Last revision: Tuesday, February 22, 2011

—

:
— -
'l\;
’

Instruction Set Architecture

Principles and Examples

Readings: H&P Appendix B (paper)
H&P Appendix J.2 for RISC, J.3 for x86 (CD-ROM)

A ¥, ¥
&0
r . e
- F 4 UNIVERSIDAD
' DE CANTABRIA
m B ‘

Instruction Set Architecturs,

sunstruction Set Architecture (ISA)

A

y

Software

s INStruction Set Architecture (ISA)

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors

Instruction Set Architecture

A

A

Hardware

e Whatis a good ISA?
e Aspects of ISAs

RISC vs. CISC

"
=
o
o
=
O
0
(L]
-
3

-1 N
UNIVERSIDAD -
DE CANTABRI.

Instruction Set Architecture

“What Is An ISA?

e |SA (instruction set architecture)

e A well-defined hardware/software interface

e The “contract” between software and hardware

e Functional definition of operations, modes, and storage locations
supported by hardware

e Precise description of how to invoke, and access them
e Not in the “contract”: non-functional aspects
e How operations are implemented
e Which operations are fast and which are slow and when
e Which operations take more power and which take less

e |nstruction — Insn

e ‘Instruction’ is too long to write in slides

Instruction Set Architecture

Language Analogy for ISAs

e Communication
e Person-to-person — software-to-hardware

e Similar structure
e Narrative — program
e Sentence — insn
e Verb — operation (add, multiply, load, branch)
e Noun — data item (immediate, register value, memory value)
e Adjective — addressing mode

e Many different languages, many different ISAs

e Similar basic structure, details differ (sometimes greatly)

e Key differences between languages and ISAs
e Languages evolve organically, many ambiguities, inconsistencies
e |SAs are explicitly engineered and extended, unambiguous

Instruction Set Architecture

*ﬁ;sc- vs CISC Foreshadowing

e Recall performance equation:

e (instructions/program) * (cycles/instruction) * (seconds/cycle)

e CISC (Complex Instruction Set Computing)
e Reduce “instructions/program” with “complex” instructions
e But tends to increase CPI or clock period
e Easy for assembly-level programmers, good code density

e RISC (Reduced Instruction Set Computing)
e Improve “cycles/instruction” with many single-cycle instructions
e Increases “instruction/program”, but hopefully not as much
e Help from smart compiler
e Perhaps improve clock cycle time (seconds/cycle)
* via aggressive implementation allowed by simpler instructions

Instruction Set Architecture

“What Makes a Good 1SA?

e Programmability

e Easy to express programs efficiently?

e Implementability
e Easy to design high-performance implementations?
e More recently
e Easy to design low-power implementations?
e Easy to design high-reliability implementations?
e Easy to design low-cost implementations?
e Compatibility
e Easy to maintain programmability (implementability) as languages and

programs (technology) evolves?

e x86 (IA32) generations: 8086, 286, 386, 486, Pentium, Pentiumll,
Pentiumlll, Pentium4, Core?2...

Instruction Set Architecture

‘“ﬁrogrammability

e Easy to express programs efficiently?

e For whom?

e Before 1985: human

e Compilers were terrible, most code was hand-assembled
e Want high-level coarse-grain instructions
e Assimilar to high-level language as possible

o After 1985: compiler

e Optimizing compilers generate much better code that you or |
e Want low-level fine-grain instructions

Instruction Set Architecture

“I;lyman Programmability

e What makes an ISA easy for a human to program in?
e Proximity to a high-level language (HLL)
e Closing the “semantic gap”
e Semantically heavy (CISC-like) insns that capture complete idioms
e “Access array element”, “loop”, “procedure call”
e Example: SPARC save/restore
e Bad example: x86 rep mowvsb (copy string)

e Ridiculous example: VAX insque/remque (insert/remove-into-
queue)

e “Semantic crash”: what if you have many high-level languages?

e Stranger than fiction
e People once thought computers would execute language directly
e Fortunately, never materialized (but keeps coming back around)

