Readings:

H&P: Chapter 5.3, Appendix C4, C5 starting at
page C-53

'
Storage Hierarchy ll: Main yl'mgr .
> o

> Fhis- Unit: Main Memory

Application e DRAM Technology

e Virtual memory

Firmware e Address translation and page tables

Compiler

CPU /O e Virtual memory’s impact on caches

e Page-based protection

e Hardware assisted transaltion

Digital Circuits

Gates & Transistors

Storage Hierarchy ll: Main Memory

"'.‘goncrete Memory Hierarchy

Y

Main
Memory

|

e 1st/2nd levels: caches (IS, DS, L2)
e Made of SRAM
e last unit

¢ 3rd level: main memory
e Made of DRAM
e Managed in software
e This unit

e 4th level: disk (swap space)
e Made of magnetic iron oxide discs
e Manage in software

e Already know (SO, OC)
Disk

Storage Hierarchy ll: Main Memory

-1 N
UNIVERSIDAD -
DE CANTABRI.

&
&)
-
o
=
XL
Q
L
—
2
C
-

Storage Hierarchy ll: Main Memory

S

/4 wordline,

‘1' address

wordline

=
S
Q
S (D
@

P
=
@)
=
=)
D

bitline,

slelsle

data

Storage Hierarchy ll: Main Memory

e RAM: large storage arrays

e Basic structure
e MXxN array of bits (M N-bit words)
e This one is 4x2
e Bits in word connected by wordline
e Bits in position connected by bitline

e (Operation
e Address decodes into M wordlines
e High wordline — word on bitlines
e Bit/bitline connection — read/write
e Access latency
e ~Hports * VHbits

e SRAM: static RAM

e Bits as cross-coupled inverters (CCl)

— Four transistors per bit
— 2 additional transistors per ports

I:E?]}@—‘ e “Static” means

address

e Inverters connected to pwr/gnd

+ Bits naturally/continuously “refreshed”

il
%
e[gg}(?a
=

e Designed for speed

data

Storage Hierarchy ll: Main Memory

e DRAM: dynamic RAM

y _‘f. _‘f. e Bits as capacitors
7 — r® |_r® + Single transistors as ports
% é é + One transistor per bit/port
-c% —r® |Lr®
AR |
-l | |r® | e “Dynamic” means
\ ¢ ¢ e Capacitors not connected to pwr/gnd

— Stored charge decays over time
— Must be explicitly refreshed

e Designed for density

e Moore’s Law
data

Storage Hierarchy ll: Main Memory

Year Capacity $/MB Access time
1980 64Kb $1500 250ns

1988 4Mb $50 120ns

1996 64Mb $10 60ns

2004 1Gb $0.5 35ns

e Commodity DRAM parameters

e 16X every 8 years is 2X every 2 years

* Not quite 2X every 18 months but still close

Storage Hierarchy ll: Main Memory

e Read: similar to cache read
e Phase |: pre-charge bitlines to 0.5V

e Phase Il: decode address, enable wordline

e Capacitor swings bitline voltage up(down)

address

e Sense-amplifier interprets swing as 1(0)

— Destructive read: word bits now discharged

y

write e \Write: similar to cache write

e Phase |: decode address, enable wordline

e Phase |ll: enable bitlines

e High bitlines charge corresponding capacitors

data _ \What about leakage over time?

Storage Hierarchy ll: Main Memory

address

y

sy

r-|

¢

r/w-I

riw-II

e Solution: add set of D-latches (row buffer)

e Read: two steps
e Step |: read selected word into row buffer
e Step IlA: read row buffer out to pins
e Step IIB: write row buffer back to selected word
+ Solves “destructive read” problem

e Write: two steps
e Step IA: read selected word into row buffer
e Step IB: write data into row buffer
e Step Il: write row buffer back to selected word

+ Also solves leakage problem

Storage Hierarchy ll: Main Memory

“DBAM Refresh

e DRAM periodically must refreshes all contents
(accessed or not)
e Loops through all words
e Reads word into row buffer
e Writes row buffer back into DRAM array

address

e 1-2% of DRAM time occupied by refresh

|
0@« H5 G G ¢

Storage Hierarchy ll: Main Memory

e DRAM parameters
e Large capacity: e.g., 64—-256Mb

address e Arranged as square
- 0 + Minimizes wire length
/ + Maximizes refresh efficiency
> [— [_)RAM e Narrow data interface: 1-16 bit
bit array :
e Cheap packages — few bus pins
$ -
| | | e Narrow address interface: N/2 addressing
row buffer wires
& e 16Mb DRAM has a 12-bit address bus
—— 7/ e How does that work?

