santinue:..: Dynamic Scheduling li

Application
OS

Compiler Firmware

e Previously: dynamic scheduling
e Insn buffer + scheduling algorithms
e Scoreboard: no register renaming

1/O

Digital Circuits

Gates & Transistors

‘e Tomasulo: register renaming

e Now: add speculation, precise state

e Re-order buffer
e PentiumPro vs. MIPS R10000

e Also: dynamic load scheduling
e Qut-of-order memory operations

Instruction Level Parallelism Ill: Dynamic Scheduling Il

uperscaiar + Out-o

~'Speculation

e Three great tastes that taste great together
e CPI>1?
e Go superscalar
e Superscalar increases RAW hazards?
e Go out-of-order (O00)
e RAW hazards still a problem?
e Build a larger window
e Branches a problem for filling large window?
e Add control speculation

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“’épeculation and Precise Interrupts

e Why are we discussing these together?

e Sequential (vN) semantics for interrupts
e All insns before interrupt should be complete
e All insns after interrupt should look as if never started (abort)
e Basically want same thing for mis-predicted branch

e What makes precise interrupts difficult?
e 000 completion — must undo post-interrupt writebacks
e Same thing for branches
e |n-order — branches complete before younger insns writeback
e 000 — not necessarily

e Precise interrupts, mis-speculation recovery: same problem
e Same problem — same solution

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~Precise State

e Speculative execution requires
e (Ability to) abort & restart at every branch
e Abort & restart at every load useful for load speculation (later)
e And for shared memory multiprocessing (much later)

e Precise synchronous (program-internal) interrupts require
e Abort & restart at every load, store, ??

e Precise asynchronous (external) interrupts require
e Abort & restart at every ??

e Bite the bullet

e Implement abort & restart at every insn
e Called “precise state”

Instruction Level Parallelism Ill: Dynamic Scheduling Il

‘Isrecise State Options

e |mprecise state: ignore the problem!
— Makes page faults (any restartable exceptions) difficult
— Makes speculative execution almost impossible
e Compromise: Alpha implemented precise state only for integer ops

e Force in-order completion (W): stall pipe if necessary

— Slow

e Precise state in software: trap to recovery routine
— Implementation dependent
e Trap on every mis-predicted branch (you must be joking)

e Precise state in hardware

+ Everything is better in hardware (except policy)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

he Problem with Precise State

S

regfile
I ’
R D$
B "\I >
PJ D S ” :]_

e Problem: writeback combines two separate functions
e Forwards values to younger insns: OK for this to be out-of-order
e Write values to registers: would like this to be in-order

e Similar problem (decode) for 00O execution: solution?
e Split decode (D) — in-order dispatch (D) + out-of-order issue (S)
e Separate using insn buffer: scoreboard or reservation station

Instruction Level Parallelism Ill: Dynamic Scheduling Il

Reorder buffer (ROB)

regfile |«

[
»

I\ID$

[
»

[
»

:]_Wl W2

o

A A

e Insn buffer — re-order buffer (ROB)
e Buffers completed results en route to register file
e May be combined with RS or separate
e Combined in picture: register-update unit RUU (Sohi’s method)
e Separate (more common today): P6-style

e Split writeback (W) into two stages
e Why is there no latch between W1 and W2?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

Reorder buffer (ROB)

regfile e

[
»

I\ID$

[
»

[
»

Jc K

e Complete (C): First part of the write-back

e Completed insns write results into ROB

o

A A

+ Out-of-order: wait doesn’t back-propagate to younger insns

e Retire (R): aka commit, graduate
e ROB writes results to register file
e |n order: stall back-propagates to younger insns

e (!1) Variable terminology from text book to text book

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“"I;pad/ Store Queue (LSQ).

e ROB makes register writes in-order, but what about stores?

e Asusual,i.e., to DS in X stage?

Not even close, imprecise memory worse than imprecise registers

o Load/store queue (LSQ)

Completed stores write to LSQ
When store retires, head of LSQ written to DS
When loads execute, access LSQ and DS in parallel

e Forward from LSQ if older store with matching address
More modern design: loads and stores in separate queues
More on this at the end

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB

a

regfile

1$
B N :
o f : Jc &
load data
store data <
| : addr D%
load/store >

\ /

e Modulo gross simplifications, this picture is almost realistic!

Instruction Level Parallelism Ill: Dynamic Scheduling Il

P6 DESIGN ALTERNATIVE:
ROB/RS

Instruction Level Parallelism Ill: Dynamic Scheduling Il

e P6: Start with Tomasulo’s algorithm... add ROB
e Separate ROB and RS

e Simple-P6
e Qur old RS organization: 1 ALU, 1 load, 1 store, 2 3-cycle FP

Instruction Level Parallelism Ill: Dynamic Scheduling Il

+'P6 Data Structures

e Reservation Stations are same as before
e ROB

e head, tail: pointers maintain sequential order
e R:insn output register, V: insn output value

e Tags are different
e Tomasulo: RS# — P6: ROB#

e Map Table is different
e T+:tag + “ready-in-ROB” bit
e T==0 — Value is ready in regfile
e T!=0 — Value is not ready
e T!=0+ — Value is ready in the ROB

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6 Data Structures

Map Table é

\ 4

\ 4

Head

—

Retire

CDB.T

Tail

Dispatch

VVYVY

Dispatch: == ==

RS_’H

e |nsn fields and status bits

e Tags
e \alues

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table
ht|# |Insn X | C| [Reg|T+
1 [1df X(rl),fl £0
2 [mulf £O0,fl1,f2 £l
3 |stf £2,Z(rl) £2
4 (addi rl1l,4,rl rl

