g

:
i/
. _"

Y :
- \\\\

\

Instruction Level Parallellsm 1l

\:r’ 3

Dynamlc Schedulmg

Reading: Appendix A (A-67)
H&P Chapter 2

Instruction Level Parallelism,l!

> #his-Unit: Dynamic Scheduling

Application e PART1
0S e Dynamic scheduling
Compiler Firmware e QOut-of-order execution
e Scoreboard
1/0
/ e Dynamic scheduling with WAW/WAR
e Tomasulo’s algorithm
Digital Circuits e Add register renaming to fix
WAW/WAR
Gates & Transistors
e PART2

e Support for speculation and precise state
e Dynamic memory scheduling

Instruction Level Parallelism lll: Dynamic Scheduling

~The Problem With In-Order Pipelines

1 2 345 6 7 8 9 10111213141516
addf £0,f1,f2 |F D E+E+E+ W
mulf £2,£3,£f2 F D d*d*E*E*E*E*E*X W
subf £0,f1l,f4 F p* p* D E+E+E+ W

e What’s happening in cycle 47
e mulf stalls due to RAW hazard

e OK, this is a fundamental problem
e subf stalls due to pipeline hazard
e Why? subf can’t proceed into D because addf is there

e That is the only reason, and it isn’t a fundamental one

e Why can’t subf gointo D in cycle 4 and E+ in cycle 57

Instruction Level Parallelism lll: Dynamic Scheduling

Picture

1$
B

P

Ready Table

A A

add p2,p3,p4
sub p2,p4/p5

mul p2 ,P6
add p4,4,p7

a

regfile

[
»

D$

e

P2

P3

P4

PS5

P6

P7

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

add p2,p3,p4
sub p2,p4,p5 and add p4,4,p7
mul p2,p5,p6

e Instructions fetch/decoded/renamed into Instruction Buffer
e Also called “instruction window” or “instruction scheduler”

e |Instructions (conceptually) check ready bits every cycle
e Execute when ready

Instruction Level Parallelism Ill: Dynamic Scheduling

e To eliminate WAW and WAR hazards

e Example

e Names:rl,r2,r3
e |ocations:pl,p2,p3,p4,p5,p6,p7
e QOriginal mapping: r1—>pl, r2—>p2, r3—>p3, p4—p7 are “free”

Renamed insns

MapTable FreeList Raw insns
rl |r2 |r3
pl |p2 |[p3 P4,p5,p6,p7 add r2,r3,zxl1
P4 |p2 |p3 PS5,p6,p7 sub r2,rl/, 31
p4 |p2 |p5 p6,p7 mul r2 A5 r3
p4 PZ PG p7 div rl,4,rl

e Renaming

+ Removes WAW and dependences

+ Leaves RAW intact!

Instruction Level Parallelism Ill: Dynamic Scheduling

add p2,p3,p4
sub p2,p%,p5
mul p2/p5,p6

div p4,4,p7

Jynamic Scheduling - 0cO Execution

e Dynamic scheduling
e Totally in the hardware
e Also called “out-of-order execution” (Oo0)
e Fetch many instructions into instruction window
e Use branch prediction to speculate past (multiple) branches
e Flush pipeline on branch misprediction

e Rename to avoid false dependencies (WAW and WAR)

e Execute instructions as soon as possible
e Register dependencies are known
e Handling memory dependencies more tricky (much more later)
e Commit instructions in order
e Any strange happens before commit, just flush the pipeline
e Current machines: 100+ instruction scheduling window
e Corei7 (AKA. Nehalem) has 128

Instruction Level Parallelism Ill: Dynamic Scheduling

sotatic Instruction Scheduling

e |ssue: time at which insns execute

e Schedule: order in which insns execute
e Related to issue, but the distinction is important

e Scheduling: re-arranging insns to enable rapid issue
e Static: by compiler
e Requires knowledge of pipeline and program dependences
e Pipeline scheduling: the basics
e Requires large scheduling scope full of independent insns
e Loop unrolling, software pipelining: increase scope for loops
e Trace scheduling: increase scope for non-loops

Anything software can do ... hardware can do better

Instruction Level Parallelism lll: Dynamic Scheduling

“"Mptivation Dynamic Scheduling

e Dynamic scheduling (out-of-order execution)
e Execute insns in non-sequential (non-VonNeumann) order...
+ Reduce RAW stalls
+ Increase pipeline and functional unit (FU) utilization
e Original motivation was to increase FP unit utilization
+ Expose more opportunities for parallel issue (ILP)
e Not in-order — can be in parallel
e ..but make it appear like sequential execution
e Important
— But difficult
e Second part of the unit

Instruction Level Parallelism lll: Dynamic Scheduling

‘égfore We Continue

e |f we can do this in software...

e ...why build complex (slow-clock, high-power) hardware?
+ Performance portability
e Don’t want to recompile for new machines
+ More information available
e Memory addresses, branch directions, cache misses
+ More registers available (?7?)
e Compiler may not have enough to fix WAR/WAW hazards
+ Easier to speculate and recover from mis-speculation
e Flush instead of recover code
— But compiler has a larger scope
e Compiler does as much as it can (not much)
e Hardware does the rest

Instruction Level Parallelism Ill: Dynamic Scheduling

“’Gging Forward: What’s Next

o We'll build this up in steps over the next days

“Scoreboarding” - first 000, no register renaming

“Tomasulo’s algorithm” - adds register renaming

Handling precise state and speculation
e P6-style execution (Intel Pentium Pro)
e R10k-style execution (MIPS R10k)
Handling memory dependencies

e Conservative and speculative

e |Let’s get started!