Storage Hierarchy ll: Main Memory

address
[23:12]

v

RA$ (]

\4

12to4K |decoder

4K x 4K
bits

A\ 4

VL

A\ 4

row buffer

411Kt01" muxelg

B

/

data

cas|

Storage Hierarchy ll: Main Memory

e Two-level addressing

e Row decoder/column muxes share address
lines

e Two strobes (RAS, CAS) signal which part of
address currently on bus

e Asynchronous access
e Level 1: RAS high
e Upper address bits on address bus
e Read row into row buffer
e Level 2: CAS high
e Lower address bits on address bus
e Mux row buffer onto data bus

“Agce,ss Latency and Cycle -Time

e DRAM access much slower than SRAM

e More bits — longer wires

e Buffered access with two-level addressing
e SRAM access latency: 2—3ns

e DRAM access latency: 30-50ns

e DRAM cycle time also longer than access time
e Cycle time: time between start of consecutive accesses
e SRAM: cycle time = access time
e Begin second access as soon as first access finishes
e DRAM: cycle time = 2 * access time
e Why? Can’t begin new access while DRAM is refreshing row

Storage Hierarchy ll: Main Memory

~'DRAM Latency and Power Derivations

e Same basic form as SRAM
e Most of the equations are geometrically derived
e Same structure for decoders, wordlines, muxes

e Some differences
e Somewhat different pre-charge/sensing scheme

e Array access represents smaller part of total access
e Arrays not multi-ported

Storage Hierarchy ll: Main Memory

“DRAM Bandwidth

e DRAM density increasing faster than demand
e Result: number of memory chips per system decreasing

e Need to increase the bandwidth per chip
e Especially important in game consoles
e SDRAM =>» DDR =» DDR2 =»DDR3
e Rambus/XDR - high-bandwidth memory
e Used by several game consoles

CS/ECE 752 (Hill): Main Memory

> 0ld 64MbitDRAM Example from Micron

FUNCTIONAL BLOCK DIAGRAM
MTA4LC16M4A7 (13 row addresses)

A
cwgi: . DATA-IN 4 Lo DO
1 1 BUFFER M o DOp
CONTROL —o DQ3
LOGIC o Do

NO. 2 GLOCK F F 3 || oaracur — 4

GENERATCOR |4 BUFFER 4

T
— o OE#

COLUMN
A0 ADDRESS 11 [?E%LCL)JS”ENH
BUFFER(11
oA — COLUMN ADDRESS 4
m A3 REFRESH 7
% Ad CONTROLLER SENSE AVPLIFIERS
i .| !
am
8 A7 REFRESH
Y COUNTER
™M A9 T
T Al <13k e E HE B192 x 2048 x 4
211 ROW N =B W I\d MEMORY
=3 RRAY
e AN poomess, [) B¢ [y | s J7 |
— A St I
o |
] a |
" NO. 1 GLOCK v
o—— GENERATOR
ROW ADDRESS “— o Vss

“Conventional DRAM

w L/ L/

__/ /0

Row add <_Column add > Row add <_Column add >

Storage Hierarchy ll: Main Memory

~'Extended Data Out (EDO

RAS’ \

we _/ _/ _/

Row add <_Column add > <_Column add > <_Column add >

D O O

e Asin Fast Page Mode (FPM)
e But overlapped Column Address assert with Data Out

Storage Hierarchy ll: Main Memory

- oynchronous DRAM (SDRAM)

_I_I_I_I_I

e\ /
\

CAS’

e olumn add S

olumn add
<_ Row add >u

*Enhanced SDRAM & DDR

e Evolutionary Enhancements on SDRAM:
1. ESDRAM (Enhanced): Overlap row buffer access with refresh