5 |1df X(rl), fl
6 |mulf £0,6fl,f2
7 |stf £2,Z(rl)
Reservation Stations
|[FU |busylop |T T1 T2 V1 V2
1l [(ALU |no
2 |LD no
3 (ST no
4 |FP1l |no
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“'PG Pipeline

e New pipeline structure: F, D, S, X, C, R
e D (dispatch)
e Structural hazard (ROB/LSQ/RS) ? Stall
e Allocate ROB/LSQ/RS
e Set RS tag to ROB#
e Set Map Table entry to ROB# and clear “ready-in-ROB” bit
e Read ready registers into RS (from either ROB or Regfile)
e X (execute)
e Free RS entry

e Use to be at W in plain tomasulo, can be earlier because RS# are not
longer used as tags

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“'PG Pipeline

e C(complete)
e Structural hazard (CDB)? wait
e Write value into ROB entry indicated by RS tag

e Mark ROB entry as complete

e |f not overwritten, mark Map Table entry “ready-in-ROB” bit (+)
* R (retire)

e |[nsn at ROB head not complete ? stall

Handle any exceptions

Write ROB head value to register file
If store, write LSQ head to DS
Free ROB/LSQ entries

Instruction Level Parallelism Ill: Dynamic Scheduling Il

CDB.T

VYV VY

Dispatch:

e RS/ROB full ? stall
e Allocate RS/ROB entries, assign ROB# to RS output tag
e Set output register Map Table entry to ROB#, clear “ready-in-ROB”

Instruction Level Parallelism Ill: Dynamic Scheduling Il

Map Table

\ 4

Head
| Retire

\ A 4

Tail

Dispatch

CDB.T

VYV VY

Dispatch:

e Read tags for register inputs from Map Table
e Tag==0 — copy value from Regfile (not shown)
e Tag!=0 — copy Map Table tag to RS
e Tag!=0+ — copy value from ROB

Instruction Level Parallelism Ill: Dynamic Scheduling Il

®Ve.

6 Complete (C)

Map Table

\ 4

Head

—
Retire

— 1 1 <'I'a_l_il
Dispatch

CDB.T
CDB.V

VYV VY

Dispatch:

e Structural hazard (CDB) ? Stall : broadcast <value,tag> on CDB

e Write result into ROB, if still MapTable entry matches with ROB#, set
“ready-in-ROB” bit
e Match tags, write CDB.V into RS slots of dependent insns

Instruction Level Parallelism Ill: Dynamic Scheduling Il

6 Retire (R)

Map Table

Retire

— 1 1 <'I'a_l_il
Dispatch

CDB.T
CDB.V

VYV VY

Dispatch:

e ROB head not complete ? stall : free ROB entry
e Write ROB head result to Regfile

e |f still MapTable entry matches with ROB#, clear Map Table entry and
advance Head pointer in ROB

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table
ht | # |Insn X | C| |Reg|T+
ht|l [1df X(rl),fl | f1 £0
2 lmulf £0,fl,f2 f1 |ROB#1
3 |stf £2,Z(rl) £2 A\
4 laddi rl,4,rl rl \
5 |1df X(rl), fl
6 [mulf £0,fl,f2
7 |stf £2,Z(rl)
Reservation Stations
[FU [busylop [T 11 [12 [FUEEEKZE - RoB#tag
1 |ALU |no -
2 |LD yes |1df ROB#1| [rl] allocate
3 (ST no
4 |(FPl1 |no
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table
ht [# |Insn R S| x| c| [Reg|[T+
h |1 |1df X(rl),fl | f1 c2 £0
t |2 |[mulf £0,fl,£f2| £2 f1 |[ROB#1
3 |stf £2,Z(rl) f2 |ROB#2
4 laddi rl,4,rl rl A\
5 |1df X(rl), fl
6 [mulf £0,fl,f2
7 |stf £2,Z(rl)
Reservation Stations
|[FU |busylop |T T1 T2 V1 V2 set ROB# tag
1 [awvu |no B e
2 |LD yes |[1ldf |[ROB#1 ___— [[r1]
3 |ST |no //
4 |FP1l |(yes |mulf |ROB#2 ROB#1|[£0] allocate
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“"FiG,: Cycle 3

ROB Map Table
ht [# |Insn R S| X | c| [Reg|T+
h |1 (1df X(rl),fl | f1 c2| c3 £0
2 mulf £0,fl1,£f2| £2 f1 |ROB#1
t |3 |stf £2,Z(rl) £f2 |ROB#2
4 laddi rl1l,4,rl rl
5 |1df X(rl) , £l
6 lmulf £0,£f1,£2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU [no
2 |LD no free
3 ST yes stf ROB#3 ROB#2 []’.‘1] a”ocate
4 |FP1 |yes |[mulf ROB#2 ROB#1|[£0]
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6: Cycle 4

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht [# |Insn R s X | C | |Reg|T+ T P
h |1 [1df X(rl), fl [£1] c3| ca| |fO ROB#1|[£f1]
2 [mulf £0,f£1,£2 f2 N c4 f1 |ROB#1+
3 |[stf £2,2Z(rl) f2 |ROB#2
t (4 |addi rl,4,rl |rl N rl |ROB#4
5 |1df X(rl), £l N |df finished
6 mulf £0,£f1,£2 N 1. set “ready-in-ROB” bit
7 |stf £2,Z(rl) 2. write result to ROB
3. CDB broadcast
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |yes |add |ROB#4 [rl] allocate
2 |LD no
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |ROB#2 ROB#1|[£0] CDB.V ROB#1 ready
5 |FP2 |no grab CDB.V

