
Memory Hierarchy I: Caches

Readings: H&P:

Appendix C.1–C.3

Chapter 5.1–5.2

Memory Hierarchy I: Caches 1

This Unit: Caches

• Memory hierarchy concepts

• Cache organization

• High-performance techniques

• Low power techniques

• Some example calculations

Memory Hierarchy I: Caches 2

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Motivation

• Processor can compute only as fast as memory
• A 3Ghz processor can execute an “add” operation in 0.33ns

• Today’s “Main memory” latency is more than 100ns

• Naïve implementation: loads/stores can be 300x slower than other
operations

• Unobtainable goal:
• Memory that operates at processor speeds

• Memory as large as needed for all running programs

• Memory that is cost effective

• Can’t achieve all of these goals at once

Memory Hierarchy I: Caches 3

Review: Types of Memory

• Static RAM (SRAM)
• 6 transistors per bit (two inverters, two other transistors for off/on)

• Optimized for speed (first) and density (second)

• Fast (sub-nanosecond latencies for small SRAM)

• Speed proportional to its area

• Mixes well with standard processor logic

• Dynamic RAM (DRAM)
• 1 transistor + 1 capacitor per bit

• Optimized for density (in terms of cost per bit)

• Slow (>40ns internal access, ~100ns pin-to-pin)

• Different fabrication steps (does not mix well with logic)

• Nonvolatile storage: Magnetic disk, Flash RAM, PRAM

Memory Hierarchy I: Caches 4

Memory & Storage Technologies

• Cost - what can $200 buy today?
• SRAM: 16MB

• DRAM: 4,000MB (4GB) --- 250x cheaper than SRAM

• Disk: 1,000,000MB (1TB) --- 250x cheaper than DRAM

• Latency
• SRAM - <1 to 5ns (on chip)

• DRAM - ~100ns --- 100x or more slower

• Disk - 10,000,000ns or 10ms --- 100,000x slower (mechanical)

• Bandwidth
• SRAM - 10-1000GB/sec

• DRAM - ~10GB/sec

• Disk - 100MB/sec (0.1 GB/sec) - sequential access only

• Aside: Flash, a non-traditional (and nonvolatile) memory
• 32GB for $200, 8x cheaper than DRAM! (But 32x more than disk)

Memory Hierarchy I: Caches 5

Storage Technology Trends

Memory Hierarchy I: Caches 6

Cost

Access Time
Copyright Elsevier Scientific 2003

The “Memory Wall”

• Processors are get faster more quickly than memory (note log scale)

• Processor speed improvement: 35% to 55%

• Memory latency improvement: 7%

Memory Hierarchy I: Caches 7

Copyright Elsevier Scientific 2003

Log scale

+35 to 55%

+7%

Known From the Beginning

“Ideally, one would desire an infinitely large memory
capacity such that any particular word would be immediately
available … We are forced to recognize the possibility of
constructing a hierarchy of memories, each of which has a
greater capacity than the preceding but which is less quickly
accessible.”

Burks, Goldstine, VonNeumann

“Preliminary discussion of the logical design of an electronic
computing instrument”

IAS memo 1946

Memory Hierarchy I: Caches 8

Locality to the Rescue

• Locality of memory references
• Property of real programs, few exceptions

• Books and library analogy (next slide)

• Temporal locality
• Recently referenced data is likely to be referenced again soon

• Reactive: cache recently used data in small, fast memory

• Spatial locality
• More likely to reference data near recently referenced data

• Proactive: fetch data in large chunks to include nearby data

• Holds for data and instructions

Memory Hierarchy I: Caches 9

Library Analogy

• Consider books in a library

• Library has lots of books, but it is slow to access
• Far away (time to walk to the library)

• Big (time to walk within the library)

• How can you avoid these latencies?
• Check out books, take them home with you

• Put them on desk, on bookshelf, etc.

• But desks & bookshelves have limited capacity

• Keep recently used books around (temporal locality)

• Grab books on related topic at the same time (spatial locality)

• Guess what books you’ll need in the future (prefetching)

Memory Hierarchy I: Caches 10

Exploiting Locality: Memory Hierarchy

• Hierarchy of memory components
• Upper components

• Fast  Small  Expensive

• Lower components

• Slow  Big  Cheap

• Connected by “buses”
• Which also have latency and bandwidth issues

• Most frequently accessed data in M1
• M1 + next most frequently accessed in M2, etc.

