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Instruction Level Parallellsm 1I:
Superscalar Executmn

Readings:
H&P: Chapter 2.3, 2.7-2.12

H&P 3 Edition: Chapter 4
Paper: Edmondson et al., “Superscalar Instruction

Execution in the 21164
Alpha Microprocessor” (<Memory Instructions)
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Application e Superscalar scaling issues

0S e Multiple fetch and branch prediction
‘ ‘ Firmware e Dependence-checks & stall logic
—~ ' e Wide bypassing
/0 e Register file & cache bandwidth
Digital Circuits e Multiple-issue designs
Gates & Transistors e “Superscalar”

e VLIW and EPIC (Itanium)

e Static scheduling
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e So far we have looked at scalar pipelines
e One instruction per stage
e With control speculation, bypassing, etc.
— Performance limit (aka “Flynn Bottleneck”) is CPI = IPC =1
— Limit is never even achieved (hazards)
— Diminishing returns from “super-pipelining” (hazards + overhead)
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e Qvercome this limit using multiple issue
e Also called superscalar
e Two instructions per stage at once, or three, or four, or eight...
¢ “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC’81]

e Today, typically “4-wide” (Intel Core 2, AMD Opteron)
e Some more (Power5 is 5-issue; Itanium is 6-issue)
e Some less (dual-issue is common for simple cores such as Atom, ARM A8)
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S 'Superscalar Pipeline Diagrams - Ideal

scalar 1 6 7 8 9 10 11 12

lw 0(rl)=r2 F
lw 4(rl)=>r3

lw 8(rl)=>r4
add rl4,rl5=>r6
add rl2,rl13=>r7
add rl7,rlé6=>r8
lw 0(rl8)=>r9
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2-way superscalar 1 6 7 8 9 10 11 12

lw 0(rl)=2r2
lw 4(rl)=>r3 F
lw 8(rl)=>r4
add rl4,rl15=>r6
add rl2,rl3=9>r7
add rl7,rlé6=>r8
lw 0(rl8)=>r9
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uperscaiar

“"Realistic

scalar
lw 0(rl)=r2

lw 4(rl)=>r3
lw 8(rl)=>r4
add r4,r5=29ré6
add r2,r3=9r7
add r7,r6=2r8
1w 0(r8)r9

2-way superscalar
lw 0(rl)=2r2

lw 4(rl)=>r3
lw 8(rl)=>r4
add r4,r5=29ré6
add r2,r3=29r7
add r7,r6=>r8
lw 0(r8)=>r9

1 2 3 4 5 6 7 8 9 10 11 12
F D X M W
F D X M W
F D X M W
F d& D X M W
F D X M W
F D X MW
F D X MW
b S oY A O /PR O - IS SLUES] | G2
F D X M W
F D X M W
F D X MW
F d*d* D X M W
F D X M W
F D X M W
F d& D X M W
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""Syperscalar CPI Calculations

e Base CPI for scalar pipeline is 1

e Base CPI for N-way superscalar pipeline is 1/N
— Amplifies stall penalties
e Assumes no data stalls (an overly optmistic assumption)

e Example: Branch penalty calculation

e 20% branches, 75% taken, no explicit branch prediction
e Scalar pipeline

e 1+0.2%0.75*2=1.3—>1.3/1=1.3 > 30% slowdown
e 2-way superscalar pipeline

e 0.5+0.2*0.75*2=0.8 - 0.8/0.5=1.6 > 60% slowdown

e A4-way superscalar
e 0.25+0.2*0.75*2 = 0.55 — 0.55/0.25 = 2.2 — 120% slowdown
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e Splitinteger and
floating point

e 1linteger+1FP

+ Limited modifications

— Limited speedup

e Floating points Mem
in “integer” pipe

F-regfilef
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e 2integer+2FP

e Similar to
Alpha 21164
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Typical Dual-Issue

s
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e Fetch an entire 16B or 32B cache block

e 4to 8instructions (assuming 4-byte fixed length instructions)
e Predict a single branch per cycle

e Parallel decode
e Need to check for conflicting instructions

e Output of I, is an input to |, ( how many stall cycles with full bypassing?)
e Other stalls, too (for example, load-use delay)
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Typical Dual-Issue
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e Multi-ported register file

e Larger area, latency, power, cost, complexity
e Multiple execution units

e Simple ALUs are easy, but bypass paths are expensive
e Memory unit

e Single load per cycle (stall at decode) probably okay for dual issue
e Alternative: add a additional read port to data cache

e Larger area, latency, power, cost, complexity
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""Syperscalar Challenges - Front End

e Wide instruction fetch
e Modest: need multiple instructions per cycle
e Aggressive: predict multiple branches, trace cache

e Wide instruction decode

e Replicate decoders

e Wide instruction issue
e Determine when instructions can proceed in parallel
e Not all combinations possible
e More complex stall logic - “O(N?) for N-wide machine

e Wide register read
e One port for each register read

e Each port needs its own set of address and data wires
e Example, 4-wide superscalar = 8 read ports
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“‘Syperscalar Challenges - Back End

e Wide instruction execution
e Replicate arithmetic units
e Multiple cache ports
e Wide instruction register writeback
e One write port per instruction that writes a register
e Example, 4-wide superscalar = 4 write ports
e Wide bypass paths

e More possible sources for data values
e ~0O(N? * P) for N-wide machine with execute pipeline depth P

e Fundamental challenge:
e Amount of ILP (instruction-level parallelism) in the program
e Compiler must schedule code and extract parallelism
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“1;lgw Much ILP i1s There?

