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This Unit: Superscalar Execution

• Superscalar scaling issues
• Multiple fetch and branch prediction

• Dependence-checks & stall logic

• Wide bypassing

• Register file & cache bandwidth

• Multiple-issue designs 
• “Superscalar”

• VLIW and EPIC (Itanium)

• Static scheduling
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Scalar Pipeline and the Flynn 
Bottleneck

• So far we have looked at scalar pipelines
• One instruction per stage

• With control speculation, bypassing, etc.

– Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1

– Limit is never even achieved (hazards)

– Diminishing returns from “super-pipelining” (hazards + overhead)
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Multiple-Issue Pipeline

• Overcome this limit using multiple issue
• Also called superscalar

• Two instructions per stage at once, or three, or four, or eight…

• “Instruction-Level Parallelism (ILP)” *Fisher, IEEE TC’81+

• Today, typically “4-wide” (Intel Core 2, AMD Opteron)
• Some more (Power5 is 5-issue; Itanium is 6-issue)

• Some less (dual-issue is common for simple cores such as Atom, ARM A8)
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Superscalar Pipeline Diagrams - Ideal

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W
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Superscalar Pipeline Diagrams -
Realistic

scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* D X M W
add r2,r3r7 F D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* d* D X M W
add r2,r3r7 F D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F d* D X M W
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Superscalar CPI Calculations

• Base CPI for scalar pipeline is 1

• Base CPI for N-way superscalar pipeline is 1/N
– Amplifies stall penalties

• Assumes no data stalls (an overly optmistic assumption)

• Example: Branch penalty calculation
• 20% branches, 75% taken, no explicit branch prediction

• Scalar pipeline
• 1 + 0.2*0.75*2 = 1.3  1.3/1 = 1.3  30% slowdown

• 2-way superscalar pipeline
• 0.5 + 0.2*0.75*2 = 0.8  0.8/0.5 = 1.6  60% slowdown

• 4-way superscalar
• 0.25 + 0.2*0.75*2 = 0.55  0.55/0.25 = 2.2  120% slowdown
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Simplest Superscalar: Split Floating 
Point

• Split integer and 
floating point

• 1 integer + 1 FP
+ Limited modifications

– Limited speedup

• Floating points Mem
in “integer” pipe
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A Four-issue Pipeline (2 integer, 2 FP)

• 2 integer + 2 FP

• Similar to 
Alpha 21164
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A Typical Dual-Issue Pipeline

• Fetch an entire 16B or 32B cache block
• 4 to 8 instructions (assuming 4-byte fixed length instructions)

• Predict a single branch per cycle

• Parallel decode
• Need to check for conflicting instructions

• Output of I1 is an input to I2 ( how many stall cycles with full bypassing?)

• Other stalls, too (for example, load-use delay)
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A Typical Dual-Issue Pipeline

• Multi-ported register file
• Larger area, latency, power, cost, complexity

• Multiple execution units
• Simple ALUs are easy, but bypass paths are expensive

• Memory unit
• Single load per cycle (stall at decode) probably okay for dual issue

• Alternative: add a additional read port to data cache

• Larger area, latency, power, cost, complexity
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Superscalar Challenges - Front End

• Wide instruction fetch
• Modest: need multiple instructions per cycle

• Aggressive: predict multiple branches, trace cache

• Wide instruction decode
• Replicate decoders

• Wide instruction issue
• Determine when instructions can proceed in parallel

• Not all combinations possible

• More complex stall logic - ~O(N2) for N-wide machine

• Wide register read
• One port for each register read

• Each port needs its own set of address and data wires

• Example, 4-wide superscalar  8 read ports
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Superscalar Challenges - Back End

• Wide instruction execution
• Replicate arithmetic units

• Multiple cache ports

• Wide instruction register writeback
• One write port per instruction that writes a register

• Example, 4-wide superscalar  4 write ports

• Wide bypass paths
• More possible sources for data values

• ~O(N2 * P) for N-wide machine with execute pipeline depth P

• Fundamental challenge:
• Amount of ILP (instruction-level parallelism) in the program

• Compiler must schedule code and extract parallelism
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How Much ILP is There?

• The compiler tries to “schedule” code to avoid stalls
• Even for scalar machines (Example?)

• Even harder to schedule multiple-issue (superscalar)

• How much ILP is common?
• Greatly depends on the application

• Consider memory copy

• Unroll loop lots of independent operations

• Other programs, less so

• Even given unbounded ILP, superscalar has limits
• IPC (or CPI) vs clock frequency trade-off

• Given these challenges, what is reasonable N?  3 or 4 today
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FE: Wide Decode

• What is involved in decoding multiple (N) insns per cycle?

• Actually doing the decoding? 
• Easy if fixed length (multiple decoders), doable if variable length

• Reading input registers?

