
Thread Level Parallelism I:
Multicores

(Shared Memory Multiprocessors)

Readings:

H&P: Chapter 4

Thread Level Parallelism I: Multicores 1

Mem

Thread Level Parallelism I: Multicores 2

This Unit: Shared Memory Multiprocessors

• Thread-level parallelism (TLP)

• Shared memory model
• Multiplexed uniprocessor

• Hardware multihreading

• Multiprocessing

• Synchronization
• Lock implementation

• Locking gotchas

• Cache coherence
• Bus-based protocols

• Directory protocols

• Memory consistency models

CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Thread Level Parallelism I: Multicores 3

Multiplying Performance

• A single processor can only be so fast
• Limited clock frequency

• Limited instruction-level parallelism

• Limited cache hierarchy

• What if we need even more computing power?
• Use multiple processors!

• But how?

• High-end example: Sun Ultra Enterprise 25k
• 72 UltraSPARC IV+ processors, 1.5Ghz

• 1024 GBs of memory

• Niche: large database servers

• $$$

Thread Level Parallelism I: Multicores 4

Multicore: Mainstream Multiprocessors

• Multicore chips

• IBM Power5
• Two 2+GHz PowerPC cores

• Shared 1.5 MB L2, L3 tags

• AMD Quad Phenom
• Four 2+ GHz cores

• Per-core 512KB L2 cache

• Shared 2MB L3 cache

• Intel Core 2 Quad
• Four cores, shared 4 MB L2

• Two 4MB L2 caches

• It is a dual die chip

• Sun Niagara
• 8 simple cores, each 4-way

threaded

• Shared 2MB L2, shared FP

• For servers, not desktop

1.5MB L2

L3 tags

Core 1 Core 2

Why multicore? What else would

you do with 500 million transistors?

Roadmap of near-future Multicores

• Intel
• …/P6/NetBurst/Core/Nehalem/…

• (tick) Nehalem-EP (Beckton) (45nm): 4 cores per die (up to 8 cores per
chip in dual die chips) [now]

• (tack) Westmere (32nm): 6-8 Cores per die [3Q, 2009]

• (tick) Sandy Bridge (32nm): 6-8 Cores per die [2010]

• (tack) Ivy Bridge (22nm): 16 Cores per die? 32 per chip? [2011?]

• AMD:
• San Marino: 6 Cores per chip [2Q, 2009]

• Magny-cours: 8-12 Cores per chip [2010]

• Interlagos: 12-16 Cores per chip [2011]

• Sun Microsystems (aka Oracle ?)
• Sun Rock: 16 Cores per chip/die (each 4-way threaded) [2009?]

Thread Level Parallelism I: Multicores 5

Thread Level Parallelism I: Multicores 6

Application Domains for
Multiprocessors

• Scientific computing/supercomputing
• Examples: weather simulation, aerodynamics, protein folding

• Large grids, integrating changes over time

• Each processor computes for a part of the grid

• Server workloads
• Example: airline reservation database

• Many concurrent updates, searches, lookups, queries

• Processors handle different requests

• Media workloads
• Processors compress/decompress different parts of image/frames

• Desktop workloads…

• Gaming workloads…

• Cloud computing…

But software must be written to expose parallelism

Thread Level Parallelism I: Multicores 7

But First, Uniprocessor Concurrency

• Software “thread”
• Independent flow of execution

• Context state: PC, registers

• Threads generally share the same memory space

• “Process” like a thread, but different memory space

• Java has thread support built in, C/C++ supports P-threads library

• Generally, system software (the O.S.) manages threads
• “Thread scheduling”, “context switching”

• All threads share the one processor

• Hardware timer interrupt occasionally triggers O.S.

• Quickly swapping threads gives illusion of concurrent execution

• Refresh already known OS topics (¿?)

Thread Level Parallelism I: Multicores 8

Multithreaded Programming Model

• Programmer explicitly creates multiple threads

• All loads & stores to a single shared memory space
• Each thread has a private stack frame for local variables

• A “thread switch” can occur at any time
• Pre-emptive multithreading by OS

• Common uses:
• Handling user interaction (GUI programming)

• Handling I/O latency (send network message, wait for response)

• Expressing parallel work via Thread-Level Parallelism (TLP)

Thread Level Parallelism I: Multicores 9

Aside: Hardware Multithreading

• Hardware Multithreading (MT)
• Multiple threads dynamically share a single pipeline (caches)

• Replicate thread contexts: PC and register file

• Coarse-grain MT: switch on L2 misses Why?

• Simultaneous MT: no explicit switching, fine-grain interleaving

• Pentium4 is 2-way hyper-threaded, leverages out-of-order core

+ MT Improves utilization and throughput

• Single programs utilize <50% of pipeline (branch, cache miss)

• MT does not improve single-thread performance

• Individual threads run as fast or even slower… especially in Pentium4

PC

I$ Regfile0 D$

Regfile1

PC

THR

Thread Level Parallelism I: Multicores 10

Simplest Multiprocessor

• Replicate entire processor pipeline!
• Instead of replicating just register file & PC

• Exception: share caches (we’ll address this bottleneck later)

• Same “shared memory” or “multithreaded” model
• Loads and stores from two processors are interleaved

• Advantages/disadvantages over hardware multithreading?

PC

I$

Regfile

PC

Regfile

D$

Thread Level Parallelism I: Multicores 11

Shared Memory Implementations

• Multiplexed uniprocessor
• Runtime system and/or OS occasionally pre-empt & swap threads

• Interleaved, but no parallelism

• Hardware multithreading
• Tolerate pipeline latencies, higher efficiency

• Same interleaved shared-memory model

• Multiprocessing
• Multiply execution resources, higher peak performance

• Same interleaved shared-memory model

• Foreshadowing: allow private caches, further disentangle cores

• All have same shared memory programming model

Thread Level Parallelism I: Multicores 12

Shared Memory Issues

• Three in particular, not unrelated to each other

• Synchronization
• How to regulate access to shared data?

• How to implement critical sections?

• Cache coherence
• How to make writes to one cache “show up” in others?

• Memory consistency model
• How to keep programmer sane while letting hardware optimize?

• How to reconcile shared memory with out-of-order execution?

Thread Level Parallelism I: Multicores 13

Example: Parallelizing Matrix Multiply

for (I = 0; I < 100; I++)
for (J = 0; J < 100; J++)

for (K = 0; K < 100; K++)

C[I][J] += A[I][K] * B[K][J];

• How to parallelize matrix multiply over 100 processors?