~P6: Cycle 5

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1 [1df X(rl),fl | £f1|[£f1] c3| ca| |fO
h [2 [mulf £0,f1,f£2] £2 \‘c4 c5 £1 |ROB#5
3 |stf £2,Z(rl) N f2 |ROB#2
4 laddi rl,4,rl |rl RN rl |ROB#4
t |5 |1df X(rl),fl | fl ~NNre
6 lmulf £0,f1,£2 1. write ROB result to regfile
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |yes |add |ROB#4 [rl]
2 |1LD yes |[1df |[ROB#5 ROB#4 allocate
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1 |no free
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6: Cycle 6

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1 |1df X(rl),fl | f1|[£1] c3| ca| [£O
h |2 [mulf £0,£f1,£f2| £2 c4 c5+ £f1 |ROB#5
3 [stf £2,2(rl) £2 |ROB#6
4 |laddi rl1l,4,rl1 |rl c5| c6 rl |ROB#4
5 |1df X(rl),fl | f1
t |6 |[mulf £0,f1,£2]| £2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no free
2 |LD |yes |1df |ROB#5 ROB##4
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |ROB#6 ROB#5|[£0] allocate
5 |FP2 [no

~P6: Cycle 7

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht [# |Insn R s X | €| |Reg|T+ T P
1 |1df X(rl),£f1 | £1|[£f1] c3| ca] [£0 ROB#4|[rl]
h |2 [mulf £0,£f1,£f2| £2 c4 c5+ £f1 |ROB#5
3 [stf £2,Z(rl) f2 |ROB#6
4 laddi rl,4,rl1l | rl|[xrl]| c¢5| c6 | c7 rl |ROB#4+
5 [1df X(rl),fl | f1 c7
t |6 [mulf f£0,f1,f2| £2
7 |stf £2,Z(rl) stall D (no free ST RS)
Reservation Stations
|[FU |busylop |T T1 T2 V1 V2
1 |ALU |no ROB#4 ready
2 |LD |yes |1df |ROB#5 ROB#4 CDB.V grab CDB.V
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |ROB#6 ROB#5|[£0]
5 |FP2 [no

~P6: Cycle 8

ROB Map Table CDB
ht [# |Insn R s X | €| |Reg|T+ T P

1 |1df X(rl),fl | £1|[£f1] c3| c4| |fO ROB#2|[£2]
h |2 |mulf £0,fl,£f2| £2|[£f2] c4 c5+| c8| |f1 |ROB#5

3 |stf £2,Z(rl) c8 f2 |ROB#6

4 laddi rl,4,rl1l | rl|[rl]| c5| c6 | c7 rl |ROB#4+

5 (1df X(rl),fl | fl c7 | c8 stall R for addi (in-order)
t |6 |[mulf £0,fl,f2| £2

7 |stf £2,Z(rl) ROB#2 doesn’t match

in MapTable=»don’t set “ready-in-ROB”

Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |[(ALU |no
2 |LD no
3 |ST |yes |stf |ROB#3|ROB#2 [£2] [z1] ROB#2 ready
4 |FP1 |yes |mulf |ROB#6 ROB#5| [£0] grab CDB.V
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6: Cycle 9

ROB Map Table CDB
ht [# |Insn R s X | €| |Reg|T+ T P
1 |1df X(rl),fl | £1|[f1] c3| ca] [£0 ROB#5| [£1]
2 mulf £0,£f1,£2 | £2|[£2] c4 c5+| c8 f1 |ROB#5+
h |3 [stf £2,2Z(rl) c8 | c9 f2 |ROB#6
4 laddi rl,4,rl1l | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 (1df X(xrl1l) ,£f1 | £f1|[£1]| c¢7 | c8 | c9 | retire mulf
6 mulf £0,£f1,£2| £2 c9
t |7 [stf £2,Z(rl) all pipe stages active at once!
Reservation Stations
|FU |busylop [T T1 T2 Vi1 V2
1 |(ALU [no
2 |LD no
3 |ST |yes |stf |ROB#7|ROB#6 ROB#4 .V| free, re-allocate
4 |FP1l |yes |mulf |ROB#6 ROB#5|[£f0] CDB.V ROB#5 ready
5 |FP2 |no grab CDB.V

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6: Cycle 10

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1l |1df X(rl),f1 | £1|[£1] c3| c4 £f0
2 lmulf £0,f1,£f2| £2|[£2] c4 c5+| c8 £f1 |ROB#5+
h |3 (stf £2,Z(rl) c8| c9|cl0| |£2 |ROB#6
4 laddi rl,4,rl1l | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 |1df X(rl),fl1 | £1|[£f1]| c¢7 | c8 | c9
6 mulf £0,£f1,£2| £2 c9 | cl0
t |7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU [no
2 |LD no
3 [ST |yes |stf |[ROB#7|ROB#6 ROB#4 .V
4 |FPl1 |no free
5 |FP2 |no

~P6: Cycle 11

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1 |1df X(rl),fl | £1|[f1] c3| ca| |fO
2 lmulf £0,fl,f2| £2|[£2] c4 c5| e8| |[f1 |[ROB#5+
3 |stf £2,Z(rl) c8| c9|cl0| |£2 |ROB#6
h |4 |addi rl1l,4,xrl1 | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 |1df X(rl),fl | £f1|[f1]| c7| c8 | 9 _
6 |mulf £0,fl,£2| £2 c9 | c10 retire stf
t |7 |stf £2,Z(rl)
Reservation Stations
|[FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 [ST |yes |stf |[ROB#7|ROB#6 ROB#4 .V
4 |FP1 |no
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~'Precise State in P6

e Point of ROB is maintaining precise state
e How does that work?
e FEasyasl,2,3
1. Wait until last good insn retires, first bad insn at ROB head
2. Clear contents of ROB, RS, and Map Table
3. Startover

Works because zero (0) means the right thing...
e 0inROB/RS — entry is empty
e Tag==0in Map Table — register is in regfile