– 2N register read ports (latency  #ports)

+ Actually less than 2N, most values come from bypasses

• More about this in a bit

• What about the stall logic? (e.g. RAW on load)

regfile
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N2 Dependence Cross-Check (e.g)

• Stall logic for 1-wide pipeline with full bypassing
• Full bypassing  load/use stalls only (Assuming stall logic at Decode, and 

WD natural bypass through register file)

D/X.op==LOAD && (F/D.rs1==X/M.rd || F/D.rs2==D/X.rd)

• Two “terms”:  2N

• Now: same logic for a 2-wide pipeline
D/X1.op==LOAD && (F/D1.rs1==D/X1.rd || F/D1.rs2==D/X1.rd) ||

D/X1.op==LOAD && (F/D2.rs1==D/X1.rd || F/D2.rs2==D/X1.rd) ||

D/X2.op==LOAD && (F/D1.rs1==D/X2.rd || F/D1.rs2==D/X2.rd) ||

D/X2.op==LOAD && (F/D2.rs1==D/X2.rd || F/D2.rs2==D/X2.rd)

• Eight “terms”:  2N2 

• N2 dependence cross-check

• Not quite done, also need

• F/D2.rs1==F/D1.rd || F/D2.rs2==F/D1.rd || 
F/D1.rs1==F/D2.rd || F/D1.rs2==F/D2.rd
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FE: Wide Execute

• What is involved in executing N insns per cycle?

• Multiple execution units … N of every kind?
• N ALUs? OK, ALUs are small

• N FP dividers? No, FP dividers are huge and fdiv is uncommon

• How many branches per cycle? How many loads/stores per cycle?

• Typically some mix of functional units proportional to insn mix

• Intel Pentium: 1 any + 1 ALU

• Alpha 21164: 2 integer (including 2 loads) + 2 FP

• What if 3 integer operations in the “bundle”?
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FE: Wide Memory Access

• What about multiple loads/stores per cycle?
• Probably only necessary on processors 4-wide or wider

• More important to support multiple loads than multiple stores

• Insn mix: loads (~20–25%), stores (~10–15%)

• Alpha 21164: two loads or one store per cycle 

D$
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D$ Bandwidth: Multi-Porting, 
Replication

• How to provide additional D$ bandwidth?
• Have already seen split I$/D$, but that gives you just one D$ port

• How to provide a second (maybe even a third) D$ port?

• Option#1: multi-porting
+ Most general solution, any two accesses per cycle

– To increase bit-lines is expensive in terms of latency, area (cost), and 
power

• Option #2: replication
• Additional read bandwidth only, but writes must go to all replicas

+ General solution for loads, no latency penalty

– Not a solution for stores (that’s OK), area (cost), power penalty

• Is this what Alpha 21164 does?
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D$ Bandwidth: Banking

• Option#3: banking (or interleaving)
• Divide D$ into “banks” (by address), 1 access/bank-cycle
• Bank conflict: two accesses to same bank  one stalls
+ No latency, area, power overheads (latency may even be lower)
+ One access per bank per cycle, assuming no conflicts
– Complex stall logic  address not known until execute stage
– To support N accesses, need 2N+ banks to avoid frequent conflicts

• Which address bit(s) determine bank?
• (By column) Offset bits? Individual cache lines spread among different 

banks
+ Fewer conflicts
– Must replicate tags across banks, complex miss handling

• (By Row) Index bits? Banks contain complete cache lines
– More conflicts
+ Tags not replicated, simpler miss handling
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BE: Wide Register Read/Write

• How many register file ports to execute N insns per cycle?
• Nominally, 2N read + N write (2 read + 1 write per insn)

– Latency, area  #ports2

• In reality, fewer than that

• Read ports: many values come from bypass network

• Write ports: stores, branches (35% insns) don’t write registers

• Replication works great for regfiles (used in Alpha 21164)

• Banking? Not so much

regfile
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BE: Wide Bypass

• N2 bypass network
– N+1 input muxes at each ALU input

– N2 point-to-point connections

– Routing lengthens wires

– Expensive metal layer crossings

– Heavy capacitive load

• And this is just one bypass stage (MX)!

• There is also WX bypassing

• Even more for deeper pipelines

• One of the big problems of superscalar
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Aside: Not All N2 Created Equal

• N2 bypass vs. N2 dependence cross-check
• Which is the bigger problem?