• One possibility: give each processor 100 iterations of I

for (J = 0; J < 100; J++)
for (K = 0; K < 100; K++)

C[my_id()][J] += A[my_id()][K] * B[K][J];

• Each processor runs copy of loop above
• my_id() function gives each processor ID from 0 to N

• Parallel processing library provides this function

A B C

my_id() my_id()

X =

Thread Level Parallelism I: Multicores 14

Example: Thread-Level Parallelism

• Thread-level parallelism (TLP)
• Collection of asynchronous tasks: not started and stopped together

• Data shared “loosely” (sometimes yes, mostly no), dynamically

• Example: database/web server (each query is a thread)
• accts is shared, can’t register allocate even if it were scalar

• id and amt are private variables, register allocated to r1, r2

• Running example

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id, amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

give_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Thread Level Parallelism I: Multicores 15

An Example Execution

• Two $100 withdrawals from account #241 at two ATMs
• Each transaction maps to thread on different processor

• Track accts[241].bal (address is in r3)

Thread 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Thread 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

300

T
im

e

Thread Level Parallelism I: Multicores 16

A Problem Execution

Thread 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

<<< Interrupt >>>

4: st r4,0(r3)

5: call give_cash

Thread 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

T
im

e

400

• Problem: wrong account balance! Why?
• Solution: synchronize access to account balance

Thread Level Parallelism I: Multicores 17

Synchronization

• Synchronization: a key issue for shared memory
• Regulate access to shared data (mutual exclusion)

• Software constructs: semaphore, monitor, mutex

• Low-level primitive: lock

• Operations: acquire(lock)and release(lock)

• Region between acquire and release is a critical section

• Must interleave acquire and release

• Interfering acquire will block

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

shared int lock;

int id, amt;

acquire(lock);

if (accts[id].bal >= amt) {

accts[id].bal -= amt;

give_cash(); }

release(lock);

// critical section

Thread Level Parallelism I: Multicores 18

A Synchronized Execution

Thread 0

call acquire(lock)

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

<<< Interrupt >>>

4: st r4,0(r3)

call release(lock)

5: call give_cash

Thread 1

call acquire(lock)

<<< Interrupt >>>

(still in acquire)

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call give_cash

Mem

500

400

T
im

e

300

• Fixed, but how do
we implement
acquire & release?

Spins!

Thread Level Parallelism I: Multicores 19

Strawman Lock

• Spin lock: software lock implementation
• acquire(lock): while (lock != 0); lock = 1;

• “Spin” while lock is 1, wait for it to turn 0

A0: ld 0(&lock),r6

A1: bnez r6,A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

• release(lock): lock = 0;

R0: st r0,0(&lock) // r0 holds 0

(Incorrect)

Thread Level Parallelism I: Multicores 20

Strawman Lock

• Spin lock makes intuitive sense, but doesn’t actually work
• Loads/stores of two acquire sequences can be interleaved

• Lock acquire sequence also not atomic

• Same problem as before!

• Note, release is trivially atomic

Thread 0

A0: ld 0(&lock),r6

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Thread 1

A0: ld r6,0(&lock)

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Mem

0

1

T
im

e

1

(Incorrect)

Thread Level Parallelism I: Multicores 21

A Correct Implementation: SYSCALL Lock

• Implement lock in a SYSCALL
• Only kernel can control interleaving by disabling interrupts

+ Works…

– Large system call overhead

– But not in a hardware multithreading or a multiprocessor…

ACQUIRE_LOCK:

A1: disable_interrupts

A2: ld r6,0(&lock)

A3: bnez r6,#A0

A4: addi r6,1,r6

A5: st r6,0(&lock)

A6: enable_interrupts

A7: return

atomic

Thread Level Parallelism I: Multicores 22

Better Spin Lock: Use Atomic Swap

• ISA provides an atomic lock acquisition instruction
• Example: atomic swap

swap r1,0(&lock)

• Atomically executes:

• New acquire sequence
(value of r1 is 1)

A0: swap r1,0(&lock)

A1: bnez r1,A0

• If lock was initially busy (1), doesn’t change it, keep looping

• If lock was initially free (0), acquires it (sets it to 1), break loop

• Insures lock held by at most one thread
• Other variants: exchange, compare-and-swap,

test-and-set (t&s), or fetch-and-add

mov r1->r2

ld r1,0(&lock)

st r2,0(&lock)

Thread Level Parallelism I: Multicores 23

Atomic Update/Swap Implementation

• How is atomic swap implemented?
• Need to ensure no intervening memory operations

• Requires blocking access by other threads temporarily (yuck)

• How to pipeline it?
• Both a load and a store (yuck)

• Not very RISC-like

• Some ISAs provide a “load-link” and “store-conditional” insn. pair

PC

I$

Regfile

PC

Regfile

D$

Thread Level Parallelism I: Multicores 24

RISC Test-And-Set

• t&s: a load and store in one insn is not very “RISC”

• Broken up into micro-ops, but then how are mops made atomic?

• ll/sc: load-locked / store-conditional

• Atomic load/store pair
ll r1,0(&lock)

// potentially other insns

sc r2,0(&lock)

• On ll, processor remembers address…

• …And looks for writes by other processors

• If write is detected, next sc to same address is annulled

• Sets failure condition

• Some kind of predication but in reverse direction with the
condition (is output not input)

SWAP Implementation (Example)

• Atomic swap (between r4 and 0(r1))
try:mov r4,r3

ll r2, 0(r1) //toggle internal flags,

//address and value

sc r3,0(r1) //if internal flags matches

//0(r1) is mod. And r3 is set

beqz r3,try //went wrong. Someone wrote

//0(r1) in the middle of ll&sc

mov r2,r4 //Store (until release) previous

// 0(r1) content

• t&s can be seen as a swap (1, lock)

Thread Level Parallelism I: Multicores 25

Thread Level Parallelism I: Multicores 26

Lock Correctness

+ Test-and-set lock actually works…
• Thread 1 keeps spinning

Thread 0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

CRITICAL_SECTION

Thread 1

A0: swap r1,0(&lock)

A1: bnez r1,#A0

A0: swap r1,0(&lock)

A1: bnez r1,#A0

Thread Level Parallelism I: Multicores 27

Test-and-Set Lock Performance

– …but performs poorly
• Consider 3 processors rather than 2

• Processor 2 (not shown) has the lock and is in the critical section

• But what are processors 0 and 1 doing in the meantime?

• Loops of t&s, each of which includes a st

– Repeated stores by multiple processors costly (more in a bit)

– Generating a ton of useless interconnect traffic

o (But … st wasn’t annulled?)