...and because regfile and DS writes take place at R

Instruction Level Parallelism Ill: Dynamic Scheduling Il

Example: page fault in first st£

~P6: Cycle 9 (with precise state)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht [# |Insn R s X | €| |Reg|T+ T P
1 [1df X(rl),fl | £1|[£f1] c3| ca| [£0 ROB#5|[£1]
2 ([mulf £0,fl,f2| £2|[£2] c4 c5+| c8| |[f1 |[ROB#5+
h |3 [stf £2,Z(rl) c8| col f2 |ROB#6
4 |addi rl,4,rl1 |rl|[rl]| c5| c6| &*] [r1 |ROB#4+
5 |1df X(rl),fl1 | f1|[£f1]] ¢7| e8| <9
6 mulf £0,£f1,£2| £2 c9
t |7 |stf £2,Z(rl)
PAGE FAULT
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 |ST |yes |stf |ROB#7|ROB#6 ROB#4 .V
4 |FP1l |yes |mulf |ROB#6 ROB#5|[£0] CDB.V
5 |FP2 |no

"‘P_G_: Cycle 10 (with precise state)

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1 |1df X(rl), fl [£1] c3| c4| |[£fO
2 lmulf £0,fl,f2 f2 [£2] c4 c5+| c8| |f1
3 |stf £2,Z(rl) £2 A
4 laddi rl,4,rl rl \
5 |[1df X(rl), fl | \
g r::;ffgoéfiifz ~ faulting insn at ROB head?
. CLEAR EVERYTHING
Reservation Stations
|FU |busylop |T T1 T2
1l |[(ALU |no
2 |LD no
3 |ST no
4 |FP1 |no
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

' P6: Cycle 11 (with precise. state)

ROB Map Table
ht [# |Insn R s X | €| |Reg|T+
1 [1df X(rl),fl [£1] c3| ca] [£0
2 mulf £0,£f1,£2 f2 [£2] c4 c5+| c8 fl
ht|3 [stf £2,Z(rl) £2
4 laddi rl1l,4,rl rl
5 [1df X(rl), £l
Cfmis f0.51, e
- (after OS fixes page fault)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 |ST yes |[stf |[ROB#3 [£2] [rl]
4 |(FPl1 |no
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~P6: Cycle 12 [with precise state)

ROB Map Table
ht [# |Insn RS X | €| |Reg|T+
1 |1df X(rl), fl [£1] c3| ca| [£fO
2 |mulf £0,fl,f2 f2 [£2] c4 c5+| c8| [f1
h |3 [stf £2,Z(rl) cl2 £2
t (4 |addi rl,4,rl |rl rl |[ROB#4
5 |1df X(rl), fl
6 [mulf £0,fl,f2
7 |stf £2,Z(rl)
Reservation Stations
|[FU |busylop |T T1 T2 V1 V2
1 |ALU |yes |addi |ROB#4 [rl]
2 |LD no
3 |ST |yes |stf |ROB#3 [£2] [rl]
4 |FP1 |no
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"'PG Performance

e |n other words: what is the cost of precise state?
+ In general: same performance as “plain” Tomasulo
e ROB is not a performance device
e Maybe a little better (RS freed earlier — fewer struct hazards)
— Unless ROB is too small
e |n which case ROB struct hazards become a problem
e Rules of thumb for ROB size
e At least N (width) * number of pipe stages between D and R
e Atleast N * t,. ,
e Can add a factor of 2 to both if you want
e What is the rationale behind these?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"'PG (Tomasulo+ROB) Redux

e Popular design for a while

e (Relatively) easy to implement correctly

e Anything goes wrong (mispredicted branch, fault, interrupt)?
e Just clear everything and start again
e Examples: Intel PentiumPro/Pentiumll, IBM/Motorola PowerPC, AMD K6

e Actually making a comeback...

e Examples: Intel PentiumM, Core 2 Duo, Core i7/5...

e But went away for a while, why?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“The Problem with P8

Map Table é

\ 4

\ 4

Head

-—
Retire

Tail

Dispatch

CDB.T

VVYVY

Dispatch: == ==
RS i i

e Problem for high performance implementations
— Too much value movement (regfile/ROB—RS—>ROB—regfile)

— Multi-input muxes, long buses complicate routing and slow clock

Instruction Level Parallelism Ill: Dynamic Scheduling Il

R10K DESIGN ALTERNATIVE:
TRUE RENAMING

aq UC K]

Instruction Level Parallelism Ill: Dynamic Scheduling Il

> MIPS-R10K: Alternative Implementation
Ih
Head

Map Table é
———

> Retire

* _Tail
Free Dispatch
List ROB

Dispatch: == ==
RS i i

e One big physical register file holds all data no copies
+ Register file close to FUs — small fast data path: Higher Frequ.

\ 4

A\ 4

ChB.T

e ROB and RS “on the side” used only for control and tags

Instruction Level Parallelism Ill: Dynamic Scheduling Il

e Architectural register file? Gone

e Physical register file holds all values

e #physical registers = #architectural registers + #ROB entries

e Map architectural registers to physical registers

e Removes WAW, WAR hazards (physical registers replace RS copies)
e Fundamental change to map table

e Mappings cannot be O (there is no architectural register file)
e Free list keeps track of unallocated physical registers

e ROB is responsible for returning physical registers to free list

e Conceptually, this is “true register renaming”

e Have already seen an example

Instruction Level Parallelism Ill: Dynamic Scheduling Il

e Parameters
e Names: rl,r2,r3
e |ocations:11,12,13,14,15,16,17
e Original mapping: r1—11,r2—>12,r3—13, 14-17 are “free”

Renamed insns

MapTable FreeList Raw insns

rl |r2 |r3

11 |12 |13 14,15,16,17 add r2,r3,rl
14 |12 |13 15,16,17 sub r2,rl,r3
14 |12 |15 16,17 mul r2,r3,rl
16 |12 |15 17 div rl,r3,r2

e Question: how is the insn after div renamed?