e The compiler tries to “schedule” code to avoid stalls
e Even for scalar machines (Example?)
e Even harder to schedule multiple-issue (superscalar)

e How much ILP is common?
e Greatly depends on the application
e Consider memory copy
e Unroll loop=>» lots of independent operations
e Other programs, less so

e Even given unbounded ILP, superscalar has limits
e |PC (or CPI) vs clock frequency trade-off
e Given these challenges, what is reasonable N? 3 or 4 today
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E: Wide Decode
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e What is involved in decoding multiple (N) insns per cycle?
e Actually doing the decoding?
e Easy if fixed length (multiple decoders), doable if variable length

e Reading input registers?
— 2N register read ports (latency oc #ports)

+ Actually less than 2N, most values come from bypasses
e More about this in a bit

e What about the stall logic? (e.g. RAW on load)
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2 Dependence Cross-Check (e.g)

e Stall logic for 1-wide pipeline with full bypassing

e Full bypassing — load/use stalls only (Assuming stall logic at Decode, and
W->D natural bypass through register file)

D/X.op==LOAD && (F/D.rs1==X/M.rd || F/D.rs2==D/X.rd)

e Two “terms”: oc 2N

e Now: same logic for a 2-wide pipeline

D/X,.0p==LOAD && (F/D,.rs1==D/X;.rd || F/D;.rs2==D/X;.rd) | |
D/X,.0p==LOAD && (F/D,.rs1==D/X,.rd | | F/D,.rs2==D/X;.rd) | |
D/X,.0op==LOAD && (F/D,.rs1==D/X,.rd | | F/D;.rs2==D/X,.rd) | |
D/X,.op==LOAD && (F/D,.rs1==D/X,.rd | | F/D,.rs2==D/X,.rd)

e Eight “terms”: oc 2N?
e N? dependence cross-check

e Not quite done, also need

e F/D,.rs1==F/D,.rd || F/D,.rs2==F/D,.rd | |
F/D,.rs1==F/D,.rd || F/D,.rs2==F/D,.rd
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E: Wide Execute
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e What is involved in executing N insns per cycle?

e Multiple execution units ... N of every kind?

e N ALUs? OK, ALUs are small
e N FP dividers? No, FP dividers are huge and £diwv is uncommon
e How many branches per cycle? How many loads/stores per cycle?
e Typically some mix of functional units proportional to insn mix

e |ntel Pentium: 1 any + 1 ALU

e Alpha 21164: 2 integer (including 2 loads) + 2 FP

e What if 3 integer operations in the “bundle”?
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"FE Wide Memory Access

e What about multiple loads/stores per cycle?
e Probably only necessary on processors 4-wide or wider
e More important to support multiple loads than multiple stores
* |nsn mix: loads (~20-25%), stores (~10-15%)
e Alpha 21164: two loads or one store per cycle
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e How to provide additional DS bandwidth?
e Have already seen split IS/DS, but that gives you just one DS port

e How to provide a second (maybe even a third) DS port?

e Option#1: multi-porting
+ Most general solution, any two accesses per cycle

— Toincrease bit-lines is expensive in terms of latency, area (cost), and
power

e QOption #2: replication
e Additional read bandwidth only, but writes must go to all replicas
+ General solution for loads, no latency penalty

— Not a solution for stores (that’s OK), area (cost), power penalty
e |s this what Alpha 21164 does?
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e Option#3: banking (or interleaving)
e Divide DS into “banks” (by address), 1 access/bank-cycle
e Bank conflict: two accesses to same bank — one stalls
No latency, area, power overheads (latency may even be lower)
One access per bank per cycle, assuming no conflicts
— Complex stall logic — address not known until execute stage
— To support N accesses, need 2N+ banks to avoid frequent conflicts

+ +

e Which address bit(s) determine bank?

e (By column) Offset bits? Individual cache lines spread among different
banks

+ Fewer conflicts

— Must replicate tags across banks, complex miss handling
e (By Row) Index bits? Banks contain complete cache lines

— More conflicts

+ Tags not replicated, simpler miss handling

Instruction Level Parallelism Il: Superscalar Execution




3E: Wide Register Read/Write

e How many register file ports to execute N insns per cycle?
e Nominally, 2N read + N write (2 read + 1 write per insn)
— Latency, area oc #ports?
e |nreality, fewer than that
e Read ports: many values come from bypass network
e Write ports: stores, branches (35% insns) don’t write registers

e Replication works great for regfiles (used in Alpha 21164)
e Banking? Not so much
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e N2 bypass network

N+1 input muxes at each ALU input

N2 point-to-point connections

Routing lengthens wires

Expensive metal layer crossings

Heavy capacitive load

And this is just one bypass stage (MX)!
* There is also WX bypassing
* Even more for deeper pipelines

One of the big problems of superscalar

Instruction Level Parallelism Il: Superscalar Execution




*Nside: Not All N2 Created.Equal

e NZ? bypass vs. N> dependence cross-check
e Which is the bigger problem?