Instruction Set Architecture

"’I" oday’s Semantic Gap

e Today’s ISAs are actually targeted to one language...
e _.Just so happens that this language is very low level

e The C programming language

e Will ISAs be different when Java/C# become dominant?

e Object-oriented? Probably not
e Support for garbage collection? Maybe
e Support for bounds-checking? Maybe
e Why?
e Smart compilers transform high-level languages to simple
instructions

e Any benefit of tailored ISA is likely small

Instruction Set Architecture

“I‘mplgmentability

e Every ISA can be implemented

e Not every ISA can be implemented efficiently

e (lassic high-performance implementation techniques

e Pipelining, parallel execution, out-of-order execution (more later)

e (Certain ISA features make these difficult
— Variable instruction lengths/formats: complicate decoding
— Implicit state: complicates dynamic scheduling
— Variable latencies: complicates scheduling
— Difficult to interrupt instructions: complicate many things

Instruction Set Architecture

“Compatibility

e No-one buys new hardware... if it requires new software
e Intel was the first company to realize this
e |SA must remain compatible, no matter what
e x86 one of the worst designed ISAs EVER, but survives
e As does IBM’s 360/370 (the first “ISA family”)
e |BM System Z (z196) 1400 M Transistors

e Backward compatibility
e New processors must support old programs (can’t drop features)
e Critically important

e Forward (upward) compatibility
e Old processors must support new programs (with software help)
e New processors redefine only previously-illegal opcodes

e Allow software to detect support for specific new instructions

e Old processors emulate new instructions in low-level software
Instruction Set Architecture

“The Compatibility Trap

e Easy compatibility requires forethought
e Temptation: use some ISA extension for 5% performance gain
e Frequent outcome: gain diminishes, disappears, or turns to loss
— Must continue to support gadget for eternity

e Example: register windows (SPARC)
e Adds difficulty to out-of-order implementations of SPARC

Instruction Set Architecture

. -

he Compatibility Trap Door

e Compatibility’s friends
e Trap: instruction makes low-level “function call” to OS handler

e Nop: “no operation” - instructions with no functional semantics

e Backward compatibility
e Handle rarely used but hard to implement “legacy” opcodes
e Define to trap in new implementation and emulate in software
e Rid yourself of some ISA mistakes of the past
e Problem: performance suffers

e Forward compatibility
e Reserve sets of trap & nop opcodes (don’t define uses)
e Add ISA functionality by overloading traps
e Release firmware patch to “add” to old implementation
e Add ISA hints by overloading nops

Instruction Set Architecture

)
B
UL,
o
R
=
O
UL
7
<

mn
UNIVERSIDAD -
DE CANTABRI.

Instruction Set Architecture

"’A_s;pects of ISAs

e VonNeumann model

e Implicit structure of all modern ISAs

e Format

e Length and encoding

e Operand model
e Where (other than memory) are operands stored?

e Datatypes and operations
e Control

e QOverview only
e Read about the rest in the book and appendices

Instruction Set Architecture

he Sequential Model

e |mplicit model of all modern ISAs

e Often called VonNeuman, but in ENIAC before

Fetch PC e Basic feature: the program counter (PC)

Decode e Defines total order on dynamic instruction
Read Inputs e Next PC is PC++ unless insn says otherwise

Execute e Order and named storage define computation
Write Output e Value flows from insn X to insn Y via storage A iff...

Next PC e |[nsn X names A as output, insn Y names A as input...

e AndY after X in total order

e Processor logically executes loop at left
e |nstruction execution assumed atomic
e |nstruction X finishes before insn X+1 starts

e More parallel alternatives have been proposed

Instruction Set Architecture

‘I;gngth and Format

e Length
e Fixed length

Fetch[PC))
[PC] e Most common is 32 bits

Decode

+ Simple implementation (next PC often just PC+4)

Read Inputs

Execute — Code density: 32 bits to increment a register by 1
Write Output e Variable length

Next PC + Code density

e x86 can do increment in one 8-bit instruction
— Complex fetch (where does next instruction begin?)
e Compromise: two lengths
e E.g., MIPS16 or ARM’s Thumb (embedded)

e Encoding
e A few simple encodings simplify decoder
e x86 decoder one of nastiest pieces of logic

