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Readings: H&P Appendix A
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This Unit: Pipelining

• Basic Pipelining
• Single, in-order issue

• Clock rate vs. IPC

• Data Hazards
• Hardware: stalling and bypassing

• Software: pipeline scheduling

• Control Hazards
• Branch prediction 

• Precise state
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Quick Review

• Basic datapath: fetch, decode, execute

• Single-cycle control: hardwired
+ Low CPI (1)

– Long clock period (to accommodate slowest instruction)

• Multi-cycle control: micro-programmed
+ Short clock period

– High CPI

• Can we have both low CPI and short clock period?
• Not if datapath executes only one instruction at a time

• No good way to make a single instruction go faster
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Pipelining

• Important performance technique
• Improves instruction throughput rather instruction latency

• Begin with multi-cycle design
• When instruction advances from stage 1 to 2

• Allow next instruction to enter stage 1

• Form of parallelism: “insn-stage parallelism”

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

• Automotive assembly line analogy
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5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage
• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not latched after ALU stage (why not?)
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Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback
• Nothing magical about the number 5 (Pentium 4 has 22 stages)

• Latches (pipeline registers) named by stages they separate
• PC, F/D, D/X, X/M, M/W
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Pipeline Control

• One single-cycle controller, but pipeline the control signals
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Abstract Pipeline

• This is an integer pipeline
• Execution stages are X,M,W

• Usually also one or more floating-point (FP) pipelines
• Separate FP register file

• One “pipeline” per functional unit: E+, E*, E/

• “Pipeline”: functional unit need not be pipelined (e.g, E/)

• Execution stages are E+,E+,W (no M)
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Floating Point Pipelines
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Pipeline Diagram

• Pipeline diagram
• Cycles across, insns down

• Convention: X means ld r4,0(r5) finishes execute stage and writes 
into X/M latch at end of cycle 4

• Reverse stream analogy
• “Downstream”: earlier stages, younger insns

• “Upstream”: later stages, older insns

• Reverse? instruction stream fixed, pipeline flows over it

• Architects see instruction stream as fixed by program/compiler
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1 2 3 4 5 6 7 8 9
add r3,r2,r1 F D X M W
ld r4,0(r5) F D X M W
st r6,4(r7) F D X M W



Pipeline Performance Calculation

• Back of the envelope calculation
• Branch: 20%, load: 20%, store: 10%, other: 50%

• Single-cycle
• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Pipelined
• Clock period = 12ns

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

• Performance = 12ns/insn
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Principles of Pipelining

• Let: insn execution require N cycles, each takes tn seconds
• L1 (1-insn latency) = ∑tn

• T (throughput) = 1/L1

• LM (M-insn latency, where M>>1) = M*L1

• Now: N-stage pipeline
• L1+P = L1

• T+P = 1/max(tn) ≤ N/L1

• If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1

• LM+P = M*max(tn) ≥ M*L1/N

• S+P (speedup) = [M*L1 / (≥ M*L1/N)] = ≤ N

• Q: for arbitrarily high speedup, use arbitrarily high N?
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No, Part I: Pipeline Overhead

• Let: O be extra delay per pipeline stage
• Latch overhead: pipeline latches take time

• Clock/data skew

• Now: N-stage pipeline with overhead
• Assume max(tn) = L1/N

• L1+P+O = L1 + N*O

• T+P+O = 1/(L1/N + O) = 1/(1/T+P + O) ≤ T+P, ≤ 1/O

• LM+P+O = M*L1/N + M*O = LM+P + M*O 

• S+P+O = [M*L1 / (M*L1/N + M*O)+ = ≤ N = S+P, ≤ L1/O

• O limits throughput and speedup  useful N
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No, Part II: Hazards

• Dependence: relationship that serializes two insns

• Structural: two insns want to use same structure

• Data: two insns use same storage location

• Control: one instruction affects whether another executes at all

• Hazard: dependence and both insns in pipeline together

• Possibility for getting order wrong

• Often fixed with stalls: insn stays in same stage for multiple cycles

• Let: H be average number of hazard stall cycles per instruction

• L1+P+H = L1+P (no hazards for one instruction)

• T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P

• LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P

• S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P

• H also limit throughput, speedup  useful N

• N H (more insns “in flight”  dependences become hazards)

• Exact H depends on program, requires detailed simulation
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Clock Rate vs. IPC

• Deeper pipeline (bigger N)

+ frequency

– IPC

• Ultimate metric is IPC * frequency

• But people buy frequency, not IPC * frequency

• Trend has been for deeper pipelines
• Intel example:

• 486: 5 stages (50+ gate delays / clock)

• Pentium: 7 stages

• Pentium II/III: 12 stages

• Pentium 4: 22 stages (10 gate delays / clock)

• 800 MHz Pentium III was faster than 1 GHz Pentium4

• No more Ghz, fewer stages: Core 1/2 = 14 stages, Core i7 16 stages
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Optimizing Pipeline Depth