e N?bypass ... by far
e 32-or 64- bit quantities (vs. 5-bit)
e Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
e Must fit in one clock period with ALU (vs. not)

e Dependence cross-check not even 2nd biggest N? problem

e Regfile is also an N? problem (think latency where N is #ports)
e And also more serious than cross-check
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lustering
e Clustering: mitigates N2 bypass

e Group ALUs into K clusters

e Full bypassing within a cluster

e Limited bypassing between clusters
e With 1 cycle delay

e (N/K)+ 1 inputs at each mux

e (N/K)% bypass paths in each cluster

e Steering: key to performance

e Steer dependent insns to same cluster

e Statically (compiler) or dynamically

e E.g.,Alpha 21264

e Bypass wouldn’t fit into clock cycle

e 4-wide, 2 clusters, static steering
e Each cluster has register file replica
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E/BE: Wide Fetch - Sequential Instructions
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e

e Whatis involved in fetching multiple instructions per cycle?
e Insame cache block? — no problem
e Favors larger block size (independent of hit rate)
e Compilers align basic blocks to IS lines (.align assembly directive)
— Reduces IS capacity (Why?)
+ Increases fetch bandwidth utilization (more important)
e In multiple blocks? — Fetch block A and A+1 in parallel
e Banked IS + combining network
— May add latency (add pipeline stages to avoid slowing down clock)
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E/BE: Wide Non-Sequential Fetch

e Two related questions
e How many branches predicted per cycle?

e Can we fetch across the branch (in the same cycle) if it is predicted
“taken”?

e Simplest, most common organization: “1” and “No”
e One prediction, discard post-branch insns if prediction is “taken”
— Lowers effective fetch width and IPC
e Average number of instructions per taken branch?
e Assume: 20% branches, 50% taken — ~10 instructions
e Consider a 10-instruction loop body with an 8-issue processor
e Without smarter fetch, on average, ILP is limited to 5 (not 8)

e Compiler can help
e Reduce taken branch frequency (e.g., unroll loops)
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e Allowing “embedded” taken branches is possible

e Requires smart branch predictor, multiple IS accesses in one cycle

e Can try pipelining branch prediction and fetch
e Branch prediction stage only needs PC
e Transmits two PCs to fetch stage, next PC and next-next PC
— Elongates pipeline, increases branch penalty
e Pentium Il & lll do something like this
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"I:racg Cache

-
<

U
e Trace cache (TS) [Peleg+Weiser, Rotenberg+]
e QOvercomes serialization of prediction and fetch by combining them
e New kind of IS that stores dynamic, not static, insn sequences
e Blocks can contain statically non-contiguous insns
e Tag: PC of first insn + N/T of embedded branches
e Used in Pentium 4 (actually stores decoded pops)
e Coupled with trace predictor (TP)
e Predicts next trace, not next branch
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e Traditional instruction cache

Tag | Data (insns)
0 addi,beq #4,1d,sub
4 st,call #32,1d,add

e Trace cache

Tag

Data (insns)

0:T

addi,beq #4,st,call #32

o s~ B O

o s kB O

: addi rl1,4,rl
: beq rl,#4

: st rl,4(sp)

: call #32

: addi rl1,4,rl
: beq rl,#4

: st rl,4(sp)

: call #32

e Traces can pre-decode dependence information

e Helps fix the N2 dependence check problem
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E: Pentium4 Trace Cache

T4

e Pentium4 has a trace cache ...
e But doesn’t use it to solve the branch prediction/fetch problem
e Uses it to solve decode problem instead
e Traces contain decoded RISC pops (not CISC x86 insns)
e Traces are short (3 pops each)

e What is the “decoding” problem?
e Breaking x86 insns into pops is slow and area-/energy-consuming
e Especially problematic is converting x86 insns into mulitple pops
e Average Lop/x86 insns ratio is 1.6—1.7
Pentium Il (and Ill) only had 1 multiple-uop decoder
e Big performance hit vis-a-vis AMD’s Athlon (which had 3)
Pentium4 uses TS to “simulate” multiple multliple-pop decoders
And to shorten pipeline (which is still 22 stages)
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“Rside: Multiple-issue CISC

e How do we apply superscalar techniques to CISC
e Such as x86
e Or CISCy ugly instructions in some RISC ISAs
e Break “macro-ops” into “micro-ops”
e Also called “nops” or “RISC-ops”
e A typical CISCy instruction “add [r1], [r2] = [r3]” becomes:
e Load [r1] = t1 (t1is a temp. register, not visible to software)
e Load [r2] = t2
e Add tl,t2 => t3
e Store t3=[r3]
e However, conversion is expensive (latency, area, power)
e Solution: cache converted instructions in trace cache
e Used by Pentium 4
e |nternal pipeline manipulates only these RISC-like instructions

Instruction Level Parallelism Il: Superscalar Execution




MULTIPLE-ISSUE DESIGNS

> UC R

Instruction Level Parallelism Il: Superscalar Execution



“'Multiple-lssue Designs

e Statically-scheduled (in-order) superscalar
+ Executes unmodified sequential programs
— Hardware must figure out what can be done in parallel
e E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)
e Very Long Instruction Word (VLIW)
+ Hardware can be dumb and low power
— Compiler must group parallel insns, requires new binaries
e E.g., TransMeta Crusoe (4-wide)
e Explicitly Parallel Instruction Computing (EPIC)
e A compromise: compiler does some, hardware does the rest
e E.g., Intel Itanium (6-wide)
e Dynamically-scheduled superscalar
e Pentium Pro/Il/lll (3-wide), Alpha 21264 (4-wide)
e We've already talked about statically-scheduled superscalar
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e Hardware-centric multiple issue problems
— Wide fetch+branch prediction, N? bypass, N> dependence checks
— Hardware solutions have been proposed: clustering, trace cache

e Software-centric: very long insn word (VLIW)