Instruction Level Parallelism lll: Dynamic Scheduling

> 'Dynamic Scheduling as Loop Unrolling

e Three steps of loop unrolling
e Step |I: combine iterations
e |ncrease scheduling scope for more flexibility
e Step Il: pipeline schedule
e Reduce impact of RAW hazards
e Step lll: rename registers
e Remove WAR/WAW violations that result from scheduling

Instruction Level Parallelism lll: Dynamic Scheduling

“Loop,Example: SAX (SAXPY.- PY)

e SAX (Single-precision A X)

® Only because there won’t be room in the diagrams for SAXPY

for (i=0;i<N;i++)
2 [1i]=A*X[i] ;

0: 1df X(rl),fl // loop

1l: mulf £0,£f1,£f2 // A in f0
2: stf £4,Z(rl)

3: addi rl,4,rl // i in rl
4: blt rl,r2,0 // N*4 in r2

e Consider two iterations, ignore branch
1df, mulf, stf, addi, 1df, mulf, stf

Instruction Level Parallelism lll: Dynamic Scheduling

regfile

D$

-
<

e In-order pipeline

e Often written as F,D,X,W (multi-cycle X includes M)
e Example pipeline: 1-cycle int (including mem), 3-cycle pipelined FP

e Let’s assume no bypass

Instruction Level Parallelism lll: Dynamic Scheduling

S

Insn D| X | W
1df X(rl) ,£f1 cl | c2 | c3
mulf £0,f1,£f2| c3 | c4+| c7
stf £2,Z(rl) c7 | c8 | c9
addi rl,4,rl c8 | ¢c9 | cl0
1df X(rl) ,f1 | cl0| cll| cl2
mulf £0,£f1,£f2| cl2|cl3+ clé6
stf £2,Z(rl) clé| cl7| cl8

e Alternative pipeline diagram

e Down:insns

e Across: pipeline stages

e |n boxes: cycles
e Basically: stages <> cycles

e Convenient for out-of-order

Instruction Level Parallelism Ill: Dynamic Scheduling

he Problem With In-Order Pipelines

S

regfile
| >
$ D$
B >
P

A A

e In-order pipeline
e Structural hazard: 1 insn register (latch) per stage
e 1insn per stage per cycle (unless pipeline is replicated)
e Younger insn can’t “pass” older insn without “clobbering” it
e Qut-of-order pipeline

e Implement “passing” functionality by removing structural hazard

Instruction Level Parallelism Ill: Dynamic Scheduling

S

regfile

[
»

I\ID$

[
»

[
»

\ 4

T

e Trick: insn buffer (many names for this buffer)

e Basically: a bunch of latches for holding insns

P DI D2

A A

* Implements iteration fusing ... here is your scheduling scope

e Split D into two pieces
e Accumulate decoded insns in buffer in-order
e Buffer sends insns down rest of pipeline out-of-order

Instruction Level Parallelism Ill: Dynamic Scheduling

S

regfile

.

[
»

D$

[
»

[
»

A A

e Dispatch (D): first part of decode
e Allocate slot in insn buffer
— New kind of structural hazard (insn buffer is full)
e |In order: stall back-propagates to younger insns
e Issue (S): second part of decode
e Send insns from insn buffer to execution units

+ Qut-of-order: wait doesn’t back-propagate to younger insns

* (!!) The book call Dispatch = issue and Issue =2 read operands

Instruction Level Parallelism Ill: Dynamic Scheduling

~‘Dispatch and Issue with Floating-Point

—

1{

regfile

L

F-regfile <

or

"If)ynamic Scheduling Algorithms

e Three parts to loop unrolling
e Scheduling scope: insn buffer
e Pipeline scheduling and register renaming: scheduling algorithm

e Look at two register scheduling algorithms
e Register scheduler: scheduler based on register dependences
e Scoreboard
e No register renaming — limited scheduling flexibility
e Tomasulo
e Register renaming — more flexibility, better performance

e Big simplification in this part: memory scheduling
e Pretend register algorithm magically knows memory dependences
e A little more realism second part of the unit

Instruction Level Parallelism Ill: Dynamic Scheduling

SCHEDULING ALGORITHM I:
SCOREBOARD

o UC R

Instruction Level Parallelism lll: Dynamic Scheduling

“‘Sgheduling Algorithm |: Scoreboard

e Scoreboard
e Centralized control scheme: insn status explicitly tracked
* Insn buffer: Functional Unit Status Table (FUST)

e Firstimplementation: CDC 6600 [1964]

e 16 separate non-pipelined functional units (7 int, 4 FP, 5 mem)
e No bypassing

e QOur example: “Simple Scoreboard”
e 5FU:1ALU, 1load, 1 store, 2 FP (3-cycle, pipelined)

e |t makes any sense to use this in simple 1 ALU pipeline?

Instruction Level Parallelism lll: Dynamic Scheduling

~'Simple Scoreboard Data Structures

Reg Status

VYV
VYV

=ou-e@M R1 R2 R op T

Insns e —

FU Status i i

e |nsn fields and status bits

\ 4

\ 4

e Tags
e \alues

Instruction Level Parallelism lll: Dynamic Scheduling

socoreboard Data Structures

e FU Status Table

e One entry per FU

e busy, op, R, R1, R2: destination/source register names
e T:destination register tag (FU producing the value)

e T1,T2:source register tags (FU producing the values)

e Register Status Table
e T:tag (FU that will write this register)

e Tags interpreted as ready-bits
e Tag ==0 — Value is ready in register file
e Tag !=0 — Value is not ready, will be supplied by T

e |nsn status table

e S,X bits for all active insns

Instruction Level Parallelism lll: Dynamic Scheduling

“Sporeboard Pipeline

e New pipeline structure: F, D, S, X, W
e F (fetch)
e Same as it ever was
D (dispatch)
e Structural or WAW hazard ? stall : allocate scoreboard entry

S (issue)
e RAW hazard ? wait : read registers, go to execute

X (execute)
e Execute operation, notify scoreboard when done
W (writeback)
e \WWAR hazard ? wait : write register, free scoreboard entry

e W and RAW-dependent S in same cycle
e W and structural-dependent D in same cycle

Instruction Level Parallelism lll: Dynamic Scheduling

“Sporeboard Dispatch (D).