Thread 0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

Thread 1

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

Thread Level Parallelism I: Multicores 28

Test-and-Test-and-Set Locks

• Solution: test-and-test-and-set locks
• New acquire sequence

A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1,r1

A3: t&s r1,0(&lock)

A4: bnez r1,A0

• Within each loop iteration, before doing a t&s

• Spin doing a simple test (ld) to see if lock value has changed

• Only do a t&s (st) if lock is actually free

• Processors can spin on a busy lock locally (in their own cache)

+ Less unnecessary interconnect traffic

• Note: test-and-test-and-set is not a new instruction!

• Just different software

Thread Level Parallelism I: Multicores 29

Queue Locks

• Test-and-test-and-set locks can still perform poorly
• If lock is contended for by many processors

• Lock release by one processor, creates “free-for-all” by others

– Interconnect gets swamped with t&s requests

• Software queue lock
• Each waiting processor spins on a different location (a queue)

• When lock is released by one processor...

• Only the next processors sees its location go “unlocked”

• Others continue spinning locally, unaware lock was released

• Effectively, passes lock from one processor to the next, in order

+ Greatly reduced network traffic (no mad rush for the lock)

+ Fairness (lock acquired in FIFO order)

– Higher overhead in case of no contention (more instructions)

– Poor performance if one thread gets swapped out

Thread Level Parallelism I: Multicores 30

Programming With Locks Is Tricky

• Multicore processors are the way of the foreseeable future
• thread-level parallelism anointed as parallelism model of choice

• Just one problem…

• Writing lock-based multi-threaded programs is tricky!

• More precisely:
• Writing programs that are correct is “easy” (not really)

• Writing programs that are highly parallel is “easy” (not really)

– Writing programs that are both correct and parallel is difficult

• And that’s the whole point, unfortunately

• Why?

• Locking

Thread Level Parallelism I: Multicores 31

Coarse-Grain Locks: Correct but Slow

• Coarse-grain locks: e.g., one lock for entire database
+ Easy to make correct: no chance for unintended interference

– Limits parallelism: no two critical sections can proceed in parallel

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

shared int lock;

acquire(lock);

if (accts[id].bal >= amt) {

accts[id].bal -= amt;

give_cash(); }

release(lock);

Thread Level Parallelism I: Multicores 32

Fine-Grain Locks: Parallel But Difficult

• Fine-grain locks: e.g., multiple locks, one per record
+ Fast: critical sections (to different records) can proceed in parallel

– Difficult to make correct: easy to make mistakes

• This particular example is easy

• Requires only one lock per critical section

• Consider critical section that requires two locks…

struct acct_t { int bal,lock; };

shared struct acct_t accts[MAX_ACCT];

int id,amt;

acquire(accts[id].lock);

if (accts[id].bal >= amt) {

accts[id].bal -= amt;

give_cash(); }

release(accts[id].lock);

Thread Level Parallelism I: Multicores 33

Multiple Locks

• Multiple locks: e.g., acct-to-acct transfer

• Must acquire both id_from, id_to locks

• Running example with accts 241 and 37

• Simultaneous transfers 241  37 and 37  241

• Contrived… but even contrived examples must work correctly too

struct acct_t { int bal,lock; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

acquire(accts[id_from].lock);

acquire(accts[id_to].lock);

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

release(accts[id_to].lock);

release(accts[id_from].lock);

Thread Level Parallelism I: Multicores 34

Multiple Locks And Deadlock

• Deadlock: circular wait for shared resources
• Thread 0 has lock 241 waits for lock 37

• Thread 1 has lock 37 waits for lock 241

• Obviously this is a problem

• The solution is …

Thread 0

id_from = 241;

id_to = 37;

acquire(accts[241].lock);

// wait to acquire lock 37

// waiting…

// still waiting…

Thread 1

id_from = 37;

id_to = 241;

acquire(accts[37].lock);

// wait to acquire lock 241

// waiting…

// …

Thread Level Parallelism I: Multicores 35

Correct Multiple Lock Program

• Always acquire multiple locks in same order
• Just another thing to keep in mind when programming

struct acct_t { int bal,lock; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

int id_first = min(id_from, id_to);

int id_second = max(id_from, id_to);

acquire(accts[id_first].lock);

acquire(accts[id_second].lock);

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

release(accts[id_second].lock);

release(accts[id_first].lock);

Thread Level Parallelism I: Multicores 36

Correct Multiple Lock Execution

• Great, are we done? No

Thread 0

id_from = 241;

id_to = 37;

id_first = min(241,37)=37;

id_second = max(37,241)=241;

acquire(accts[37].lock);

acquire(accts[241].lock);

// do stuff

release(accts[241].lock);

release(accts[37].lock);

Thread 1

id_from = 37;

id_to = 241;

id_first = min(37,241)=37;

id_second = max(37,241)=241;

// wait to acquire lock 37

// waiting…

// …

// …

// …

acquire(accts[37].lock);

Thread Level Parallelism I: Multicores 37

More Lock Madness

• What if…
• Some actions (e.g., deposits, transfers) require 1 or 2 locks…

• …and others (e.g., prepare statements) require all of them?

• Can these proceed in parallel?

• What if…
• There are locks for global variables (e.g., operation id counter)?

• When should operations grab this lock?

• What if… what if… what if…

• So lock-based programming is difficult…

• …wait, it gets worse

Thread Level Parallelism I: Multicores 38

And To Make It Worse…

• Acquiring locks is expensive…
• By definition requires a slow atomic instructions

• Specifically, acquiring write permissions to the lock

• Ordering constraints (see soon) make it even slower

• …and 99% of the time un-necessary
• Most concurrent actions don’t actually share data

– You paying to acquire the lock(s) for no reason

• Fixing these problem is an area of active research
• One proposed solution “Transactional Memory”

Thread Level Parallelism I: Multicores 39

Research: Transactional Memory (TM)

• Transactional Memory
+ Programming simplicity of coarse-grain locks

+ Higher concurrency (parallelism) of fine-grain locks

• Critical sections only serialized if data is actually shared

+ No lock acquisition overhead

• Hottest thing since sliced bread (or was a few years ago)

• Sun Rock processor has hardware support for it
• …so, starting to be less Research and more Practice

Thread Level Parallelism I: Multicores 40

Transactional Memory: The Big Idea

• Big idea I: no locks, just shared data
• Look ma, no locks

• Big idea II: optimistic (speculative) concurrency
• Execute critical section speculatively, abort on conflicts

• “Better to beg for forgiveness than to ask for permission”

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

end_transaction();

Thread Level Parallelism I: Multicores 41

Transactional Memory: Read/Write
Sets

• Read set: set of shared addresses critical section reads
• Example: accts[37].bal, accts[241].bal

• Write set: set of shared addresses critical section writes
• Example: accts[37].bal, accts[241].bal

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

end_transaction();