e Effectively, a 1-wide pipeline, but unit is an N-insn group

e Compiler guarantees insns within a VLIW group are independent
e If noindependent insns, slots filled with nops

e Group travels down pipeline as a unit
+ Simplifies pipeline control (no rigid vs. fluid business)
+ Cross-checks within a group un-necessary
e Downstream cross-checks still necessary

e Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification
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“Histary of VLIW

e Started with “horizontal microcode”

e Academic projects
e Yale ELI-512 [Fisher, ‘85]
e |llinois IMPACT [Hwu, ‘91]

e Commercial attempts
e Multiflow [Colwell+Fisher, ‘85] — failed
e Cydrome [Rau, ‘85] — failed
e Motorolla/TI DSP processors— successful
e |ntel Itanium [Colwell,Fisher+Rau, ‘97] — ??
e Transmeta Crusoe [Ditzel, ‘99] — mostly failed
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*Pire,.and “Tainted” VLIW.

e Pure VLIW: no hardware dependence checks at all

+

Not even between VLIW groups

Very simple and low power hardware

Compiler responsible for scheduling stall cycles

Requires precise knowledge of pipeline depth and structure
— These must be fixed for compatibility

Doesn’t support caches well

Used in some cache-less DSP centric micro-controllers, but not generally
useful

e Tainted (more realistic) VLIW: inter-group checks

+
+

Compiler doesn’t schedule stall cycles
Precise pipeline depth and latencies not needed, can be changed
Supports caches

e TransMeta Crusoe
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+ Simpler I1S/branch prediction

+ Slightly simpler dependence check logic

e Doesn’t help bypasses or regfile
e Which are the much bigger problems
e Although clustering and replication can help VLIW, too

— Not compatible across machines of different widths

e |s non-compatibility worth all of this?

e PSdid TransMeta deal with compatibility problem?

e Dynamically translates x86 to internal VLIW
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e Tainted VLIW

Compatible across pipeline depths

— But not across pipeline widths and slot structures

— Must re-compile if going from 4-wide to 8-wide

e TransMeta sidesteps this problem by re-compiling transparently

e EPIC (Explicitly Parallel Insn Computing)

New VLIW meaning (Variable Length Insn Words)
Implemented as “bundles” with explicit dependence bits
Code is compatible with different “bundle” width machines
Compiler discovers as much parallelism as it can, hardware does rest
E.g., Intel Itanium (IA-64)

e 128-bit bundles (3 41-bit insns + 4 dependence bits)
Still does not address bypassing or register file issues
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486 Pentium | PentiumlIIl | Pentium4 Itanium ItaniumII Core2
Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

e |ssue width has saturated at 4-6 for high-performance cores
e Canceled Alpha 21464 was 8-way issue

e Memory wall makes no reasonable wider (We will see that in lab)
e Qut-of-order execution (or EPIC) needed to exploit 4-6 effectively

e For high-performance/power cores, issue width is 1-2

e (Qut-of-order execution not needed

e Multi-threading (a little later) helps cope with cache misses
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"Multiple Issue Redux

e Multiple issue
e Needed to expose insn level parallelism (ILP) beyond pipelining
e |Improves performance, but reduces utilization
e 4-6 way issue is about the peak issue width currently justifiable

e Problem spots
e Fetch + branch prediction — trace cache?
e N2 bypass — clustering?
e Register file — replication?

e |mplementations
e (Statically-scheduled) superscalar, VLIW/EPIC

e Are there more radical ways to address these challenges?
e See TRIPS processor at the appendix
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i,P and Static Scheduling

e No point to having an N-wide pipeline...

e ...if average number of parallel insns per cycle (ILP) << N
e Performance is important...
e .. butsois utilization: actual performance / peak performance
— Unutilized hardware still consumes power (begins to be itchy)
— Unutilized hardware still consumes area
— Unutilized hardware may slow down clock (clock vs. IPC) ...
— ...or lengthen pipeline (IPC vs. IPC)

e Rest of unit: how compiler can help extract parallelism

e Important for superscalar
e Critical for VLIW/EPIC

e Next unit: how hardware can extract parallelism
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""égde* Example: SAXPY

e SAXPY (Single-precision A X Plus Y)

e Linear algebra routine (used in solving systems of equations)
e Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)
2 [1i]=A*X[i]+Y[i];

0: 1df X(rl) 2> f1 // loop

1: mulf £0,f1 > f£2 // A in £0

2: 1df Y(rl) > £3 // X,Y,Z are constant addresses
3: addf f£2,£3 > f4

4: stf f4 > z(rl)

5: addi rl,4 2 rl // i in rl

6: blt rl,r2,0 // N*4 in r2
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"é_AXPY Performance and Utilization

1 2 3 4 5|6 7 8 9 1011121314 1516|17 18 19 20
1df X(r1)=>f1 |F D X M W
mulf £f0,fl->f£2 F D d* EX|E* EX E* E* W
1df Y(rl)->f£3 Fp*DIXMW
addf £2,£f3>f4 F|ID d*d*d*E+E+ W
stf £4>Z(rl) Fp“p*p*D X MW
addi rl,4-rl FDXMW
blt rl,r2,0 FDXMW
1df X(rl)=>f1 FDXMW

e Scalar pipeline

e Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken

e Single iteration (7 insns) latency: 16-5 = 11 cycles

e Performance: 7 insns / 11 cycles = 0.64 IPC
e Utilization: 0.64 actual IPC/ 1 peak IPC = 64%
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"AXI?Y Performance and Utilization