Instruction Set Architecture

Xxamples Instruction Encedings

o MIPS

e Fixed length
e 32-bits, 3 formats, simple encoding
e (MIPS16 has 16-bit versions of common insn for code density)

R-type | Op(6) | Rs(5) | Rt(5) | Rd(5) | Sh(5) | Func(6)

I-type | Op(6) | Rs(5) | Rt(5) Immed(16)

J-type | Op(6) Target(26)

e Xx86
e Variable length encoding (1 to 16 bytes)

Prefix*(1-4) Op OpExt* | ModRM* SIB* Disp*(1-4) | Imm*(1-4)

Instruction Set Architecture

C perations and Datatypes

e Datatypes

v e Software: attribute of data
Fetch e Hardware: attribute of operation, data is just 0/1’s
Decode
e All processors support
Read Inputs _ . ' . _
e 2Cinteger arithmetic/logic (8/16/32/64-bit)
Write Output e |EEE754 floating-point arithmetic (32/64 bit)
Next Insn e Intel has 80-bit floating-point
e More recently, most processors support

e “Packed-integer” insns, e.g., MMX

e “Packed-fp” insns, e.g., SSE/SSE2

e For multimedia, more about these a the end (DLP)
e Processor no longer (?7?) support

e Decimal, other fixed-point arithmetic
e Binary-coded decimal (BCD)

Instruction Set Architecture

‘Where Does Data Live?

¢ Memory

v e Fundamental storage space
Fetch

Decode

REECRULUEY | o Registers

e Faster than memory, quite handy
Write Output

e Most processors have these too

Next Insn

e |mmediates
e Values spelled out as bits in instructions
e |nput only

Instruction Set Architecture

“I;lgw Much Memory? Address Size

e \What does “64-bit” in a 64-bit ISA mean?

e Support memory size of 2%¢ of smallest addressable piece (byte)
e Alternative (wrong) definition: width of calculation operations

e Virtual address size
e Determines size of addressable (usable) memory
e Current 32-bit or 64-bit address spaces
e All ISAs moving to (if not already at) 64 bits
e Most critical, inescapable ISA design decision
e Too small?
e Will limit the lifetime of ISA
e May require nasty hacks to overcome (E.g., x86 segments)
e x86 evolution:
e 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),
e 32-bit + protected memory (80386)
e 64-bit (AMD’s x86_64 & Intel’s EM64T)

Instruction Set Architecture

"‘ng Many Registers?

e Registers faster than memory, have as many as possible?
* No
e One reason registers are faster is that there are fewer of them
e Small is fast (hardware truism)
e Another is that they are directly addressed (no address calc)
— More of them, means larger specifiers
— Fewer registers per instruction or indirect addressing
e Not for everything are useful
e Structures, arrays, anything pointed-to
e Although compilers are getting better at putting more things in
— More registers means more saving/restoring

e Upshot: trend to more registers: 8 (x86)—32 (MIPS) —>128 (1A64)
e 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

Instruction Set Architecture

e Register windows: hardware activation records

Sun SPARC (from the RISC I)
32 integer registers divided into: 8 global (3g0-%g7), 8 local (¥10-%17), 8
input ($10-%17), 8 output (%00-%07)
Explicit save/restore instructions
e Global registers fixed
e save: inputs “pushed”, outputs — inputs, locals zeroed
e restore: locals zeroed, inputs — outputs, inputs “popped”
e Hardware stack provides few (4-8) on-chip register frames

Spilled-to/filled-from memory on over/under flow
Automatic parameter passing, caller-saved registers

No memory traffic on shallow (<4-8 deep) call graphs

Hidden memory operations (some restores fast, others slow)
A nightmare for register renaming (more later)

Instruction Set Architecture

>'How -Are Memory Locations Specified?

e Registers are specified directly
e Register names are short, can be encoded in instructions
e Some instructions implicitly read/write certain registers
e MIPS example?

e How are addresses specified?
e Addresses are long (64-bit)
e Addressing mode: how are insn bits converted to addresses?
e Think about: what high-level language addressing mode captures