Insn Reg Status

»

o

Fetched Ra¥¥sa R 0p
Insns

\ 4

\ 4

>

VYV

FU Status i i

e Stall for WAW or structural (Scoreboard, FU) hazards

e Allocate scoreboard entry
e Copy Reg Status for input registers

Instruction Level Parallelism lll: Dynamic Scheduling

socoreboard Issue (S)

E Insn Reg Status

\ A 4

Fetched Ra¥¥sa R 0p
insns ==1==

\ 4

FU Status i i

e Wait for RAW register hazards

e Read registers
e Set Issue done in Insn Status table

Instruction Level Parallelism lll: Dynamic Scheduling

\ 4

FU

‘ﬂésue Policy and Issue Lo

e |ssue
e |f multiple insns ready, which one to choose? Issue policy
e Oldest first? Safe

e Longest latency first? May yield better performance could produce
starvation

e Select logic: implements issue policy
e W—1 priority encoder
e W: window size (humber of scoreboard entries)

e How the select logic insn to choose (in our example)?

Instruction Level Parallelism lll: Dynamic Scheduling

socoreboard Execute

% Insn Reg Status

\ 4

VY

VYV

=\os-:o@ R1 R2 R op T T1
Insns

\ 4

FU Status

e Execute insn

e Set on-execution in Insn Status table

Instruction Level Parallelism lll: Dynamic Scheduling

\ 4

“Sporeboard Whriteback (\W])

Reg Status

\ A 4

Fetched Ra¥¥sa R 0p
insns =—=1==

\ 4

—l

FU Status

e Wait for WAR hazard

e Write value into regfile, clear Reg Status entry

* Free scoreboard entry

Instruction Level Parallelism lll: Dynamic Scheduling

\ 4

Insn Status

Reg Status

Insn

Reg

T

1df X(rl),fl

0]

mulf £0,£f1,£2

f1

stf £2,Z(rl)

£2

addi rl,4,rl

rl

1df X(rl),fl

mulf £0,£f1,£2

stf £2,%(rl)

FU Status

FU |busy

op

R1

R2

T1

12

ALU |no

LD no

ST no

FP1 |no

FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status

Reg Status

Insn

Reg

T

1df X(rl),fl

0]

mulf £0,£f1,£2

f1

LD

stf £2,Z(rl)

£2

addi rl,4,rl

rl

1df X(rl),fl

mulf £0,£f1,£2

stf £2,%(rl)

FU Status

FU |busy

op

R1

R2

T1

12

ALU |no

LD yes

1df

f1l

rl

ST no

FP1 |no

FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling

allocate

Insn Status

Reg Status

Insn D| S| X | W Reg|T
1df X(rl) ,£f1 cl | c2 £0
mulf £0,f1,£f2| c2 £f1 |LD
stf £2,Z(rl) f2 |FP1l
addi rl,4,rl rl

1df X(rl) ,f1l

mulf £0,£f1,£2

stf £2,Z(rl)

FU Status

FU |busylop |[R |R1 [R2 |T1 T2
ALU [no

1D yes |1df |f1 |- el e =

ST no

FPl |[yes [mulf f2 [£f0 (£f1 (- LD allocate
FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Reg Status
Insn D| S| X| W Reg|T

1df X(rl) ,£f1 cl| c2| c3 £0

mulf £0,£f1,£f2| c2 f1 |LD
stf £2,Z2(rl) c3 f2 |FP1
addi rl,4,rl rl

1df X(rl) ,f1l

mulf £0,£f1,£2

stf £2,Z(rl)

Functional unit status

FU |busylop |R |R1 |R2 |T1 T2

ALU [no

LD yes |1df |f1 |- Rl e -

ST yes stf - f2 rl FP1 - allocate
FP1l |yes |mulf f2 |£f0 |f1 |- LD

FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl| c2| c3| c4 £0

mulf £0,fl1,£f2| c2 | c4 £f1 (LD
stf £2,Z(rl) c3 f2 |FP1
addi rl,4,rl c4 rl |ALU
1df X(rl) , fl

mulf £0,£f1,£2

stf £2,Z(rl)

FU Status

FU |busylop |[R |R1 [R2 |T1 T2

ALU |yes |addi ([rl |rl |- - x allocate
LD no free
ST yes |stf |- f2 |rl |FP1 |-

FPl |yes |mulf f2 [£f0 (f1 |- LD

FP2 [no

Instruction Level Parallelism lllI:

Dynamic Scheduling

£1 written — clear

£0 (LD) is ready — iIssue mulf

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{c2| c3| c4 £0

mulf £f0,f1,£f2| c2 | c4 | c5 £f1 (LD
stf £2,Z(rl) c3 £f2 |FP1
addi rl,4,rl cd | c5 rl |(ALU
1df X(rl) ,f1l c5

mulf £0,£f1,£2

stf £2,Z(rl)

FU Status

FU |busylop |[R |R1 [R2 |T1 T2

ALU |yes |addi |rl1l |rl1l |- - -

LD yes |1df |f1 |- rl |- ALU allocate
ST yes |stf |- f2 |rl |FP1 |-

FPl |yes |mulf f2 [£f0 (f1 |- —

FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

D stall: WAW hazard w/ mulf (£2)