• N2 bypass … by far
• 32- or 64- bit quantities (vs. 5-bit)

• Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)

• Must fit in one clock period with ALU (vs. not)

• Dependence cross-check not even 2nd biggest N2 problem
• Regfile is also an N2 problem (think latency where N is #ports)

• And also more serious than cross-check



Instruction Level Parallelism II: Superscalar Execution 24

Clustering

• Clustering: mitigates N2 bypass
• Group ALUs into K clusters

• Full bypassing within a cluster

• Limited bypassing between clusters

• With 1 cycle delay

• (N/K) + 1 inputs at each mux

• (N/K)2 bypass paths in each cluster

• Steering: key to performance
• Steer dependent insns to same cluster

• Statically (compiler) or dynamically

• E.g., Alpha 21264
• Bypass wouldn’t fit into clock cycle

• 4-wide, 2 clusters, static steering

• Each cluster has register file replica
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FE/BE: Wide Fetch - Sequential Instructions

• What is involved in fetching multiple instructions per cycle?

• In same cache block?  no problem
• Favors larger block size (independent of hit rate)

• Compilers align basic blocks to I$ lines (.align assembly directive)
– Reduces I$ capacity (Why?)

+ Increases fetch bandwidth utilization (more important)

• In multiple blocks?  Fetch block A and A+1 in parallel
• Banked I$ + combining network

– May add latency (add pipeline stages to avoid slowing down clock)
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FE/BE: Wide Non-Sequential Fetch

• Two related questions
• How many branches predicted per cycle?

• Can we fetch across the branch (in the same cycle) if it is predicted 
“taken”?

• Simplest, most common organization: “1” and “No”
• One prediction, discard post-branch insns if prediction is “taken”

– Lowers effective fetch width and IPC

• Average number of instructions per taken branch?

• Assume: 20% branches, 50% taken  ~10 instructions

• Consider a 10-instruction loop body with an 8-issue processor

• Without smarter fetch, on average, ILP is limited to 5 (not 8)

• Compiler can help
• Reduce taken branch frequency (e.g., unroll loops)
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Parallel Non-Sequential Fetch

• Allowing “embedded” taken branches is possible
• Requires smart branch predictor, multiple I$ accesses in one cycle

• Can try pipelining branch prediction and fetch
• Branch prediction stage only needs PC

• Transmits two PCs to fetch stage, next PC and next-next PC

– Elongates pipeline, increases branch penalty

• Pentium II & III do something like this
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Trace Cache

• Trace cache (T$) [Peleg+Weiser, Rotenberg+]
• Overcomes serialization of prediction and fetch by combining them

• New kind of I$ that stores dynamic, not static, insn sequences

• Blocks can contain statically non-contiguous insns

• Tag: PC of first insn + N/T of embedded branches

• Used in Pentium 4 (actually stores decoded mops)

• Coupled with trace predictor (TP)
• Predicts next trace, not next branch

T$

T
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Trace Cache Example

• Traditional instruction cache

• Trace cache

• Traces can pre-decode dependence information
• Helps fix the N2 dependence check problem

1 2
0: addi r1,4,r1 F D
1: beq r1,#4 F D
4: st r1,4(sp) f* F
5: call #32 f* F

Tag Data (insns)
0 addi,beq #4,ld,sub

4 st,call #32,ld,add

Tag Data (insns)
0:T addi,beq #4,st,call #32

1 2
0: addi r1,4,r1 F D
1: beq r1,#4 F D
4: st r1,4(sp) F D
5: call #32 F D
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FE: Pentium4 Trace Cache

• Pentium4 has a trace cache …
• But doesn’t use it to solve the branch prediction/fetch problem

• Uses it to solve decode problem instead

• Traces contain decoded RISC mops (not CISC x86 insns)

• Traces are short (3 mops each)

• What is the “decoding” problem?
• Breaking x86 insns into mops is slow and area-/energy-consuming

• Especially problematic is converting x86 insns into mulitple mops

• Average mop/x86 insns ratio is 1.6–1.7

• Pentium II (and III) only had 1 multiple-mop decoder

• Big performance hit vis-à-vis AMD’s Athlon (which had 3)

• Pentium4 uses T$ to “simulate” multiple multliple-mop decoders

• And to shorten pipeline (which is still 22 stages)
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Aside: Multiple-issue CISC

• How do we apply superscalar techniques to CISC 
• Such as x86

• Or CISCy ugly instructions in some RISC ISAs

• Break “macro-ops” into “micro-ops” 
• Also called “mops” or “RISC-ops”

• A typical CISCy instruction “add *r1+, *r2+  [r3]” becomes:

• Load [r1]  t1  (t1 is a temp. register, not visible to software)

• Load [r2]  t2

• Add t1, t2  t3

• Store t3[r3] 

• However, conversion is expensive (latency, area, power)

• Solution: cache converted instructions in trace cache

• Used by Pentium 4

• Internal pipeline manipulates only these RISC-like instructions



MULTIPLE-ISSUE DESIGNS
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Multiple-Issue Designs

• Statically-scheduled (in-order) superscalar
+ Executes unmodified sequential programs