• Parameterize clock cycle in terms of gate delays
• G gate delays to process (fetch, decode, execute) a single insn

• O gate delays overhead per stage

• X average stall per instruction per stage

• Simplistic: real X function much, much more complex

• Compute optimal N (pipeline stages) given G,O,X
• IPC = 1/(CPIideal + CPIstall)=1/ (1 + X * N)

• f = 1/tn=1 / (G / N + O)

• Example: G = 80, O = 1, X = 0.16, 
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N IPC = 1/(1+0.16*N) freq=1/(80/N+1) IPC*freq

5 0.56 0.059 0.033

10 0.38 0.110 0.042

20 0.33 0.166 0.040



Managing a Pipeline

• Proper flow requires two pipeline operations
• Mess with latch write-enable and clear signals to achieve

• Operation I: stall
• Effect: stops some insns in their current stages

• Use: make younger insns wait for older ones to complete

• Implementation: de-assert write-enable

• Operation II: flush
• Effect: removes insns from current stages

• Use: see later

• Implementation: assert clear signals

• Both stall and flush must be propagated to younger insns
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Structural Hazards

• Structural hazard: resource needed twice in one cycle
• Example: shared I/D$
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1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
st r6,0(r1) F D X M W
sub r1,r3,r5 F D X M W



Fixing Structural Hazards

• Can fix structural hazards by stalling
• s* = structural stall

• Q: which one to stall: ld or sub ?

• Always safe to stall younger instruction (here sub)

• Fetch stall logic: (D/X.op == ld || D/X.op == st)

• But not always the best thing to do performance wise (?)

+ Low cost, simple

– Decreases IPC

• Upshot: better to avoid by design, then to fix
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1 2 3 4 5 6 7 8 9
ld r2,0(r1) F D X M W
add r1,r3,r4 F D X M W
st r6,0(r1) F D X M W
sub r1,r3,r5 s* F D X M W



Avoiding Structural Hazards

• Replicate the contended resource
+ No IPC degradation

– Increased area, power, latency (interconnect delay?)

• For cheap, divisible, or highly contended resources (e.g, I$/D$)

• Pipeline the contended resource
+ No IPC degradation, low area, power overheads

– Sometimes tricky to implement (e.g., for RAMs)

• For multi-cycle resources (e.g., multiplier)

• Design ISA/pipeline to reduce structural hazards (RISC)
• Each insn uses a resource always for one cycle

• And at most once 

• Always in same pipe stage

• Reason why integer operations forced to go through M stage
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Why Integer Operations Take 5 Cycles?

• Could/should we allow add to skip M and go to W? No

– It wouldn’t help: peak fetch still only 1 insn per cycle

– Structural hazards: imagine add follows lw
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Data Hazards

• Real insn sequences pass values via registers/memory
• Three kinds of data dependences (where’s the fourth?)
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add r2,r3r1

sub r1,r4r2

or r6,r3r1

Read-after-write (RAW)

True-dependence

add r2,r3r1

sub r5,r4r2

or r6,r3r1

Write-after-read (WAR)

Anti-dependence

add r2,r3r1

sub r1,r4r2

or r6,r3r1

Write-after-write (WAW)

Output-dependence

• Only one dependence between any two insns (RAW has priority)

• Data hazards: function of data dependences and pipeline

• Potential for executing dependent insns in wrong order

• Require both insns to be in pipeline (“in flight”) simultaneously



Dependences and Loops

• Data dependences in loops
• Intra-loop: within same iteration

• Inter-loop: across iterations

• Example: DAXPY (Double precision A X Plus Y)
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for (i=0;i<100;i++)

Z[i]=A*X[i]+Y[i];

0: ldf X(r1)f2

1: mulf f0,f2f4

2: ldf Y(r1)f6

3: addf f6,f4f8

4: stf f8Z(r1)

5: addi 8,r1r1

6: slti r1,800r2

7: beq r2,Loop

• RAW intra: 01(f2), 13(f4), 
23(f6), 34(f8), 56(r1), 67(r2)

• RAW inter: 50(r1), 52(r1), 
54(r1), 55(r1)

• WAR intra: 05(r1), 25(r1), 45(r1)

• WAR inter: 10(f2), 31(f4), 
32(f6), 43(f8), 65(r1), 76(r2)

• WAW intra: none

• WAW inter: 00(f2), 11(f4), 
22(f6), 33(f8), 66(r2)



RAW

• Read-after-write (RAW)

add r2,r3r1

sub r1,r4r2

or r6,r3r1

• Problem: swap would mean sub uses wrong value for r1

• True: value flows through this dependence

• Using different output register for add doesn’t help
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RAW: Detect and Stall

• Stall logic: detect and stall reader in D
(F/D.IR.rs1 & (F/D.IR.rs1==D/X. IR.rd | F/D. IR.rs1==X/M. IR.rd | F/D.