Insn Status Reg Status

Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{c2| c3| c4 £0

mulf £f0,£f1,£f2| c2 | c4 | c5+ £f1 |LD

stf £2,Z(rl) c3 £f2 |FP1

addi rl,4,rl cd | c5| c6 rl |(ALU

1df X(rl) ,f1l c5

mulf £0,£f1,£2

stf £2,Z(rl) How to tell?
RegStatus[£2] non-empty

FU Status

FU |busylop |[R |R1 [R2 |T1 T2

ALU |yes |addi |rl1l |rl1l |- - -

1D yes |1df |f1 |- Rl e ALU

ST yes |stf |- f2 |rl |FP1 |-

FPl |yes |mulf f2 [£f0 (f1 |- —

FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

WAR hazard w/ stf (rl)
How to tell? Untagged rl in FuStatus

Insn Status Reg Status
Insn D| S| X Reg|T

1df X(rl) ,£f1 cl|{ c2| c3 £0

mulf £f0,£f1,£f2| c2 | c4 | c5+ £f1 |LD
stf £2,Z(rl) | 3 f2 |FP1
addi rl,4,rl cd | c5| c6 rl |(ALU
1df X(rl),fl | e5 "W wait:

mulf £0,£f1l,£f2

stf £2,7Z(rl) Requires CAM
FU Status

FU |busylop |R |[R1 |[R2 |T1 [T2—]
ALU |yes |addi|rl [rl |- |- <

LD |yes |[1df [f1 |- |[r1 |-~ |ALU |

ST |yes |stf |- [f2 |rl1~FP1 |- ¥

FPl |yes |mulf f2 [£f0 (f1 |- —

FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{c2| c3| c4 £0

mulf £0,£f1,£f2| c2 | c4 | c5+| c8 £f1 |LD

stf £2,Z (rl) c3 | c8 £f2 |FPl1 FP2
addi rl,4,rl cd| cS| cb| = rl |(ALU
1df X(rl),fl | c5 "W wait

mulf £0,£f1,£2| c8

stf £2,Z(rl)

FU Status

FU |busylop |[R |R1 [R2 |T1 T2

ALU |yes |addi |rl1l |rl1l |- - -

LD yes |1df |f1 |- TlE = ALU

ST yes |stf |- £2 (rl |FP1 |-

FP1l |no free
FP2 |yes mulf f2 [f0 [fl |- 1D allocate

Instruction Level Parallelism Ill: Dynamic Scheduling

first mulf done (FP1)

f1 (FP1) is ready — issue stf

rl written - clear

D stall: structural hazard FuStatus [ST]

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{c2| c3| c4 £0

mulf £0,£f1,£f2| c2 | c4 |c5+| c8 £f1 |LD
stf £2,Z(rl) c3| c8 | c9 £f2 |FP2
addi rl,4,rl cd | c5| c6| c9 rl |ALU
1df X(rl) , fl c5 | c9

mulf £0,£f1,£f2| c8

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 |T1 T2

ALU |no free
1D yes |1df |f1 |- el e ALU

ST yes |stf |- £2 e o= =

FP1l [no

FP2 yes mulf £2 |£0 (f1 |- LD

Instruction Level Parallelism lllI:

Dynamic Scheduling

rl (ALU) is ready — issue 1df

W & structural-dependent D in same cycle

Insn Status Reg Status
Insn D| S| X | W Reg|T
1df X(rl) ,£f1 cl|{c2| c3| c4 £0
mulf £0,£f1,£f2| c2 | c4 |c5+| c8 £f1 |LD
stf £2,Z(rl) c3| c8| c9|cl0 £f2 |FP2
addi rl,4,rl cd | c5| c6| c9 rl

1df X(rl) ,£f1 cS5 | c9|cl0

mulf £0,£f1,£f2| c8

stf £2,Z(rl) |cl0

FU Status

FU |busylop |[R |R1 [R2 |T1 T2

ALU [no

1D yes |1df |f1 |- el e =

ST yes |stf |- f2 |rl |FP2 -

FP1l [no

FP2 |yes mulf f2 |f0 [fl1 |- LD

Instruction Level Parallelism Ill: Dynamic Scheduling

free, then allocate

In-Order vs. Scoreboard

In-Order Scoreboard
Insn D| X | W] D] S| X | W
1df X(rl) ,£f1 cl | c2| c3| cl| c2| c3 | c4
mulf £f0,f1,£f2| c3 | cd4+| c7 | c2 | c4 | c5+| c8
stf £2,Z(rl) c7 | c8 | c9 | c3 | c8 | c9 | cl0
addi rl,4,rl c8 | c9 | clO0O) c4 | €5 | c6 | c9
1df X(rl) , £f1l clO|cll|{cl2| c5 | ¢9 | cl0| cl1
mulf £0,£f1,£f2| cl12|cl3+ cl6| c8 | cll|cl2+ cl1l5
stf £2,Z(rl) cl6e| cl7| cl8| cl10| c15| cl6| cl17

e Big speedup?

— Only 1 cycle advantage for scoreboard
e Why? addi WAR hazard

e Scoreboard issued addi earlier (c8 — ¢5)

e But WAR hazard delayed W until c9

e Delayed issue of second iteration

Instruction Level Parallelism Ill: Dynamic Scheduling

-Order vs. Scoreboard ll: Cache Miss

In-Order Scoreboard
Insn D| X W] D|] S| X | W
1df X(rl) ,£f1 cl [c2+| c7 | cl1 | c2 | c3+| c8
mulf £0,£f1,£f2| c¢7 | c8+| cll| c2 | c8 | c9+| cl12
stf £2,Z(rl) cll| cl2| cl3| c3 | cl2| cl3| cl4
addi rl,4,rl | cl2|cl3|cl4| c4 | c5 | c6 | cl13
1df X(rl) ,£f1 | cl4| cl5| cl6| c5 | cl3| cl4d4| c15
mulf £f0,£f1,£f2| cl1l6|cl7+ c20| c6 | cl5|cl6+ cl9
stf £2,Z(rl) c20| c21| c22| c7 | cl19| c20| c21

e Assume

e 5 cycle cache miss on first 1df

e |gnore FUST structural hazards

— Little relative advantage

e addi WAR hazard (¢7 —> ¢13) stalls second iteration

Instruction Level Parallelism Ill: Dynamic Scheduling

“‘Sporgboard Redux

e The good
+ Cheap hardware
e InsnStatus + FuStatus + RegStatus ~ 1 FP unit in area
+ Pretty good performance
e 1.7X for FORTRAN (scientific array) programs

e The less good

— No bypassing
e |s this a fundamental problem?