• Move data up-down hierarchy

• Optimize average access time
• latencyavg = latencyhit + %miss * latencymiss

• Attack each component

Memory Hierarchy I: Caches 11

CPU

M1

M2

M3

M4

Concrete Memory Hierarchy

• 0th level: Registers

• 1st level: Primary caches
• Split instruction (I$) and data (D$)

• Typically 8KB to 64KB each

• 2nd level: Second-level cache (L2$)
• On-chip, certainly on-package (with CPU)

• Made of SRAM (same circuit type as CPU)

• Typically 512KB to 16MB

• 3rd level: main memory
• Made of DRAM (“Dynamic” RAM)

• Typically 1GB to 4GB for desktops/laptops

• Servers can have 100s of GB

• 4th level: disk (swap and files)
• Uses magnetic disks

Memory Hierarchy I: Caches 12

Processor

D$

L2$

Main

Memory

I$

Disk

Compiler

Managed

Hardware

Managed

Software

Managed

(by OS)

Regs

Library Analogy Revisited

• Registers  books on your desk
• Actively being used, small capacity

• Caches  bookshelves
• Moderate capacity, pretty fast to access

• Main memory  library
• Big, holds almost all data, but slow

• Disk (swap)  inter-library loan
• Very slow, but hopefully really uncommon

Memory Hierarchy I: Caches 13

Evolution of Cache Hierarchies

Intel 486

Memory Hierarchy I: Caches 14

8KB

I/D$

1.5MB L2

L3 tags

64KB D$

64KB I$

IBM Power5 (dual core)

• Chips today are 30–70% cache by area

This Unit: Caches

• “Cache”: hardware managed
• Hardware automatically retrieves missing data

• Built from fast SRAM, usually on-chip today

• In contrast to off-chip, DRAM “main memory”

• Cache organization
• ABC

• Miss classification

• High-performance techniques
• Reducing misses

• Improving miss penalty

• Improving hit latency

• Some example performance calculations

Memory Hierarchy I: Caches 15

CPU

D$

L2

Main

Memory

I$

Disk

Looking forward: Memory and Disk

• Main memory
• DRAM-based memory systems

• Virtual memory

• Disks and Storage
• Properties of disks

• Disk arrays (for performance and reliability)

Memory Hierarchy I: Caches 16

CPU

Main

Memory

Disk

D$

L2$

I$

Basic Memory Array Structure

• Number of entries
• 2n, where n is number of address bits

• Example: 1024 entries, 10 bit address

• Decoder changes n-bit address to
2n bit “one-hot” signal

• One-bit address travels on “wordlines”

• Size of entries
• Width of data accessed

• Data travels on “bitlines”

• 256 bits (32 bytes) in example

Memory Hierarchy I: Caches 17

0

1

1021

1022

1023

2

3

1024*256bit

SRAM

bitlines

w
o
rd

lin
e
s

10 bits

FYI: Physical Memory Layout

• Logical layout
• Arrays are vertically contiguous

• Physical layout - roughly square
• Vertical partitioning to minimize bit-line wire

lengths

• H-tree: horizontal/vertical partitioning layout

• Applied recursively

• Each node looks like an H

Memory Hierarchy I: Caches 18

512

513

1022

1023

767

dataaddress

0

1

510

511

255

256 768

Physical Cache Layout

• Arrays and h-trees make caches easy to spot in mgraphs

Memory Hierarchy I: Caches 19

Caches: Finding Data via Indexing

• Basic cache: array of block frames
• Example: 32KB cache (1024 frames, 32B blocks)

• “Hash table in hardware”

• To find frame: decode part of address
• Which part?

• 32-bit address

• 32B blocks  5 lowest bits locate byte in block

• These are called offset bits

• 1024 frames  next 10 bits find frame

• These are the index bits

• Note: nothing says index must be these bits

• But these work best (think about why)

Memory Hierarchy I: Caches 20

0

1

1021

1022

1023

2

3

[4:0][31:15] index [14:5] <<

1024*

256bit

SRAM

bitlines

w
o
rd

lin
e
s

dataaddress

Knowing that You Found It: Tags

• Each frame can hold one of 217 blocks
• All blocks with same index bit pattern

• How to know which if any is currently there?
• To each frame attach tag and valid bit

• Compare frame tag to address tag bits

• No need to match index bits (why?)

• Lookup algorithm
• Read frame indicated by index bits

• “Hit” if tag matches and valid bit is set

• Otherwise, a “miss”. Get data from next level

Memory Hierarchy I: Caches 21

0

1

1021

1022

1023

2

3

[4:0]tag [31:15]

data

index [14:5] <<

address

=

hit?

w
o
rd

lin
e
s

Calculating Tag Overhead

• “32KB cache” means cache holds 32KB of data
• Called capacity

• Tag storage is considered overhead

• Tag overhead of 32KB cache with 1024 32B frames

• 32B frames  5-bit offset

• 1024 frames  10-bit index

• 32-bit address – 5-bit offset – 10-bit index = 17-bit tag

• (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags

• ~6% overhead

• What about 64-bit addresses?
• Tag increases to 49bits, ~20% overhead (worst case)

Memory Hierarchy I: Caches 22

Handling a Cache Miss

• What if requested data isn’t in the cache?
• How does it get in there?

