• Perhaps improve clock cycle time (seconds/cycle)

• via aggressive implementation allowed by simpler instructions

Instruction Set Architecture 7

What Makes a Good ISA?

• Programmability
• Easy to express programs efficiently?

• Implementability

• Easy to design high-performance implementations?

• More recently

• Easy to design low-power implementations?

• Easy to design high-reliability implementations?

• Easy to design low-cost implementations?

• Compatibility
• Easy to maintain programmability (implementability) as languages and

programs (technology) evolves?

• x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII,
PentiumIII, Pentium4, Core2…

Instruction Set Architecture 8

Programmability

• Easy to express programs efficiently?
• For whom?

• Before 1985: human
• Compilers were terrible, most code was hand-assembled

• Want high-level coarse-grain instructions

• As similar to high-level language as possible

• After 1985: compiler
• Optimizing compilers generate much better code that you or I

• Want low-level fine-grain instructions

Instruction Set Architecture 9

Human Programmability

• What makes an ISA easy for a human to program in?
• Proximity to a high-level language (HLL)

• Closing the “semantic gap”

• Semantically heavy (CISC-like) insns that capture complete idioms

• “Access array element”, “loop”, “procedure call”

• Example: SPARC save/restore

• Bad example: x86 rep movsb (copy string)

• Ridiculous example: VAX insque/remque (insert/remove-into-
queue)

• “Semantic crash”: what if you have many high-level languages?

• Stranger than fiction
• People once thought computers would execute language directly

• Fortunately, never materialized (but keeps coming back around)

Instruction Set Architecture 10

Today’s Semantic Gap

• Today’s ISAs are actually targeted to one language…

• …Just so happens that this language is very low level
• The C programming language

• Will ISAs be different when Java/C# become dominant?
• Object-oriented? Probably not

• Support for garbage collection? Maybe

• Support for bounds-checking? Maybe

• Why?

• Smart compilers transform high-level languages to simple
instructions

• Any benefit of tailored ISA is likely small

Instruction Set Architecture 14

Implementability

• Every ISA can be implemented
• Not every ISA can be implemented efficiently

• Classic high-performance implementation techniques
• Pipelining, parallel execution, out-of-order execution (more later)

• Certain ISA features make these difficult
– Variable instruction lengths/formats: complicate decoding

– Implicit state: complicates dynamic scheduling

– Variable latencies: complicates scheduling

– Difficult to interrupt instructions: complicate many things

Instruction Set Architecture 15

Compatibility

• No-one buys new hardware… if it requires new software
• Intel was the first company to realize this

• ISA must remain compatible, no matter what

• x86 one of the worst designed ISAs EVER, but survives

• As does IBM’s 360/370 (the first “ISA family”)

• IBM System Z (z196) 1400 M Transistors

• Backward compatibility
• New processors must support old programs (can’t drop features)

• Critically important

• Forward (upward) compatibility
• Old processors must support new programs (with software help)

• New processors redefine only previously-illegal opcodes

• Allow software to detect support for specific new instructions

• Old processors emulate new instructions in low-level software

Instruction Set Architecture 16

The Compatibility Trap

• Easy compatibility requires forethought
• Temptation: use some ISA extension for 5% performance gain

• Frequent outcome: gain diminishes, disappears, or turns to loss

– Must continue to support gadget for eternity

• Example: register windows (SPARC)

• Adds difficulty to out-of-order implementations of SPARC

Instruction Set Architecture 17

The Compatibility Trap Door

• Compatibility’s friends
• Trap: instruction makes low-level “function call” to OS handler

• Nop: “no operation” - instructions with no functional semantics

• Backward compatibility
• Handle rarely used but hard to implement “legacy” opcodes

• Define to trap in new implementation and emulate in software

• Rid yourself of some ISA mistakes of the past

• Problem: performance suffers

• Forward compatibility
• Reserve sets of trap & nop opcodes (don’t define uses)

• Add ISA functionality by overloading traps

• Release firmware patch to “add” to old implementation

• Add ISA hints by overloading nops

ASPECTS OF ISAS

Instruction Set Architecture 18

Instruction Set Architecture 19

Aspects of ISAs

• VonNeumann model
• Implicit structure of all modern ISAs

• Format

• Length and encoding

• Operand model
• Where (other than memory) are operands stored?