e We are out of free locations (physical registers)

e Real question: how/when are physical registers freed?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

add 12,13,14
sub 12,14,15
mul 12,15,16
div 14,15,17

“'Iéreeing Registers in P6 and RTOK

¢ P6

* No need to free storage for speculative (“in-flight”) values explicitly

e Temporary storage comes with ROB entry
e R:copy speculative value from ROB to register file, free ROB entry

e R10K

e Can’t free physical register when insn retires

e No architectural register to copy value to

e But...

e Can free physical register previously mapped to same logical register
e Why? All insns that will ever read its value have retired

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"Iireeing Registers in R10K

MapTable FreeList Raw insns Renamed insns
rl |r2 |r3

11 (12 |13 14,15,16,17 add r2,r3,rl add 12,13,14
14 |12 (13 15,16,17 sub r2,rl,r3 sub 12,14,15
14 (12 |15 16,17 mul r2,r3,rl mul 12,15,16
16 (12 |15 17 div rl,r3,r2 div 14,15,17

e When add retires, free |1
e When sub retires, free |3
e When mul retires, free ?
e When div retires, free ?
e See the pattern?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“R1 OK Data Structures

e New tags (again)
e P6: ROB# — R10K: PR#
e ROB

e T: physical register corresponding to insn’s logical output
e Told: physical register previously mapped to insn’s logical output

e RS

e T,T1, T2: output, input physical registers
e Map Table

e T+: PR# (never empty) + “ready” bit

e Free List
e T:PR#

e No valuesin ROB, RS, or on CDB

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn Told| S C | |Reg|T+ T

1 [1df X(rl), fl fO0 |PR#1+

2 ([mulf £0,fl,f2 f1 |PR#2+

3 [stf £2,Z(rl) f2 |PR#3+

4 |laddi rl1l,4,rl rl |PR#4+

5 |1df X(rl),fl

6 \mulf £0,fl,f2 Free List

7 |stf £2,Z(rl) PR#5, PR#6,

PR#7 , PR#8

Reservation Stations
|[FU |busylop |T T1 T2 Notice I: no values anywhere
1 |ALU |no
2 |1LD no : _
3 |sT e Notice |I: MapTable is never empty
4 |FP1l [no
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

TR10K Pipeline

e R10K pipeline structure: F, D, S, X, C, R
e D (dispatch)
e Structural hazard (RS, ROB, LSQ, physical registers) ? stall
e Allocate RS, ROB, LSQ entries and new physical register (T)
e Record previously mapped physical register (Told)
e C(complete)
e Write destination physical register
* R (retire)
e ROB head not complete ? Stall
Handle any exceptions
Store write LSQ head to DS
Free ROB, LSQ entries
Free previous physical register (Told)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

\ 4

ﬁ

?

op T T1+T2+

Dispatch:

Free
List

Head
Retire

Tail

Match

ROB

4

A

A

A

ChB.T

e Read preg (physical register) tags for input registers, store in RS

e Read preg tag for output register, store in ROB (Told)

A\ 4

e Allocate new preg (free list) for output register, store in RS, ROB, Map Table

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ﬁ

> Hea_td
Retire
* _Tail
Free Dispatch
List ROB

Dispatch:

A\ 4

ChB.T

e Setinsn’s output register ready bit in map table
e Set ready bits for matching input tags in RS

Instruction Level Parallelism Ill: Dynamic Scheduling Il

10K Retire (R)

Map Table é

\ 4

VY

E Head

Retire

_Tall

A

Dispatch:

| Dispatch

A\ 4

ChB.T

e Return Told of ROB head to free list

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
ht|l |[1df X(rl),fl |PR#5 PR#2 fO |PR#1+

2 lmulf £0,f1,£2| _ £1 |PR#5

3 |stf £2,Z(rl) NN f2 ||PR#3+

4 laddi rl,4,rl NN rl [|PR#4+

5 |1df X(rl), fl N /

6 |mulf £0,f1,£2 “JFrée List

7 |stf £2,Z(rl) /PR#S,PR#G,

PR#7, PR#8

Reservation Stations /
|FU |busylop [T T1 AT2 Allocate new preg (PR#5) to f1
1l [(ALU |no
2 LD |yes [1df |PR#5 PR#4+
3 ST Ino Remember old preg mapped to
42 |FP1 Ino f1 (PR#2) in ROB
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
h |1 |1df X(rl),fl |PR#5/PR#2| c2 fO0 |PR#1+
t |2 |mulf £0,fl,f2 |PR#6|PR#3 f1 |PR#5
3 |stf £2,%(rl) "~ £2 |PR#6
4 laddi rl,4,rl N rl [PR#4+
5 |1df X(rl), fl N /
6 [mulf £0,fl,£2 ——~IFrée List
7 |stf £2,Z(rl) PR#6,PR#7,
/PR#8
Reservation Stations y
|FU |busylop [T T1 T Allocate new preg (PR#6) to f2
1 |ALU |no P
2 |LD |yes |[1df |PR#5 | ~ |PR#4+
3 ST Ino // Remembe_rold preg mapped to
4 |FPl |yes |mulf |PR#6 |PR#1+|PR#5 f3 (PR#3) in ROB
5 |FP2 [no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
h |1 [1df X(rl),fl |PR#5/PR#2| c2 | c3 fO |PR#1+
2 mulf £0,f1l,£f2 |PR#6/ PR#3 £f1 |PR#5
t |3 [stf £2,Z(rl) £2 |PR#6
4 |laddi rl1l,4,rl rl |PR#4+
5 |1df X(rl), fl
6 lmulf £0,£f1,£2 Free List
7 |stf £2,Z(rl) PR#7 , PR#8
Reservation Stations
|[FU |busylop |T T1 T Stores are not allocated pregs
1 (ALU [no
2 |LD no Free
3 (ST |yes |[stf PR#6 |PR#4+
4 |FP1l |yes |mulf |[PR#6 |PR#1+|PR#5
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
h |1 |1df X(rl),fl |PR#5/PR#2| c2| c3| c4| |£0 |PR#1+ PR#5
2 [mulf £0,fl,f2 |PR#6/PR#3| c4 f1 |PR#5+
3 |stf £2,Z(rl) £2 |PR#6 \
t |4 laddi rl,4,rl1l |PR#7|PR#4 rl |PR#7
5 |1df X(rl),fl
6 \mulf £0,fl,f2 Free List
7 |stf £2,Z(rl) PR#7 , PR#8
Reservation Stations
[FU |busylop |T [T1 |12 disampcles
1 |ALU |yes |addi |[PR#7 |PR#4+ set MapTable ready
2 |LD no
3 (ST |yes |[stf PR#6 |PR#4+
4 |FPl |yes |mulf |PR#6 |PR#1+|PR#5+] Match PR#5 tag from CDB & issue
5 |FP2 |no