• Cache controller: finite state machine
• Remembers miss address

• Accesses next level of memory

• Waits for response

• Writes data/tag into proper locations

• All of this happens on the fill path

• Sometimes called backside

Memory Hierarchy I: Caches 23

Cache Performance Equation

• For a cache
• Access: read or write to cache

• Hit: desired data found in cache

• Miss: desired data not found in cache

• Must get from another component

• No notion of “miss” in register file

• Fill: action of placing data into cache

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) cache

• tmiss: time to read data into cache

• Performance metric: average access time

tavg = thit + %miss * tmiss

Memory Hierarchy I: Caches 24

Cache

thit

tmiss

%miss

CPI Calculation with Cache Misses

• Parameters
• Simple pipeline with base CPI of 1

• Instruction mix: 30% loads/stores

• I$: %miss = 2%, tmiss = 10 cycles

• D$: %miss = 10%, tmiss = 10 cycles

• What is new CPI?
• CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle

• CPID$ = %load/store*%missD$*tmissD$ = 0.3 * 0.1*10 cycles = 0.3 cycle

• CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3 = 1.5

Memory Hierarchy I: Caches 25

Measuring Cache Performance

• Ultimate metric is tavg

• Cache capacity and circuits roughly determines thit

• Lower-level memory structures determine tmiss

• Measure %miss

• Hardware performance counters

• Simulation (lab)

• Paper simulation (next)

Memory Hierarchy I: Caches 26

Cache Miss Paper Simulation

• 4-bit addresses  16B memory
• Simpler cache diagrams than 32-bits

• 8B cache, 2B blocks
• Figure out number of sets: 4 (capacity / block-size)

• Figure out how address splits into offset/index/tag bits

• Offset: least-significant log2(block-size) = log2(2) = 1  0000

• Index: next log2(number-of-sets) = log2(4) = 2  0000

• Tag: rest = 4 – 1 – 2 = 1  0000

• Cache diagram
• 0000|0001 are addresses of bytes in this block, values don’t matter

Memory Hierarchy I: Caches 27

Cache contents Address Outcome

Set00 Set01 Set10 Set11

0000|0001 0010|0011 0100|0101 0110|0111

4-bit Address, 8B Cache, 2B Blocks

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 28

0 1

00

01

10

11

1 bittag (1 bit) index (2 bits)
Main memory

4-bit Address, 8B Cache, 2B Blocks

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 29

0 1

00

01

10

11

1 bittag (1 bit) index (2 bits)
Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 30

0 1

00

01

10

11 P

1 bittag (1 bit) index (2 bits)
Main memory

Load: 1110 Miss

Cache Miss Paper Simulation

• 8B cache, 2B blocks

Memory Hierarchy I: Caches 31

Cache contents (prior to access) Address Outcome

Set00 Set01 Set10 Set11

0000|0001 0010|0011 0100|0101 0110|0111 1100 Miss

0000|0001 0010|0011 1100|1101 0110|0111 1110 Miss

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss

1000|1001 0010|0011 1100|1101 1110|1111 0011 Hit

1000|1001 0010|0011 1100|1101 1110|1111 1000 Hit

1000|1001 0010|0011 1100|1101 1110|1111 0000 Miss

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss

• How to reduce %miss? And hopefully tavg?

1 bittag (1 bit) index (2 bits)

Capacity and Performance

• Simplest way to reduce %miss: increase capacity
+ Miss rate decreases monotonically

• “Working set”: insns/data program is actively using

• Diminishing returns. Depending on the workload

– However thit increases

• Latency proportional to
sqrt(capacity)

• tavg ?

• Given capacity, manipulate %miss by changing organization

Memory Hierarchy I: Caches 32

Cache Capacity

%miss
“working set” size

Block Size

• Given capacity, manipulate %miss by changing organization

• One option: increase block size
• Exploit spatial locality

• Notice index/offset bits change

• Tag remain the same

• Ramifications
+ Reduce %miss (up to a point)

+ Reduce tag overhead (why?)

– Potentially useless data transfer

– Premature replacement of useful data

– Fragmentation

Memory Hierarchy I: Caches 33

0

1

510

511

2

[5:0][31:15]

data

[14:6]

address

=

hit?

<<

512*512bit

SRAM

9-bit

block size

Block Size and Tag Overhead

• Tag overhead of 32KB cache with 1024 32B frames

• 32B frames  5-bit offset

• 1024 frames  10-bit index

• 32-bit address – 5-bit offset – 10-bit index = 17-bit tag

• (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags

• ~6% overhead

• Tag overhead of 32KB cache with 512 64B frames

• 64B frames  6-bit offset

• 512 frames  9-bit index

• 32-bit address – 6-bit offset – 9-bit index = 17-bit tag

• (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags

+ ~3% overhead

Memory Hierarchy I: Caches 34

4-bit Address, 8B Cache, 4B Blocks

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 35

00 01 10 11

0

1

2 bittag (1 bit) index (1 bits)
Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 4B Blocks

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 36

00 01 10 11

0

1 P

2 bittag (1 bit) index (1 bits)
Main memory

Load: 1110 Miss

Block Size Cache Miss Paper
Simulation

• 8B cache, 4B blocks

+ Spatial “prefetching”: miss on 1100 brought in 1110

– Conflicts: miss on 1000 kicked out 0011

Memory Hierarchy I: Caches 37

Cache contents (prior to access) Address Outcome

Set0 Set1

0000|0001|0010|0011 0100|0101|0110|0111 1100 Miss

0000|0001|0010|0011 1100|1101|1110|1111 1110 Hit (spatial locality)