• Datatypes and operations

• Control

• Overview only
• Read about the rest in the book and appendices

Instruction Set Architecture 20

The Sequential Model

• Implicit model of all modern ISAs
• Often called VonNeuman, but in ENIAC before

• Basic feature: the program counter (PC)
• Defines total order on dynamic instruction

• Next PC is PC++ unless insn says otherwise

• Order and named storage define computation

• Value flows from insn X to insn Y via storage A iff…

• Insn X names A as output, insn Y names A as input…

• And Y after X in total order

• Processor logically executes loop at left
• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

• More parallel alternatives have been proposed

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

Instruction Set Architecture 21

Length and Format

• Length
• Fixed length

• Most common is 32 bits

+ Simple implementation (next PC often just PC+4)

– Code density: 32 bits to increment a register by 1

• Variable length

+ Code density

• x86 can do increment in one 8-bit instruction

– Complex fetch (where does next instruction begin?)

• Compromise: two lengths

• E.g., MIPS16 or ARM’s Thumb (embedded)

• Encoding
• A few simple encodings simplify decoder

• x86 decoder one of nastiest pieces of logic

Fetch[PC]

Decode

Read Inputs

Execute

Write Output

Next PC

Instruction Set Architecture 22

Examples Instruction Encodings

• MIPS
• Fixed length

• 32-bits, 3 formats, simple encoding

• (MIPS16 has 16-bit versions of common insn for code density)

• x86
• Variable length encoding (1 to 16 bytes)

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

Op OpExt* ModRM* SIB* Disp*(1-4) Imm*(1-4)Prefix*(1-4)

Instruction Set Architecture 23

Operations and Datatypes

• Datatypes
• Software: attribute of data

• Hardware: attribute of operation, data is just 0/1’s

• All processors support
• 2C integer arithmetic/logic (8/16/32/64-bit)

• IEEE754 floating-point arithmetic (32/64 bit)

• Intel has 80-bit floating-point

• More recently, most processors support
• “Packed-integer” insns, e.g., MMX

• “Packed-fp” insns, e.g., SSE/SSE2

• For multimedia, more about these a the end (DLP)

• Processor no longer (??) support
• Decimal, other fixed-point arithmetic

• Binary-coded decimal (BCD)

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

Instruction Set Architecture 24

Where Does Data Live?

• Memory
• Fundamental storage space

• Registers
• Faster than memory, quite handy

• Most processors have these too

• Immediates
• Values spelled out as bits in instructions

• Input only

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

Instruction Set Architecture 25

How Much Memory? Address Size

• What does “64-bit” in a 64-bit ISA mean?
• Support memory size of 264 of smallest addressable piece (byte)

• Alternative (wrong) definition: width of calculation operations

• Virtual address size
• Determines size of addressable (usable) memory

• Current 32-bit or 64-bit address spaces

• All ISAs moving to (if not already at) 64 bits

• Most critical, inescapable ISA design decision

• Too small?

• Will limit the lifetime of ISA

• May require nasty hacks to overcome (E.g., x86 segments)

• x86 evolution:

• 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),

• 32-bit + protected memory (80386)

• 64-bit (AMD’s x86_64 & Intel’s EM64T)

Instruction Set Architecture 26

How Many Registers?