Thread Level Parallelism I: Multicores 42

Transactional Memory: Begin

• begin_transaction

• Take a local register checkpoint

• Begin locally tracking read set (remember addresses you read)

• See if anyone else is trying to write it

• Locally buffer all of your writes (invisible to other processors)

+ Local actions only: no lock acquire

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

end_transaction();

Thread Level Parallelism I: Multicores 43

Transactional Memory: End

• end_transaction

• Check read set: is all data you read still valid (i.e., no writes to any)

• Yes? Commit transactions: commit writes

• No? Abort transaction: restore checkpoint (lazy conflict detection)

• Lazy / Eager approaches to detect conflicts.

struct acct_t { int bal; };

shared struct acct_t accts[MAX_ACCT];

int id_from,id_to,amt;

begin_transaction();

if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;

accts[id_to].bal += amt; }

end_transaction();

Thread Level Parallelism I: Multicores 44

Transactional Memory Implementation

• How are read-set/write-set implemented?
• Track locations accessed using bits in the cache

• Read-set: additional “transactional read” bit per block
• Set on reads between begin_transaction and end_transaction
• Any other write to block with set bit  triggers abort (eager conflict

detection) / abort at commit (lazy conflict detection)
• Flash cleared on transaction abort or commit

• Write-set: additional “transactional write” bit per block
• Set on writes between begin_transaction and end_transaction
• Before first write, if dirty, initiate writeback (“clean” the block)
• Flash cleared on transaction commit
• On transaction abort: blocks with set bit are invalidated
• Aside: Where to write new values? (Version management): Eager (on-place)

Lazy (somewhere else)

Thread Level Parallelism I: Multicores 45

Transactional Execution

Thread 0

id_from = 241;

id_to = 37;

begin_transaction();

if(accts[241].bal > 100) {

…

// write accts[241].bal

// abort (eager)

Thread 1

id_from = 37;

id_to = 241;

begin_transaction();

if(accts[37].bal > 100) {

accts[37].bal -= amt;

acts[241].bal += amt;

}

end_transaction();

// no writes to accts[241].bal

// no writes to accts[37].bal

// commit

Thread Level Parallelism I: Multicores 46

Transactional Execution II (More Likely)

• Critical sections execute in parallel

Thread 0

id_from = 241;

id_to = 37;

begin_transaction();

if(accts[241].bal > 100) {

accts[241].bal -= amt;

acts[37].bal += amt;

}

end_transaction();

// no write to accts[240].bal

// no write to accts[37].bal

// commit

Thread 1

id_from = 450;

id_to = 118;

begin_transaction();

if(accts[450].bal > 100) {

accts[450].bal -= amt;

acts[118].bal += amt;

}

end_transaction();

// no write to accts[450].bal

// no write to accts[118].bal

// commit

Transaction Semantics -
ACI Properties

• Atomicity – All or Nothing

• Consistency – Correct at beginning and end (no matter if the
transaction is successful or not)

• Isolation – Partially done work not visible to other threads

• D? – Very different context: this is not a DBMS, although uses
loosely related concepts, not the same problem!

47Thread Level Parallelism I: Multicores

Thread Level Parallelism I: Multicores 48

So, Let’s Just Do Transactions?

• What if…
• Read-set or write-set bigger than cache?

• Transaction gets swapped out in the middle?

• Transaction wants to do I/O or SYSCALL (not-abortable)?

• Transaction nesting?

• How do we transactify existing lock based programs?
• Replace acquire with begin_trans does not always work

• Weak automaticity ↔ strong atomicity

• Several different kinds of transaction semantics
• Are transactions atomic relative to code outside of transactions?

• Do we want transactions in hardware or in software?
• What we just saw is hardware transactional memory (HTM)

• That’s what these research groups are looking at

Thread Level Parallelism I: Multicores 49

In The Meantime: Do SLE

• Until TM interface solidifies…

• … speculatively transactify lock-based programs in hardware
• Speculative Lock Elision (SLE) [Rajwar+, MICRO’01]

+ No need to rewrite programs

+ Can always fall back on lock-based execution (overflow, I/O, etc.)

• Modified rumor: this is what Sun’s Rock actually does

Processor 0

acquire(accts[37].lock); // don’t actually set lock to 1

// begin tracking read/write sets

// CRITICAL_SECTION

// check read set

// no conflicts? Commit, don’t actually set lock to 0

// conflicts? Abort, retry by acquiring lock

release(accts[37].lock);

Thread Level Parallelism I: Multicores 50

Unit Checkpoint

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multihreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Thread Level Parallelism I: Multicores 51

Recall: Simplest Multiprocessor

• What if we don’t want to share the L1 caches?
• Bandwidth and latency issue

• Solution: use per-processor (“private”) caches
• Coordinate them with a Cache Coherence Protocol

PC

I$

Regfile

PC

Regfile

D$

Thread Level Parallelism I: Multicores 52

Shared-Memory Multiprocessors

• Conceptual model
• The shared-memory abstraction

• Familiar and feels natural to programmers

• Life would be easy if systems actually looked like this…

P0 P1 P2 P3

Memory

Thread Level Parallelism I: Multicores 53

Shared-Memory Multiprocessors

• …but systems actually look more like this
• Processors have caches

• Memory may be physically distributed

• Arbitrary interconnect

P0 P1 P2 P3

$ M0

Router/interface

Interconnect

$ M1

Router/interface

$ M2

Router/interface

$ M3

Router/interface

Thread Level Parallelism I: Multicores 54

Chip Multiprocessors (CMP)

• Add another level to the hierarchy

P0

1$

P1

1$

P2

1$

P3

1$

2$

Interconnect 1

Router/interface

M0

P4

1$

P5

1$

P6

1$

P7

1$

2$

Interconnect 1

Router/interface

M0

Interconnect 2

Thread Level Parallelism I: Multicores 55

Revisiting Our Motivating Example

• Two $100 withdrawals from account #241 at two ATMs
• Each transaction maps to thread on different processor

• Track accts[241].bal (address is in $r3)

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

critical section

(locks not shown)

critical section

(locks not shown)

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 56

No-Cache, No-Problem

• Scenario I: processors have no caches
• No problem

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500

$400

$400

$300

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 57

Cache Incoherence

• Scenario II(a): processors have write-back caches
• Potentially 3 copies of accts[241].bal: memory, p0$, p1$

• Can get incoherent (inconsistent)

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500 $500

$400 $500

$400 $500$500

$400 $500$400

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 58

Write-Through Doesn’t Fix It

• Scenario II(b): processors have write-through caches
• This time only 2 (different) copies of accts[241].bal

• No problem? What if another withdrawal happens on processor 0?

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

$500

$500 $500

$400 $400

$400 $400$400

$400 $300$300

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 59

What To Do?