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss

1000|1001|1010|1011 1100|1101|1110|1111 0011 Miss

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss

1000|1001|1010|1011 1100|1101|1110|1111 0000 Miss

0000|0001|0010|0011 1100|1101|1110|1111 1000 Miss

2 bitstag (1 bit) index (1 bit)

Effect of Block Size on Miss Rate

• Two effects on miss rate
+ Spatial prefetching (good)

• For blocks with adjacent addresses

• Turns miss/miss into miss/hit pairs

– Interference (bad)

• For blocks with non-adjacent addresses
(but in adjacent frames)

• Turns hits into misses by disallowing
simultaneous residence

• Consider entire cache as one big block

• Both effects always present
• Spatial prefetching dominates initially

• Depends on size of the cache

• Good block size is 16–128B

• Program dependent

Memory Hierarchy I: Caches 38

Block Size

%miss

Block Size and Miss Penalty

• Does increasing block size increase tmiss?
• Don’t larger blocks take longer to read, transfer, and fill?

• They do, but…

• tmiss of an isolated miss is not affected
• Critical Word First / Early Restart (CRF/ER)

• Requested word fetched first, pipeline restarts immediately

• Remaining words in block transferred/filled in the background

• tmiss’es of a cluster of misses will suffer
• Reads/transfers/fills of two misses can’t happen at the same time

• Latencies can start to pile up

• This is a bandwidth problem (more later)

Memory Hierarchy I: Caches 39

Conflicts

• 8B cache, 2B blocks

Memory Hierarchy I: Caches 40

Cache contents (prior to access) Address Outcome

Set00 Set01 Set10 Set11

0000|0001 0010|0011 0100|0101 0110|0111 1100 Miss

0000|0001 0010|0011 1100|1101 0110|0111 1110 Miss

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss

1000|1001 0010|0011 1100|1101 1110|1111 0011 Hit

1000|1001 0010|0011 1100|1101 1110|1111 1000 Hit

1000|1001 0010|0011 1100|1101 1110|1111 0000 Miss

0000|0001 0010|0011 1100|1101 1110|1111 1000 Miss

• Pairs like 0000/1000 conflict

• Regardless of block-size (assuming capacity < 16)

• Q: can we allow pairs like these to simultaneously reside?

• A: yes, reorganize cache to do so

1 bittag (1 bit) index (2 bits)

Set-Associativity

• Set-associativity
• Block can reside in one of few frames

• Frame groups called sets

• Each frame in set called a way

• This is 2-way set-associative (SA)

• 1-way  direct-mapped (DM)

• 1-set  fully-associative (FA)

+ Reduces conflicts

– Increases latencyhit:

• additional tag match & muxing

• Note: valid bit not shown

Memory Hierarchy I: Caches 41

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

s
e

ts

[4:0][31:14] [13:5]

9-bit

associativity

Set-Associativity

• Lookup algorithm
• Use index bits to find set

• Read data/tags in all frames in parallel

• Any (match and valid bit), Hit

• Notice tag/index/offset bits

• Only 9-bit index (versus 10-bit
for direct mapped)

• Notice block numbering

Memory Hierarchy I: Caches 42

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

s
e

ts

[4:0][31:14] [13:5]

9-bit

associativity

Associativity and Miss Paper
Simulation

+ Avoid conflicts: 0000 and 1000 can both be in set 0

– Introduce some new conflicts: notice address re-arrangement

• Happens, but conflict avoidance usually dominates

Memory Hierarchy I: Caches 43

• 8B cache, 2B blocks, 2-way set-associative

Cache contents (prior to access) Address Outcome

Set0.Way0 Set0.Way1 Set1.Way0 Set1.Way1

0000|0001 0100|0101 0010|0011 0110|0111 1100 Miss

1100|1101 0100|0101 0010|0011 0110|0111 1110 Miss

1100|1101 0100|0101 1110|1111 0110|0111 1000 Miss

1100|1101 1000|1001 1110|1111 0110|0111 0011 Miss (new conflict)

1100|1101 1000|1001 1110|1111 0010|0011 1000 Hit

1100|1101 1000|1001 1110|1111 0010|0011 0000 Miss

0000|0001 1000|1001 1110|1111 0010|0011 1000 Hit (avoid conflict)

Replacement Policies

• Set-associative caches present a new design choice
• On cache miss, which block in set to replace (kick out)?

• Some options
• Random

• FIFO (first-in first-out)

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier to implement approximation of LRU

• Is LRU for 2-way set-associative caches

• Belady’s: replace block that will be used furthest in future

• Unachievable optimum

• Which policy is simulated in previous example?

Memory Hierarchy I: Caches 44

NMRU and Miss Handling

• Add LRU field to each set
• “Least recently used”

• LRU data is encoded “way”

• Hit? update MRU

• LRU bits updated on each
access

Memory Hierarchy I: Caches 45

512

513

1023

data

<<

address

=

hit?