IR.rs1==M/W. IR.rd)) |

(F/D. IR.rs2 & (F/D.IR.rs2==D/X. IR.rd | F/D. IR.rs2==X/M. IR.rd | F/D.
IR.rs2==M/W. IR.rd))

• Re-evaluated every cycle until no longer true

+ Low cost, simple

– IPC degradation, dependences are the common case
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Two Stall Timings (without bypassing)

• Depend on how D and W stages share regfile
• Each gets regfile for half a cycle

– 1st half D reads, 2nd half W writes 3 cycle stall

• d* = data stall, p* = propagated stall
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+ 1st half W writes, 2nd half D reads 2 cycle stall

• How does the stall logic change here?

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F d* d* d* D X M W
add r5,r6r7 p* p* p* F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F d* d* D X M W
add r5,r6r7 p* p* F D X M W



Reducing RAW Stalls with Bypassing

• Why wait until W stage? Data available after X or M stage
• Bypass (aka forward) data directly to input of X or M

• MX: from beginning of M (X output) to input of X 

• WX: from beginning of W (M output) to input of X

• WM: from beginning of W (M output) to data input of M

• Two each of MX, WX (figure shows 1) + WM = full bypassing

+ Reduces stalls in a big way

– Additional wires and muxes may increase clock cycle
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regfile
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Bypass Logic

• Bypass logic: similar to but separate from stall logic
• Stall logic controls latches, bypass logic controls mux inputs

• Complement one another: can’t bypass  must stall

• ALU input mux bypass logic

• (D/X.IR.rs2 & X/M.rd==D/X. IR.rs2)  2   // check first

• (D/X. IR.rs2 & M/W.rd==D/X. IR.rs2)  1  // check second

• (D/X. IR.rs2)  0                                // check last
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regfile

D$
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Pipeline Diagrams with Bypassing

• If bypass exists, “from”/“to” stages execute in same cycle
• Example: full bypassing, use MX bypass
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1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F D X M W

• Example: full bypassing, use WX bypass 

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
ld [r7]r5 F D X M W
sub r1,r4r2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
? F D X M W

• Example: WM bypass 

• Can you think of a code example that uses the WM bypass?
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Have We Prevented All Data Hazards?
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• No.  Consider a “load” followed by a dependent “add” insn

• Bypassing alone isn’t sufficient

• Solution?  Detect this, and then stall the “add” by one cycle
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Stalling to Avoid Data Hazards

• Prevent F/D insn from reading (advancing) this cycle
• Write nop into D/X.IR (effectively, insert nop in hardware)

• Also reset (clear) the datapath control signals 

• Disable F/D latch and PC write enables (why?)

• Re-evaluate situation next cycle
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Stalling on Load-To-Use Dependences

Stall = (D/X.IR.op == ld) &&

((F/D.IR.rs1 == D/X.IR.rd) || 

((F/D.IR.rs2 == D/X.IR.rd) && (F/D.IR.OP != st)) 
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Stalling on Load-To-Use Dependences
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Stalling on Load-To-Use Dependences
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Load-Use Stalls

• Even with full bypassing, stall logic is unavoidable
• Load-use stall

• Load value not ready at beginning of M  can’t use MX bypass 

• Use WX bypass
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1 2 3 4 5 6 7 8 9 10
ld [r3+4]r1 F D X M W
sub r1,r4r2 F D d* X M W

• Aside: with WX bypassing, stall logic can be in D or X 

1 2 3 4 5 6 7 8 9 10
ld [r3+4]r1 F D X M W
sub r1,r4r2 F d* D X M W

• Aside II: how does stall/bypass logic handle cache misses?
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Performance Impact of Load/Use 
Penalty

• Assume
• Branch: 20%, load: 20%, store: 10%, other: 50%

• 50% of loads are followed by dependent instruction

• require 1 cycle stall (I.e., insertion of 1 nop)

• Calculate CPI
• CPI = 1 + (1 * 20% * 50%) = 1.1



Compiler Scheduling

• Compiler can schedule (move) insns to reduce stalls
• Basic pipeline scheduling: eliminate back-to-back load-use pairs

• Example code sequence: a = b + c; d = f – e;

• MIPS Notation: (NO MORE “”)

• “ld r2,4(sp)” is “ld *sp+4+r2”  “st r1, 0(sp)” is “st r1[sp+0+”
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Before

ld r2,4(sp)

ld r3,8(sp)

add r1,r3,r2  //stall

st r1,0(sp)

ld r5,16(sp)

ld r6,20(sp)

sub r4,r5,r6 //stall

st r4,12(sp)

After

ld r2,4(sp)

ld r3,8(sp)

ld r5,16(sp)

add r1,r3,r2  //no stall

ld r6,20(sp)

st r1,0(sp)

sub r5,r5,r6 //no stall

st r4,12(sp)