Instruction Set Architecture

emory Addressing

e Addressing mode: way of specifying address

Used in memory-memory or load/store instructions in register ISA

e Examples

Register-Indirect: R1=mem[R2]

Displacement: R1=mem[R2+immed]

Index-base: R1=mem[R2+R3]

Memory-indirect: R1=mem[mem[R2]]
Auto-increment: R1=mem|[R2], R2= R2+1
Auto-indexing: R1=mem[R2+immed], R2=R2+immed
Scaled: R1=mem[R2+R3*immedl+immed2]

PC-relative: R1=mem[PC+imm]

e What high-level program idioms are these used for?

e What implementation impact? What impact on insn count?

Instruction Set Architecture

IPS Addressing Modes.

e MIPS implements only displacement
e Why? Experiment on VAX (ISA with every mode) found distribution
e Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%
e 80% use small displacement or register indirect (displacement 0)

e |-type instructions: 16-bit displacement
e |s 16-bits enough?
e Yes? VAX experiment showed 1% accesses use displacement >16
e What to do with this 1%?

I-type | Op(6) | Rs(5) | Rt(5) Immed(16)

e SPARC adds Reg+Reg mode

e Why? What impact on both implementation and insn count?

Instruction Set Architecture

“'A;!dressing Modes Examples

e MIPS
e Displacement: R1+offset (16-bit)

e Experiments showed this covered 80% of accesses on VAX

e x86 (MOV instructions)
e Absolute: zero + offset (8/16/32-bit)
e Register indirect: R1
e Indexed: R1+R2
e Displacement: R1+offset (8/16/32-bit)
e Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)

Instruction Set Architecture

Scale=1, 2,4,8

wo-More Addressing Issues

e Access alignment: address % size == 0?
e Aligned: load-word @XXXX00, load-half @XXXXXO0
e Unaligned: load-word @XXXX10, load-half @XXXXX1
e (Question: what to do with unaligned accesses (uncommon case)?
e Support in hardware? Makes all accesses slow
e Trap to software routine? Possibility
e Use regular instructions
e lLoad, shift, load, shift, and
e MIPS? ISA support: unaligned access using two instructions (TAL vs MAL)
1wl @XXXX10; lwr @XXXX10

e Endian-ness: arrangement of bytes in a word
e Big-endian: sensible order (e.g., MIPS, PowerPC)
e A 4-byte integer: “00000000 00000000 00000010 00000011” is 515

e Little-endian: reverse order (e.gW
e A 4-byte integer: “00000011 00000010°00000000 00000000 ” is 515

e Why little endian? To be different? To be annoying? Nobody knows

Instruction Set Architecture

How Many Explicit Operands /. ALU Insn?

e Operand model: how many explicit operands / ALU insn?
e 3:general-purpose
add R1,R2,R3 means [R1] =[R2] +[R3] (MIPS uses this)

e 2: multiple explicit accumulators (output doubles as input)
add R1l,R2 means [R1] = [R1] + [R2] (x86 uses this)

e 1:one implicit accumulator
add R1 means ACC = ACC + [R1]

e 0: hardware stack (like Java bytecodes)
add means STK[TOS++] = STK[--TOS] + STK[--TOS]

e 4+: useful only in special situations

e Examples show register operands...
e But operands can be memory addresses, or mixed register/memory
e |SAs with register-only ALU insns are “load-store”

Instruction Set Architecture

e MIPS

e Integer: 32 32-bit general-purpose registers (load/store)
e Floating point: same (can also be used as 16 64-bit registers) or dedicated
e 16-bit displacement addressing

e Xx86

e Integer: 8 accumulator registers (reg-reg, reg-mem, mem-reg)
e Can be used as 8/16/32 bits

e Floating point: 80-bit stack (why x86 had slow floating point)

e Displacement, absolute, reg indirect, indexed and scaled addressing
e All with 8/16/32 bit constants (why not?)

e Note: integer push, pop for managing software stack

e Note: also reg-mem and mem-mem string functions in hardware

e x86-64 (i.e., IA32-EM64T)

e |nteger: 16 64-bit accumulator registers
e Floating point: 16 128-bit accumulator registers