0

1

511

=

W
E

data from memory

[4:0][31:15] [14:5]

4-bit Address, 8B Cache, 2B Blocks, 2-
way

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 46

0 1 Tag 0 1

0

1

1 bittag (2 bit) index (1 bits)
Main memory

4-bit Address, 8B Cache, 2B Blocks, 2-
way

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 47

0 1 Tag 0 1

0

1

1 bittag (2 bit) index (1 bits)
Main memory

Load: 1110 Miss

4-bit Address, 8B Cache, 2B Blocks, 2-
way

0000 A

0001 B

0010 C

0011 D

0100 E

0101 F

0110 G

0111 H

1000 I

1001 J

1010 K

1011 L

1100 M

1101 N

1110 P

1111 Q

Memory Hierarchy I: Caches 48

0 1 Tag 0 1

0

1

1 bittag (2 bit) index (1 bits)
Main memory

Load: 1110 Miss

LRU updated on each access

(not just misses)

Parallel or Serial Tag Access?

• Note: data and tags actually physically separate
• Split into two different arrays

• Parallel access example:

Memory Hierarchy I: Caches 49data

<<

== ==

offsettag 2-bit index

2-bit

2-bit

Four blocks transferred

Serial Tag Access

• Tag match first, then access only one data block
• Advantages: lower power, fewer wires/pins

• Disadvantages: slow

Memory Hierarchy I: Caches 50

<<

== ==

offsettag 2-bit index

2-bit

2-bit

4-bit

Only one block transferred

CPU
Data

Tags

Serial

CPU
Data

Tags

Parallel

Chip boundary

Chip boundary

data

1.5MB L2

L3 tags

64KB D$

64KB I$

Best of Both? Way Prediction
• Predict “way” of block

• Just a “hint”

• Use the index plus some tag bits

• Table of n-bit entries for 2n associative cache

• Update on mis-prediction or replacement

• Advantages
• Fast

• Low-power

• Disadvantage
• More “misses”

=> tavg↑?

Memory Hierarchy I: Caches 51

<<
== ==

offsettag 2-bit index

2-bit

2-bit

4-bit

Way

Predictor

=

datahit

Associativity And Performance

• Higher associative caches
+ Have better (lower) %miss

• Diminishing returns

– However thit increases

• The more associative, the slower

• What about tavg?

• Block-size and number of sets should be powers of two
• Makes indexing easier (just rip bits out of the address)

• 3-way set-associativity? No problem

Memory Hierarchy I: Caches 52

Associativity

%miss ~5

Classifying Misses: 3C Model (Hill)

• Divide cache misses into three categories
• Compulsory (cold): never seen this address before

• Would miss even in infinite cache

• Capacity: miss caused because cache is too small

• Would miss even in fully associative cache

• Identify? Consecutive accesses to block separated by access to at
least N other distinct blocks (N is number of frames in cache)

• Conflict: miss caused because cache associativity is too low

• Identify? All other misses

• (Coherence): miss due to external invalidations

• Only in shared memory multiprocessors (later)

• Calculated by multiple simulations
• Simulate infinite cache, fully-associative cache, normal cache

• Subtract to find each count

Memory Hierarchy I: Caches 53

Miss Rate: ABC

• Why do we care about 3C miss model?
• So that we know what to do to eliminate misses
• If you don’t have conflict misses, increasing associativity won’t help

• Associativity
+ Decreases conflict misses

– Increases latencyhit

• Block size
– Increases conflict/capacity misses (fewer frames)

+ Decreases compulsory/capacity misses (spatial locality)

• No significant effect on latencyhit

• Capacity
+ Decreases capacity misses

– Increases latencyhit

Memory Hierarchy I: Caches 54

Reducing Conflict Misses: Victim Buffer

• Conflict misses: not enough associativity
• High-associativity is expensive, but also rarely needed

• 3 blocks mapping to same 2-way set and accessed (XYZ)+

• Victim buffer (VB): small fully-associative cache
• Sits on I$/D$ miss path

• Small so very fast (e.g., 8 entries)

• Blocks kicked out of I$/D$ placed in VB

• On miss, check VB: hit? Place block back in I$/D$

• 8 extra ways, shared among all sets

+ Only a few sets will need it at any given time

+ Very effective in practice

• Does VB reduce %miss or latencymiss?

Memory Hierarchy I: Caches 55

I$/D$

L2

VB

Overlapping Misses: Lockup-Free Cache
(also known as Non-blocking Cache)

• Lockup free: allows other accesses while miss is pending
• Consider: ld r2,0(r1); Load r4,0(r3); add r5,r2, r4
• Handle misses in parallel

• “memory-level parallelism”
• Makes sense for…

• Processors that can go ahead despite D$ miss (out-of-order)
• Implementation: miss status holding register (MSHR)

• Remember: miss address, chosen frame, requesting instruction
• When miss returns know where to put block, who to inform

• Common scenario: “hit under miss”
• Handle hits while miss is pending
• Easy

• Less common, but common enough: “miss under miss”
• A little trickier, but common anyway
• Requires multiple MSHRs: search to avoid frame conflicts

• (Very) Hard to evaluate cache impact on processor performance. Why?
• Another step (in aggressiveness) is banked-caches