Compiler Scheduling Requires

• Large scheduling scope
• Independent instruction to put between load-use pairs

+ Original example: large scope, two independent computations

– This example: small scope, one computation
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Before

ld r2,4(sp)

ld r3,8(sp)

add r1,r3,r2 //stall

st r1,0(sp)

After

ld r2,4(sp)

ld r3,8(sp)

add r1,r3,r2 //stall

st r1,0(sp)



Compiler Scheduling Requires

• Enough registers
• To hold additional “live” values

• Example code contains 7 different values (including sp)

• Before: max 3 values live at any time  3 registers enough

• After: max 4 values live  3 registers not enough  WAR violations

Instruction Level Parallelism I: Pipelining 39

Original

ld r2,4(sp)

ld r1,8(sp)

add r1,r1,r2 //stall

st r1,0(sp)

ld r2,16(sp)

ld r1,20(sp)

sub r1,r2,r1 //stall

st r1,12(sp)

Wrong!

ld r2,4(sp)

ld r1,8(sp)

ld r2,16(sp)

add r1,r1,r2 //WAR

ld r1,20(sp)

st r1,0(sp)   //WAR

sub r1,r2,r1

st r1,12(sp)



Compiler Scheduling Requires

• Alias analysis
• Ability to tell whether load/store reference same memory locations

• Effectively, whether load/store can be rearranged

• Example code: easy, all loads/stores use same base register (sp)

• New example: can compiler tell that r8 = sp?
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Before

ld r2,4(sp)

ld r3,8(sp)

add r1,r3,r2 //stall

st r1,0(sp)

ld r5,0(r8)

ld r6,4(r8)

sub r4,r5,r6  //stall

st r4,8(r8)

Wrong(?)

ld r2,4(sp)

ld r3,8(sp)

ld r5,0(r8)

add r1,r3,r2 

ld r6,4(r8)

st r1,0(sp)

sub r4,r5,r6

st r4,8(r8)



WAW Hazards

• Write-after-write (WAW)
add r1,r2,r3

sub r2,r1,r4

or r1,r6,r3

• Compiler effects
• Scheduling problem: reordering would leave wrong value in r1

• Later instruction reading r1 would get wrong value

• Artificial: no value flows through dependence

• Eliminate using different output register name for or

• Pipeline effects
• Doesn’t affect in-order pipeline with single-cycle operations

• Another reason for making ALU operations go through M stage

• Can happen with multi-cycle operations (e.g., FP, some int. insn or cache 
misses)
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Pipelining and Multi-Cycle Operations

• What if you wanted to add a multi-cycle operation?
• E.g., 4-cycle multiply

• P/W: separate output latch connects to W stage

• Controlled by pipeline control and multiplier FSM
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A Pipelined Multiplier

• Multiplier itself is often pipelined, what does this mean?
• Product/multiplicand register/ALUs/latches replicated

• Can start different multiply operations in consecutive cycles
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Aside: Pipelined Functional Units

• Almost all multi-cycle functional units are pipelined
• Each operation takes N cycles

• But can start initiate a new (independent) operation every cycle

• Requires internal latching and some hardware replication

+ A cheaper way to improve throughput than multiple non-pipelined units

1 2 3 4 5 6 7 8 9 10 11
mulf f0,f1,f2 F D E* E* E* E* W
mulf f3,f4,f5 F D E* E* E* E* W

1 2 3 4 5 6 7 8 9 10 11
divf f0,f1,f2 F D E/ E/ E/ E/ W
divf f3,f4,f5 F D s* s* s* E/ E/ E/ E/ W

• One exception: int/FP divide: difficult to pipeline and not worth it

• s* = structural hazard, two insns need same structure

• ISAs and pipelines designed to have few of these

• Canonical example: all insns forced to go through M stage
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Pipeline Diagram with Int. Multiplier

• What about…
• Two instructions could try to write regfile in same cycle?

• Structural hazard!

• Must prevent:

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

addi $6,$4,1 F D d* d* d* X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

addi $6,$1,1 F D X M W

add $5,$6,$10 F D X M W
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More Multiplier Nasties

• What about…
• Mis-ordered writes to the same register

• Software thinks add gets $4 from addi, actually gets it from mul

• Multi-cycle operations introduces WAW hazard on simple pipe-
lines
• Not necessarily supplementary FP pipeline

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W

addi $4,$1,1 F D X M W

…

…

add $10,$4,$6 F D X M W



Handling WAW Hazards

• What to do?
• Option I: stall younger instruction (addf) at writeback

+ Intuitive, simple

– Lower performance, cascading W structural hazards

• Option II: cancel older instruction (divf) writeback

+ No performance loss

– What if divf or stf cause an exception (e.g., /0, page fault)?
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1 2 3 4 5 6 7 8 9 10
div f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W



Handling Interrupts/Exceptions

• How are interrupts/exceptions handled in a pipeline?
• Interrupt: external, e.g., timer, I/O device requests

• Exception: internal, e.g., /0, page fault, illegal instruction

• We care about restartable interrupts (e.g. stf page fault)
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1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W