• No caches?
– Slow

• Make shared data uncachable?
– Faster, but still too slow

• Entire accts database is technically “shared”

• Definition of “loosely shared”

• Data only really shared if two ATMs access same acct at once

• Flush all other caches on writes to shared data?
• May as well not have caches

• Hardware cache coherence
• Rough goal: all caches have same data at all times

+ Minimal flushing, maximum caching  best performance

Thread Level Parallelism I: Multicores 60

Bus-based Multiprocessor

• Simple multiprocessors use a bus
• All processors see all requests at the same time, same order

• Memory
• Single memory module, -or-

• Banked memory module

P0 P1 P2 P3

$

M0

Bus

$

M1

$

M2

$

M3

Thread Level Parallelism I: Multicores 61

Hardware Cache Coherence

• Coherence
• all copies have same data at all times

• Coherence controller:
• Examines bus traffic (addresses and data)

• Executes coherence protocol

• What to do with local copy when you see different
things happening on bus

• Three processor-initiated events
• R: read W: write WB: write-back

• Two remote-initiated events
• BR: bus-read, read miss from another processor

• BW: bus-write, write miss from another processor

• Three responses event:
• SD: send data BR: ask to read BW: ask to write

CPU

D
$
 d

a
ta

D
$
 t
a
g
s

CC

bus

Thread Level Parallelism I: Multicores 62

VI (MI) Coherence Protocol

• VI (valid-invalid) protocol: aka MI
• Two states (per block in cache)

• V (valid): have block

• I (invalid): don’t have block

+ Can implement with valid bit

• Protocol diagram (left)
• Convention: eventgenerated-event

• Summary

• If anyone wants to read/write block

• Give it up: transition to I state

• Write-back if your own copy is dirty

• This is an invalidate protocol

• Update protocol: copy data, don’t invalidate
• Sounds good, but wastes a lot of bandwidth

I

V

R


B
R

,
W


B
W

B
R

/B
W


S
D

,
W

B


S
D

R/W

BR/BW

VI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid (I)
Miss(BR)

 V
Miss (BW)

 V
--- ---

Valid (V) Hit Hit
Send Data
 I

Send Data
 I

Thread Level Parallelism I: Multicores 63

• Rows are “states”

• I vs V

• Columns are “events”

• Writeback events not shown

• Memory controller not shown

• Responds when no other processor would respond

• Memory controller has his own table (to know when has to respond)

• If multiple Cache levels present => each one has his own CC (protocol and state per block)

Thread Level Parallelism I: Multicores 64

VI Protocol (Write-Back Cache)

• lw by processor 1 generates a BR (bus read)

• processor 0 responds by sending its dirty copy, transitioning to I

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

V:500 500

V:400 500

I: 400V:400

400V:300

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 65

VI  MSI

• VI protocol is inefficient
– Only one cached copy allowed in entire system

– Multiple copies can’t exist even if read-only

• Not a problem in example

• Big problem in reality

• MSI (modified-shared-invalid)
• Fixes problem: splits “V” state into two states

• M (modified): local dirty copy

• S (shared): local clean copy

• Allows either

• Multiple read-only copies (S-state) --OR--

• Single read/write copy (M-state)

I

M

W


B
W

B
W


S
D

,
W

B


S
D

R,W

BR,BW

S

WBW

R,BR

BRSD

MSI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid (I)
Miss
 S

Miss
 M

--- ---

Shared
(S)

Hit
Upg Miss

 M
---  I

Modified
(M)

Hit Hit
Send Data
 S

Send Data
 I

Thread Level Parallelism I: Multicores 66

• M  S transition also updates memory

• After which, memory willl respond (as all processors will be in S)

Thread Level Parallelism I: Multicores 67

MSI Protocol (Write-Back Cache)

• lw by processor 1 generates a BR
• Processor 0 responds by sending its dirty copy, transitioning to S

• sw by processor 1 generates a BW
• Processor 0 responds by transitioning to I

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

S:500 500

M:400 500

S:400 400S:400

I: 400M:300

CPU0 MemCPU1

Thread Level Parallelism I: Multicores 68

Cache Coherence and Cache Misses

• Coherence introduces two new kinds of cache misses
• Upgrade miss: delay to acquire write permission to read-only block

• Coherence miss: miss to a block evicted by bus event

• Example: direct-mapped 4B cache, 2B blocks

Cache contents (prior to access) Request Outcome

TT0B TT1B

----|----:I ----|----:I 1100 R Compulsory miss

1100|1101:S ----|----:I 1100 W Upgrade miss

1100|1101:M ----|----:I 0010 BW - (no action)

1100|1101:M ----|----:I 1101 BW - (evict)

----|----:I ----|----:I 1100 R Coherence miss

1100|1101:S ----|----:I 0000 R Compulsory miss

0000|0001:S ----|----:I 1100 W Conflict miss

4th C

Thread Level Parallelism I: Multicores 69

Thread Level Parallelism I: Multicores 70

Cache Parameters and Coherence Misses

– Larger capacity: more coherence misses
• But the effect offset (by far) by reduction in capacity misses

– Increased block size: more coherence misses
• False sharing: “sharing” a cache line without sharing data

• Creates pathological “ping-pong” behavior

• Careful data placement may help, but is difficult

– More processors: (usually) also more coherence misses

Cache contents (prior to access) Request Outcome

TT0B TT1B

----|----:I ----|----:I 1100 R Compulsory miss

1100|1101:S ----|----:I 1100 W Upgrade miss

1100|1101:M ----|----:I 1101 BW - (evict)

----|----:I ----|----:I 1100 R Coherence miss (false sharing)

Thread Level Parallelism I: Multicores 71

Exclusive Clean Protocol Optimization

• Most modern protocols also include E (exclusive) state
• Interpretation: “I have the only cached copy, and it’s a clean copy”

• Why would this state be useful?

Processor 0

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

Processor 1

0: addi $r3,$r1,&accts

1: lw $r4,0($r3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0($r3)

5: jal dispense_cash

500

E:500 500

M:400 500

S:400 400S:400

I: 400M:300

CPU0 MemCPU1

(No miss)

MESI Protocol State Transition Table

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid
(I)

Miss
 S or E

Miss
 M

--- ---

Shared
(S)

Hit
Upg Miss

 M
---  I

Exclusive
(E)

Hit
Hit
 M

Send Data
 S

Send Data
 I

Modified
(M)

Hit Hit
Send Data
 S

Send Data
 I

Thread Level Parallelism I: Multicores 72

• Load misses lead to “E” if no other processors is caching the block

Thread Level Parallelism I: Multicores 73

MESI Protocol and Cache Misses

• MESI protocol reduces upgrade misses
• And miss traffic.