• Registers faster than memory, have as many as possible?
• No

• One reason registers are faster is that there are fewer of them

• Small is fast (hardware truism)

• Another is that they are directly addressed (no address calc)

– More of them, means larger specifiers

– Fewer registers per instruction or indirect addressing

• Not for everything are useful

• Structures, arrays, anything pointed-to

• Although compilers are getting better at putting more things in

– More registers means more saving/restoring

• Upshot: trend to more registers: 8 (x86)32 (MIPS) 128 (IA64)

• 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

Instruction Set Architecture 27

Register Windows

• Register windows: hardware activation records
• Sun SPARC (from the RISC I)

• 32 integer registers divided into: 8 global (%g0-%g7), 8 local (%l0-%l7), 8
input (%i0-%i7), 8 output (%o0-%o7)

• Explicit save/restore instructions

• Global registers fixed

• save: inputs “pushed”, outputs inputs, locals zeroed

• restore: locals zeroed, inputs outputs, inputs “popped”

• Hardware stack provides few (4-8) on-chip register frames

• Spilled-to/filled-from memory on over/under flow

+ Automatic parameter passing, caller-saved registers

+ No memory traffic on shallow (<4-8 deep) call graphs

– Hidden memory operations (some restores fast, others slow)

– A nightmare for register renaming (more later)

Instruction Set Architecture 28

How Are Memory Locations Specified?

• Registers are specified directly
• Register names are short, can be encoded in instructions

• Some instructions implicitly read/write certain registers

• MIPS example?

• How are addresses specified?
• Addresses are long (64-bit)

• Addressing mode: how are insn bits converted to addresses?

• Think about: what high-level language addressing mode captures

Instruction Set Architecture 29

Memory Addressing

• Addressing mode: way of specifying address
• Used in memory-memory or load/store instructions in register ISA

• Examples

• Register-Indirect: R1=mem[R2]

• Displacement: R1=mem[R2+immed]

• Index-base: R1=mem[R2+R3]

• Memory-indirect: R1=mem[mem[R2]]

• Auto-increment: R1=mem[R2], R2= R2+1

• Auto-indexing: R1=mem[R2+immed], R2=R2+immed

• Scaled: R1=mem[R2+R3*immed1+immed2]

• PC-relative: R1=mem[PC+imm]

• What high-level program idioms are these used for?

• What implementation impact? What impact on insn count?

Instruction Set Architecture 30

Op(6) Rs(5) Rt(5) Immed(16)I-type

MIPS Addressing Modes

• MIPS implements only displacement
• Why? Experiment on VAX (ISA with every mode) found distribution

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

• 80% use small displacement or register indirect (displacement 0)

• I-type instructions: 16-bit displacement
• Is 16-bits enough?

• Yes? VAX experiment showed 1% accesses use displacement >16

• What to do with this 1%?

• SPARC adds Reg+Reg mode
• Why? What impact on both implementation and insn count?

Instruction Set Architecture 31

Addressing Modes Examples

• MIPS
• Displacement: R1+offset (16-bit)

• Experiments showed this covered 80% of accesses on VAX

• x86 (MOV instructions)
• Absolute: zero + offset (8/16/32-bit)

• Register indirect: R1

• Indexed: R1+R2

• Displacement: R1+offset (8/16/32-bit)

• Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale = 1, 2, 4, 8

Instruction Set Architecture 32

Two More Addressing Issues

• Access alignment: address % size == 0?
• Aligned: load-word @XXXX00, load-half @XXXXX0

• Unaligned: load-word @XXXX10, load-half @XXXXX1

• Question: what to do with unaligned accesses (uncommon case)?

• Support in hardware? Makes all accesses slow

• Trap to software routine? Possibility

• Use regular instructions

• Load, shift, load, shift, and

• MIPS? ISA support: unaligned access using two instructions (TAL vs MAL)

lwl @XXXX10; lwr @XXXX10

• Endian-ness: arrangement of bytes in a word
• Big-endian: sensible order (e.g., MIPS, PowerPC)

• A 4-byte integer: “00000000 00000000 00000010 00000011” is 515

• Little-endian: reverse order (e.g., x86)

• A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515

• Why little endian? To be different? To be annoying? Nobody knows

Instruction Set Architecture 33

How Many Explicit Operands / ALU Insn?