– Hardware must figure out what can be done in parallel

• E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

• Very Long Instruction Word (VLIW)
+ Hardware can be dumb and low power

– Compiler must group parallel insns, requires new binaries

• E.g., TransMeta Crusoe (4-wide)

• Explicitly Parallel Instruction Computing (EPIC)
• A compromise: compiler does some, hardware does the rest

• E.g., Intel Itanium (6-wide)

• Dynamically-scheduled superscalar
• Pentium Pro/II/III (3-wide), Alpha 21264 (4-wide) 

• We’ve already talked about statically-scheduled superscalar
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VLIW

• Hardware-centric multiple issue problems
– Wide fetch+branch prediction, N2 bypass, N2 dependence checks

– Hardware solutions have been proposed: clustering, trace cache

• Software-centric: very long insn word (VLIW)
• Effectively, a 1-wide pipeline, but unit is an N-insn group

• Compiler guarantees insns within a VLIW group are independent

• If no independent insns, slots filled with nops

• Group travels down pipeline as a unit

+ Simplifies pipeline control (no rigid vs. fluid business)

+ Cross-checks within a group un-necessary

• Downstream cross-checks still necessary

• Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.

+ Further simplification
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History of VLIW

• Started with “horizontal microcode”

• Academic projects
• Yale ELI-512 *Fisher, ‘85+

• Illinois IMPACT [Hwu, ‘91+

• Commercial attempts

• Multiflow [Colwell+Fisher, ‘85+  failed

• Cydrome *Rau, ‘85+  failed

• Motorolla/TI DSP processors successful

• Intel Itanium [Colwell,Fisher+Rau, ‘97+  ??

• Transmeta Crusoe [Ditzel, ‘99+  mostly failed
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Pure and “Tainted” VLIW

• Pure VLIW: no hardware dependence checks at all
• Not even between VLIW groups

+ Very simple and low power hardware

• Compiler responsible for scheduling stall cycles

• Requires precise knowledge of pipeline depth and structure

– These must be fixed for compatibility

– Doesn’t support caches well

• Used in some cache-less DSP centric micro-controllers, but not generally 
useful

• Tainted (more realistic) VLIW: inter-group checks
• Compiler doesn’t schedule stall cycles

+ Precise pipeline depth and latencies not needed, can be changed

+ Supports caches

• TransMeta Crusoe
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What Does VLIW Actually Buy You?

+ Simpler I$/branch prediction

+ Slightly simpler dependence check logic

• Doesn’t help bypasses or regfile
• Which are the much bigger problems

• Although clustering and replication can help VLIW, too

– Not compatible across machines of different widths
• Is non-compatibility worth all of this?

• PS did TransMeta deal with compatibility problem?
• Dynamically translates x86 to internal VLIW
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EPIC

• Tainted VLIW
• Compatible across pipeline depths

– But not across pipeline widths and slot structures

– Must re-compile if going from 4-wide to 8-wide

• TransMeta sidesteps this problem by re-compiling transparently

• EPIC (Explicitly Parallel Insn Computing)
• New VLIW meaning (Variable Length Insn Words)

• Implemented as “bundles” with explicit dependence bits

• Code is compatible with different “bundle” width machines

• Compiler discovers as much parallelism as it can, hardware does rest

• E.g., Intel Itanium (IA-64)

• 128-bit bundles (3 41-bit insns + 4 dependence bits)

• Still does not address bypassing or register file issues
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Trends in Single-Processor Multiple 
Issue

• Issue width has saturated at 4-6 for high-performance cores
• Canceled Alpha 21464 was 8-way issue

• Memory wall makes no reasonable wider (We will see that in lab)

• Out-of-order execution (or EPIC) needed to exploit 4-6 effectively

• For high-performance/power cores, issue width is 1-2
• Out-of-order execution not needed

• Multi-threading (a little later) helps cope with cache misses

486 Pentium PentiumII Pentium4 Itanium ItaniumII Core2

Year 1989 1993 1998 2001 2002 2004 2006

Width 1 2 3 3 3 6 4
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Multiple Issue Redux

• Multiple issue
• Needed to expose insn level parallelism (ILP) beyond pipelining
• Improves performance, but reduces utilization
• 4-6 way issue is about the peak issue width currently justifiable

• Problem spots
• Fetch + branch prediction  trace cache?
• N2 bypass  clustering?
• Register file  replication?

