
Memory Hierarchy II: Main Memory

Readings:

H&P: Chapter 5.3, Appendix C4, C5 starting at 
page C-53
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This Unit: Main Memory

• DRAM Technology

• Virtual memory
• Address translation and page tables

• Virtual memory’s impact on caches

• Page-based protection

• Hardware assisted transaltion

Storage Hierarchy II: Main Memory 2

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors



Concrete Memory Hierarchy

• 1st/2nd levels: caches (I$, D$, L2)
• Made of SRAM

• Last unit

• 3rd level: main memory
• Made of DRAM

• Managed in software 

• This unit

• 4th level: disk (swap space)
• Made of magnetic iron oxide discs

• Manage in software

• Already know (SO, OC)
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DRAM TECHNOLOGY
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RAM

• RAM: large storage arrays

• Basic structure
• MxN array of bits (M N-bit words)

• This one is 4x2

• Bits in word connected by wordline

• Bits in position connected by bitline

• Operation
• Address decodes into M wordlines

• High wordline word on bitlines

• Bit/bitline connection  read/write

• Access latency
• ~#ports * √#bits
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SRAM

• SRAM: static RAM
• Bits as cross-coupled inverters (CCI)

– Four transistors per bit

– 2 additional transistors per ports

• “Static” means
• Inverters connected to pwr/gnd

+ Bits naturally/continuously “refreshed”

• Designed for speed
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DRAM

• DRAM: dynamic RAM
• Bits as capacitors

+ Single transistors as ports

+ One transistor per bit/port

• “Dynamic” means
• Capacitors not connected to pwr/gnd

– Stored charge decays over time

– Must be explicitly refreshed

• Designed for density
• Moore’s Law
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Moore’s Law

• Commodity DRAM parameters
• 16X every 8 years is 2X every 2 years

• Not quite 2X every 18 months but still close
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Year Capacity $/MB Access time

1980 64Kb $1500 250ns

1988 4Mb $50 120ns

1996 64Mb $10 60ns

2004 1Gb $0.5 35ns



DRAM Operation I

• Read: similar to cache read
• Phase I: pre-charge bitlines to 0.5V

• Phase II: decode address, enable wordline

• Capacitor swings bitline voltage up(down)

• Sense-amplifier interprets swing as 1(0)

– Destructive read: word bits now discharged

• Write: similar to cache write
• Phase I: decode address, enable wordline

• Phase II: enable bitlines

• High bitlines charge corresponding capacitors

– What about leakage over time?

Storage Hierarchy II: Main Memory 9

a
d

d
re

s
s

data

sa sa
write



DRAM Operation II

• Solution: add set of D-latches (row buffer)

• Read: two steps
• Step I: read selected word into row buffer

• Step IIA: read row buffer out to pins

• Step IIB: write row buffer back to selected word

+ Solves “destructive read” problem

• Write: two  steps
• Step IA: read selected word into row buffer

• Step IB: write data into row buffer

• Step II: write row buffer back to selected word

+ Also solves leakage problem
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DRAM Refresh

• DRAM periodically must refreshes all contents 
(accessed or not)
• Loops through all words

• Reads word into row buffer

• Writes row buffer back into DRAM array

• 1–2% of DRAM time occupied by refresh
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DRAM

bit array
DRAM

bit array

DRAM Parameters

• DRAM parameters
• Large capacity: e.g., 64–256Mb

• Arranged as square

+ Minimizes wire length

+ Maximizes refresh efficiency

• Narrow data interface: 1–16 bit

• Cheap packages  few bus pins

• Narrow address interface: N/2 addressing 
wires

• 16Mb DRAM has a 12-bit address bus

• How does that work?
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4K x 4K

bits
4K x 4K

bits

Two-Level Addressing

• Two-level addressing
• Row decoder/column muxes share address 

lines

• Two strobes (RAS, CAS) signal which part of 
address currently on bus

• Asynchronous access
• Level 1: RAS high

• Upper address bits on address bus

• Read row into row buffer

• Level 2: CAS high

• Lower address bits on address bus

• Mux row buffer onto data bus

Storage Hierarchy II: Main Memory 13

4K x 4K

bits

row buffer

[23:12] [11:2]

data

address

4 1Kto1  muxes

1
2
to

4
K

  
d

e
c
o
d
e
r

CAS

RAS



Access Latency and Cycle Time

• DRAM access much slower than SRAM

• More bits  longer wires

• Buffered access with two-level addressing

• SRAM access latency: 2–3ns

• DRAM access latency: 30–50ns

• DRAM cycle time also longer than access time
• Cycle time: time between start of consecutive accesses