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"R1 OK: Cycle 5

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T

1 |1df X(rl),fl |PR#5/PR#2| c2 | c3| c4| |£f0 |PR#1+
h |2 [mulf £O0,fl,f2 |PR#6/PR#3 c5 f1 |[PR#8

3 |stf £2,Z(rl) N f2 |PR#6

4 laddi rl,4,rl |PR#7 PR#4| c5 "~ |rl [PR#7
t |5 |1df X(rl),fl |PR#8/PR#5

6 \mulf f0,fl,£2 Free

7 |stf £2,Z(rl) PR#8, PR#2
Reservation Stations :
[FU |busylop |T [T1 |12 AILICS |
1 |ALU |yes |addi |PRE7 |PRE4+ Return PR#2 to free list
2 (LD |yes |1df |PR#8 PR#7
3 (ST |yes |[stf PR#6 |PR#4+
4 |FP1 |no Free
5 |FP2 |no

e Problem with R10K design? Precise state is more difficult
— Physical registers are written out-of-order (at C)
e That’s OK, there is no architectural register file
e We can “free” written registers and “restore” old ones
e Do this by manipulating the Map Table and Free List, not regfile

e Two ways of restoring Map Table and Free List

e Option I: serial rollback using T, T_,; ROB fields
+ Slow, but simple

e Option Il: single-cycle restoration from some checkpoint
+ Fast, but checkpoints are expensive

e Modern processor compromise: make common case fast
e Checkpoint only (low-confidence) branches (frequent rollbacks)
e Serial recovery for page-faults and interrupts (rare rollbacks)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"R1 OK: Cycle 5 (with precise state)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
1 [1df X(rl),fl |PR#5PR#2| c2| c3| ca| [£0 [PR#1+
h |2 /mulf £0,fl,£f2 |PR#6/PR#3| c4 | c5 £f1 |PR#8
3 [stf £2,Z(rl) f2 |PR#6
4 laddi rl,4,rl |PR#7 PR#4| c5 rl |PR#7
t |5 |1df X(rl),fl |PR#8|PR#5
6 \[mulf £0,f1,£2 Free List
7 |stf £2,Z(rl) PR#8, PR#2
Reservation Stations
|[FU |busylop |T T1 T2 ot aE
1 |ALU |yes |addi |PR#7 |PR#4+ (doesn’t matter why)
2 |LD |yes |1df |PR#S8 PR#7 use serial rollback
3 (ST |yes |[stf PR#6 |PR#4+
4 |FP1 |no
5 |FP2 [no

"R1 OK: Cycle 6 (with precise state)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T
1 |1df X(rl),f1 |PR#5/PR#2| c2 | c3| c4| |£0 |PR#1+
h |2 l[mulf £0,£f1,£f2 |[PR#6/PR#3| c4 | c5 f1 |PR#5+
3 |stf £2,Z(rl) ___H PR#6
t |4 |addi rl,4,rl1l |PR#7 PR#4}5_/ rl |PR#7
5 |1df X(rl),£f1l |PR#8|PR#5
6 lmulf £0,fl,£2 — | Free List
7 |stf £2,Z(rl) —{PR#2, PR#8
Reservation Stations undo Idf (ROB#5)
|[FU |busylop |T |T1 |T2 FUEe R |
1 |ALU |yes |addi |PR#7 |PR#4+ 2. free T (PR#8), return to FreeList
2 D |no 3. restore MT[f1] to Told (PR#5)
3 [ST |yes [stf PRE6 |PR#4+| 4 [ree ROB#S
4 |FP1 [no
5 |FP2 |no iInsns may execute during rollback

(not shown)

"R1 OK: Cycle 7 (with precise state)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T

1 |1df X(rl) ,fl1 |PR#5/PR#2| c2 | c3| c4| |£0 |PR#1+
h |2 [mulf £0,fl,f2 |PR#6/PR#3| c4 | c5 f1 |PR#5+
t |3 |stf £2,Z(rl) £2 |PR#6

4 |addi rl,4,rl pgﬂ PR#4| c5 rl |PR#4+

5 |1df X(rl),fl

6 lmulf £0,fl,£2 \\\ Free List

7 |stf £2,Z(rl) |PR#2, PR#8,

PR#7

Reservation Stations undo addi (ROB#4)
|[FU |busylop |T |T1 |T2 FUEe R |
1 |ALU |no 2. free T (PR#7), return to FreeL.ist
2 LD |no 3. restore MT[r1] to Told (PR#4)
3 |ST |yes [stf PRE6 |PR{4+| 4 free ROB#4
4 |FP1 |no
5 |FP2 |no