Memory Hierarchy I: Caches 56

Software Restructuring: Data

• Capacity misses: poor spatial or temporal locality
• Several code restructuring techniques to improve both

– Compiler must know that restructuring preserves semantics

• Loop interchange: spatial locality
• Example: row-major matrix: X[i][j] followed by X[i][j+1]

• Poor code: X[i][j] followed by X[i+1][j]
for (j = 0; j<NCOLS; j++)

for (i = 0; i<NROWS; i++)

sum += X[i][j]; // say

• Better code

for (i = 0; i<NROWS; i++)

for (j = 0; j<NCOLS; j++)

sum += X[i][j];

• More in lab:
• Loopfusion, blocking, etc…

Memory Hierarchy I: Caches 57

Software Restructuring: Code

• Compiler an layout code for temporal and spatial locality
• If (a) { code1; } else { code2; } code3;

• But, code2 case never happens (say, error condition)

• Fewer taken branches, too

• Intra-procedure, inter-procedure
Memory Hierarchy I: Caches 58

Better

locality

Better

locality

Prefetching

• Prefetching: put blocks in cache proactively/speculatively
• Key: anticipate upcoming miss addresses accurately

• Can do in software or hardware

• Simple example: next block prefetching

• Miss on address X anticipate miss on X+block-size

+ Works for insns: sequential execution

+ Works for some data: arrays

+ Very easy to implement

• Timeliness: initiate prefetches sufficiently in advance

• Coverage: prefetch for as many misses as possible

• Accuracy: don’t pollute with unnecessary data

• It evicts useful data

Memory Hierarchy I: Caches 59

I$/D$

L2

prefetch logic

Software Prefetching

• Use a special “prefetch” instruction
• Tells the hardware to bring in data, doesn’t actually read it

• Just a hint

• Inserted by programmer and/or compiler

• Example
for (i = 0; i<NROWS; i++)

for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {

prefetch(&X[i][j]+BLOCK_SIZE);

for (jj=j; jj<j+BLOCK_SIZE-1; jj++)

sum += x[i][jj];

}

• Multiple prefetches bring multiple blocks in parallel
• Using lockup-free caches

• “Memory-level” parallelism

Memory Hierarchy I: Caches 60

Hardware Prefetching

• What to prefetch?
• Stride-based sequential prefetching

• Can also do N blocks ahead to hide more latency

+ Simple, works for sequential things: insns, array data

+ Works better than doubling the block size. Why?

• Address-prediction

• Needed for non-sequential data: lists, trees, etc.

• Use a hardware table to detect strides, common patterns

• When to prefetch….
• On every reference?

• On every miss?

Memory Hierarchy I: Caches 61

More Advanced Address Prediction

• “Next-block” prefetching is easy, what about other options?

• Correlating predictor

• Large table stores (miss-addr  next-miss-addr) pairs

• On miss, access table to find out what will miss next

• It’s OK for this table to be large and slow

• Content-directed or dependence-based prefetching
• Greedily chases pointers from fetched blocks

• Jump pointers
• Augment data structure with prefetch pointers

• Make it easier to prefetch: cache-conscious layout/malloc
• Lays lists out serially in memory, makes them look like array

• Active area of research

Memory Hierarchy I: Caches 62

Capacity Misses: Compression

• Compression: store insns/data in compressed form
+ Increase effective capacity

– Increase latencyhit (may have to decompress)

• Decompression algorithm must be fast (i.e., not LZW)

• Pretty straightforward for I$ [Game+, IBM’99]

• Compression performed statically

+ No layout “holes”

+ No need to modify cache itself (e.g., with additional tags)

• Can use a “dictionary” approach (e.g., IBM CodePack for PowerPC)

• More difficult (but doable) for D$, L2 [Alameldeen+, ISCA’04]

Memory Hierarchy I: Caches 63

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.4705&rep=rep1&type=pdf

WRITES??

Memory Hierarchy I: Caches 64

Write Issues

• So far we have looked at reading from cache
• Instruction fetches, loads

• What about writing into cache
• Stores, not an issue for instruction caches (why they are simpler)

• Several new issues
• Tag/data access

• Write-through vs. write-back

• Write-allocate vs. write-not-allocate

• Hiding write miss latency

Memory Hierarchy I: Caches 65

Tag/Data Access

• Reads: read tag and data in parallel

• Tag mis-match  data is garbage (OK, stall until good data arrives)

• Writes: read tag, write data in parallel?

• Tag mis-match  clobbered data (oops)

• For associative caches, which way was written into?

• Writes are a pipelined two step (multi-cycle) process
• Step 1: match tag

• Step 2: write to matching way

• Bypass (with address check) to avoid load stalls

• May introduce structural hazards

Memory Hierarchy I: Caches 66

Write (hit) Propagation

• When to propagate new value to (lower level) memory?