Instruction Set Architecture

“'6perand Model Pros and Cons

e Metric I: static code size

e Want: many Implicit operands (stack), high level insns

e Metric Il: data memory traffic

e Want: as many long-lived operands in on-chip storage (load-store)

e Metric lll: CPI

e Want: short latencies, little variability (load-store)

e CPl and data memory traffic more important these days

¢ |In most niches

e Upshot: most new ISAs are load-store or hybrids

Instruction Set Architecture

e Default next-PCis PC + sizeof(current insn)

A 4

Fetch
Decode e Branches and jumps can change that
Read Inputs e Otherwise dynamic program == static program
Execute
: e Not useful
Write Output

e Computing targets: where to jump to
e For all branches and jumps
e Absolute / PC-relative / indirect

e Testing conditions: whether to jump at all
e For (conditional) branches only
e Compare-branch / condition-codes / condition registers

Instruction Set Architecture

~'Control Transfers |: Computing. Targets

e The issues

e How far (statically) do you need to jump?
e Not far within procedure, further from one procedure to another
e Do you need to jump to a different place each time?

e PC-relative

e Position-independent within procedure

e Used for branches and jumps within a procedure
e Absolute

e Position independent outside procedure

e Used for procedure calls

e |ndirect (target found in register)

e Needed for jumping to dynamic targets
e Used for returns, dynamic procedure calls, switch statements

Instruction Set Architecture

~'Control Transfers ll: Testing Conditions

e Compare and branch insns
branch-less-than R1,10, target
+ Simple
— Two ALUs: one for condition, one for target address
— Extra latency

e Implicit condition codes (x86, LC3)
subtract R2,R1,10 // sets “negative” CC
branch-neg target
+ Condition codes set “for free”
— Implicit dependence is tricky

e Conditions in regs, separate branch (MIPS, P37X)
set-less-than R2,R1,10
branch-not-equal-zero R2, target

— Additional insns
+ one ALU per insn, explicit dependence

Instruction Set Architecture

IPS and x86 Control Transfers

e MIPS

e 16-bit offset PC-relative conditional branches
e Uses register for condition
e Compare 2 regs: beq, bne orregto 0: bgtz, bgez, bltz, blez

e Why?
e More than 80% of branches are (in)equalities or comparisons to 0
e Don’t need adder for these cases (fast, simple)
e OK to take two insns to do remaining branches

e |t's the uncommon case
e Explicit “set condition into registers”: s1t, sltu, slti, sltiu, etc.
e Xx86
e 8-bit offset PC-relative branches

e Uses condition codes
e Explicit compare instructions (and others) to set condition codes

Instruction Set Architecture

IPS Control Instructions

e PC-relative conditional branches: bne, beq, blez, etc.

e 16-bit relative offset, <0.1% branches need more

I-type | Op(6) | Rs(5) | Rt(5) Immed(16)

e Absolute jumps unconditional jumps: j
e 26-bit offset
J-type | Op(6) Target(26)

e Indirect jumps: jr

R-type | Op(6) | Rs(5) | Rt(5) | Rd(5) | Sh(5) | Func(6)

Instruction Set Architecture

—
o 0 - —
>
- 3 _ .
- a
2 ~
- -

THE RISC vs. CISC DEBATE

P

Uc W

-1 N
NIVERSIDAD -
E CANTABRI

Instruction Set Architecture 41

ISC.and CISC

e RISC: reduced-instruction set computer
e Coined by Patterson in early 80’s
e Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801 (Cocke)
« Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

e CISC: complex-instruction set computer
e Term didn’t exist before “RISC”
e x86, VAX, Motorola 68000, etc.

e Philosophical war (one of several) started in mid 1980’s
e RISC “won” the technology battles
e CISC won the high-end commercial war (1990s to today)
e Compatibility a stronger force than anyone (but Intel) thought

e RISC won the embedded computing war (so far. Atom is a true
contender?)