• SRAM: cycle time = access time

• Begin second access as soon as first access finishes

• DRAM: cycle time = 2 * access time

• Why? Can’t begin new access while DRAM is refreshing row
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DRAM Latency and Power Derivations

• Same basic form as SRAM
• Most of the equations are geometrically derived

• Same structure for decoders, wordlines, muxes

• Some differences
• Somewhat different pre-charge/sensing scheme

• Array access represents smaller part of total access

• Arrays not multi-ported
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CS/ECE 752 (Hill): Main Memory 16

DRAM Bandwidth

• DRAM density increasing faster than demand
• Result: number of memory chips per system decreasing

• Need to increase the bandwidth per chip
• Especially important in game consoles

• SDRAM  DDR  DDR2DDR3

• Rambus/XDR - high-bandwidth memory

• Used by several game consoles
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Old 64MbitDRAM Example from Micron



Conventional DRAM
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Extended Data Out (EDO)

• As in Fast Page Mode (FPM)

• But overlapped Column Address assert with Data Out
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Synchronous DRAM (SDRAM)

• Add Clock and Wider data!

• Also multiple transfers per RAS/CAS
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Enhanced SDRAM & DDR

• Evolutionary Enhancements on SDRAM:

1. ESDRAM (Enhanced): Overlap row buffer access with refresh

2. DDR (Double Data Rate): Transfer on both clock edges

3. DDR2/3’s small improvements
lower voltage, on-chip termination, driver calibration
prefetching, conflict buffering
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Current Memory Characteristics

• DDR2-800 (PC-6400) 

• Peak Bandwidth (Standard)
• Clock frequency 400Mhz , Double-data rate  (800)
• 8B wide data bus (6400=800x8)

• Latency*(Non standard) 
• V.gr. 5-5-5-15 (30cycles) ~ 35 ns

• DDR3-1600 (PC-12800)
• Peak Bandwidth (Standard)

• Clock frequency 800Mhz , Double-data rate  (1600)
• 8B wide data bus (12800=800x8)

• Latency (Non standard)
• V.gr. 8-8-8-24 (48cycles) ~ 30 ns

• * RAS precharge time (tRP), RAS to CAS delay (tRCD), CAS latency (tCL), 
Active Precharge delay (tRAS)

Storage Hierarchy II: Main Memory 22



Storage Hierarchy II: Main Memory 23

• Divide memory into M banks and “interleave” addresses across 
them, 

Interleaved memory increases memory BW without wider bus

• Use parallelism in memory banks to hide memory latency

• Mandatory if we want memory level parallelism 

Bank 0 Bank nBank 2Bank 1

word 0
word n

word 2n

word 1
word n+1
word 2n+1

word 2
word n+2
word 2n+2

word n-1
word 2n-1
word 3n-1

8B wide data bus?: Interleaving



VIRTUAL MEMORY
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A Computer System: Hardware

• CPUs and memories 
• Connected by memory bus

• I/O peripherals: storage, input, display, network, …
• With separate or built-in DMA 

• Connected by system bus (which is connected to memory bus)

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) busMemory bus

CPU/$

bridge

CPU/$



Storage Hierarchy II: Main Memory 26

A Computer System: + App Software

• Application software: computer must do something
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A Computer System: + OS

• Operating System (OS): virtualizes hardware for apps
• Abstraction: provides services (e.g., threads, files, etc.)