1 2 3 4 5/6 7 8 910111213 14/15/16 17 18 19 20
1df x(r1)>f1 |F D X M W
mulf £0,f1>f2 |F D d* d* EX|E* EX E* E* W
1df Y(rl)->£3 F DX MW
addf f2,£3->f4 F p* p* D|d* d* d* d*E+E+ W
stf £4>Z(rl) F D p*lp*p*p*p*d* X MW
addi rl,4-rl Fip*p*p*p*D X MW
blt rl,r2,0 Flp*p*p*p*p*D X MW
1df X(rl)->fl FDXMW

e Dualissue pipeline

e Same + any two insns per cycle + embedded taken branches
+ Performance: 7 insns / 9 cycles = 0.78 IPC

— Utilization: 0.70 actual IPC / 2 peak IPC = 38%
— More hazards — more stalls (why?)

— Each stall is more expensive (why?)
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“’Sghedule and Issue

e |ssue: time at which insns execute

e \Want to maintain issue rate of N

e Schedule: order in which insns execute
e Inin-order pipeline, schedule + stalls determine issue
e A good schedule that minimizes stalls is important
e For both performance and utilization

e Schedule/issue combinations
e Pure VLIW: static schedule, static issue
e Tainted VLIW: static schedule, partly dynamic issue
e Superscalar, EPIC: static schedule, dynamic issue
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Stnstruction Scheduling

e |dea: place independent insns between slow ops and uses
e Otherwise, pipeline stalls while waiting for RAW hazards to resolve
* Have already seen pipeline scheduling

e To schedule well need ... independent insns

e Scheduling scope: code region we are scheduling
e The bigger the better (more independent insns to choose from)
e Once scope is defined, schedule is pretty obvious
e Trick is creating a large scope (must schedule across branches)

e Compiler scheduling (really scope enlarging) techniques
e Loop unrolling (for loops)
e Trace scheduling (for non-loop control flow)
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e Profile: statistical information about program tendencies
e Software’s answer to everything
Collected from previous program runs (different inputs)
+ Works OK depending on information
e Memory latencies (cache misses)
+ ldentities of frequently missing loads stable across inputs
— But are tied to cache configuration
e Memory dependences
+ Stable across inputs
— But exploiting this information is hard (need hw help)
e Branch outcomes
— Not so stable across inputs
— More difficult to use, need to run program and then re-compile
e Popular research topic
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"'I;gopUnroIIing SAXPY

e Goal: separate dependent insns from one another

e SAXPY problem: not enough flexibility within one iteration
e Longest chain of insns is 9 cycles
e Load (1)
e Forward to multiply (5)
e Forward to add (2)
e Forward to store (1)
— Can’t hide a 9-cycle chain using only 7 insns
e But how about two 9-cycle chains using 14 insns?

e Loop unrolling: schedule two or more iterations together
e Fuse iterations

e Pipeline schedule to reduce RAW stalls
e Pipeline schedule adds WAR violations, rename registers to fix
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“Unrolling SAXPY.I:

Fuse Iterations

e Combine two (in general K) iterations of loop
e Fuse loop control: induction variable (i) increment + branch

e Adjust (implicit) induction uses: constants — constants + 4

1df X(rl)—>f1
mulf £0,£f12>£2
1df Y(rl)—>£3
addf £2,£f3>f4
stf £42>Z(rl)
addi rl,4->rl
blt r1l,r2,0 —
1df X(rl)—>f1
mulf £0,£f12>£2
1df Y(rl)—>£3
addf £2,£f3>f4
stf £42>Z(rl)
addi rl,4->rl
blt rl1,r2,0
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1df X(rl)->fl
mulf £0,f1->f2
1df Y(rl)->f3
addf f£2,£3>f4
stf £4>Z(rl)

1df X+4 (rl)—>f1
mulf f£0,fl->f2
1df Y+4 (rl)—>£3
addf £2,£f3>f4
stf £f4->Z+4 (rl)
addi rl,8->rl
blt rl1,r2,0



> Unrolling SAXPY II: Pipeline Schedule

* Pipeline schedule to reduce RAW stalls

e Have already seen this: pipeline scheduling

1df X(rl)—>f1
mulf £0,fl1->£f2
1df Y(rl)—>£3
addf £2,£f3>f4
stf £f42Z(rl)
addi rl,4->rl
blt rl1,r2,0

1df X(rl)—>f1
mulf £0,fl->f2
1df Y(rl)—>£3
addf £2,£f3>f4
stf £f422Z(rl)
addi rl,4->rl
blt rl1,r2,0
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1df X(rl)—>f1
1df X+4 (rl)—>f1
mulf £0,fl1->£f2
mulf £0,fl1->f2
1df Y(rl)—>£3
1df Y+4 (rl)—>£3
addf £2,£f3>f4
addf £2,£f3>f4
stf £f42>2Z(rl)
stf £f4->Z+4 (rl)
addi rl,8->rl
blt rl,r2,0



> Unrolling SAXPY lli: Rename Registers

e Pipeline scheduling causes WAR violations

e Rename registers to correct

1df X(rl)>fl
1df X+4 (rl)>f1
mulf £0,fl1>f£f2
mulf £0,£1>£2

1df Y (rl)®£3
1df Y+44T1)>f£3
addf £2,£f3>f4 >

addf f2,f32f4
stf £f4-2Z (rl)
stf £4->Z+4 (rl)

addi rl,8->rl
blt rl,r2,0
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1df X(rl)—>f1
1df X+4 (rl)—>£f5
mulf £0,fl1->£f2
mulf £0,f5->f6
1df Y(rl)—>£3
1df Y+4 (rl)—>£f7
addf £2,£f3>f4
addf £6,f7>f£8
stf £f42>2Z(rl)
stf £8>Z+4 (rl)
addi rl,8->rl
blt rl,r2,0