• VonNeumann says

• “Insn execution should appear sequential and atomic”

• Insn X should complete before instruction X+1 should begin

+ Doesn’t physically have to be this way (e.g., pipeline)

• But be ready to restore to this state at a moments notice

• Called precise state or precise interrupts



Handling Interrupts

• In this situation
• Make it appear as if divf finished and stf, addf haven’t started

• Allow divf to writeback

• Flush stf and addf (so that’s what a flush is for)

• But addf has already written back

– Keep an “undo” register file? Complicated

– Force in-order writebacks? Slow

• Invoke exception handler

• Restart stf
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1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
addf f0,f1f2 F D E+ E+ W



More Interrupt Nastiness

• What about two simultaneous in-flight interrupts
• Example: stf page fault, divf /0

• Interrupts must be handled in program order (stf first)

• Handler for stf must see program as if divf hasn’t started

• Must defer interrupts until writeback and force in-order writeback

• Kind of a bogus example, /0 is non-restartable

• In general: interrupts are really nasty
• Some processors (Alpha) only implement precise integer interrupts

• Easier because fewer WAW scenarios

• Most floating-point interrupts are non-restartable anyway
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1 2 3 4 5 6 7 8 9 10
divf f0,f1f2 F D E/ E/ E/ E/ E/ W
stf f2[r1] F D d* d* d* X M W
divf f0,f4f2 F D E/ E/ E/ E/ E/ W



WAR Hazards

• Write-after-read (WAR)
add r1,r2,r3

sub r2,r5,r4

or r6,r3,r1

• Compiler effects
• Scheduling problem: reordering would mean add uses wrong value for 
r2

• Artificial: solve using different output register name for sub

• Pipeline effects
• Can’t happen in simple in-order pipeline

• Can happen with out-of-order execution
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Memory Data Hazards

• So far, have seen/dealt with register dependences
• Dependences also exist through memory
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st r2[r1]

ld [r1]r4

st r5[r1]

Read-after-write (RAW)

st r2[r1]

ld [r1]r4

st r5[r1]

Write-after-read (WAR)

st r2[r1]

ld [r1]r4

st r5[r1]

Write-after-write (WAW)

• But in an in-order pipeline like ours, they do not become hazards

• Memory read and write happen at the same stage

• Register read happens three stages earlier than register write

• In general: memory dependences more difficult than register

1 2 3 4 5 6 7 8 9 10
st r2[r1] F D X M W
ld [r1]r4 F D X M W
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Control hazards

• What About Branches? 
• Could just stall to wait for branch outcome (two-cycle penalty) 

• Fetch past branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)
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Branch Recovery 

• Branch recovery: what to do when branch is actually taken
• Insns that will be written into F/D and D/X are wrong

• Flush them, i.e., replace them with nops

+ They haven’t had written permanent state yet (regfile, DMem) 

– Two cycle penalty for taken branches
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Branch Performance

• Back of the envelope calculation
• Branch: 20%, load: 20%, store: 10%, other: 50%

• Say, 75% of branches are taken

• CPI = 1 + 20% * 75% * 2 =
1 + 0.20 * 0.75 * 2 = 1.3

– Branches cause 30% slowdown

• Even worse with deeper pipelines

• How do we reduce this penalty?



Big Idea: Speculation

• Speculation
• “Engagement in risky transactions on the chance of profit”

• Speculative execution
• Execute before all parameters known with certainty

• Correct speculation
+ Avoid stall, improve performance

• Incorrect speculation (mis-speculation)
– Must abort/flush/squash incorrect instructions

– Must undo incorrect changes (recover pre-speculation state)

The “game”: [%correct * gain] – [(1–%correct) * penalty]
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Control Hazards: Control Speculation

• Deal with control hazards with control speculation
• Unknown parameter: are these the correct insns to execute next?

• Mechanics
• Guess branch target, start fetching at guessed position

• Execute branch to verify (check) guess

• Correct speculation? keep going

• Mis-speculation? Flush mis-speculated insns

• Don’t write registers or memory until prediction verified

• Speculation game for in-order 5 stage pipeline
• Gain = 2 cycles

• Penalty = 0 cycles

• No penalty  mis-speculation no worse than stalling

• %correct = branch prediction

• Static (compiler) OK, dynamic (hardware) much better
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Control Speculation and Recovery

• Mis-speculation recovery: what to do on wrong guess
• Not too painful in an in-order pipeline

• Branch resolves in X

+ Younger insns (in F, D) haven’t changed permanent state

• Flush insns currently in F/D and D/X (i.e., replace with nops)
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1 2 3 4 5 6 7 8 9
addi r1,1r3 F D X M W
bnez r3,targ F D X M W
st r6[r7+4] F D X M W

targ:add r4,r5r4 F D X M W

1 2 3 4 5 6 7 8 9
addi r1,1r3 F D X M W
bnez r3,targ F D X M W
st r6[r7+4] F D -- -- --

targ:add r4,r5r4 F -- -- -- --
targ:add r4,r5r4 F D X M W

Correct:

Recovery:

speculative
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Reducing Penalty: Fast Branches

• Fast branch: targets control-hazard penalty
• Basically, branch insns that can resolve at D, not X

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is 1

– Additional comparison insns (e.g., slt) for complex tests

– Bypass logic should bypass into decode stage now, too (more mux, longer 
wires)

– Additional nastiness with exceptions

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4,r5,r4 F D X M W
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Fast Branch Performance 

• Assume: Branch: 20%, 75% of branches are taken
• CPI = 1 + 20% * 75% * 1 = 1 + 0.20*0.75*1 = 1.15

• 15% slowdown (better than the 30% from before)

• But wait, fast branches assume only simple comparisons
• Fine for MIPS

• But not fine for ISAs with “branch if $1 > $2” operations

• In such cases, say 25% of branches require an extra insn
• CPI = 1 + (20% * 75% * 1) + 20%*25%*1(extra insn) = 1.2

• Example of ISA and micro-architecture interaction
• Type of branch instructions

• Another option: “Delayed branch” or “branch delay slot”

• What about condition codes?
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Fewer Mispredictions: Branch 
Prediction

• Dynamic branch prediction:
• Hardware guesses outcome

• Start fetching from guessed address
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Branch Prediction Performance

• Parameters
• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction
• Branches predicted with 95% accuracy

• CPI = 1 + 20% * 5% * 2 = 1.02



Dynamic Branch Prediction

• Step #1: is it a branch?
• Easy after decode...

• Step #2: is the branch taken or not taken?
• Direction predictor (applies to conditional branches only)

• Predicts taken/not-taken

• Step #3: if the branch is taken, where does it go?
• Easy after decode…
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Branch Direction Prediction

• Learn from past, predict the future
• Record the past in a hardware structure

• Direction predictor (DIRP)
• Map conditional-branch PC to taken/not-taken (T/N) decision

• Individual conditional branches often unbiased or weakly biased

• 90%+ one way or the other considered “biased”

• Why?  Loop back edges, checking for uncommon conditions

• Branch history table (BHT): simplest predictor
• PC indexes table of bits (0 = N, 1 = T), no tags

• Essentially: branch will go same way it went last time

• What about aliasing?

• Two PC with the same lower bits?

T or NT

[9:2] 1:0[31:10]

T or NT

PC BHT

Prediction (taken or 

not taken)
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Branch History Table (BHT)

• Branch history table (BHT): simplest direction predictor
• PC indexes table of bits (0 = N, 1 = T), no tags

• Essentially: branch will go same way it went last time

• Problem: consider inner loop branch below (* = mis-prediction)

for (i=0;i<100;i++)

for (j=0;j<3;j++)

// whatever

– Two “built-in” mis-predictions per inner loop iteration

– Branch predictor “changes its mind too quickly”

State/prediction N* T T T* N* T T T* N* T T T*

Outcome T T T N T T T N T T T N
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Two-Bit Saturating Counters (2bc)

• Two-bit saturating counters (2bc) [Smith]
• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Adds “hysteresis”

• Force predictor to mis-predict twice before “changing its mind”

• One mispredict each loop execution (rather than two)

+ Fixes this pathology

• Can we do even better?

State/prediction N* n* t T* t T T T* t T T T*

Outcome T T T N T T T N T T T N



Aside: Two different alternatives
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Correlated Predictor

• Correlated (two-level) predictor [Patt, MICRO 1994]
• Exploits observation that branch outcomes are correlated

• Maintains separate prediction per (PC, BHR)

• Branch history register (BHR): recent branch outcomes

• Simple working example: assume program has one branch (only one PC)

• BHT: one 1-bit DIRP entry

• BHT+2BHR: 22 = 4 1-bit DIRP entries 

– We didn’t make anything better, what’s the problem?

State/prediction BHR=NN N* T T T T T T T T T T T

“active pattern” BHR=NT N N* T T T T T T T T T T

BHR=TN N N N N N* T T T T T T T

BHR=TT N N N* T* N N N* T* N N N* T*

Outcome                    N  N T T T N T T T N T T T N
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Correlated Predictor

• What happened?
• BHR wasn’t long enough to capture the pattern

• Try again: BHT+3BHR: 23 = 8 1-bit DIRP entries

+ No mis-predictions after predictor learns all the relevant patterns

State/prediction BHR=NNN N* T T T T T T T T T T T

BHR=NNT N N* T T T T T T T T T T

BHR=NTN N N N N N N N N N N N N

“active pattern” BHR=NTT N N N* T T T T T T T T T

BHR=TNN N N N N N N N N N N N N

BHR=TNT N N N N N N* T T T T T T

BHR=TTN N N N N N* T T T T T T T

BHR=TTT N N N N N N N N N N N N

Outcome                N  N  N T T T N T T T N T T T N
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Correlated Predictor