+ Simplifies app programming model, raw hardware is nasty

• Isolation: gives each app illusion of private CPU, memory, I/O

+ Simplifies app programming model

+ Increases hardware resource utilization
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Operating System (OS) and User Apps

• Sane system development requires a split
• Hardware itself facilitates/enforces this split

• Operating System (OS): a super-privileged process
• Manages hardware resource allocation/revocation for all processes

• Has direct access to resource allocation features

• Aware of many nasty hardware details

• Aware of other processes

• Talks directly to input/output devices (device driver software)

• User-level apps: ignorance is bliss
• Unaware of most nasty hardware details

• Unaware of other apps (and OS)

• Explicitly denied access to resource allocation features
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System Calls

• Controlled transfers to/from OS

• System Call: a user-level app “function call” to OS
• Leave description of what you want done in registers

• SYSCALL instruction (also called TRAP or INT)

• Can’t allow user-level apps to invoke arbitrary OS code 

• Restricted set of legal OS addresses to jump to (trap vector)

• Processor jumps to OS using trap vector

• Change processor mode to privileged

• OS performs operation

• OS does a “return from system call”

• Unsets privileged mode
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Interrupts

• Exceptions: synchronous, generated by running app
• E.g., illegal insn, divide by zero, etc.

• Interrupts: asynchronous events generated externally
• E.g., timer, I/O request/reply, etc.

• “Interrupt” handling: same mechanism for both
• “Interrupts” are on-chip signals/bits

• Either internal (e.g., timer, exceptions) or connected to pins

• Processor continuously monitors interrupt status, when one is high…

• Hardware jumps to some preset address in OS code (interrupt vector)

• Like an asynchronous, non-programmatic SYSCALL

• Timer: programmable on-chip interrupt
• Initialize with some number of micro-seconds

• Timer counts down and interrupts when reaches 0
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Virtualizing Processors

• How do multiple apps (and OS) share the processors?
• Goal: applications think there are an infinite # of processors

• Solution: time-share the resource
• Trigger a context switch at a regular interval (~1ms)

• Pre-emptive: app doesn’t yield CPU, OS forcibly takes it

+ Stops greedy apps from starving others

• Architected state: PC, registers

• Save and restore them on context switches

• Memory state?

• Non-architected state: caches, branch predictor tables, etc.

• Ignore or flush

• Operating responsible to handle context switching
• Hardware support is just a timer interrupt
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Virtualizing Main Memory

• How do multiple apps (and the OS) share main memory?
• Goal: each application thinks it has infinite memory 

• One app may want more memory than is in the system
• App’s insn/data footprint may be larger than main memory

• Requires main memory to act like a cache 

• With disk as next level in memory hierarchy (slow)

• Write-back, write-allocate, large blocks or “pages”

• No notion of “program not fitting” in registers or caches (why?) 

• Solution: 
• Part #1: treat memory as a “cache”

• Store the overflowed blocks in “swap” space on disk

• Part #2: add a level of indirection (address translation)
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Virtual Memory (VM)

• Programs use virtual addresses (VA)
• 0…2N–1

• VA size also referred to as machine size

• E.g., Pentium4 is 32-bit, Alpha is 64-bit

• Memory uses physical addresses (PA)
• 0…2M–1 (typically M<N, especially if N=64)

• 2M is most physical memory machine supports

• VAPA at page granularity (VPPP)
• By “system”

• Mapping need not preserve contiguity

• VP need not be mapped to any PP

• Unmapped VPs live on disk (swap)

…

…

Disk

Program

Main Memory

code heap stack
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Virtual Memory (VM)

• Virtual Memory (VM):
• Level of indirection

• Application generated addresses are virtual addresses (VAs)

• Each process thinks it has its own 2N bytes of address space

• Memory accessed using physical addresses (PAs)

• VAs translated to PAs at some coarse granularity

• OS controls VA to PA mapping for itself and all other processes

• Logically: translation performed before every insn fetch, load, store

• Physically: hardware acceleration removes translation overhead

…

OS

…

App1

…

App2

VAs

PAs (physical memory)

OS controlled VAPA mappings
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VM is an Old Idea: Older than Caches

• Original motivation: single-program compatibility
• IBM System 370: a family of computers with one software suite

+ Same program could run on machines with different memory sizes

– Prior, programmers explicitly accounted for memory size

• But also: full-associativity + software replacement
• Memory tmiss is enormous: extremely important to reduce %miss

Parameter I$/D$ L2 Main Memory

thit 2ns 10ns 30ns

tmiss 10ns 30ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 64MB–64GB

Block size 16–32B 32–256B 4+KB

Assoc./Repl. 1–4, ~LRU 4–16, ~LRU Full, “working set”
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Uses of Virtual Memory

• More recently: isolation and multi-programming
• Each app thinks it has 2N B of memory, its stack starts 0xFFFFFFFF,…

• Apps prevented from reading/writing each other’s memory

• Can’t even address the other program’s memory!