• Option #1: Write-through: immediately
• On hit, update cache

• Immediately send the write to the next level

• Option #2: Write-back: when block is replaced
• Requires additional “dirty” bit per block

• Replace clean block: no extra traffic

• Replace dirty block: extra “writeback” of block

+ Writeback-buffer: keep it off critical path of miss

• Step#1: Send “fill” request to next-level

• Step#2: While waiting, write dirty block to buffer

• Step#3: When new blocks arrives, put it into cache

• Step#4: Write buffer contents to next-level

Memory Hierarchy I: Caches 67

2
1

4

$

Next-level-$

WBB

3

Write Propagation Comparison

• Write-through
– Requires additional bus bandwidth

• Consider repeated write hits

– Next level must handle small writes (1, 2, 4, 8-bytes)

+ No need for valid bits in cache

+ No need to handle “writeback” operations

• Simplifies miss handling (no WBB)

• Sometimes used for L1 caches (for example, by IBM)

• Write-back
+ Key advantage: uses less bandwidth

• Reverse of other pros/cons above

• Used by Intel and AMD

• Second-level and beyond are generally write-back caches

Memory Hierarchy I: Caches 68

Write Miss Handling

• How is a write miss actually handled?

• Write-allocate: fill block from next level, then write it
+ Decreases read misses (next read to block will hit)

– Requires additional bandwidth

• Commonly used (especially with write-back caches)

• Write-non-allocate: just write to next level, no allocate
– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

Memory Hierarchy I: Caches 69

Write Misses and Write Buffers

• Read miss?
• Load can’t go on without the data, it must stall

• Write miss?
• Technically, no instruction is waiting for data, why stall?

• Write buffer: a small buffer
• Stores put address/value to write buffer, keep going

• Write buffer writes stores to D$ in the background

• Loads must search write buffer (in addition to D$)

+ Eliminates stalls on write misses (mostly)

– Creates some problems (later)

• Write buffer vs. writeback-buffer
• Write buffer: “in front” of D$, for hiding store misses

• Writeback buffer: “behind” D$, for hiding writebacks
Memory Hierarchy I: Caches 70

Cache

Next-level

cache

WBB

WB

Processor

//localhost/Library/Mail Downloads/08_memhier.ppt

Write Buffer Examples

• Example #1:
• Store “1” into address A

• Miss in cache, put in write buffer (initiate miss)

• Load from address B

• Hit in cache, read value from cache

• Wait for miss to fill, write a “1” to A when done

• Example #2:
• Store “1” into address A

• Miss, put in write buffer (initiate miss)

• Load from address A

• Miss in cache, but do we stall? Don’t need to stall

• Just bypass load value from the write buffer

Memory Hierarchy I: Caches 71

Write Buffer Examples

• Example #3:
• Store byte value “1” into address A

• Miss in cache, put in write buffer (initiate miss)

• Load word from address A, A+1, A+2, A+3

• Hit in cache, read value from where?

• Read both cache and write buffer (byte-by-byte merge)

• Store buffer holds address, data, and per-byte valid bits

• Example #4:
• Store byte value “1” into address A (initiate miss)

• Store byte value “2” into address B (initiate miss)

• Store byte value “3” into Address A (???)

• Can the first and last store share the same entry?

• What if “B” fills first?

• Can the second store leave before the first store?
Memory Hierarchy I: Caches 72

Memory Performance Equation

• For memory component M
• Access: read or write to M

• Hit: desired data found in M

• Miss: desired data not found in M

• Must get from another (slower) component

• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) M

• tmiss: time to read data into M

• Performance metric
• tavg: average access time

tavg = thit + %miss * tmiss

Memory Hierarchy I: Caches 73

CPU

M

thit

tmiss

%miss

Hierarchy Performance

tavg

tavg-M1

thit-M1 + (%miss-M1*tmiss-M1)

thit-M1 + (%miss-M1*tavg-M2)

thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-M2)))

thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-M3)))

…

Memory Hierarchy I: Caches 74

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

Local vs Global Miss Rates

• Local hit/miss rate:
• Percent of references to cache hit (e.g, 90%)

• Local miss rate is (100% - local hit rate), (e.g., 10%)

• Global hit/miss rate:
• Misses per instruction (1 miss per 30 instructions)

• Instructions per miss (3% of instructions miss)

• Consider second-level cache hit rate
• L1: 2 misses per 100 instructions

• L2: 1 miss per 100 instructions

• L2 “local miss rate” -> 50%

Memory Hierarchy I: Caches 75

Performance Calculation I

• In a pipelined processor, I$/D$ thit is “built in” (effectively 0)

• Parameters
• Base pipeline CPI = 1

• Instruction mix: 30% loads/stores

• I$: %miss = 2%, tmiss = 10 cycles

• D$: %miss = 10%, tmiss = 10 cycles

• What is new CPI?
• CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle

• CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle

• CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5

Memory Hierarchy I: Caches 76

Performance Calculation II

• Parameters
• Reference stream: all loads

• D$: thit = 1ns, %miss = 5%

• L2: thit = 10ns, %miss = 20% (local miss rate)