Cache contents (prior to access) Request Outcome

TT0B TT1B

----|----:I ----|----:I 1100 R Compulsory miss (block from memory)

1100|1101:E ----|----:I 1100 W - (no upgrade miss)

1100|1101:M ----|----:I 0010 BW - (no action)

1100|1101:M ----|----:I 1101 BW - (evict)

----|----:I ----|----:I 1100 R Coherence miss

1100|1101:E ----|----:I 0000 R Compulsory miss

0000|0001:S ----|----:I 1100 W Conflict miss (no writeback)

Thread Level Parallelism I: Multicores 74

Another Protocol Optimization

• Cache-to-cache transfers (CCT)
• If data you need is in both memory and other cache…

• Better to get it from the other cache

• SRAM is faster than DRAM

• Especially true if cache block is dirty

• Otherwise, writeback followed by memory read

• If multiple blocks have copies, who does CCT?

• One cache designated as “owner”

I

M

W


B
W

B
W


W
B

,
W

B


R/W

BR/BW

S

WBW

R

BR CCT

BRWB

CCT

MOESI Protocol State Transition Table

Thread Level Parallelism I: Multicores 75

This Processor Other Processor

State Load Store Load Miss Store Miss

Invalid
(I)

Miss
 S or E

Miss
 M

Shared
(S)

Hit
Upg Miss

 M ---  I

Exclusive
(E)

Hit
Hit
 M

Send Data
 O

Send Data
 I

Owner
(O)

Hit
Upg Miss

 M Send Data
Send Data
 I

Modified
(M)

Hit Hit
Send Data
 O

Send Data
 I

Thread Level Parallelism I: Multicores 76

Snooping Bandwidth Requirements

• Coherence events generated on…
• L2 misses (and writebacks)

• Some parameters
• 2 GHz CPUs, 2 IPC, 33% memory operations,

• 2% of which miss in the L2, 64B blocks, 50% dirty

• (0.33 * 0.02 * 1.5) = 0.01 events/insn

• 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns

• Address request: 0.04 events/ns * 4 B/event = 0.16 GB/s

• Data response: 0.04 events/ns * 64 B/event = 2.56 GB/s

• That’s 2.5 GB/s … per processor
• With 16 processors, that’s 40 GB/s!

• With 128 processors, that’s 320 GB/s!!

• … Increasing the number of processor doesn't increase the available BW

Thread Level Parallelism I: Multicores 77

More Snooping Bandwidth Problems

• Bus bandwidth is not the only problem

• Also processor snooping bandwidth
• 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor

• 16 processors: 0.32 bus-side tag lookups per cycle

• Add 1 port to cache tags? Sure

• 128 processors: 2.56 bus-side tag lookups per cycle!

• Add 3 ports to cache tags? Oy vey!

• Implementing inclusion (L1 is strict subset of L2) helps a little

• 2 additional ports on L2 tags only

• Processor doesn’t use existing tag port most of the time

• If L2 doesn’t care about bus-side transactions (99% of the time), no need
to bother L1

– Still kind of bad though

• What if bus/snooping bandwidth is not enough?
• Contention

Thread Level Parallelism I: Multicores 78

Scalable Cache Coherence

• Part I: bus bandwidth
• Replace non-scalable bandwidth substrate (bus)…

• …with scalable interconnection network (one that scale his bandwidth
when you increase the count of processor)

• Part II: processor snooping bandwidth
• Most snoops result in no action

• Replace non-scalable broadcast protocol (spam everyone)…

• …with scalable directory protocol (only notify processors that care)

I

BR/BW

Part I: How is a Scalable Network?

N

N

N

N

N

N

N

N

N

N

N

N

(b) 4-node (c) 8-node (d) 16-node

(e) 64-node

(d) 32-node

meta-router

Thread Level Parallelism I: Multicores 79

Elements

• Network links
• The wires used by the information to travel from source to destination

• Could be optical or electrical

• Routers
• The element that interconnect network links

• Similar to LAN/WAN routers, but usually only best-effort

• Network interfaces
• Responsible to regulate the access to network

• Similar to Network Card, but in most cases no software

• More processors => more routers => more links => more BW

Thread Level Parallelism I: Multicores 80

Thread Level Parallelism I: Multicores 81

Part II: Scalable Cache Coherence

• Point-to-point interconnects
• Massively parallel processors (MPPs)

+ Can be arbitrarily large: 10000’s of processors

• Non uniform view of the memory -or- Non-cache coherent

• Scalable multi-processors

• Companies have much smaller systems: 32–64 processors

• Intel Nehalem/ AMD Opteron – point-to-point, glueless, broadcast

• Distributed memory: non-uniform memory architecture (NUMA)

CPU($)

Mem R

CPU($)

Mem R

CPU($)

MemR

CPU($)

MemR

Thread Level Parallelism I: Multicores 82

NUMA & Directory Coherence
Protocols

• Observe: address space statically partitioned
+ Can easily determine which memory module holds a given line

• That memory module sometimes called “home”

– Can’t easily determine which processors have line in their caches

• Bus-based protocol: broadcast events to all processors/caches

± Simple and fast, but non-scalable

• Directories: non-broadcast coherence protocol
• Extend memory to track caching information

• For each physical cache line whose home this is, track:

• Owner: which processor has a dirty copy (I.e., M state)

• Sharers: which processors have clean copies (I.e., S state)

• Processor sends coherence event to home directory

• Home directory only sends events to processors that care

Thread Level Parallelism I: Multicores 83

MSI Directory Protocol

• Processor side
• Directory follows its own protocol (obvious in principle)

• Similar to bus-based MSI
• Same three states

• Same five actions (keep BR/BW names)

• Minus grayed out arcs/actions

• Bus events that would not trigger action anyway

+ Directory won’t bother you unless you need to act

I

M

W


B
W

B
W


S
D

,
W

B


R,W

BR/BW

S

WBW

R, BR

BRSD

83

Thread Level Parallelism I: Multicores 84

Directory MSI Protocol

• ld by P1 sends BR to directory
• Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

• st by P1 sends BW to directory
• Directory sends BW to P0, P0 goes to I

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call dispense_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call dispense_cash

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400S:400

M:1:400M:300

P0 P1 Directory

(stale)

Thread Level Parallelism I: Multicores 85

Directory Flip Side: Latency

• Directory protocols
+ Lower bandwidth consumption  more scalable

– Longer latencies

• Two read miss situations

• Unshared: get data from memory
• Snooping: 2 hops (P0memoryP0)

• Directory: 2 hops (P0memoryP0)

• Shared or exclusive: get data from other processor (P1)
• Assume cache-to-cache transfer optimization

• Snooping: 2 hops (P0P1P0)

– Directory: 3 hops (P0memoryP1P0)

• Common, with many processors high probability someone has it

P0 P1

Dir

3 hop miss

P0

Dir

2 hop miss

Thread Level Parallelism I: Multicores 86

Directory Flip Side: Complexity

• Latency not only issue for directories
• Subtle correctness issues as well

• Stem from unordered nature of underlying inter-connect

• Individual requests to single cache must be ordered
• Bus-based Snooping: all processors see all requests in same order

• Ordering automatic

• Point-to-point network: requests may arrive in different orders

• Directory has to enforce ordering explicitly

• Cannot initiate actions on request B…

• Until all relevant processors have completed actions on request A

• Requires directory to collect acks, queue requests, etc.