2. DDR (Double Data Rate): Transfer on both clock edges

3. DDR2/3’s small improvements
lower voltage, on-chip termination, driver calibration
prefetching, conflict buffering

Storage Hierarchy ll: Main Memory

scurrent Memory Characteristics

e DDR2-800 (PC-6400)

e Peak Bandwidth (Standard)
e Clock frequency 400Mhz , Double-data rate (800)
e 8B wide data bus (6400=800x8)

e Latency*(Non standard)
e V.gr.5-5-5-15 (30cycles) ~ 35 ns

e DDR3-1600 (PC-12800)

e Peak Bandwidth (Standard)
e Clock frequency 800Mhz , Double-data rate (1600)
e 8B wide data bus (12800=800x8)

e Latency (Non standard)
e V.gr.8-8-8-24 (48cycles) ~ 30 ns

e * RAS precharge time (tRP), RAS to CAS delay (tRCD), CAS latency (tCL),
Active Precharge delay (tRAS)

Storage Hierarchy ll: Main Memory

-

"85 wide data bus?: Interleaving

e Divide memory into M banks and “interleave” addresses across
them,

Bank O Bank 1 Bank 2 Bank n

Interleaved memory increases memory BW without wider bus

e Use parallelism in memory banks to hide memory latency
e Mandatory if we want memory level parallelism

Storage Hierarchy ll: Main Memory

24 UC A

x
=
-
L]
—
—
<
=
—
e
>

Storage Hierarchy ll: Main Memory

"A Computer System: Hardware

e CPUs and memories
e Connected by memory bus
e |/0O peripherals: storage, input, display, network, ...
e With separate or built-in DMA
e Connected by system bus (which is connected to memory bus)

Memory bus System (1/O) bus

CPU/$||CPU/$ Memory DIYIA DIYIA I/O‘.Ctrl

Storage Hierarchy ll: Main Memory

-'A Computer System: + A

e Application software: computer must do something

p Software

Application sofware

Memory bus

CPU/$

CPU/$

Memory

System (1/O) bus

bridge

DMA DMA

/O

ctrl

—_ Disk

NIC

-Computer System: + 0S

e Operating System (OS): virtualizes hardware for apps
e Abstraction: provides services (e.g., threads, files, etc.)
+ Simplifies app programming model, raw hardware is nasty
e |solation: gives each app illusion of private CPU, memory, I/O
+ Simplifies app programming model
+ Increases hardware resource utilization

Application Application Application Application
Memory bus < > System (1/O) bus
1 1 1 bridge 1 1 1 1 1
CPU/$||CPU/$ DMA DMA /O ctrl
Memory T T T

Storage Hierarchy ll: Main Memory

~'Operating System (0S) and User Apps

e Sane system development requires a split

Hardware itself facilitates/enforces this split

e Operating System (OS): a super-privileged process

Manages hardware resource allocation/revocation for all processes
Has direct access to resource allocation features

Aware of many nasty hardware details

Aware of other processes

Talks directly to input/output devices (device driver software)

e User-level apps: ignorance is bliss
e Unaware of most nasty hardware details

e Unaware of other apps (and OS)
e Explicitly denied access to resource allocation features

Storage Hierarchy ll: Main Memory

‘éystgm Calls

e Controlled transfers to/from OS

e System Call: a user-level app “function call” to OS

e |Leave description of what you want done in registers
SYSCALL instruction (also called TRAP or INT)
e Can’t allow user-level apps to invoke arbitrary OS code

e Restricted set of legal OS addresses to jump to (trap vector)

Processor jumps to OS using trap vector
e Change processor mode to privileged

OS performs operation

I”

OS does a “return from system cal
e Unsets privileged mode

Storage Hierarchy ll: Main Memory

~interrupts

e Exceptions: synchronous, generated by running app
e E.g. illegal insn, divide by zero, etc.
e Interrupts: asynchronous events generated externally
e E.g., timer, I/O request/reply, etc.
e “Interrupt” handling: same mechanism for both
e “Interrupts” are on-chip signals/bits
e Either internal (e.g., timer, exceptions) or connected to pins
e Processor continuously monitors interrupt status, when one is high...

e Hardware jumps to some preset address in OS code (interrupt vector)
e Like an asynchronous, non-programmatic SYSCALL

e Timer: programmable on-chip interrupt
e |nitialize with some number of micro-seconds
e Timer counts down and interrupts when reaches O