— Limited scheduling scope
e Structural/WAW hazards delay dispatch

— Slow issue of truly-dependent (RAW) insns
e WAR hazards delay writeback

e Fix with hardware register renaming

Instruction Level Parallelism lll: Dynamic Scheduling

SCHEDULING ALGORITHM II:
TOMASULO

aa UC R}

Instruction Level Parallelism lll: Dynamic Scheduling

~'Register ‘Renaming

e Register renaming (in hardware)

+

+

Change register names to eliminate WAR/WAW hazards

An elegant idea (like caching & pipelining)

Key: think of registers (xr1,£0...) as names, not storage locations
Can have more locations than names

Can have multiple active versions of same name

e How does it work?

Map-table: maps names to most recent locations
e SRAM indexed by name
On a write: allocate new location, note in map-table
On a read: find location of most recent write via map-table lookup
Small detail (not so small): must de-allocate locations at some point

Instruction Level Parallelism lll: Dynamic Scheduling

e To eliminate WAW and WAR hazards

e Example
e Names:rl,r2,r3

e Llocations:pl,p2,p3,p4,p5,p6,p7

MapTable Freelist Raw insns Renamed insns
rl (r2 (r3
add r2,

. r3,
L -] sw r2,1:‘1/‘3 7
: - - | mul r2, /& r

div rl',4,rl B

e Renaming
+ Removes WAW and dependences
+ Leaves RAW intact!

Renaming regfile

1$ >

,I | :Il EE D$
B
e D S

A

a

Instruction Level Parallelism lll: Dynamic Scheduling

""Sgheduling Algorithm |l:-Tamasulo

e Tomasulo’s algorithm
e Reservation stations (RS): instruction buffer
e Common data bus (CDB): broadcasts results to RS
e Register renaming: removes WAR/WAW hazards

e Firstimplementation: IBM 360/91 [1967]

e Dynamic scheduling for FP units only
e Bypassing

e QOur example: “Simple Tomasulo”
e Dynamic scheduling for everything, including load/store

e No bypassing (for comparison with Scoreboard)
e 5RS:1ALU, 1load, 1 store, 2 FP (3-cycle, pipelined)

Instruction Level Parallelism lll: Dynamic Scheduling

soimple Tomasulo Data Structures

Map Table ﬁ

\ 4

CDB.T
CDB.V

Fetched
Insns ==1==

»
»

Reservation Stat‘ons i i

e |nsn fields and status bits

VVYVY

e Tags
e \alues

Instruction Level Parallelism lll: Dynamic Scheduling

~@Jomasulo Data Structures

e Reservation Stations (RS#)
e FU, busy, op, R: destination register name
e T:destination register tag (RS# of this RS)
e T1,T2: source register tags (RS# of RS that will produce value)

e V1,V2:source register values
e That’s new

e Map Table
e T:tag (RS#) that will write this register

e Common Data Bus (CDB)
e Broadcasts <RS#, value> of completed insns

e Tags interpreted as ready-bits++

e T==0 — Value is ready somewhere
e T!=0 — Value is not ready, wait until CDB broadcasts T

Instruction Level Parallelism Ill: Dynamic Scheduling

—oimple Tomasulo Pipeline

e New pipeline structure: F, D, S, X, W
e D (dispatch)
e Structural hazard ? stall : allocate RS entry
o S (issue)
e RAW hazard ? wait (monitor CDB) : go to execute
o W (writeback)
e \Write register, free RS entry
e W and RAW-dependent S in same cycle
e W and structural-dependent D in same cycle

Instruction Level Parallelism lll: Dynamic Scheduling

~Tomasulo Dispatch (D

Map Table ﬁ

\ 4

CDB.V

Fetched R 0p
Insns ==

»
»

Reservation Stat‘ons i i

e Stall for structural (RS) hazards
e Allocate RS entry

e |nput register ready ? read value into RS : read tag into RS
e Set register status (i.e., rename) for ouput register

Instruction Level Parallelism lll: Dynamic Scheduling

~Jomasulo Issue (S)

Map Table ﬁ

\ 4

CDB.T

Fetched
Insns ==1==

»
»

Reservation Stat‘ons i i

e Wait for RAW hazards

e Read register values from RS

VVYVY

Instruction Level Parallelism lll: Dynamic Scheduling

CDB.V

Insns

»
»

Reservation Stat‘ons i i

VVYVY

Instruction Level Parallelism lll: Dynamic Scheduling

~womasulo Writeback (W)

Map Table ﬁ

»

CDB.V

Fetched
Insns

VVY

»
»

Reservation Stat‘ons

e Wait for structural (CDB) hazards
e Qutput Reg Status tag still matches? clear, write result to register
e CDB broadcast to RS: tag match ? clear tag, copy value
e Free RS entry

Instruction Level Parallelism lll: Dynamic Scheduling

“‘b_ifference Between Scoreboard...