• Main memory: thit = 50ns

• What is tavgD$ without an L2?
• tmissD$ = thitM

• tavgD$ = thitD$ + %missD$*thitM = 1ns+(0.05*50ns) = 3.5ns

• What is tavgD$ with an L2?
• tmissD$ = tavgL2

• tavgL2 = thitL2+%missL2*thitM = 10ns+(0.2*50ns) = 20ns

• tavgD$ = thitD$ + %missD$*tavgL2 = 1ns+(0.05*20ns) = 2ns

Memory Hierarchy I: Caches 77

Performance Calculation III

• Memory system parameters
• D$: thit = 1ns, %miss = 10%, 50% dirty, writeback-buffer, write-buffer

• Main memory: thit = 50ns

• 32-byte block size

• Reference stream: 20% stores, 80% loads

• What is tavgD$?
• Write-buffer  hides store misses latency

• Writeback-buffer  hides dirty writeback latency

• tmissD$ = thitM

• tavgD$ = thitD$ + %loads * %missD$*thitM = 1ns+(0.8*0.10*50ns) = 5ns

Memory Hierarchy I: Caches 78

Bandwidth Calculation

• Memory system parameters
• D$: thit = 1ns, %miss = 10%, 50% dirty, writeback-buffer, write-buffer

• Main memory: thit = 50ns

• 32-byte block size

• Reference stream: 20% stores, 80% loads

• What is the average bytes transferred per miss?
• All misses: 32-byte blocks

• Dirty evictions: 50% of the time * 32-byte block

• 48B per miss

• Average bytes transfer per memory operation?
• 10% of memory operations miss, so 4.8B per memory operation

Memory Hierarchy I: Caches 79

Designing a Cache Hierarchy

• For any memory component: thit vs. %miss tradeoff

• Upper components (I$, D$) emphasize low thit

• Frequent access  thit important

• tmiss is not bad  %miss less important

• Low capacity/associativity (to reduce thit)

• Small-medium block-size (to reduce conflicts)

• Moving down (L2, L3) emphasis turns to %miss

• Infrequent access  thit less important

• tmiss is bad  %miss important

• High capacity/associativity/block size (to reduce %miss)

Memory Hierarchy I: Caches 80

Memory Hierarchy Parameters

• Some other design parameters
• Split vs. unified insns/data

• Inclusion vs. exclusion vs. nothing

• On-chip, off-chip, or partially on-chip?

Memory Hierarchy I: Caches 81

Parameter I$/D$ L2 L3 Main Memory

thit 2ns 10ns 30ns 100ns

tmiss 10ns 30ns 100ns 10ms (10M ns)

Capacity 8KB–64KB 256KB–8MB 2–16MB 1-4GBs

Block size 16B–64B 32B–128B 32B-256B NA

Associativity 1–4 4–16 4-16 NA

Split vs. Unified Caches

• Split I$/D$: insns and data in different caches
• To minimize structural hazards and thit

• Larger unified I$/D$ would be slow, 2nd port even slower (doubling bit-
lines)

• Optimize I$ for wide output (superscalar), no writes

• Why is 486 I/D$ unified?

• Unified L2, L3: insns and data together
• To minimize %miss

+ Fewer capacity misses: unused insn capacity can be used for data

– More conflict misses: insn/data conflicts

• A much smaller effect in large caches

• Insn/data structural hazards are rare: simultaneous I$/D$ miss

• Go even further: unify L2, L3 of multiple cores in a multi-core

Memory Hierarchy I: Caches 82

Hierarchy: Inclusion versus Exclusion

• Inclusion
• A block in the L1 is always in the L2

• Good for write-through L1s (why?)

• Exclusion
• Block is either in L1 or L2 (never both)

• Good if L2 is small relative to L1

• (extreme) Example: AMD’s Duron 64KB L1s, 64KB L2

• Non-inclusion
• No guarantees

Memory Hierarchy I: Caches 83

Current Cache Research

• “Drowsy Caches”
• Data/tags allowed to leak away (power)

• “Frequent Value Cache”/”Compressed Cache”
• Frequent values like 0, 1 compressed (performance, power)

• “Direct Address Cache” + “Cool Cache”
• Support tag-unchecked loads in compiler and hardware (power)

• “Distance Associative Cache” + “NUCA”
• Moves frequently used data to closer banks/subarrays

• Like an associative cache in which not all ways are equal

• “Cache Compression”
• Use simple compression to increase capacity of secondary caches

• Saves bandwidth, too

Memory Hierarchy I: Caches 84

Summary
• Average access time of a memory component

• latencyavg = latencyhit + %miss * latencymiss

• Hard to get low latencyhit and %miss in one structure  hierarchy

• Memory hierarchy
• Cache (SRAM) memory (DRAM)  swap (Disk)

• Smaller, faster, more expensive  bigger, slower, cheaper

• Cache ABCs (capacity, associativity, block size)
• 3C miss model: compulsory, capacity, conflict

• Performance optimizations
• %miss: prefetching

• latencymiss: victim buffer , critical-word-first/early-restart, lockup-free
design

• Write issues
• Write-back vs. write-through/write-allocate vs. write-no-allocate

Memory Hierarchy I: Caches 85

Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

Memory Hierarchy I: Caches 86