Instruction Set Architecture

"’I" he Setup

e Pre 1980

e Bad compilers

e Complex, high-level ISAs

e Slow multi-chip micro-programmed implementations
e Vicious feedback loop

e Around 1982

e Moore’s Law makes single-chip microprocessor possible...

e ..but only for small, simple ISAs
e Performance advantage of this “integration” was compelling
e Compilers had to get involved in a big way

e RISC manifesto: create ISAs that...
e Simplify single-chip implementation
e Facilitate optimizing compilation

Instruction Set Architecture

“The RISC Principles

e Single-cycle execution

e CISC: many multicycle operations

e Hardwired control

e CISC: microcoded multi-cycle operations
e Load/store architecture

e CISC: register-memory and memory-memory
e Few memory addressing modes

e CISC: many modes

e Fixed instruction format

e CISC: many formats and lengths

e Reliance on compiler optimizations

e CISC: hand assemble to get good performance

Instruction Set Architecture

ISCs and RISCs

e The CISCs: x86, MC68000, VAX

Variable length instructions: 1-321 bytes!!!

14 GPRs + PC + stack-pointer + condition codes

Data sizes: 8, 16, 32, 64, 128 bit, decimal, string
Memory-memory instructions for all data sizes

Special insns: crc, insque, polyf£, and a cast of hundreds

x86: “Difficult to explain and impossible to love”

e The RISCs: MIPS(sgi), PA-RISC(hp), SPARC(sun), PowerPC(ibm),
Alpha(dec)

32-bit instructions

32 integer registers, 32 floating point registers, load-store

64-bit virtual address space

Few addressing modes (Alpha has one, SPARC/PowerPC have more)
Why so many basically similar ISAs? Everyone wanted their own

Instruction Set Architecture

“The Debate

e RISC argument
e CISCis fundamentally handicapped
e For a given technology, RISC implementation will be better (faster)
e Current technology enables single-chip RISC
e When it enables single-chip CISC, RISC will be pipelined
e When it enables pipelined CISC, RISC will have caches
e When it enables CISC with caches, RISC will have next thing...

e CISC rebuttal
e CISC flaws not fundamental, can be fixed with more transistors
e Moore’s Law will narrow the RISC/CISC gap (true)
e Good pipeline: RISC = 100K transistors, CISC = 300K
e By 1995: 2M+ transistors had evened playing field
e Software costs dominate, compatibility is paramount

Instruction Set Architecture

urrent Winner (Volume):-RISC

e ARM (Acorn RISC Machine — Advanced RISC Machine)
e First ARM chip in mid-1980s (from Acorn Computer Ltd).
e 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)
e Low-power and embedded devices (iPod, for example)

e 32-bit RISC ISA

e 16 registers, PCis one of them
e Many addressing modes, e.g., auto increment
e Condition codes, each instruction can be conditional

e Multiple implementations

e Freescale (was Motorola), Texas Instruments, STMicroelectronics, Samsung,
Sharp, Philips, etc.

e Mostly some IP in more complex SoC (System-on-a-chip)
e Some critical tasks implemented through hardware

Instruction Set Architecture

~iPhone “processor”

e Samsung S3C6400

System Peripheral Multimedia Accelerator

I-Cache 16KB
D-Cache 16KB
I-TCM 16KB
D-TCM 16KB

Connectivity

v

X64/32 Multi-Layer AHE) Bus

Memory Subsystem

Normal, Idle 1024x1024
Stop, Sleep Color-TFT LCD

Instruction Set Architecture

e ARM 1176X

Optional VFP

W POWERED

TrustZone™

TCRAM 0 enabled TCRAM 0
ARM11™ core
TCRAM 1 TCRAM 1
Memory Management
AMBA AXl Interface
Instruction Data Peripheral
Interface Interface Port

N [O Oy |

et

urrent Winner (Revenue): CISC

e x86 was first 16-bit chip by ~2 years (sadly MC68000 lost the race)

e |BM putitinto its PCs because there was no competing choice
e Rest is historical inertia and “financial feedback”

x86 is most difficult ISA to implement and do it fast but...
Because Intel sells the most non-embedded processors...
It has the most money...

Which it uses to hire more and better engineers...