• Design choice I: one global BHR or one per PC (local)?
• Each one captures different kinds of patterns

• Global is better, captures local patterns for tight loop branches

• Design choice II: how many history bits (BHR size)?
• Tricky one

+ Given unlimited resources, longer BHRs are better, but…

– BHT utilization decreases

– Many history patterns are never seen

– Many branches are history independent (don’t care)

• PC xor BHR allows multiple PCs to dynamically share BHT

• BHR length < log2(BHT size)

– Predictor takes longer to train

• Typical length: 8–12



Instruction Level Parallelism I: Pipelining
71

Hybrid Predictor

• Hybrid (tournament) predictor [McFarling]
• Attacks correlated predictor BHT utilization problem

• Idea: combine two predictors

• Simple BHT predicts history independent branches

• Correlated predictor predicts only branches that need history

• Chooser assigns branches to one predictor or the other (and update)

• Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches

+ 90–95% accuracy

• Alpha 21264

Hybrid Gshare with

2-bit saturating counter
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When to Perform Branch Prediction?

• During Decode
• Look at instruction opcode to determine branch instructions

• Can calculate next PC from instruction (for PC-relative branches)

– One cycle “mis-fetch” penalty even if branch predictor is correct

• During Fetch?
• How do we do that?

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W

targ:add r4,r5,r4 F D X M W
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Revisiting Branch Prediction 
Components

• Step #1: is it a branch?
• Easy after decode... during fetch: predictor

• Step #2: is the branch taken or not taken?
• Direction predictor (as before)

• Step #3: if the branch is taken, where does it go?
• Branch target predictor (BTB)

• Supplies target PC if branch is taken

regfile
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Branch Target Buffer (BTB)

• As before: learn from past, predict the future
• Record the past branch targets in a hardware structure

• Branch target buffer (BTB):
• “guess” the future PC based on past behavior
• “Last time the branch X was taken, it went to address Y”

• “So, in the future, if address X is fetched, fetch address Y next”

• Operation
• Like a cache: address = PC, data = target-PC
• Access at Fetch in parallel with instruction memory

• predicted-target = BTB[PC]
• Updated at X whenever target != predicted-target

• BTB[PC] = target
• Aliasing?  No problem, this is only a prediction

• (Really?) What happens with miss-speculation recovery? 
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Branch Target Buffer (continued)

• At Fetch, how does insn know that it’s a branch & should read 
BTB?
• Answer: it doesn’t have to, all insns read BTB

• Key idea: use BTB to predict which insn are branches
• Tag each entry (with bits of the PC)

• Just like a cache

• Tag hit signifies instruction at the PC is a branch

• Update only on taken branches (thus only taken branches in table)

• Access BTB at Fetch in parallel with instruction memory

PC

+

4

BTB

tag

=
=

target
predicted target



Both: partial tags and PC-relative target-PC

• Saving time in prediction is mandatory

• Broader alive branches for less BTB bits

Instruction Level Parallelism I: Pipelining 76

[13:2][19:10]

[9:2] 1:0[31:10]

[13:2][19:10]

PC

= [9:2] 1:0[31:13] [13:2]

target-PCbranch?
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Why Does a BTB Work?

• Because most control insns use direct targets

• Target encoded in insn itself  same target every time

• What about indirect targets?

• Target held in a register  can be different each time

• Indirect conditional jumps are not widely supported

• Two indirect call idioms

+ Dynamically linked functions (DLLs): target always the same

• Dynamically dispatched (virtual) functions: hard but uncommon

• Also two indirect unconditional jump idioms

• Switches: hard but uncommon

– Function returns: hard and common …
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IMem

Return Address Stack (RAS)

• Return address stack (RAS)
• Call instruction? RAS[TOS++] = PC+4

• Return instruction? Predicted-target = RAS[--TOS]

• Q: how can you tell if an insn is a call/return before decoding it?

• Accessing RAS on every insn BTB-style doesn’t work

• Answer: pre-decode bits in Imem, written when first executed

• Can also be used to signify branches

PC

+

4

BTB

tag

=
=

target predicted target

RAS

PD



Putting It All Together

• BTB & branch direction predictor during fetch

• If branch prediction correct, no taken branch penalty
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Branch Prediction Performance

• Dynamic branch prediction
• Simple predictor at fetch; branches predicted with 75% accuracy

• CPI = 1 + (20% * 25% * 2)= 1.1

• More advanced predictor at fetch: 95% accuracy

• CPI = 1 + (20% * 5% * 2) = 1.02

• Branch mis-predictions still a big problem though
• Pipelines are long: typical mis-prediction penalty is 10+ cycles

• Pipelines are superscalar (later): typical mis-prediction penalty is huge

• Advanced branch predictors could jeopardize fech stage delay
• Solution I: Pipelining Branch prediction