"R1 OK: Cycle 8 (with precise state)

Instruction Level Parallelism Ill: Dynamic Scheduling Il

ROB Map Table CDB
ht | # |Insn T |Told| S| X | C| |Reg|T+ T

1 [1df X(rl),fl |PR#5/PR#2| c2| c3| c4| [£0 |[PR#1+
ht|2 \mulf £0,£f1l,£f2 |PR#6/PR#3| c4 | c5 f1 |PR#5+

3 [stf £2,Z(rl) £2 |PR#6

4 |laddi rl1l,4,rl rl |PR#4+

5 |1df X(rl), fl

6 lmulf £0,f1,£2 Free List

7 [stf £2,Z(rl) PR#2, PR#8,

PR#7

Reservation Stations undo stf (ROB#3)
|FU_ |busy|op 1 |T2 FUEeRe
1 |ALU |no 2. free ROB#3
2 D Ino 3. no registers to restore/free
3 ST |no 4. how is D$ write undone?
4 |FP1 |no
5 |FP2 |no

®Ve.

6'vs. R10K (Renaming)

Feature P6 R10K

Value storage ARF ROB,RS PRF

Register read @D: ARF/ROB —» RS @S: PRF —» FU
Register write @R: ROB —» ARF @C: FU —» PRF

Speculative value free

@R: automatic (ROB)

@R: overwriting insn

Data paths

ARF/ROB — RS
RS —» FU

FU — ROB
ROB — ARF

PRF — FU
FU — PRF

Precise state

Simple: clear everything

Complex: serial/checkpoint

e R10K-style became popular in late 90’s, early 00’s
e E.g., MIPS R10K (duh), DEC Alpha 21264, Intel Pentium4

e P6-style is perhaps making a comeback

e Why? Frequency is on the retreat, simplicity is important
e Power?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

OuT oF ORDER MEMORY
OPERATIONS

., UC R

Instruction Level Parallelism Ill: Dynamic Scheduling Il

""ﬁqt of Order Memory Operations

e Allinsns are easy in out-of-order...
e Register inputs only
e Register renaming captures all dependences

e Tags tell you exactly when you can execute
e .. exceptloads

e Register and memory inputs (older stores)
e Register renaming does not tell you all dependences
e Memory renaming (a little later)

e How do loads find older in-flight stores to same address (if any)?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“bgta- Memory Functional Unit

e DS/TLB + structures to handle in-flight loads/stores
e Performs four functions
e [n-order store retirement
e Writes stores to DS in order
e Basic, implemented by store queue (SQ)

Store-load forwarding
e Allows loads to read values from older un-retired stores
e Also basic, also implemented by store queue (SQ)

Memory ordering violation detection
e Checks load speculation (more later)
e Advanced, implemented by load queue (LQ)

Memory ordering violation avoidance
e Advanced, implemented by dependence predictors

Instruction Level Parallelism Ill: Dynamic Scheduling Il

SSimple Data Memory FU; DS/TLB + SQ

address

datain dataout e Jyst like any other FU
e 2 register inputs (addr, data in)

e 1 register output (data out)

load position

e 1 non-register input (load pos)?

head
e Store queue (SQ)

tail e In-flight store address/value

age

VY

-
-
—— e In program order (like ROB)

‘ Store Ques e Addresses associatively searchable

I e Size heuristic: 15-20% of ROB

D$/TLB

e But what does it do?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"‘Dgta_ Memory FU “Pipeline”

e Stores
e Dispatch (D)
e Allocate entry at SQ tail
e Execute (X)
e Write address and data into corresponding SQ slot
e Retire (R)
e Write address/data from SQ head to DS, free SQ head
e Loads
e Dispatch (D)

e Record current SQ tail as “load position”: retired stores already taken
into account (Why?)

e Execute (X)
e Where the good stuff happens

Instruction Level Parallelism Ill: Dynamic Scheduling Il

-.“gut-.of-Drder” Load Execution

address

data in

c
O
=
0
O
Q
©
®©
o

A\ 4

dataout ® In parallel with DS access

e Send address to SQ

age

VY

D$/TLB

e Compare with all store addresses
e CAM: like FAS, or RS tag match
headq © Selectall matching addresses

e Age logic selects youngest store to
tail the address that is older than load
e Uses load position input
e Any? Load get the value from SQ
e Available? “forwards” : “wait” for it
e None? Load gets value from DS

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“RAM. vs CAM: RAM

17

22

Read index 4 ar

17 19

19

12

13

42

RAM: read/write specific index

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“RAM vs CAM: CAM

Index O
17 >

22

Find 17 47 Index 3

17 =

19

12

13

42

CAM: search for value

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“‘anservative Load Scheduling

e Why “’ in “out-of-order”?
+ Load can execute out-of-order with respect to (wrt) other loads
+ Stores can execute out-of-order wrt other stores
— Loads must execute in-order wrt older stores for the same address
e But, when are we aware of the address of a store?

e Load execution requires knowledge of all older store addresses, i.e.
we couldn’t support ambiguous stores (store with pending address)

e Overkill RAW hazard!
+ Simple
— Restricts performance
e Usedin P6

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“'ﬁppqrtunistic Memory Scheduling

e QObserve: on average, < 10% of loads forward from SQ
e Even if older store address is unknown, chances are it won’t match
e Let loads execute in presence of older “ambiguous stores”
+ Increases performance

e But what if ambiguous store does match?

e Memory ordering violation: load executed too early
e Must detect...
e And fix (e.g., by flushing/refetching insns starting at load)

e Same problem (and solution) than in branch speculation

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“DS/TLB + SQ + LO

store position flush?