Reg Status

VYV
VYV

=ou-e@M R1 R2 R op T
Insns e —

FU Status i i

\ 4

\ 4

Instruction Level Parallelism lll: Dynamic Scheduling

e.And Tomasulo

Map Table ﬁ

\ 4

CDB.T
CDB.V

Fetched
Insns ==1==

»
»

Reservation Stat‘ons i i

e What in Tomasulo implements register renaming?
e Value copiesinRS (V1, V2)
e |nsn stores correct input values in its own RS entry
+ Future insns can overwrite master copy in regfile, doesn’t matter

VVYVY

Instruction Level Parallelism lll: Dynamic Scheduling

~Value/Copy-Based Register Renaming

e Tomasulo-style register renaming

Called “value-based” or “copy-based”
Names: architectural registers
Storage locations: register file and reservation stations
e Values can and do exist in both
e Register file holds master (i.e., most recent) values
+ RS copies eliminate WAR hazards
Storage locations referred to internally by RS# tags
e Map table translates names to tags
e Tag == 0 value is in register file
e Tag !=0value is not ready and is being computed by RS#
CDB broadcasts values with tags attached
e So insns know what value they are looking at

Instruction Level Parallelism Ill: Dynamic Scheduling

alue-Based Renaming Example

1df X (rl), £1 (allocated RS#2)
e MT[rl] ==0— RS[2].V2 = RF[r1]
e MT[£1] = RS#2

mulf £0,£f1, £2 (allocate RS#4)
e MT[£0] == 0 — RS[4].V1 = RF[£0]
e MT[£1] == RS#2 —> RS[4].T2 = RS#2

e MT[£2] = RSH4 Map Table
addf £7,£8,£0 Reg|T

e Can write RF[£0] before mul £ executes, why? :g RS#2
1df X(rl) , £f1 £2 |RS#4

e Can write RF[£1] before mul f executes, why? =1
e Can write RF[£1] before first 1d£, why?

Reservation Stations

T |[FU |busyjop |R |T1 T2
2 |LD yes |1df (f1 |- - - [rl]

4 |FPl1 |yes |mulf £2 |- RS#2 |[£0]

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Map Table
Insn D| S| X| W Reg|T
1df X(rl),fl £0

mulf £0,fl,£2 £l

stf £2,z(rl) £2

addi rl,4,rl rl

1df X(rl) ,£f1
mulf £0,£f1,£2
stf £2,Z(rl)

Reservation Stations

T |[FU |busyjop [R [T1 T2 Vi1 V2
1l [(ALU |no

2 |LD no

3 (ST no

4 |FP1l |no

5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 1

Insn Status Map Table
Insn D| S| X | W Reg|T
1df X(rl),fl | cl £0

mulf £0,fl,£2 f1 |[RS#2
stf £2,Z(rl) £2

addi rl,4,rl rl

1df X(rl),fl

mulf £0,£f1,£2

stf £2,Z(rl)

Reservation Stations

T |[FU |busyjop [R [T1 T2 V1 V2

1l [(ALU |no

2 |LD |yes |1df [f1 |- — - [r1] |allocate
3 (ST no

4 |FP1l |no

5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 2

Insn Status Map Table
Insn D| S| X | W Reg|T
1df X(rl) ,£f1 cl | c2 £0

mulf £0,fl,f2| c2 fl [RS#2
stf £2,Z(rl) f2 [RS#4
addi rl,4,rl rl

1df X(rl),fl

mulf £0,£f1,£2

stf £2,Z(rl)

Reservation Stations

T |FU |busylop |R |T1 T2 V1 V2

1 |ALU [no

2 |LD yes |1df (f1 |- B - [rl]

3 NET no

4 |FP1 |yes |mulf [f2 |- RS#2 |[£0] |- allocate
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Map Table
Insn D| S| X | W Reg|T
1df X(rl) ,£f1 cl|{ c2| c3 £0

mulf £0,f1l,f2| c2 f1 |RS#2
stf £2,2(rl) | e3 £2 |RS#4
addi rl,4,rl rl

1df X(rl), £l

mulf £0,£f1,£2

stf £2,Z(rl)

Reservation Stations

T |FU |busy|op R |[T1 T2 V1 V2
1 |ALU [no

2 |1LD yes |1df (f1 |- = - [rl]
3 [ST |yes |stf |- RS#4 |- R [r1] |allocate
4 |FPl |(yes |mulf |f2 |- RS#2 |[£0] |-

5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Map Table CDB

Insn D| S| X | W Reg|T T

1df X(rl) ,f1l cl| c2| c3| c4 £0 RS#2 [[£f1]

mulf £0,fl1,f2| c2 | c4 f1l |RS#2 <

stf £2,Z(rl) c3 £f2 |RS#4

addi rl,4,rl cd rl |RS#1

1df X(rl), fl

mulf £0,£f1,£2

stf £2,Z(rl) 1df finished (W)

— clear £1 RegStatus

_ _ CDB broadcast

Reservation Stations

T |FU |busy|op R |[T1 T2 V1 V2

1 |ALU |yes |addi rl1 |- - [r1l] |- allocate

2 |LD no free

3 |ST |yes |[stf |- |RS#4 |- | |- [rl]

4 |FP1l |yes |mulf |f2 |- RS#2 |[£0] |CDB.V|RS#2 ready —>

5 |FP2 |no grab CDB value

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Map Table
Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{ c2| c3| c4 £0

mulf £0,fl1,f2| c2| c4 | c5 £f1 |RS#2
stf £2,Z(rl) c3 £f2 |RS#4
addi rl,4,rl cd | c5 rl |RS#1
1df X(rl),fl c5

mulf £0,£f1,£2

stf £2,Z(rl)

Reservation Stations

T |FU |busylop |R |T1 T2 V1 V2
1 |ALU |yes |addi |rl |- N Frlslss =

2 |LD yes |1df [f1 |- RS#1 |- - allocate
3 [ST |yes |stf |- RS#4 |- — [rl]
4 |FPl |(yes |mulf |f2 |- - [£0] |[£1]
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 6