1df X(rl)—>fl
1df X+4 (rl)—>f£5
mulf £0,f1>£f2
mulf £0,£f5>f6
1df Y(rl)—>f£3
1df Y+4 (rl)>£7
addf £f2,£f3>f4
addf f£6,f7>£8
stf £42Z(rl)
stf £82>Z+4(rl)
addi rl1l,8->rl
blt rl1,r2,0

Dn‘ferent pipelines
F D X M\s*s*W

F D d*E+E+ s*

1 2 3 4 5|6 7 8 91011121314 151617 18{19 20
FD XMW
F DX MW
F D EXIE* E* E*X Ef W
F DIE*E*E*EYE* W No propagation?
FID X M

1df X(rl)->f1l

Fp*DE+p + W
FDXMW
FDXMW
FDXMW
FDXMW
FDXMW

+ Performance: 12 insn / 13 cycles = 0.92 IPC
+ Utilization: 0.92 actual IPC/ 1 peak IPC =92%
+ Speedup: (2 * 11 cycles) / 13 cycles = 1.69
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1df X(rl)->f1

1df X+4(rl)->f£5
mulf £0,f1>f2
mulf £0,£5>f6
1df Y(rl)->f£3

1df Y+4 (rl)>f7
addf £2,£3>f4
addf £6,f7>f£8

2 3 4 5/6 7 8 91011121314 15/16 17 18 19 20
D X MW
D s* X M|W One'load orstore /'cycle
F D d*EX|E* EX EX EX W
F p*Dd*'E*E*E*E*E*W

F p*D X MW

Fp*YD X MW
F Dd*d*d*F+E+W

F D d* d* d*E+E+W

stf £4>Z(rl) Fp*p*p*D X ‘M. W

stf £82>Z+4 (rl) F p*p*p* D XYM W
addi rl,8->rl FDXMW
blt rl1,r2,0 F DX MW
1df X(rl)—>f1l F DX MW

+ Performance: 12 insn / 10 cycles = 1.2 IPC
+ Utilization: 1.2 actual IPC/ 2 peak IPC = 60%
+ Speedup: (2 * 9 cycles) / 10 cycles = 1.8

Instruction Level Parallelism Il: Superscalar Execution




""I;pop*UnroIIing Shortcomings

— Static code growth — more IS misses (limits degree of unrolling)
— Poor scheduling along “seams” of unrolled copies
— Need more registers to resolve WAR hazards
— Doesn’t handle recurrences (inter-iteration dependences)
for (i=0;i<N;i++)
X[i]=A*X[i-1];

1df X-4(rl)>f1 1df X-4(rl)>f1

mulf £0,f1>f2 mulf £0,f1->f£2

Stf £2OX(rl) =————— ot £2-5X(rl)

addi rl,4->rl mulf £0,f2>£3

Plt irl, 26 stf £32X+4 (rl)
1df X-4(rl)>f1 addi rl,4-rl

mulf £0,f1->f£2 blt rl,r2,0

stf £2>X(rl)

addi ril,4-rl e Two mulf’s are not parallel

blt rl,r2,0
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"'Lgop.UnroIIing Shortcomings

— Static code growth more IS misses
— Limits practical unrolling limit

— Poor scheduling along “seams” of unrolled copies

— Need more registers to resolve WAR hazards

— Doesn’t handle recurrences (inter-iteration dependences)
— Handled by software pipelining (not further discussed)
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"‘égyond Scheduling Loops

e Problem: not everything is a loop

e How to create large scheduling scopes from non-loop code?

e |dea: trace scheduling [Ellis, ‘85]

e Find common paths in program (profile)

Realign basic blocks to form straight-line “traces”
e Basic-block: single-entry, single-exit insn sequence
e Trace: fused basic block sequence

Schedule insns within a trace

e This is the easy part

Create fixup code outside trace
e |n case implicit trace path doesn’t equal actual path
e Nasty
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Good scheduling needs ISA support for software speculation




~drace Scheduling Example

Source code 4 basic blocks: A,B,C,D
A =Y[1i];
if (A == 0) AlO0: 1df Y(rl), f2
A = W[i]; 1: fbne £2,4
else N_‘I_/\
ARl Bl2: 1df wW(rl),f2 4: stf £0,Y(rl) |C
Machine code DI 5: 1df X(rl),£4
0: 1df Y(rl),£2 67:. mutlff ff64 ’Zf(zr’lf)a
1: fbne £2,4 =2 :
2: 1df W(rl)  £2
3: jump 5
4: stf £0,Y(rl) e Problem: separate #6 (3 cycles) from #7
5: ldf X(rl),f4 e How to move mulf above if-then-else?
6: mulf f£4,6f2,f6
7: stf £6,Z(rl) e How to move 1d£f?
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""Syperblocks

AlO0: 1df Y(rl), £f2
1: fbne £2,4

B[2: 1df w(rl), £2 4: stf £0,Y(rl) |C

Dl 5: 1df X(rl),f4
6: mulf f£4,6f2,£6
7: stf £6,Z(rl)

e First trace scheduling construct: superblock
e Use when branch is highly biased
e Fuse blocks from most frequent path: A,C,D

e Schedule
e Create repair code in case real path was A,B,D
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“’Syperblock and Repair Code