• Directory protocols
• Obvious in principle

– Complicated in practice

Thread Level Parallelism I: Multicores 87

Best of Both Worlds?

• Ignore processor snooping bandwidth for a minute

• Can we combine best features of snooping and directories?
• From snooping: fast two-hop cache-to-cache transfers

• From directories: scalable point-to-point networks

• In other words…

• Can we use broadcast on an unordered network?
• Yes, and most of the time everything is fine

• But sometimes it isn’t … protocol race

• Research Proposal: Token Coherence (TC)
• An unordered broadcast snooping protocol … without data races

What means complex?

Thread Level Parallelism I: Multicores 88

Thread Level Parallelism I: Multicores 89

Coherence on Real Machines

• Many uniprocessors designed with on-chip snooping logic
• Can be easily combined to form multi-processors

• E.g., Intel Pentium4 Xeon

• Multi-core

• Larger scale (directory) systems built from smaller MPs
• E.g., Sun Wildfire, NUMA-Q, IBM Summit

• Some shared memory machines are not cache coherent
• E.g., CRAY-T3D/E, Cell Broadband Engine

• Shared data is uncachable

• If you want to cache shared data, copy it to private data section

• Basically, cache coherence implemented in software

• Have to really know what you are doing as a programmer

Thread Level Parallelism I: Multicores 90

Unit Checkpoint

• Thread-level parallelism (TLP)

• Shared memory model

• Multiplexed uniprocessor

• Hardware multihreading

• Multiprocessing

• Synchronization

• Lock implementation

• Locking gotchas

• Cache coherence

• Bus-based protocols

• Directory protocols

• Memory consistency models

Mem CPU I/O

System software

AppApp App

CPUCPUCPUCPUCPU

Hiding Store Miss Latency

• Recall (back from caching unit)
• Hiding store miss latency

• How? Write buffer

• Said it would complicate multiprocessors
• Yes. It does.

Thread Level Parallelism I: Multicores 91

Thread Level Parallelism I: Multicores 92

Recall: Write Misses and Write Buffers

• Read miss?
• Load can’t go on without the data, it must stall

• Write miss?
• Technically, no instruction is waiting for data, why stall?

• Write buffer: a small buffer
• Stores put address/value to write buffer, keep going

• Write buffer writes stores to D$ in the background

• Loads must search write buffer (in addition to D$)

+ Eliminates stalls on write misses (mostly)

– Creates some problems (later)

• Write buffer vs. writeback-buffer
• Write buffer: “in front” of D$, for hiding store misses

• Writeback buffer: “behind” D$, for hiding writebacks

Cache

Next-level

cache

WBB

WB

Processor

//Library/Mail Downloads/08_memhier.ppt

Thread Level Parallelism I: Multicores 93

Memory Consistency

• Memory coherence
• Creates globally uniform (consistent) view…

• Of a single memory location (in other words: cache line)

– Not enough

• Cache lines A and B can be individually consistent…

• But inconsistent with respect to each other

• Memory consistency
• Creates globally uniform (consistent) view…

• Of all memory locations relative to each other

• Who cares? Programmers
– Globally inconsistent memory creates mystifying behavior

Thread Level Parallelism I: Multicores 94

Coherence vs. Consistency

• Intuition says: P1 prints A=1

• Coherence says: absolutely nothing
• P1 can see P0’s write of flag before write of A!!! How?

• Maybe coherence event of A is delayed somewhere in network

• Or P0 has a coalescing write buffer that reorders writes

• Imagine trying to figure out why this code sometimes “works”
and sometimes doesn’t

• Real systems act in this strange manner

A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

Thread Level Parallelism I: Multicores 95

Sequential Consistency (SC)

• Sequential consistency (SC)
• Formal definition of memory view programmers expect

• Processors see their own loads and stores in program order

+ Provided naturally, even with out-of-order execution

• But also: processors see others’ loads and stores in program order

• And finally: all processors see same global load/store ordering

– Last two conditions not naturally enforced by coherence

• Lamport definition: multiprocessor ordering…
• Corresponds to some sequential interleaving of uniprocessor orders

• Indistinguishable from multi-programmed uni-processor

A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;

Thread Level Parallelism I: Multicores 96

SC Doesn’t “Happen Naturally” Why?

• What is consistency concerned with?
• P1 doesn’t actually view P0’s commitd loads and stores

• Views their coherence events instead

• “Consistency model”: how observed order of coherence events relates to
order of committed insns

• What does SC say?
• Coherence event order must match committed insn order

• And be identical for all processors

• Let’s go SC and forget this!

• Not so easy: Let’s see what that implies

Thread Level Parallelism I: Multicores 97

Enforcing SC

• What does it take to enforce SC?
• Definition: all loads/stores globally ordered

• Use ordering of coherence events to order all loads/stores

• When do coherence events happen naturally?
• On cache access

• For stores: commitment  in-order  good

• No write buffer? Yikes, but OK with write-back D$

• For loads: execution  out-of-order  bad

– No out-of-order execution? Double yikes

• Is it true that multi-processors cannot be out-of-order?
– That would be really bad

• Out-of-order is needed to hide cache miss latency

• And multi-processors not only have more misses…

• … but miss handling takes longer (coherence actions)

Thread Level Parallelism I: Multicores 98

SC + Out-of-Order

• Recall: opportunistic load scheduling in a uni-processor
• Loads issue speculatively relative to older stores

• Stores scan for younger loads to same address have issued (at LQ)

• Find one? Ordering violation  flush and restart

• In-flight loads effectively “snoop” older stores from same process (at SQ)

• SC + OOO can be reconciled using same technique
• “Invalidation” requests from other processors snoop in-flight loads (at

LQ)

• Think of load/store queue as extension of the cache hierarchy

• MIPS R10K does this

• SC implementable, but overheads still remain:
• Write buffer issues

• Complicated load/store queue

Thread Level Parallelism I: Multicores 99

SC + Out-of-Order

• What is this?
• P0 sees P1’s write of A

• P0 should also see P1’s write of B (older than write of A)

– But doesn’t because it read of B out-of-order w.r.t. read of A

• Does this mean no out-of-order? (that would be bad)

• Fortunately, there is a way

A=0;B=0;

Processor 0

1:…=B(0); // ooo exec

0:…=A(1);

0:…=A(1); // in-order commit

1:…=B(0);

Processor 1

0:B=1; // in-order commit

1:A=1; Insn# valueti
m

e

Thread Level Parallelism I: Multicores 100

SC + Out-of-Order

• What would happen if…
• P0 executed read of B out-of-order w.r.t. its own write of B?