• Operand model: how many explicit operands / ALU insn?
• 3: general-purpose

add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS uses this)

• 2: multiple explicit accumulators (output doubles as input)

add R1,R2 means [R1] = [R1] + [R2] (x86 uses this)

• 1: one implicit accumulator

add R1 means ACC = ACC + [R1]

• 0: hardware stack (like Java bytecodes)

add means STK[TOS++] = STK[--TOS] + STK[--TOS]

• 4+: useful only in special situations

• Examples show register operands…
• But operands can be memory addresses, or mixed register/memory

• ISAs with register-only ALU insns are “load-store”

Instruction Set Architecture 34

MIPS and x86 Operand Models

• MIPS
• Integer: 32 32-bit general-purpose registers (load/store)

• Floating point: same (can also be used as 16 64-bit registers) or dedicated

• 16-bit displacement addressing

• x86
• Integer: 8 accumulator registers (reg-reg, reg-mem, mem-reg)

• Can be used as 8/16/32 bits

• Floating point: 80-bit stack (why x86 had slow floating point)

• Displacement, absolute, reg indirect, indexed and scaled addressing

• All with 8/16/32 bit constants (why not?)

• Note: integer push, pop for managing software stack

• Note: also reg-mem and mem-mem string functions in hardware

• x86-64 (i.e., IA32-EM64T)
• Integer: 16 64-bit accumulator registers

• Floating point: 16 128-bit accumulator registers

Instruction Set Architecture 35

Operand Model Pros and Cons

• Metric I: static code size
• Want: many Implicit operands (stack), high level insns

• Metric II: data memory traffic
• Want: as many long-lived operands in on-chip storage (load-store)

• Metric III: CPI
• Want: short latencies, little variability (load-store)

• CPI and data memory traffic more important these days
• In most niches

• Upshot: most new ISAs are load-store or hybrids

Instruction Set Architecture 36

Control Transfers

• Default next-PC is PC + sizeof(current insn)

• Branches and jumps can change that

• Otherwise dynamic program == static program

• Not useful

• Computing targets: where to jump to
• For all branches and jumps

• Absolute / PC-relative / indirect

• Testing conditions: whether to jump at all
• For (conditional) branches only

• Compare-branch / condition-codes / condition registers

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

Instruction Set Architecture 37

Control Transfers I: Computing Targets

• The issues
• How far (statically) do you need to jump?

• Not far within procedure, further from one procedure to another

• Do you need to jump to a different place each time?

• PC-relative
• Position-independent within procedure

• Used for branches and jumps within a procedure

• Absolute

• Position independent outside procedure

• Used for procedure calls

• Indirect (target found in register)
• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switch statements

Instruction Set Architecture 38

Control Transfers II: Testing Conditions

• Compare and branch insns
branch-less-than R1,10,target

+ Simple

– Two ALUs: one for condition, one for target address

– Extra latency

• Implicit condition codes (x86, LC3)
subtract R2,R1,10 // sets “negative” CC

branch-neg target

+ Condition codes set “for free”

– Implicit dependence is tricky

• Conditions in regs, separate branch (MIPS, P37X)
set-less-than R2,R1,10

branch-not-equal-zero R2,target

– Additional insns

+ one ALU per insn, explicit dependence

Instruction Set Architecture 39

MIPS and x86 Control Transfers

• MIPS
• 16-bit offset PC-relative conditional branches

• Uses register for condition
• Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez

• Why?

• More than 80% of branches are (in)equalities or comparisons to 0

• Don’t need adder for these cases (fast, simple)

• OK to take two insns to do remaining branches

• It’s the uncommon case
• Explicit “set condition into registers”: slt, sltu, slti, sltiu, etc.

• x86
• 8-bit offset PC-relative branches

• Uses condition codes
• Explicit compare instructions (and others) to set condition codes

Instruction Set Architecture 40

MIPS Control Instructions

• PC-relative conditional branches: bne, beq, blez, etc.