Superblock
: 1df Y(rl), £2

: stf £0,Y(rl)
: 1df X(rl) ,f4
: mulf £4,£2,£f6
: stf £6,Z(rl)

\lmlﬂshl—‘o

e What did we do?

e Change sense (test) of branch 1

: fbeq £2,2 ——

Repair code

2: 1df W(rl), f2

57" :
6’ :
77

1df X(rl) , £4
mulf f£4,£f2,f6
stf £6,2(rl)

e Original taken target now fall-thru

e Created repair block

e May need to duplicate some code (here basic-block D)

e Haven’t actually scheduled superblock yet
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souperblocks Scheduling

Superblock

0: 1df Y(rl), £f2 _

1: fbeq £2,2 — Repair code

5: 1df X(rl) ,b f4 2: 1df W(rl) , £f2
6: mulf f4,£f2,f6 5’7: 1df X(rl) , f4
4: stf £0,Y(rl) 6’ : mulf £4,f2,f6
7: stf £6,Z(rl) 7" : stf £6,Z(rl)

e First scheduling move: move insns 5 and 6 above insn 4
e Hmmm: moved load (5) above store (4)
e We can tell this is OK, but can the compiler
e |f yes, fine
e Otherwise, need to do something
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<~ 'Nan-Biased Branches: Use Predication

AlO0: 1df Y(rl), £f2
1: fbne £2,4

NT=50%— —~—~_ T=50%

B[2: 1df w(rl), £2 4: stf £0,Y(rl) |C

D| 5: 1df X(rl),f4
6: mulf f4,6f2,f6
7: stf £6,Z(rl)

2

1df Y(rl) ,b£2
fspne f2,pl

1df.p pl,W(rl) ,h £2
stf.np pl1l,£0,Y(rl)
1df X(rl) ,b£f4

: mulf £4,£f2,f6

7: stf £6,Z(rl)

Using Predication

o U1 NN PR O
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~Predication

e Conventional control
e Conditionally executed insns also conditionally fetched

e Predication

e Conditionally executed insns unconditionally fetched

e Full predication (ARM, |A-64)
e Can tag every insn with predicate, but extra bits in instruction

e Conditional moves (Alpha, 1A-32)
e Construct appearance of full predication from one primitive

cmoveq rl,r2,r3 // if (rl==0) r3=r2;

— May require some code duplication to achieve desired effect
+ Only good way of adding predication to an existing ISA

e |f-conversion: replacing control with predication

+ Good if branch is unpredictable (save mis-prediction)
— But more instructions fetched and “executed”
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SUSA Support for Predication

Hyper block

: 1df Y(rl) ,£f2

: fspne £f2,pl

: 1df.p pl,W(rl) ,h £f2
: stf.np pl1,£0,Y(rl)
: 1df X(rl) ,f4

: mulf £4,£2,£f6

: stf £6,Z(rl)

\IO\U'IuhI\)I—‘O

e |A-64: change branch 1 to set-predicate insn £spne

e Changeinsns 2 and 4 to predicated insns
e 1df.p performs 1df if predicate pl istrue
e stf.npperforms stf if predicate pl isfalse
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“‘S_t;atic Scheduling Summary

e Goal: increase scope to find more independent insns

e Loop unrolling
+ Simple

— Expands code size, can’t handle recurrences or non-loops

e Trace scheduling
e Superblocks and hyperblocks

+ Works for non-loops

— More complex, requires ISA support for speculation and predication
— Requires nasty repair code
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ampiler-Scheduling Redux

+ Can do some things with simple inner-loops

— Non-loop code is much more difficult

e Basic-block ILP typically < 2

— Cache misses are a problem too
1 2 3 456 7 8

9 10111213 14 15 16

17 18 19 20

1df X+4(rl) ,f1|F D X M*M*M*M*M*M* M W

addi rl1,4,rl F DX MW

blt rl,r2,0 FDXMW

stf £2,X-4(rl) FDXMW

mulf £0,fl,£2 F D d* d*|d* d* E* EX EX E* E* W

1df X+4(rl),fl F p* p*|p* p* D X M*M*M*M*M*M* M W
addi ri1,4,rl FDXMW

blt rl,r2,0 FDXMW

stf £2,X-4(rl) F DX MW

e And this is assuming pipeline will not block until f1 is needed
e If pipeline stalls immediately, performance will be even worse
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cheduling: Compiler or -Hardware

e Compiler

+

+

Potentially large scheduling scope (full program)

Simple hardware — fast clock, short pipeline, and low power

Low branch prediction accuracy (profiling?)

Little information on memory dependences (profiling?)