Storage Hierarchy ll: Main Memory

~Virtualizing Processors

e How do multiple apps (and OS) share the processors?
e Goal: applications think there are an infinite # of processors

e Solution: time-share the resource

e Trigger a context switch at a regular interval (~1ms)

e Pre-emptive: app doesn’t yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others

e Architected state: PC, registers
e Save and restore them on context switches
e Memory state?

e Non-architected state: caches, branch predictor tables, etc.
e |gnore or flush

e QOperating responsible to handle context switching
e Hardware support is just a timer interrupt

Storage Hierarchy ll: Main Memory

irtualizing Main Memory

»

e How do multiple apps (and the OS) share main memory?
e Goal: each application thinks it has infinite memory

e One app may want more memory than is in the system
e App’s insn/data footprint may be larger than main memory
e Requires main memory to act like a cache
e With disk as next level in memory hierarchy (slow)
e Write-back, write-allocate, large blocks or “pages”
e No notion of “program not fitting” in registers or caches (why?)

e Solution:
e Part #1: treat memory as a “cache”

e Store the overflowed blocks in “swap” space on disk
e Part #2: add a level of indirection (address translation)

Storage Hierarchy ll: Main Memory

Program e Programs use virtual addresses (VA)
code heap stack e 0..2N1

e VA size also referred to as machine size
e E.g., Pentium4 is 32-bit, Alpha is 64-bit

e Memory uses physical addresses (PA)
e 0...2M-1 (typically M<N, especially if N=64)
e 2Mis most physical memory machine supports

Main|Mé¢mory

e VA—PA at page granularity (VP—PP)
e By “system”
e Mapping need not preserve contiguity
e VP need not be mapped to any PP
e Unmapped VPs live on disk (swap)

Y,

&
\/

Disk

Storage Hierarchy ll: Main Memory

“\‘Iirtual Memory (VM)

e Virtual Memory (VM):

Level of indirection

OS

Application generated addresses are virtual addresses (VAs)

e Each process thinks it has its own 2N bytes of address space
Memory accessed using physical addresses (PAs)
VAs translated to PAs at some coarse granularity
OS controls VA to PA mapping for itself and all other processes
Logically: translation performed before every insn fetch, load, store
Physically: hardware acceleration removes translation overhead

Appl App2

VAS

1 1 OS controlled VA—PA mappings

=
~

PAs (physical memory)

Storage Hierarchy ll: Main Memory

S -

M'is, an Old Idea: Older than Caches

e QOriginal motivation: single-program compatibility
e |BM System 370: a family of computers with one software suite
+ Same program could run on machines with different memory sizes
— Prior, programmers explicitly accounted for memory size

e But also: full-associativity + software replacement

e Memory t .. is enormous: extremely important to reduce %,

Parameter |1I$/D$ L2 Main Memory

tit 2ns 10ns 30ns

tiss 10ns 30ns 10ms (10M ns)
Capacity 8—64KB 128KB-2MB 64MB-64GB

Block size 16—-32B 32—-256B 4+KB

Assoc./Repl. | 1-4, ~LRU 4-16, ~LRU Full, "working set”

Storage Hierarchy ll: Main Memory

“I:lges- of Virtual Memory

e More recently: isolation and multi-programming
e Each app thinks it has 2N B of memory, its stack starts OxFFFFFFFF,...
e Apps prevented from reading/writing each other’s memory
e Can’t even address the other program’s memory!
e Protection
e Each page with a read/write/execute permission set by OS
e Enforced by hardware
e Inter-process communication.

e Map same physical pages into multiple virtual address spaces
e Or share files via the UNIX mmap () call

06 Appl App2

Storage Hierarchy ll: Main Memory

tual Memory: The Basies

e Programs use virtual addresses (VA)
e VAsize (N) aka machine size (e.g., Core 2 Duo: 48-bit)
e Others are called shadow bits (e.g, Core 2 Duo: 16-bit)
e Memory uses physical addresses (PA)
e PAsize (M) typically M<N, especially if N=64
e 2Mis most physical memory machine supports
e VA—PA at page granularity (VP—PP)
e Mapping need not preserve contiguity

e VP need not be mapped to any PP
e Unmapped VPs live on disk (swap) or nowhere (if not yet touched)