• 16-bit relative offset, <0.1% branches need more

• Absolute jumps unconditional jumps: j

• 26-bit offset

• Indirect jumps: jr

Op(6) Rs(5) Rt(5) Immed(16)I-type

Op(6) Target(26)J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6)R-type

THE RISC VS. CISC DEBATE

Instruction Set Architecture 41

Instruction Set Architecture 42

RISC and CISC

• RISC: reduced-instruction set computer
• Coined by Patterson in early 80’s

• Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801 (Cocke)

• Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer
• Term didn’t exist before “RISC”

• x86, VAX, Motorola 68000, etc.

• Philosophical war (one of several) started in mid 1980’s
• RISC “won” the technology battles

• CISC won the high-end commercial war (1990s to today)

• Compatibility a stronger force than anyone (but Intel) thought

• RISC won the embedded computing war (so far. Atom is a true
contender?)

Instruction Set Architecture 43

The Setup

• Pre 1980
• Bad compilers

• Complex, high-level ISAs

• Slow multi-chip micro-programmed implementations

• Vicious feedback loop

• Around 1982
• Moore’s Law makes single-chip microprocessor possible…

• …but only for small, simple ISAs

• Performance advantage of this “integration” was compelling

• Compilers had to get involved in a big way

• RISC manifesto: create ISAs that…
• Simplify single-chip implementation

• Facilitate optimizing compilation

Instruction Set Architecture 44

The RISC Principles

• Single-cycle execution
• CISC: many multicycle operations

• Hardwired control

• CISC: microcoded multi-cycle operations

• Load/store architecture
• CISC: register-memory and memory-memory

• Few memory addressing modes
• CISC: many modes

• Fixed instruction format
• CISC: many formats and lengths

• Reliance on compiler optimizations
• CISC: hand assemble to get good performance

Instruction Set Architecture 45

CISCs and RISCs

• The CISCs: x86, MC68000, VAX
• Variable length instructions: 1-321 bytes!!!

• 14 GPRs + PC + stack-pointer + condition codes

• Data sizes: 8, 16, 32, 64, 128 bit, decimal, string

• Memory-memory instructions for all data sizes

• Special insns: crc, insque, polyf, and a cast of hundreds

• x86: “Difficult to explain and impossible to love”

• The RISCs: MIPS(sgi), PA-RISC(hp), SPARC(sun), PowerPC(ibm),
Alpha(dec)

• 32-bit instructions

• 32 integer registers, 32 floating point registers, load-store

• 64-bit virtual address space

• Few addressing modes (Alpha has one, SPARC/PowerPC have more)

• Why so many basically similar ISAs? Everyone wanted their own

Instruction Set Architecture 46

The Debate

• RISC argument
• CISC is fundamentally handicapped

• For a given technology, RISC implementation will be better (faster)

• Current technology enables single-chip RISC

• When it enables single-chip CISC, RISC will be pipelined

• When it enables pipelined CISC, RISC will have caches

• When it enables CISC with caches, RISC will have next thing...

• CISC rebuttal
• CISC flaws not fundamental, can be fixed with more transistors

• Moore’s Law will narrow the RISC/CISC gap (true)

• Good pipeline: RISC = 100K transistors, CISC = 300K

• By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is paramount

Instruction Set Architecture 47

Current Winner (Volume): RISC

• ARM (Acorn RISC Machine Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).

• 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)

• Low-power and embedded devices (iPod, for example)

• 32-bit RISC ISA
• 16 registers, PC is one of them

• Many addressing modes, e.g., auto increment

• Condition codes, each instruction can be conditional

• Multiple implementations
• Freescale (was Motorola), Texas Instruments, STMicroelectronics, Samsung,

Sharp, Philips, etc.