• Implementations
• (Statically-scheduled) superscalar, VLIW/EPIC

• Are there more radical ways to address these challenges? 
• See TRIPS processor at the appendix



SCHEDULING
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ILP and Static Scheduling

• No point to having an N-wide pipeline…

• …if average number of parallel insns per cycle (ILP) << N
• Performance is important…

• … but so is utilization: actual performance / peak performance

– Unutilized hardware still consumes power (begins to be itchy)

– Unutilized hardware still consumes area

– Unutilized hardware may slow down clock (clock vs. IPC) …

– … or lengthen pipeline (IPC vs. IPC)

• Rest of unit: how compiler can help extract parallelism
• Important for superscalar

• Critical for VLIW/EPIC

• Next unit: how hardware can extract parallelism
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Code Example: SAXPY

• SAXPY (Single-precision A X Plus Y)
• Linear algebra routine (used in solving systems of equations)

• Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)

Z[i]=A*X[i]+Y[i];

0: ldf X(r1)  f1      // loop   

1: mulf f0,f1  f2     // A in f0

2: ldf Y(r1)  f3      // X,Y,Z are constant addresses

3: addf f2,f3  f4

4: stf f4  Z(r1)

5: addi r1,4  r1      // i in r1

6: blt r1,r2,0         // N*4 in r2
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SAXPY Performance and Utilization

• Scalar pipeline
• Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken

• Single iteration (7 insns) latency: 16–5 = 11 cycles

• Performance: 7 insns / 11 cycles = 0.64 IPC

• Utilization: 0.64 actual IPC / 1 peak IPC = 64%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
mulf f0,f1f2 F D d* E* E* E* E* E* W
ldf Y(r1)f3 F p* D X M W
addf f2,f3f4 F D d* d* d* E+ E+ W
stf f4Z(r1) F p* p* p* D X M W
addi r1,4r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1)f1 F D X M W
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SAXPY Performance and Utilization

• Dual issue pipeline
• Same + any two insns per cycle + embedded taken branches

+ Performance: 7 insns / 9 cycles = 0.78 IPC

– Utilization: 0.70 actual IPC / 2 peak IPC = 38%

– More hazards  more stalls (why?)

– Each stall is more expensive (why?)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
mulf f0,f1f2 F D d* d* E* E* E* E* E* W
ldf Y(r1)f3 F D X M W
addf f2,f3f4 F p* p* D d* d* d* d* E+ E+ W
stf f4Z(r1) F D p* p* p* p* p* d* X M W
addi r1,4r1 F p* p* p* p* D X M W
blt r1,r2,0 F p* p* p* p* p* D X M W
ldf X(r1)f1 F D X M W



Instruction Level Parallelism II: Superscalar Execution 46

Schedule and Issue

• Issue: time at which insns execute
• Want to maintain issue rate of N 

• Schedule: order in which insns execute
• In in-order pipeline, schedule + stalls determine issue

• A good schedule that minimizes stalls is important

• For both performance and utilization

• Schedule/issue combinations
• Pure VLIW: static schedule, static issue

• Tainted VLIW: static schedule, partly dynamic issue

• Superscalar, EPIC: static schedule, dynamic issue
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Instruction Scheduling

• Idea: place independent insns between slow ops and uses
• Otherwise, pipeline stalls while waiting for RAW hazards to resolve

• Have already seen pipeline scheduling

• To schedule well need … independent insns

• Scheduling scope: code region we are scheduling
• The bigger the better (more independent insns to choose from)

• Once scope is defined, schedule is pretty obvious

• Trick is creating a large scope (must schedule across branches)

• Compiler scheduling (really scope enlarging) techniques
• Loop unrolling (for loops)

• Trace scheduling (for non-loop control flow)
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Aside: Profiling

• Profile: statistical information about program tendencies
• Software’s answer to everything

• Collected from previous program runs (different inputs)

± Works OK depending on information

• Memory latencies (cache misses)

+ Identities of frequently missing loads stable across inputs

– But are tied to cache configuration

• Memory dependences

+ Stable across inputs

– But exploiting this information is hard (need hw help)

• Branch outcomes

– Not so stable across inputs

– More difficult to use, need to run program and then re-compile

• Popular research topic
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Loop Unrolling SAXPY

• Goal: separate dependent insns from one another

• SAXPY problem: not enough flexibility within one iteration
• Longest chain of insns is 9 cycles

• Load (1)

• Forward to multiply (5)

• Forward to add (2)

• Forward to store (1)

– Can’t hide a 9-cycle chain using only 7 insns

• But how about two 9-cycle chains using 14 insns?