Which it uses to maintain competitive performance ...
And given competitive performance, compatibility wins...
So Intel sells the most non-embedded processors...

e AMD as a competitor keeps pressure on x86 performance

e Moore’s law has helped Intel in a big way
e Most engineering problems can be solved with more transistors

Instruction Set Architecture

Sintel’'s Compatibility Trick: RISC Inside

e 1993: Intel wanted out-of-order execution in Pentium Pro
e 000 was very hard to do with a coarse grain ISA like x86
e Solution? Translate x86 to RISC pops in hardware

push Seax
becomes (we think, uops are proprietary)
store $Seax [Sesp-4]
addi Sesp, Sesp, -4
+ Processor maintains x86 ISA externally for compatibility
+ But executes RISC pISA internally for implementability
e Given translator, x86 almost as easy to implement as RISC
e Result: Intel implemented OoO before any RISC company
e Also, 000 also benefits x86 more (because ISA limits compiler)
e |dea co-opted by other x86 companies: AMD and Transmeta

Instruction Set Architecture

‘Mpre About Micro-ops

e Even better? Two forms of hardware translation

e Hard-coded logic: fast, but complex
e Table: slow, but “off to the side”, doesn’t complicate rest of machine

e x86: average 1.6 pops / x86 insn
e Logic for common insns that translate into 1-4 pops
e Table for rare insns that translate into 5+ pops

e x86-64: average 1.1 pops / x86 insn
e More registers (can pass parameters too), fewer pushes/pops
e Core2: logic for 1-2 pops, Table for 3+ pops?

e More recent: “macro-op fusion” and “micro-op fusion”

e Intel’s recent processors fuse certain instruction pairs

Instruction Set Architecture

“Ultimate Compatibility Trick

e Support old ISA by...
e ..having a simple processor for that ISA somewhere in the system
e How first Itanium supported x86 code
e x86 processor (comparable to Pentium) on chip
e How PlayStation2 supported PlayStation games
e Used PlayStation processor for I/O chip & emulation

e ... next step (PS3 or Itanium ll)...

Instruction Set Architecture

. -

ranslation and Virtual ISAs

e New compatibility interface: ISA + translation software
e Binary-translation: transform static image, run native
e Emulation: unmodified image, interpret each dynamic insn
e Typically optimized with just-in-time (JIT) compilation

e Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86), IA-32 EL (I1A32
on |A64 now)

e Performance overheads reasonable (many recent advances)

e Virtual ISAs: designed for translation, not direct execution
e Target for high-level compiler (one per language)
e Source for low-level translator (one per ISA)
e Goals: Portability (abstract hardware nastiness), flexibility over time
e Examples: Java Bytecodes, C# CLR (Common Language Runtime)

Instruction Set Architecture

ost:RISC: VLIW and EPIC

e |SAs explicitly targeted for multiple-issue (superscalar) cores
e VLIW: Very Long Insn Word

Later rebranded as “EPIC”: Explicitly Parallel Insn Computing

e Intel/HP IA64 (Itanium): 2000

+

EPIC: 128-bit 3-operation bundles
128 64-bit registers
Some neat features: Full predication, explicit cache control
e Predication: every instruction is conditional (to avoid branches)
But lots of difficult to use baggage as well: software speculation
e Every new ISA feature suggested in last two decades
Relies on younger (less mature) compiler technology
Not doing well commercially

Instruction Set Architecture

“ﬁgdu_x: Are ISAs Important?

e Does “quality” of ISA actually matter?

e Not for performance (mostly)
e Mostly comes as a design complexity issue
e Insn/program: everything is compiled, compilers are good
e Cycles/insn and seconds/cycle: uISA, many other tricks

e What about power efficiency?
e Maybe
e ARMs are most power efficient today..

e _..but Intel is moving x86 in that way (e.g, Intel’s Atom)

e Does “nastiness” of ISA matter?

e Mostly no, only compiler writers and hardware designers see it

e Even compatibility is not what it used to be

e Software emulation

Instruction Set Architecture

“égmmary

e What makes a good ISA

e {Programm|Implement|Compat}-ability

e Compatibility is a powerful force

e Compatibility and implementability: pISAs, binary translation
e Aspects of ISAs

e CISC and RISC

Instruction Set Architecture

f cknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

Instruction Set Architecture