Insn Status Map Table
Insn D| S| X | W Reg|T
1df X(rl) ,£f1 cl|{ c2| c3| c4 £0
mulf £0,fl1,£f2| c2 | c4 | c5+ £f1 |RS#2
stf £2,Z(rl) c3 £f2 |RS#4RS#5| «
addi rl,4,r1l | c4| c5| c6 rl |RS#1
1df X(rl),fl1 | c5
mulf £0,f1,£f2)| cé6 no D stall on WAW: scoreboard would
stf £f2,z(rl) overwrite £2 RegStatus
anyone who needs old £2 tag has it
Reservation Stations
T |FU |busy|op R |[T1 T2 V1 V2
1 |ALU |yes |addi |rl |- - [rl] |-
2 |LD |yes (1df (f1 |- RS#1 |- -
3 [ST |yes |stf |- RS#4 |- — [rl]
4 |FPl |yes |mulf f2 |- - [£0] [[£1]
5 |FP2 |yes |mulf [f2 |- RS#2 |[£0] |- allocate

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 7

Insn Status Map Table CDB
Insn D| S| X | W Reg|T T
1df X(rl) ,fl | cl| c2]| c3]| c4 £0 RS#1 | [rl]
mulf £0,fl1,£f2| c2 | c4 | c5+ £f1 |RS#2
stf £2,Z(rl) c3 £f2 |RS#5
addi rl,4,rl [c4| c5| c6| c7 rl |RS#1
1df X(rl) ,fl | c5| c7 no W wait on WAR: scoreboard would
mulf £0,£f1l,£f2| cé6 anyone who needs old rl has RS copy
stf £2,Z(rl) D stall on store RS: structural
addi finished (W)
Reservation Stations clear r1 RegStatus
T |[FU |busyjop [R [T1 T2 V1 V2 CDB broadcast
1l [(ALU |no
2 |LD |yes |1df [f1 |- RS#1 (- CDB.V|RS#1 ready —»
3 |ST |yes |stf |- |RS#4 |- - [rl] |grab CDB value
4 |FPl |yes |mulf f2 |- - [£0] [[£1]
5 |FP2 |yes mulf f2 |- RS#2 ([£0] |-

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 8

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl) ,f1l cl| c2| c3| c4 £0 RS#4 [[£2]
mulf £0,f1,f2| c2 | c4 |c5+| c8 f1 |RS#2

stf £2,2(rl) | c3| c8 £2 |RS#5

addi rl,4,rl cd | c5| c6| c7 rl

1df X(rl) ,fl | c5)| c7| c8 mulf finished (W) don’t clear £2

mulf £0,f1,£2| cé RegStatus already overwritten by 2nd

stf £2,2(rl) mulf (RS#5). Don’t update RegFile!!!
CDB broadcast

Reservation Stations

T |FU |busy|op R |[T1 T2 V1 V2

1 |ALU |no

2 |LD yes |1df (f1 |- B - [rl]

3 |ST yes |stf |- RS#4 |- CDB.V|[rl] |RS#4 ready —»
4 |FP1 Ino grab CDB value
5 |FP2 |yes mulf f2 |- RS#2 ([£0] |-

Instruction Level Parallelism Ill: Dynamic Scheduling

omasulo: Cycle 9

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl),fl cl| c2| c3| c4 £0 RS#2 |[£f1]
mulf £0,fl1,f2| c2 | c4 |c5+| c8 £f1 |RS#2

stf £2,Z(rl) c3| c8| c9 £f2 |RS#5

addi rl,4,rl cd | c5| c6| c7 rl

1df X(rl),£f1 | c5| 7| e8| c9| ong mult finished (W)
mulf £0,f1,£2| c6| c9 clear £1 RegStatus

stf £2,Z(rl) CDB broadcast

Reservation Stations

T |FU |busylop |R |T1 T2 V1 V2

1 |ALU [no

2 |LD no

3 ST yes |stf |- - - RE 2.7 [181

4 |FP1 [no

5 |FP2 |yes mulf f2 |- RS#2 [[£0] |CDB.V|RS#2 ready —

grab CDB value

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status

Map Table

Insn D| S| X | W Reg|T

1df X(rl) ,£f1 cl|{ c2| c3| c4 £0

mulf £f0,f1,£f2| c2 | c4 |c5+| c8 fl

stf £2,Z(rl) c3| c8| c9|clO £f2 |RS#5

addi rl,4,rl cd | c5| c6| c7 rl

1df X(rl) ,£f1 cS5 | c7| c8| c9 stf finished (W)

o T ARt R c10 no output register - no CDB broadcast
stf £2,Z(rl) clO

Reservation Stations

T |FU |busy|op R |[T1 T2 V1 V2

1 |ALU [no

2 |LD no

3 [ST |yes |stf |- RS#5 |- - [r1] [free — allocate
4 |FP1l [no

5 |FP2 yes mulf |£2 |- - [£0] |[£1]

Instruction Level Parallelism Ill: Dynamic Scheduling

coreboard vs. Tomasulo

Scoreboard Tomasulo
Insn D| S| X[W]|D| S| X]| W
1df X(rl) , £f1 cl|{ c2| c3 | c4| cl| c2| c3 | c4
mulf £f0,f1,f2| c2 | c4 | c5+| c8 | c2 | c4 | c5+| c8
stf £2,Z(rl) c3 | c8 | c9 (clO0] ¢c3 | c8 | ¢9 | cl10
addi rl,4,rl cd | c5 | c6| €9 | c4 | c5| c6 | c7
1df X(rl) , £f1 c5 | c9 | cl0|cll| c5 | c¢7 | c8 | c9
mulf £f0,fl,f2| c8 | cll|cl2+ cl1l5| c6 | c9 |cl0+ cl13
stf £2,Z(rl) clO0| cl5|(cl6| cl7| cl0| cl3| cld| cl15
Hazard Scoreboard Tomasulo
Insn buffer stall in D stall in D
FU wait in S wait in S
RAW wait in S wait in S
WAR wait in W none
WAW stall in D none