• Protection
• Each page with a read/write/execute permission set by OS

• Enforced by hardware

• Inter-process communication.
• Map same physical pages into multiple virtual address spaces

• Or share files via the UNIX mmap() call

…

OS

…

App1

…

App2
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Disk

Virtual Memory: The Basics

• Programs use virtual addresses (VA)
• VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit)

• Others are called shadow bits (e.g, Core 2 Duo: 16-bit)

• Memory uses physical addresses (PA)
• PA size (M) typically M<N, especially if N=64

• 2M is most physical memory machine supports

• VAPA at page granularity (VPPP)
• Mapping need not preserve contiguity

• VP need not be mapped to any PP

• Unmapped VPs live on disk (swap) or nowhere (if not yet touched)

…

OS

…

App1

…

App2
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Address Translation

• VAPA mapping called address translation
• Split VA into virtual page number (VPN) & page offset (POFS)

• Translate VPN into physical page number (PPN)

• POFS is not translated

• VAPA = [VPN, POFS]  [PPN, POFS]

• Example above
• 64KB pages  16-bit POFS

• 32-bit machine  32-bit VA  16-bit VPN 

• Maximum 256MB memory  28-bit PA  12-bit PPN

POFS[15:0]virtual address[31:0] VPN[31:16]

POFS[15:0]physical address[25:0] PPN[27:16]

translate don’t touch
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Address Translation Mechanics I

• How are addresses translated?
• In software (for now) but with hardware acceleration (a little later)

• Each process allocated a page table (PT)
• Software data structure constructed by OS

• Maps VPs to PPs or to disk (swap) addresses

• VP entries empty if page never referenced

• Translation is table lookup

struct {

union { int ppn, disk_block; } 

int is_valid, is_dirty;

} PTE;

struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn) {

if (pt[vpn].is_valid)

return pt[vpn].ppn; 

}

PT

v
p
n

Disk(swap)
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Page Table Size

• How big is a page table on the following machine?
• 32-bit machine

• 4B page table entries (PTEs)

• 4KB pages

• 32-bit machine  32-bit VA  4GB virtual memory

• 4GB virtual memory / 4KB page size  1M VPs

• 1M VPs * 4B PTE  4MB

• How big would the page table be with 64KB pages?

• How big would it be for a 64-bit machine?

• Page tables can get big
• There are ways of making them smaller
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Multi-Level Page Table (PT)

• One way: multi-level page tables
• Tree of page tables

• Lowest-level tables hold PTEs

• Upper-level tables hold pointers to lower-level tables

• Different parts of VPN used to index different levels

• Example: two-level page table for machine on last slide
• Compute number of pages needed for lowest-level (PTEs)

• 4KB pages / 4B PTEs  1K PTEs/page

• 1M PTEs / (1K PTEs/page)  1K pages

• Compute number of pages needed for upper-level (pointers)

• 1K lowest-level pages  1K pointers

• 1K pointers * 32-bit VA  4KB  1 upper level page
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Multi-Level Page Table (PT)

• 20-bit VPN
• Upper 10 bits index 1st-level table

• Lower 10 bits index 2nd-level table
1st-level

“pointers”

2nd-level

PTEs

VPN[9:0]VPN[19:10]

struct {

union { int ppn, disk_block; } 

int is_valid, is_dirty;

} PTE;

struct {

struct PTE ptes[1024];

} L2PT;

struct L2PT *pt[1024];

int translate(int vpn) {

struct L2PT *l2pt = pt[vpn>>10];

if (l2pt && l2pt->ptes[vpn&1023].is_valid)

return l2pt->ptes[vpn&1023].ppn; 

}

pt “root”
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Multi-Level Page Table (PT)

• Have we saved any space?
• Isn’t total size of 2nd level tables same as single-level table 

(i.e., 4MB)?

• Yes, but…

• Large virtual address regions unused
• Corresponding 2nd-level tables need not exist

• Corresponding 1st-level pointers are null

• Example: 2MB code, 64KB stack, 16MB heap
• Each 2nd-level table maps 4MB of virtual addresses

• 1 for code, 1 for stack, 4 for heap, (+1 1st-level)

• 7 total pages = 28KB (much less than 4MB)
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Page-Level Protection

• Page-level protection
• Piggy-back page-table mechanism

• Map VPN to PPN + Read/Write/Execute permission bits

• Attempt to execute data, to write read-only data?