• Solution II: Speculate using a fast predictor (Fech next insn)  and in 
parallel predict using a slower BP. If both disagree, assume mis-
prediction Prophet/Critic branch predictors



Instruction Level Parallelism I: Pipelining 81

Avoiding Branches via ISA: Predication

• Conventional control
• Conditionally executed insns also conditionally fetched

1 2 3 4 5 6 7 8 9
beq r3,targ F D X M W
sub r5,r6,r1 F D -- -- --

targ:add r4,r5,r4 F -- -- -- --
targ:add r4,r5,r4 F D X M W

• If beq mis-predicts, both sub and add must be flushed

– Waste: add is independent of mis-prediction

• Predication: not prediction, predication

• ISA support for conditionally-executed unconditionally-fetched insns

• If beq mis-predicts, annul sub in place, preserve add

• Example is if-then, but if-then-else can be predicated too

• How is this done? How does add get correct value for r5?

flushed: wrong path
flushed: why?
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Full Predication

• Full predication
• Every insn can be annulled, annulment controlled by…

• Predicate registers: additional register in each insn (e.g., IA64)

1 2 3 4 5 6 7 8 9
setp.eq r3,p3 F D X M W
sub.p r5,r6,r1,p3 F D X -- --

targ:add r4,r5,r4 F D X M W

annulled

• Predicate codes: condition bits in each insn (e.g., ARM) 

1 2 3 4 5 6 7 8 9
setcc r3 F D X M W
sub.nz r5,r6,r1 F D X -- --

targ:add r4,r5,r4 F D X M W

annulled

• Only ALU insn shown (sub), but this applies to all insns, even stores

• Branches replaced with “set-predicate” insns
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Conditional Register Moves (CMOVs)

• Conditional (register) moves
• Construct appearance of full predication from one primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May require some code duplication to achieve desired effect

– Painful, potentially impossible for some insn sequences

– Requires more registers

• Only good way of retro-fitting predication onto ISA (e.g., IA32, Alpha)

1 2 3 4 5 6 7 8 9
sub r9,r6,1 F D X M W
cmovne r3,r9,r5 F D X M W

targ:add r4,r5,r4 F D X M W
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Predication Performance

• Predication overhead is additional insns
• Sometimes overhead is zero

• Not-taken if-then branch: predicated insns executed

– Most of the times it isn’t

• Taken if-then branch: all predicated insns annulled

• Any if-then-else branch: half of predicated insns annulled

• Almost all cases if using conditional moves

• Calculation for a given branch, predicate (vs speculate) if…
• Average number of additional insns > overall mis-prediction penalty

• For an individual branch

• Mis-prediction penalty in a 5-stage pipeline = 2

• Mis-prediction rate is <50%, and often <20%

• Overall mis-prediction penalty <1 and often <0.4

• So when is predication worth it?
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Predication Performance

• What does predication actually accomplish?
• In a scalar 5-stage pipeline (penalty = 2): nothing

• In a 4-way superscalar 15-stage pipeline (penalty = 60): something

• Use when mis-predictions >10% and insn overhead <6 

• In a 4-way out-of-order superscalar (penalty ~ 150)

• Should be used in more situations

• Still: only useful for branches that mis-predict frequently

• Strange: ARM typically uses scalar 5-9 stage pipelines
• Why is the ARM ISA predicated then?

• Low-power: eliminates the need for a complex branch predictor

• Real-time: predicated code performs consistently

• Loop scheduling: effective software pipelining requires predication
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Research: Perceptron Predictor

• Perceptron predictor [Jimenez]
• Attacks BHR size problem using machine learning approach

• BHT replaced by table of function coefficients Fi (signed)

• Predict taken if ∑(BHRi*Fi)> threshold

+ Table size #PC*|BHR|*|F|  (can use long BHR: ~60 bits)

– Equivalent correlated predictor would be #PC*2|BHR|

• How does it learn? Update Fi when branch is taken

• BHRi == 1 ? Fi++ : Fi– –;

• “don’t care” Fi bits stay near 0, important Fi bits saturate

+ Hybrid BHT/perceptron accuracy: 95–98%

PC

BHR

F

∑ Fi*BHRi > thresh
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More Research: GEHL Predictor

• Problem with both correlated predictor and perceptron
• Same BHT real-estate dedicated to 1st history bit (1 column) …

• … as to 2nd, 3rd, 10th, 60th…

• Not a good use of space: 1st bit much more important than 60th

• GEometric History-Length predictor *Seznec, ISCA’05+

• Multiple BHTs, indexed by geometrically longer BHRs (0, 4, 16, 32)

• BHTs are (partially) tagged, not separate “chooser”

• Predict: use matching entry from BHT with longest BHR

• Mis-predict: create entry in BHT with longer BHR

+ Only 25% of BHT used for bits 16-32 (not 50%)

• Helps amortize cost of tagging

+ Trains quickly

• 95-97% accurate
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