Instruction Level Parallelism Ill: Dynamic Scheduling

coreboard vs. Tomasulo ll: Cache Miss

Scoreboard Tomasulo
Insn Dl S| X W] D| S| X| W
1df X(rl) ,£f1l cl | c2 |c3+| c8| cl1 | c2 | c3+| c8
mulf £f0,£f1,£f2| c2 | c8 | c9+ | cl2| c2 | c8 | c94 | cl2
stf £2,Z2(rl) c3 | cl2|cl3|cld]| c3 | cl2| cl3| cl4
addi rl,4,rl cd | c5 | c6 | cl3| c4 | c5 | c6 | c7
1df X(rl) ,£f1 c8 [cl3| cld| cl5| c5 | c7 | c8 | c9
mulf £f0,£f1,£f2| cl12| c1l5(cl6+ cl9| c6 | c9 [cl0+ cl13
stf £2,Z(rl) cl3| cl9| c20| c21| c7 | cl3| cl4d4| c15

e Assume

e 5 cycle cache miss on first 1d£

e Ignore FUST and RS structural hazards

+ Advantage Tomasulo

e No addi WAR hazard (c7) means iterations run in parallel

Instruction Level Parallelism Ill: Dynamic Scheduling

‘6§n We Add Superscalanr?

e Dynamic scheduling and multiple issue are orthogonal

E.g., Pentium4: dynamically scheduled 5-way superscalar

e Two dimensions

e N: superscalar width (number of parallel operations)

e W: window size (number of reservation stations) that could be >> the
number of Fus

e What do we need for an N-by-W Tomasulo?

RS: N tag/value w-ports (D), N value r-ports (S), 2N tag CAMs (W)
Select logic: W—N priority encoder (S)

MT: 2N r-ports (D), N w-ports (D)

RF: 2N r-ports (D), N w-ports (W)

CDB: N (W)

Which are the most expensive piece?

Instruction Level Parallelism Ill: Dynamic Scheduling

souperscalar Select Logic.

e Superscalar select logic
— Somewhat complicated (N? log:W)

— The “problem” has similar nature to bypass network problem in wide-
issue

e Can simplify using different RS designs
e Split design

e Divide RS into N banks: 1 per FU?

+ Simpler: N * log:W/N

— Less scheduling flexibility
e FIFO design [Palacharla+, ISCA 1997]

e Can issue only head of each RS bank
+ Simpler: no select logic at all
— Less scheduling flexibility (but surprisingly not that bad)

Instruction Level Parallelism lll: Dynamic Scheduling

Insns —=t==

»
»

Reservation Statlons i i

e Yes, but it’s more complicated than you might think
e |n fact: requires a completely new pipeline

VVYVY

Instruction Level Parallelism lll: Dynamic Scheduling

hy Out-of-Order Bypassing

Is Hard

No Bypassing Bypassing
Insn D S X| W] D S X | W
1df X(rl) ,£f1l cl| c2| c3 | c4| cl| c2 | c3 | c4
mulf £f0,£f1,£f2| c2 | c4 | ch5+| c8 | c2 | c3 | c4+| c7
stf £2,Z(rl) c3 | c8| c9|cl0| c3 | c6 | c7 | c8
addi rl,4,rl cd | c5 | c6| c7]| c4 | c5 | c6 | c7
1df X(rl) ,£f1 cS5 | c7| c8 | c9 | cS5 | c7 | 7| ¢9
mulf £0,£f1,£f2| c6 | c9 |cl1l0+ cl13| c6 | c9 | c8+| cl13
stf £2,Z(rl) cl0| cl3| cld4| c15| c10| cl13| cll| cl15

e Bypassing: 1df Xinc3 >mulfXinc4d >mulf Sinc3
e But howcanmulf Sinc3if 1df W in c4? Must change pipeline

e Modern scheduler

e Split CDB tag and value, advance tag broadcast to S (guessing outcome of

X)

e 1df tag broadcast now in cycle 2 — mulf Sin cycle 3

e How do multi-cycle operations work? How do cache misses work?

Instruction Level Parallelism Ill: Dynamic Scheduling

Jynamic Scheduling Summary

e Dynamic scheduling: out-of-order execution
e Higher pipeline/FU utilization, improved performance
e Easier and more effective in hardware than software
+ More storage locations than architectural registers
+ Dynamic handling of cache misses
+ Easier to speculate across branches

e Instruction buffer: multiple F/D latches
e Implements large scheduling scope + “passing” functionality
e Split decode into in-order dispatch and out-of-order issue
e Stall vs. wait
e Dynamic scheduling algorithms

e Scoreboard: no register renaming, limited out-of-order
e Tomasulo: copy-based register renaming, full out-of-order

Instruction Level Parallelism Ill: Dynamic Scheduling

Insn Status Map Table CDB
Insn D| S| X| W Reg|T T
1df X(rl),fl cl| c2| c3| c4 £0 RS#2 |[£f1]
mulf £0,fl,£f2| c2 | c4 | c5+]| c8 f1 |RS#2
stf £2,Z(rl) c3| c8| c9 £f2 |RS#5
addi rl,4,rl cd | cSco v’ rl
1df X(rl) ,f1 | c5| c7 | c8 cg‘\
mulf £0,f1,£f2| c6 | c9 PAGE FAULT!!
stf £2,Z(rl)
OR X(rl1) == Z+4(rl)
Reservation Stations
T |FU |busylop |R |T1 T2 V1 V2
1 |ALU [no
2 |LD no
3 ST yes |stf |- - - RE 2.7 [181
4 |FP1 [no
5 |FP2 |yes |mulf £f2 |- RS#2 ([£0] |(CDB.V

Instruction Level Parallelism Ill: Dynamic Scheduling

£ cknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

e Slides re-enhanced by V. Puente of University of Cantabria

Instruction Level Parallelism Ill: Dynamic Scheduling