• Loop unrolling: schedule two or more iterations together
• Fuse iterations

• Pipeline schedule to reduce RAW stalls

• Pipeline schedule adds WAR violations, rename registers to fix
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Unrolling SAXPY I: Fuse Iterations

• Combine two (in general K) iterations of loop
• Fuse loop control: induction variable (i) increment + branch

• Adjust (implicit) induction uses: constants  constants + 4

ldf X(r1)f1

mulf f0,f1f2

ldf Y(r1)f3

addf f2,f3f4

stf f4Z(r1)

addi r1,4r1

blt r1,r2,0 

ldf X(r1)f1

mulf f0,f1f2

ldf Y(r1)f3

addf f2,f3f4

stf f4Z(r1)

addi r1,4r1

blt r1,r2,0 

ldf X(r1)f1

mulf f0,f1f2

ldf Y(r1)f3

addf f2,f3f4

stf f4Z(r1)

ldf X+4(r1)f1

mulf f0,f1f2

ldf Y+4(r1)f3

addf f2,f3f4

stf f4Z+4(r1)

addi r1,8r1

blt r1,r2,0
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Unrolling SAXPY II: Pipeline Schedule

• Pipeline schedule to reduce RAW stalls
• Have already seen this: pipeline scheduling

ldf X(r1)f1

ldf X+4(r1)f1

mulf f0,f1f2

mulf f0,f1f2

ldf Y(r1)f3

ldf Y+4(r1)f3

addf f2,f3f4

addf f2,f3f4

stf f4Z(r1)

stf f4Z+4(r1)

addi r1,8r1

blt r1,r2,0

ldf X(r1)f1

mulf f0,f1f2

ldf Y(r1)f3

addf f2,f3f4

stf f4Z(r1)

addi r1,4r1

blt r1,r2,0 

ldf X(r1)f1

mulf f0,f1f2

ldf Y(r1)f3

addf f2,f3f4

stf f4Z(r1)

addi r1,4r1

blt r1,r2,0 
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Unrolling SAXPY III: Rename Registers

• Pipeline scheduling causes WAR violations
• Rename registers to correct

ldf X(r1)f1

ldf X+4(r1)f5

mulf f0,f1f2

mulf f0,f5f6

ldf Y(r1)f3

ldf Y+4(r1)f7

addf f2,f3f4

addf f6,f7f8

stf f4Z(r1)

stf f8Z+4(r1)

addi r1,8r1

blt r1,r2,0

ldf X(r1)f1

ldf X+4(r1)f1

mulf f0,f1f2

mulf f0,f1f2

ldf Y(r1)f3

ldf Y+4(r1)f3

addf f2,f3f4

addf f2,f3f4

stf f4Z(r1)

stf f4Z+4(r1)

addi r1,8r1

blt r1,r2,0
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Unrolled SAXPY 
Performance/Utilization

+ Performance: 12 insn / 13 cycles = 0.92 IPC

+ Utilization:  0.92 actual IPC / 1 peak IPC = 92%

+ Speedup: (2 * 11 cycles) / 13 cycles = 1.69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
ldf X+4(r1)f5 F D X M W
mulf f0,f1f2 F D E* E* E* E* E* W
mulf f0,f5f6 F D E* E* E* E* E* W
ldf Y(r1)f3 F D X M W
ldf Y+4(r1)f7 F D X M s* s* W
addf f2,f3f4 F D d* E+ E+ s* W
addf f6,f7f8 F p* D E+ p* E+ W
stf f4Z(r1) F D X M W
stf f8Z+4(r1) F D X M W
addi r1,8r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1)f1 F D X M W

No propagation?

Different pipelines
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Dual-Issue Performance/Utilization

+ Performance: 12 insn / 10 cycles = 1.2 IPC

+ Utilization:  1.2 actual IPC / 2 peak IPC = 60%

+ Speedup: (2 * 9 cycles) / 10 cycles = 1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
ldf X+4(r1)f5 F D s* X M W
mulf f0,f1f2 F D d* E* E* E* E* E* W
mulf f0,f5f6 F p* D d* E* E* E* E* E* W
ldf Y(r1)f3 F p* D X M W
ldf Y+4(r1)f7 F p* D X M W
addf f2,f3f4 F D d* d* d* E+ E+ W
addf f6,f7f8 F D d* d* d* E+ E+ W
stf f4Z(r1) F p* p* p* D X M W
stf f8Z+4(r1) F p* p* p* D X M W
addi r1,8r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1)f1 F D X M W

One load or store / cycle
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Loop Unrolling Shortcomings

– Static code growth  more I$ misses (limits degree of unrolling)

– Poor scheduling along “seams” of unrolled copies

– Need more registers to resolve WAR hazards

– Doesn’t handle recurrences (inter-iteration dependences)

for (i=0;i<N;i++)

X[i]=A*X[i-1];

ldf X-4(r1)f1

mulf f0,f1f2

stf f2X(r1)

addi r1,4r1

blt r1,r2,0 

ldf X-4(r1)f1

mulf f0,f1f2

stf f2X(r1)

addi r1,4r1

blt r1,r2,0 

ldf X-4(r1)f1

mulf f0,f1f2

stf f2X(r1)

mulf f0,f2f3

stf f3X+4(r1)

addi r1,4r1

blt r1,r2,0 

• Two mulf’s are not parallel
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Loop Unrolling Shortcomings

– Static code growth more I$ misses

– Limits practical unrolling limit

– Poor scheduling along “seams” of unrolled copies

– Need more registers to resolve WAR hazards

– Doesn’t handle recurrences (inter-iteration dependences)

– Handled by software pipelining (not further discussed)
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Beyond Scheduling Loops

• Problem: not everything is a loop
• How to create large scheduling scopes from non-loop code?