• Exception  OS terminates program

• Useful (for OS itself actually)

struct {

union { int ppn, disk_block; } 

int is_valid, is_dirty, permissions;

} PTE;

struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn, int action) {

if (pt[vpn].is_valid && !(pt[vpn].permissions & action)) kill;   

…

}



Storage Hierarchy II: Main Memory 45

Address Translation Mechanics II

• Conceptually
• Translate VA to PA before every cache access

• Walk the page table before every load/store/insn-fetch

– Would be terribly inefficient (even in hardware)

• In reality
• Translation Lookaside Buffer (TLB): cache translations

• Only walk page table on TLB miss

• Hardware truisms
• Functionality problem? Add indirection (e.g., VM)

• Performance problem? Add cache (e.g., TLB)
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Translation Buffer

• Translation buffer (TLB)
• Small cache: 16–64 entries

• Associative (4+ way or fully associative) 

+ Exploits temporal locality in page table

• What if an entry isn’t found in the TLB?

• Invoke TLB miss handler

VPN PPN

VPN PPN

VPN PPN

“tag” “data”

CPU

D$

L2

Main

Memory

I$

TLB

VA

PA

TLB
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Serial TLB & Cache Access

• “Physical” caches
• Indexed and tagged by physical addresses

+ Natural, “lazy” sharing of caches between apps/OS

• VM ensures isolation (via physical addresses)

• No need to do anything on context switches

• Multi-threading works too

+ Cached inter-process communication works

• Single copy indexed by physical address

– Slow: adds at least one cycle to thit

• Note: TLBs are by definition virtual
• Indexed and tagged by virtual addresses

• Flush across context switches

• Or extend with process id tags

CPU

D$

L2

Main

Memory

I$

TLB

VA

PA

TLB
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Parallel TLB & Cache Access

• What about parallel access? 
• What if

(cache size) / (associativity) ≤ page size

• Index bits same in virt. and physical addresses!

• Access TLB in parallel with cache 
• Cache access needs tag only at very end

+ Fast: no additional thit cycles

+ No context-switching/aliasing problems 

• Dominant organization used today

• Example: Pentium 4, 4KB pages, 
8KB, 2-way SA L1 data cache
• Implication: associativity allows bigger caches

CPU

D$

L2

Main

Memory

I$TLB
VA

PA
TLB

[4:0]tag [31:12] index [11:5]

VPN [31:16] page offset [15:0]

?

page offset [15:0]PPN[27:16]
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TLB Organization

• Like caches: TLBs also have ABCs
• Capacity

• Associativity (At least 4-way associative, fully-associative common)

• What does it mean for a TLB to have a block size of two?

• Two consecutive VPs share a single tag

• Like caches: there can be L2 TLBs

• Example: AMD Opteron
• 32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data)

• 4KB pages, 48-bit virtual addresses, four-level page table

• Rule of thumb: TLB should “cover” L2 contents
• In other words: (#PTEs in TLB) * page size ≥ L2 size

• Why? Think about relative miss latency in each…
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TLB Misses

• TLB miss: translation not in TLB, but in page table
• Two ways to “fill” it, both relatively fast

• Software-managed TLB: e.g., Alpha 
• Short (~10 insn) OS routine walks page table, updates TLB

+ Keeps page table format flexible

– Latency: one or two memory accesses + OS call (pipeline flush)

• Hardware-managed TLB: e.g., x86
• Page table root pointer in hardware register, FSM “walks” table

+ Latency: saves cost of OS call (pipeline flush)

– Page table format is hard-coded
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Page Faults

• Page fault: PTE not in TLB or page table 

•  page not in memory

• Starts out as a TLB miss, detected by OS/hardware handler

• OS software routine:
• Choose a physical page to replace

• “Working set”: refined LRU, tracks active page usage

• If dirty, write to disk

• Read missing page from disk

• Takes so long (~10ms), OS schedules another task

• Requires yet another data structure: frame map (why?)

• Treat like a normal TLB miss from here
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