06 Appl App2

Disk

"'A;!dress Translation

virtual address[31:0]

physical address[25:0]

e VA—PA mapping called address translation

VPN[31:16] POFS[15:0]
translate |] don’t touch
PPN[27:16] POFS[15:0]

e Split VA into virtual page number (VPN) & page offset (POFS)

e Translate VPN into physical page number (PPN)

e POFS is not translated

e VA—PA = [VPN, POFS] — [PPN, POFS]

e Example above
e 64KB pages — 16-bit POFS

e 32-bit machine — 32-bit VA — 16-bit VPN

e Maximum 256MB memory — 28-bit PA — 12-bit PPN

Storage Hierarchy ll: Main Memory

"'A;!dress Translation Mechanics |

e How are addresses translated?
e |n software (for now) but with hardware acceleration (a little later)

e Each process allocated a page table (PT)
e Software data structure constructed by OS

PT
e Maps VPs to PPs or to disk (swap) addresses
e VP entries empty if page never referenced
e Translation is table lookup -
S
struct {
union { int ppn, disk block; }
int is_valid, is dirty;
} PTE;
struct PTE pt[NUM VIRTUAL PAGES];
~ Vv 2
int translate(int vpn) { N— A
if (pt[vpn].is valid) _
return pt[vpn] .ppn; Dlsk(swap)
}

Storage Hierarchy ll: Main Memory

‘Isgge. Table Size

e How bigis a page table on the following machine?
e 32-bit machine
e 4B page table entries (PTEs)
o 4KB pages

e 32-bit machine — 32-bit VA — 4GB virtual memory
e 4GB virtual memory / 4KB page size — 1M VPs
e 1M VPs * 4B PTE —> 4MB

e How big would the page table be with 64KB pages?
e How big would it be for a 64-bit machine?

e Page tables can get big
e There are ways of making them smaller

Storage Hierarchy ll: Main Memory

“Multi-Level Page Table (PT}

e One way: multi-level page tables
e Tree of page tables
e |owest-level tables hold PTEs
e Upper-level tables hold pointers to lower-level tables
e Different parts of VPN used to index different levels

e Example: two-level page table for machine on last slide
e Compute number of pages needed for lowest-level (PTEs)
e 4KB pages / 4B PTEs — 1K PTEs/page
e 1M PTEs / (1K PTEs/page) — 1K pages
e Compute number of pages needed for upper-level (pointers)
e 1K lowest-level pages — 1K pointers
e 1K pointers * 32-bit VA — 4KB — 1 upper level page

Storage Hierarchy ll: Main Memory

“Multi-Level Page Table

e 20-bit VPN
e Upper 10 bits index 1st-level table
e Lower 10 bits index 2nd-level table

struct {
union { int ppn, disk block; }
int is _valid, is dirty;

} PTE;

struct {
struct PTE ptes[1024];

} L2PT;

struct L2PT *pt[1024];

int translate(int vpn) {
struct L2PT *12pt = pt[vpn>>10];

(PT)

VPN[19:10] | VPNI[9:0] | 2nd-level
PTEs
1st-level -
pt “root” “gointers”
>
>

if (1l2pt && 1l2pt->ptes[vpn&l023].is valid)

return 12pt->ptes|[vpn&l023] .ppn;

Storage Hierarchy ll: Main Memory

ulti-Level Page Table (PT)

B

e Have we saved any space?

e |sn’t total size of 2nd level tables same as single-level table
(i.e., 4MB)?

e Yes, but...

e Large virtual address regions unused

e Corresponding 2nd-level tables need not exist
e Corresponding 1st-level pointers are null

e Example: 2MB code, 64KB stack, 16MB heap
e Each 2nd-level table maps 4MB of virtual addresses
e 1 for code, 1 for stack, 4 for heap, (+1 1st-level)
e 7 total pages = 28KB (much less than 4MB)

Storage Hierarchy ll: Main Memory

-

“Page—LeveI Protection

e Page-level protection

e Piggy-back page-table mechanism
Map VPN to PPN + Read/Write/Execute permission bits
Attempt to execute data, to write read-only data?