• Idea: trace scheduling *Ellis, ‘85+
• Find common paths in program (profile)

• Realign basic blocks to form straight-line “traces”

• Basic-block: single-entry, single-exit insn sequence

• Trace: fused basic block sequence

• Schedule insns within a trace

• This is the easy part

• Create fixup code outside trace 

• In case implicit trace path doesn’t equal actual path

• Nasty

• Good scheduling needs ISA support for software speculation
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Trace Scheduling Example

• Problem: separate #6 (3 cycles) from #7

• How to move mulf above if-then-else?

• How to move ldf?

A = Y[i];

if (A == 0)

A = W[i];

else

Y[i] = 0;

Z[i] = A*X[i];

0: ldf Y(r1),f2

1: fbne f2,4

2: ldf W(r1),f2

3: jump 5

4: stf f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

0: ldf Y(r1),f2

1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

2: ldf W(r1),f2

3: jump 5

NT T

A

B C

D

4 basic blocks: A,B,C,DSource code

Machine code
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Superblocks

• First trace scheduling construct: superblock
• Use when branch is highly biased

• Fuse blocks from most frequent path: A,C,D

• Schedule

• Create repair code in case real path was A,B,D

0: ldf Y(r1),f2

1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

2: ldf W(r1),f2

3: jump 5

NT=5% T=95%

A

B C

D
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Superblock and Repair Code

• What did we do?
• Change sense (test) of branch 1

• Original taken target now fall-thru

• Created repair block

• May need to duplicate some code (here basic-block D)

• Haven’t actually scheduled superblock yet

0: ldf Y(r1),f2

1: fbeq f2,2

4: stf f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

2: ldf W(r1),f2

5’: ldf X(r1),f4

6’: mulf f4,f2,f6

7’: stf f6,Z(r1)

Superblock

Repair code
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Superblocks Scheduling I

• First scheduling move: move insns 5 and 6 above insn 4
• Hmmm: moved load (5) above store (4)

• We can tell this is OK, but can the compiler 

• If yes, fine

• Otherwise, need to do something

0: ldf Y(r1),f2

1: fbeq f2,2

5: ldf X(r1),f4

6: mulf f4,f2,f6

4: stf f0,Y(r1)

7: stf f6,Z(r1)

2: ldf W(r1),f2

5’: ldf X(r1),f4

6’: mulf f4,f2,f6

7’: stf f6,Z(r1)

Superblock

Repair code
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Non-Biased Branches: Use Predication

0: ldf Y(r1),f2

1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

2: ldf W(r1),f2

3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2

1: fspne f2,p1

2: ldf.p p1,W(r1),f2

4: stf.np p1,f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)



Using Predication
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Predication

• Conventional control
• Conditionally executed insns also conditionally fetched

• Predication
• Conditionally executed insns unconditionally fetched

• Full predication (ARM, IA-64)

• Can tag every insn with predicate, but extra bits in instruction

• Conditional moves (Alpha, IA-32)

• Construct appearance of full predication from one primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May require some code duplication to achieve desired effect

+ Only good way of adding predication to an existing ISA

• If-conversion: replacing control with predication
+ Good if branch is unpredictable (save mis-prediction)

– But more instructions fetched and “executed”
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ISA Support for Predication

• IA-64: change branch 1 to set-predicate insn fspne

• Change insns 2 and 4 to predicated insns
• ldf.p performs ldf if predicate p1 is true

• stf.np performs stf if predicate p1 is false

0: ldf Y(r1),f2

1: fspne f2,p1

2: ldf.p p1,W(r1),f2

4: stf.np p1,f0,Y(r1)

5: ldf X(r1),f4

6: mulf f4,f2,f6

7: stf f6,Z(r1)

Hyper-block
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Static Scheduling Summary

• Goal: increase scope to find more independent insns

• Loop unrolling
+ Simple

– Expands code size, can’t handle recurrences or non-loops

• Trace scheduling
• Superblocks and hyperblocks

+ Works for non-loops

– More complex, requires ISA support for speculation and predication

– Requires nasty repair code
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Compiler Scheduling Redux

+ Can do some things with simple inner-loops

– Non-loop code is much more difficult
• Basic-block ILP typically < 2

– Cache misses are a problem too

• And this is assuming pipeline will not block until f1 is needed

• If pipeline stalls immediately, performance will be even worse

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X+4(r1),f1 F D X M*M*M*M*M*M* M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
stf f2,X-4(r1) F D X M W
mulf f0,f1,f2 F D d* d* d* d* E* E* E* E* E* W
ldf X+4(r1),f1 F p* p* p* p* D X M*M*M*M*M*M* M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
stf f2,X-4(r1) F D X M W
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Scheduling: Compiler or Hardware

• Compiler
+ Potentially large scheduling scope (full program) 

+ Simple hardware  fast clock, short pipeline, and low power

– Low branch prediction accuracy (profiling?)