Can’t dynamically respond to cache misses

Pain to speculate and recover from mis-speculation (h/w support?)

e Hardware

+ + + +

High branch prediction accuracy

Dynamic information about memory dependences

Can respnd to cache misses

Easy to speculate and recover from mis-speculation

Finite buffering resources fundamentally limit scheduling scope
Scheduling machinery adds pipeline stages and consumes power
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RESEARCH TOPIC

. UC R
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e Grid processor (TRIPS) [Nagarajan+, MICRO’01]
e EDGE (Explicit Dataflow Graph Execution) execution model
e Holistic attack on many fundamental superscalar problems
e Specifically, the nastiest one: N2 bypassing
e But also N2 dependence check
e And wide-fetch + branch prediction
Two-dimensional VLIW

e Horizontal dimension is insns in one parallel group
e Vertical dimension is several horizontal groups
e Executes atomic code blocks (hyperblocks)
e Uses predication and special scheduling to avoid taken branches

UT-Austin research project

e Fabricated an actual chip with help from IBM: next-generation PowerPC
;D

Instruction Level Parallelism Il: Superscalar Execution



http://www.cs.utexas.edu/users/cart/trips/

rid.Processor

e Components

e next hyperblock logic/predictor (NH), IS, DS, regfile

e NxN ALU grid: here 4x4
e Pipeline stages

\ 4 \ 4 \ 4 \ 4

e Fetch block to grid NH

regflile

e Read registers Y

A 4 A 4 A 4 A 4

e Execute/memory
e Cascade
e \Write registers

e Block atomic I$
e No intermediate regs
e Grid limits size/shape

read ;—l read read read

ALU ALU ALU ALU

e e e |

ALU ALU ALU ALU

D$
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“Nside: SAXPY

e SAXPY (Single-precision A X Plus Y)

e Linear algebra routine (used in solving systems of equations)
e Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)
2 [1i]=A*X[i]+Y[i];

0: 1df X(rl), fl // loop

l: mulf £0,£f1,£f2 // A in £0

2: 1df Y(rl),£f3 // X,Y¥,Z are constant addresses
3: addf £2,£3,£f4

4: stf £4,Z(rl)

5: addi rl,4,rl // i in rl

6: blt rl,r2,0 // N*4 in r2

Instruction Level Parallelism Il: Superscalar Execution




"érid Processor SAXPY

read r2,0 read £f1,0 read r1l,0,1 nop

pass 0O pass 1 pass -1,1 1df X,-1
pass 0O pass 0,1 mulf 1 1df Y,0
pass O addi pass 1 addf O
blt nop pass O,rl stf Z

e A code block for this Grid processor has 5 4-insn words

e Atomic unit of execution

e Some notes about Grid ISA
e read: read register from register file
e pass: null operation
e -1,0,1:routing directives send result to next word
e one insn left (-1), insn straight down (0), one insn right (1)

e Directives specify value flow, no need for interior registers
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“Grid Processor SAXPY Cycle 1 .

e Map code block to grid

NH

regflile )
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asSS

ass pass I

pass add

mul

pass

d

f

f f

d

stf

D$




“Grid Processor SAXPY Cycle 2 .

e Read registers

NH

I$
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I D D e
r2

| ble |

f1

addi
__

rl

pass

stf

D$

7a UC IR}



“Grid Processor SAXPY Cycle 3 '

e Execute first grid row

e Execution proceeds in “data flow” fashion

e Not lock step

NH

regflile )

I$
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_
pass pass pass |df

I
addi
| ble [

D$




“Grid Processor SAXPY Cycle 4

e Execute second grid row

NH

regflile )

I$
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pass pass pass
pass pass mulf

asSS pPass

pass

|df II|
|df

add

D$

I

stf



“Grid Processor SAXPY Cycle 5 '

e Execute third grid row
e Recall, mulf takes5 cycles

regflile

I$

2 P f (L P
‘pass| | pass| |Billi |df

pass addi

pass

| ble [ |
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“Grid Processor SAXPY Cycle 6 .

e Execute third grid row

NH regflile )
___
mulf |df
addi
o][3] - pass stf

I$
D$
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Finish 1

“Grid Processor SAXPY Cycle 9

NH

regflile )

I$
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pass | addi]
 ble [ |

2 [ f1 ) L ]

addf

D$




“Grid Processor SAXPY Cycle 10

e Finish 2

NH regfiile

pass

I$
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*Grid Processor SAXPY cycle 11

e When all instructions are done

e Write registers and next code block PC

I$
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2 [ f1 P i ]

| ble |

addi
__

pass

pass

g1 UC IR}

D$




~Grid Processor SAXPY Performance

e Performance
e 1 cycle fetch
e 1 cycle read regs

e 8 cycles execute

e 1 cycle write regs NH

regflile

e 11 cycles total !

o Utilization
e 7/(11*16)=4% D
e What’s the point? I$
+ Simpler components
+ Faster clock?
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asSS

asSS

asSS

p

p

asSS

asSS

pass

mulf
pass

pass

add

stf

D$




+ No hardware dependence checks ... period
* Insn placement encodes dependences, still get dynamic issue

+ Simple, forward only, short-wire bypassing
 No wraparound routing, no metal layer crossings, low input muxes
— Code size
e Lots of nop and pass operations
— Non-compatibility
e Code assumes horizontal and vertical grid layout
— No scheduling between hyperblocks
e Can be overcome, but is pretty nasty

— Poor utilization
e Overcome by multiple concurrent executing hyperblocks
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~'Prototype

SDRAMO IRQ EB
| | .~
DMAEEE'EBC_
[N [N [N [N
N (MmN
g |L ]
2 [N [m][m][n
3"-‘ — —
-9
s | MMM
E — _
Z|IN (M| /M| N
= | — —
5 [Nl M [[M] N
-E — —
S |INl [M||M]| N
g L L
N (MmN
Nl (MmN
[N [N ][N [yl
[bMA] [spc] [c2c] L

Processor 0

jannoon

o]

o JlE ]

|| D (| E

I:D E||E[|E [|E
I:D E||E[|E [|E
I:D E||E[|E [|E
I:G RIRI[RI([R

Processor 1

SDRAM 1 C2C (x4)
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