@
head head
—
tail‘ talil

Instruction Level Parallelism Ill: Dynamic Scheduling Il

e Load queue (LQ)

e In-flight load addresses

e In program-order (like ROB,SQ)
e Associatively searchable

e Size heuristic: 20-30% of ROB

~"Advanced Memory “Pipeline” (LA Only)

e |oads
e Dispatch (D)
e Allocate entry at LQ tail
e Execute (X)
e Write address into corresponding LQ slot

e Stores
e Dispatch (D)
e Record current LQ tail as “store position”
e Execute (X)
e Where the good stuff happens

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~ Detecting‘Memory Ordering Violations

e Store sends address to LQ

e Compare with all load addresses

store position flush?

e Selecting matching addresses
e Matching address?

e Load executed before store

head

¢ Violation

e Fix!

talil

e Age logic selects oldest load that
is younger than store

e Use store position

e Processor flushes and restarts

Instruction Level Parallelism Ill: Dynamic Scheduling Il

‘1;1_1:elligent Load Scheduling

e QOpportunistic scheduling better than conservative...
+ Avoids many unnecessary delays

e _.but not significantly
— Introduces a few flushes, but each is much costlier than a delay

e Observe: loads/stores that cause violations are “stable”

e Dependences are mostly program based, program doesn’t change
e Scheduler is deterministic

e Exploit: intelligent load scheduling
e Hybridize conservative and opportunistic
e Predict which loads, or load/store pairs will cause violations

e Loads default to aggressive
e Keep table of load PCs that have been caused squashes
e Schedule these conservatively

Instruction Level Parallelism Ill: Dynamic Scheduling Il

‘M,emnry Dependence Prediction

e Store-blind prediction

Predict load only, wait for all older stores to execute

+ Simple, but a little too heavy
e Example: Alpha 21264

e Store-load pair prediction
e Predict load/store pair, wait only for one store to execute
+ More complex, but minimizes delay
e Example: Store-Sets
e Load identifies the right dynamic store in two steps
e Store-Set Table: load-PC — store-PC
e Last Store Table: store-PC — SQ index of most recent instance

Instruction Level Parallelism Ill: Dynamic Scheduling Il

Implemented in Core 2+? (guess) Called Intel Smart Memory Access

DYNAMIC SCHEDULING REDUX

UC R

Instruction Level Parallelism Ill: Dynamic Scheduling Il 79

~'Limits of Insn-Level Parallelism (ILP)

e Before we build a big superscalar... how much ILP is there?
e |LP: instruction-level parallelism [Fisher 81]
e Sustainable rate of useful instruction execution

e [LP limit study
e Assume perfect/infinite hardware, successively add realism
e Examples: [Wall’88][Wilson+Lam’92]
e Some surprising results
+ Perfect/infinite “theoretical” ILP: int > 50, FP > 150
e Sometimes called the “dataflow limit”
— Real machine “actual” ILP: int ~2, FP ~ 3
e Fundamental culprits: branch prediction, memory latency
e Engineering culprits: “window” (RS/SQ/regfile) size, issue width

Instruction Level Parallelism Ill: Dynamic Scheduling Il

""ﬁgt of Order: Scalability .

e Scheduling scope = ooo window size

e lLarger = better

e Constrained by physical registers
e ROB roughly limited by #preg = ROB size + #logical registers
e Big register file = hard/slow and power hungry
e Constrained by issue queue
e Limits number of un-executed instructions
e CAM = can’t make big (power + area)
e Constrained by load + store queues
e Limit number of loads/stores
e CAMs

Instruction Level Parallelism Ill: Dynamic Scheduling Il

~'Dynamic Scheduling and Power/Energy

e |s dynamic scheduling low-power?
— Probably not
e New SRAMs consume a lot of power
e Re-order buffer, reservation stations, physical register file
e New CAMs consume even more (relatively)
e Reservation stations, load/store queue

e |s dynamic scheduling low-energy?
+ Could be
e Does performance improvement offset power increase?

Instruction Level Parallelism Ill: Dynamic Scheduling Il

"000 Power Contribution

e Power breakdown for IBM POWER4

e Two 4-way superscalar, 2-way multi-threaded cores, 1.5MB L2
e 00O (+ related) is responsible for ~30%

"690 scalability research

e Checkpoint Processing and Recovery [Cristal ‘03]
e Attacks scaling of register file
e Take checkpoints at rename
e Only recover to those
e Free Pregs aggressively

e Continual Flow Pipelines [Srinivasan ‘04]
e Attacks scaling of Issue Queue
e Put L2 misses and dependents out of IQ
e Place back in when L2 miss returns

e Store Vulnerability Window [Roth ‘05] +

Store Queue Index Prediction [Sha ‘0O5]

e Scalable (non-associative) load/store queues
e Predict store queue index for forwarding
e Filtered load re-execution prior to commit

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“"ﬂut of Order: Benefits

e Allows speculative re-ordering
e Loads/ stores
e Branch prediction

e Schedule can change due to cache misses

e Different schedule optimal from on cache hit

e Done by hardware
e Compiler may want different schedule for different hw configs
e Hardware has only its own configuration to deal with

Instruction Level Parallelism Ill: Dynamic Scheduling Il

“"ﬁut of Order: Top 5 things to know

e Register renaming
e How to perform is and how to recover it
e |ssue/Select
e Wakeup: CAM
e Choose N ready instructions
e Stores
e Write at retire
e Forward to loads via LSQ
e Loads
e Conservative/aggressive/predictive scheduling
e Violation detection
e Retire

e Precise state (ROB)
e How/when registers are freed

Instruction Level Parallelism Ill: Dynamic Scheduling Il

£ cknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

e Slides re-enhanced by V. Puente of University of Cantabria

Instruction Level Parallelism Ill: Dynamic Scheduling Il