– Little information on memory dependences (profiling?)

– Can’t dynamically respond to cache misses

– Pain to speculate and recover from mis-speculation (h/w support?)

• Hardware
+ High branch prediction accuracy

+ Dynamic information about memory dependences

+ Can respnd to cache misses

+ Easy to speculate and recover from mis-speculation

– Finite buffering resources fundamentally limit scheduling scope

– Scheduling machinery adds pipeline stages and consumes power
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Grid Processor

• Grid processor (TRIPS) [Nagarajan+, MICRO’01+

• EDGE (Explicit Dataflow Graph Execution) execution model

• Holistic attack on many fundamental superscalar problems

• Specifically, the nastiest one: N2 bypassing

• But also N2 dependence check

• And wide-fetch + branch prediction

• Two-dimensional VLIW

• Horizontal dimension is insns in one parallel group

• Vertical dimension is several horizontal groups

• Executes atomic code blocks (hyperblocks)

• Uses predication and special scheduling to avoid taken branches

• UT-Austin research project

• http://www.cs.utexas.edu/users/cart/trips/

• Fabricated an actual chip with help from IBM: next-generation PowerPC 
¿?

http://www.cs.utexas.edu/users/cart/trips/
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Grid Processor

• Components
• next hyperblock logic/predictor (NH), I$, D$, regfile

• NxN ALU grid: here 4x4

• Pipeline stages
• Fetch block to grid

• Read registers

• Execute/memory

• Cascade

• Write registers

• Block atomic
• No intermediate regs

• Grid limits size/shape

ALU

read read read read

regfile

ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

I$

D$

NH
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Aside: SAXPY

• SAXPY (Single-precision A X Plus Y)
• Linear algebra routine (used in solving systems of equations)

• Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)

Z[i]=A*X[i]+Y[i];

0: ldf X(r1),f1      // loop

1: mulf f0,f1,f2     // A in f0

2: ldf Y(r1),f3      // X,Y,Z are constant addresses

3: addf f2,f3,f4

4: stf f4,Z(r1)

5: addi r1,4,r1      // i in r1

6: blt r1,r2,0       // N*4 in r2
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Grid Processor SAXPY

• A code block for this Grid processor has 5 4-insn words
• Atomic unit of execution

• Some notes about Grid ISA
• read: read register from register file

• pass: null operation

• –1,0,1: routing directives send result to next word

• one insn left (-1), insn straight down (0), one insn right (1)

• Directives specify value flow, no need for interior registers

read r2,0 read f1,0 read r1,0,1 nop

pass 0 pass 1 pass -1,1 ldf X,-1

pass 0 pass 0,1 mulf 1 ldf Y,0

pass 0 addi pass 1 addf 0

blt nop pass 0,r1 stf Z
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Grid Processor SAXPY Cycle 1

• Map code block to grid

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 2

• Read registers

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 3

• Execute first grid row

• Execution proceeds in “data flow” fashion
• Not lock step

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 4

• Execute second grid row

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 5

• Execute third grid row
• Recall, mulf takes 5 cycles

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 6

• Execute third grid row

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 9

• Finish 1

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Cycle 10

• Finish 2

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY cycle 11

• When all instructions are done
• Write registers and next code block PC

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH
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Grid Processor SAXPY Performance

• Performance
• 1 cycle fetch

• 1 cycle read regs

• 8 cycles execute

• 1 cycle write regs

• 11 cycles total

• Utilization
• 7 / (11 * 16) = 4%

• What’s the point?
+ Simpler components

+ Faster clock?

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH



Instruction Level Parallelism II: Superscalar Execution 83

Grid Processor Redux

+ No hardware dependence checks … period
• Insn placement encodes dependences, still get dynamic issue

+ Simple, forward only, short-wire bypassing
• No wraparound routing, no metal layer crossings, low input muxes

– Code size
• Lots of nop and pass operations

– Non-compatibility
• Code assumes horizontal and vertical grid layout

– No scheduling between hyperblocks
• Can be overcome, but is pretty nasty

– Poor utilization
• Overcome by multiple concurrent executing hyperblocks



Prototype
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