e Exception — OS terminates program
Useful (for OS itself actually)

struct {

union { int ppn, disk block; }

int is_wvalid, is _dirty, permissions;
} PTE;
struct PTE pt[NUM VIRTUAL PAGES];

int translate(int vpn, int action) {
if (pt[vpn].is valid && ! (pt[vpn].permissions & action)) kill;

Storage Hierarchy ll: Main Memory

“'Ap!dress Translation Mechanics i

e Conceptually
e Translate VA to PA before every cache access
e Walk the page table before every load/store/insn-fetch
— Would be terribly inefficient (even in hardware)

e |nreality
e Translation Lookaside Buffer (TLB): cache translations
e Only walk page table on TLB miss

e Hardware truisms
e Functionality problem? Add indirection (e.g., VM)
e Performance problem? Add cache (e.g., TLB)

Storage Hierarchy ll: Main Memory

 Translation buffer (TLB)
e Small cache: 16—64 entries

e Associative (4+ way or fully associative)

+ Exploits temporal locality in page table
~-.__* Whatif an entry isn’t found in the TLB?

\‘\O\[nvoke TLB miss handler

Storage Hierarchy ll: Main Memory

“'égrial TLB & Cache Access

e “Physical” caches

e |Indexed and tagged by physical addresses

+ Natural, “lazy” sharing of caches between apps/0S
* VM ensures isolation (via physical addresses)
* No need to do anything on context switches
* Multi-threading works too

+ Cached inter-process communication works
e Single copy indexed by physical address

— Slow: adds at least one cycle to t, ,

e Note: TLBs are by definition virtual

V v
Main e |ndexed and tagged by virtual addresses
Memory e Flush across context switches

e Or extend with process id tags

Storage Hierarchy ll: Main Memory

tag [31:12] 7<— index[11:5] |[4:0]
CPU page offset [15:0]
+ 1 PPN[27:16] page offset [15:0]
vl vV wA What about parallel access?
WRE 1$ | DS WNEt s
Ds W) 5 e What if
\ 2R (cache size) / (associativity) < page size
L2 e |ndex bits same in virt. and physical addresses!
e Access TLB in parallel with cache
\ 4 v
Main e Cache access needs tag only at very end
Memory + Fast: no additional t,;, cycles

+ No context-switching/aliasing problems
e Dominant organization used today

e Example: Pentium 4, 4KB pages,
8KB, 2-way SA L1 data cache

e Implication: associativity allows bigg

Storage Hierarchy ll: Main Memory

"'I" LB Organization

e Like caches: TLBs also have ABCs
e (Capacity
e Associativity (At least 4-way associative, fully-associative common)

e What does it mean for a TLB to have a block size of two?
e Two consecutive VPs share a single tag
e Like caches: there can be L2 TLBs

e Example: AMD Opteron
e 32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data)
e 4KB pages, 48-bit virtual addresses, four-level page table

e Rule of thumb: TLB should “cover” L2 contents
e |n other words: (#PTEs in TLB) * page size > L2 size

e \Why? Think about relative miss latency in each...
Storage Hierarchy ll: Main Memory

“T LB Misses

e TLB miss: translation not in TLB, but in page table
e Two ways to “fill” it, both relatively fast

e Software-managed TLB: e.g., Alpha
e Short (~10 insn) OS routine walks page table, updates TLB
+ Keeps page table format flexible
— Latency: one or two memory accesses + OS call (pipeline flush)

e Hardware-managed TLB: e.g., x86
e Page table root pointer in hardware register, FSM “walks” table
+ Latency: saves cost of OS call (pipeline flush)
— Page table format is hard-coded

Storage Hierarchy ll: Main Memory

‘“Isgge- Faults

e Page fault: PTE not in TLB or page table
e —> page notin memory
e Starts out as a TLB miss, detected by OS/hardware handler

e OS software routine:
e Choose a physical page to replace
e “Working set”: refined LRU, tracks active page usage
If dirty, write to disk
Read missing page from disk

e Takes so long (~¥10ms), OS schedules another task

Requires yet another data structure: frame map (why?)
Treat like a normal TLB miss from here

Storage Hierarchy ll: Main Memory

Acknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

e Slides re-enhanced by V. Puente

Memory Hierarchy I: Caches