• Mostly some IP in more complex SoC (System-on-a-chip)

• Some critical tasks implemented through hardware

iPhone “processor”

• ARM 1176X

Instruction Set Architecture 48

• Samsung S3C6400

Instruction Set Architecture 49

Current Winner (Revenue): CISC

• x86 was first 16-bit chip by ~2 years (sadly MC68000 lost the race)
• IBM put it into its PCs because there was no competing choice

• Rest is historical inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel sells the most non-embedded processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given competitive performance, compatibility wins…

• So Intel sells the most non-embedded processors…

• AMD as a competitor keeps pressure on x86 performance

• Moore’s law has helped Intel in a big way
• Most engineering problems can be solved with more transistors

Instruction Set Architecture 50

Intel’s Compatibility Trick: RISC Inside

• 1993: Intel wanted out-of-order execution in Pentium Pro
• OoO was very hard to do with a coarse grain ISA like x86

• Solution? Translate x86 to RISC mops in hardware
push $eax

becomes (we think, uops are proprietary)

store $eax [$esp-4]

addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility

+ But executes RISC mISA internally for implementability

• Given translator, x86 almost as easy to implement as RISC

• Result: Intel implemented OoO before any RISC company

• Also, OoO also benefits x86 more (because ISA limits compiler)

• Idea co-opted by other x86 companies: AMD and Transmeta

Instruction Set Architecture 51

More About Micro-ops

• Even better? Two forms of hardware translation
• Hard-coded logic: fast, but complex

• Table: slow, but “off to the side”, doesn’t complicate rest of machine

• x86: average 1.6 mops / x86 insn
• Logic for common insns that translate into 1–4 mops

• Table for rare insns that translate into 5+ mops

• x86-64: average 1.1 mops / x86 insn
• More registers (can pass parameters too), fewer pushes/pops

• Core2: logic for 1–2 mops, Table for 3+ mops?

• More recent: “macro-op fusion” and “micro-op fusion”

• Intel’s recent processors fuse certain instruction pairs

Instruction Set Architecture 52

Ultimate Compatibility Trick

• Support old ISA by…
• …having a simple processor for that ISA somewhere in the system

• How first Itanium supported x86 code

• x86 processor (comparable to Pentium) on chip

• How PlayStation2 supported PlayStation games

• Used PlayStation processor for I/O chip & emulation

• … next step (PS3 or Itanium II)…

Instruction Set Architecture 53

Translation and Virtual ISAs

• New compatibility interface: ISA + translation software
• Binary-translation: transform static image, run native

• Emulation: unmodified image, interpret each dynamic insn

• Typically optimized with just-in-time (JIT) compilation

• Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86), IA-32 EL (IA32
on IA64 now)

• Performance overheads reasonable (many recent advances)

• Virtual ISAs: designed for translation, not direct execution
• Target for high-level compiler (one per language)

• Source for low-level translator (one per ISA)

• Goals: Portability (abstract hardware nastiness), flexibility over time

• Examples: Java Bytecodes, C# CLR (Common Language Runtime)

Instruction Set Architecture 54

Post-RISC: VLIW and EPIC

• ISAs explicitly targeted for multiple-issue (superscalar) cores
• VLIW: Very Long Insn Word

• Later rebranded as “EPIC”: Explicitly Parallel Insn Computing

• Intel/HP IA64 (Itanium): 2000
• EPIC: 128-bit 3-operation bundles

• 128 64-bit registers

+ Some neat features: Full predication, explicit cache control

• Predication: every instruction is conditional (to avoid branches)

– But lots of difficult to use baggage as well: software speculation

• Every new ISA feature suggested in last two decades

– Relies on younger (less mature) compiler technology

– Not doing well commercially

Instruction Set Architecture 55

Redux: Are ISAs Important?

• Does “quality” of ISA actually matter?
• Not for performance (mostly)

• Mostly comes as a design complexity issue

• Insn/program: everything is compiled, compilers are good

• Cycles/insn and seconds/cycle: mISA, many other tricks

• What about power efficiency?

• Maybe

• ARMs are most power efficient today..

• …but Intel is moving x86 in that way (e.g, Intel’s Atom)

• Does “nastiness” of ISA matter?
• Mostly no, only compiler writers and hardware designers see it

• Even compatibility is not what it used to be
• Software emulation

Instruction Set Architecture 56

Summary

• What makes a good ISA
• {Programm|Implement|Compat}-ability

• Compatibility is a powerful force

• Compatibility and implementability: mISAs, binary translation

• Aspects of ISAs

• CISC and RISC

Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

Instruction Set Architecture 57