• Would read of B get the wrong value?

• No, write of B searches LQ, discovers read of B went early, flushes

• Same solution here…
• Commit of B on P1 searches load queue (LQ) of P0

A=0;B=0;

Processor 0

1:…=B(0); // ooo exec

0:B=1;

0:B=1; // io commit

1:…=B(0);

Processor 0

1:…=B(0); // ooo exec

0:B=1; // LQ search

squash

1:…=B(1);

0:B=1; // io commit

1:…=B(1); This doesn’t actually happen

Thread Level Parallelism I: Multicores 101

SC + Out-of-Order

A=0;B=0;

Processor 0

1:…=B(0); // ooo exec

LQ search, squash

0:…=A(1);

1:…=B(1)

0:…=A(1); // io commit

1:…=B(1);

Processor 1

0:B=1; // io commit

1:A=1;

Thread Level Parallelism I: Multicores 102

SC + Write Buffers

• Store misses are slow
• Global acquisition of M state (write permission)

– Multiprocessors have more store misses than uniprocessors

• Upgrade miss: I have block in S, require global upgrade to M

• Apparent solution: write buffer
• Commit store to write buffer, let it absorb store miss latency

• But a write buffer means…

• I see my own stores commit before everyone else sees them

• Orthogonal to out-of-order execution
• Even in-order processors have write buffers

Thread Level Parallelism I: Multicores 103

SC + Write Buffers

• Possible for both (B==0) and (A==0) to be true

• Because B=1 and A=1 are just sitting in the write buffers

• Which is wrong

• So does SC mean no write buffer?

– Yup, and that hurts

• Research direction: use deep speculation to hide latency
• Beyond the out-of-order window, looks like transactional memory:

BulkSC

A=0; B=0;

Processor 0

A=1; // in-order to WrBu

if(B==0) // in-order commit

A=1; // in-order to D$

Processor 1

B=1; // in-order to WrBu

if(A==0) // in-order commit

B=1; // in-order to D$

Thread Level Parallelism I: Multicores 104

Is SC Really Necessary?

• SC
+ Most closely matches programmer’s intuition (don’t under-estimate)

– Restricts optimization by compiler, CPU, memory system

• Supported by MIPS, HP PA-RISC

• Is full-blown SC really necessary? What about…
• All processors see others’ loads/stores in program order

• But not all processors have to see same global order

+ Allows processors to have in-order write buffers

– Doesn’t confuse programmers too much

• Synchronized programs (e.g., our example) work as expected

• Processor Consistency (PC): e.g., Intel/AMD x86, SPARC

Thread Level Parallelism I: Multicores 105

Weak Memory Ordering

• For properly synchronized programs…

• …only acquires/releases must be strictly ordered

• Why? acquire-release pairs define critical sections
• Between critical-sections: data is private

• Globally unordered access OK

• Within critical-section: access to shared data is exclusive

• Globally unordered access also OK

• Implication: compiler or dynamic scheduling is OK

• As long as re-orderings do not cross synchronization points

• Weak Ordering (WO): Alpha, Itanium, ARM, PowerPC
• ISA provides fence to indicate scheduling barriers

• Proper use of fences is somewhat subtle

• Use synchronization library, don’t write your own

Thread Level Parallelism I: Multicores 106

Fences aka Memory Barriers

• Fences (memory barriers): special insns
• Ensure that loads/stores don’t cross acquire release boundaries

• Very roughly

acquire

fence

critical section

fence

release

• How do they work?
• fence insn must commit before any younger insn dispatches

• This also means write buffer is emptied

– Makes lock acquisition and release slow(er)

• Use synchronization library, don’t write your own: Portability

Thread Level Parallelism I: Multicores 107

Shared Memory Summary

• Synchronization: regulated access to shared data
• Key feature: atomic lock acquisition operation (e.g., t&s)

• Performance optimizations: test-and-test-and-set, queue locks

• Coherence: consistent view of individual cache lines
• Absolute coherence not needed, relative coherence OK

• VI and MSI protocols, cache-to-cache transfer optimization

• Implementation? snooping, directories

• Consistency: consistent view of all memory locations
• Programmers intuitively expect sequential consistency (SC)

• Global interleaving of individual processor access streams

– Not always naturally provided, may prevent optimizations

• Weaker ordering: consistency only for synchronization points

WRAP-UP

+ POWER

- PROGRAMMING

Thread Level Parallelism I: Multicores 108

Recall: Reducing Dynamic Power

• Target each component: Pdynamic ~ N * C * V2 * f * A

• Reduce number of transistors (N)
• Use fewer transistors/gates

• Reduce capacitance (C)
• Smaller transistors (Moore’s law)

• Reduce voltage (V)
• Quadratic reduction in energy consumption!

• But also slows transistors (transistor speed is ~ to V)

• Reduce frequency (f)
• Slower clock frequency (reduces power but not energy) Why?

• Reduce activity (A)
• “Clock gating” disable clocks to unused parts of chip

• Don’t switch gates unnecessarily

Thread Level Parallelism I: Multicores 109

Recall: Reducing Static Power

• Target each component: Pstatic ~ N * V * e–Vt

• Reduce number of transistors (N)

• Use fewer transistors/gates

• Reduce voltage (V)

• Linear reduction in static energy consumption

• But also slows transistors (transistor speed is ~ to V)

• Disable transistors (also targets N)

• “Power gating” disable power to unused parts (long latency to power up)

• Power down units (or entire cores) not being used

• Dual Vt – use a mixture of high and low Vt transistors

• Use slow, low-leak transistors in SRAM arrays

• Requires extra fabrication steps (cost)

• Low-leakage transistors

• High-K/Metal-Gates in Intel’s 45nm process

• Note: reducing frequency can actually hurt static energy. Why?
Thread Level Parallelism I: Multicores 110

Thread Level Parallelism I: Multicores 111

Recall: Voltage/Frequency Scaling

• Dynamic voltage/frequency scaling
• Favors parallelism

Mobile PentiumIII
“SpeedStep”

Transmeta 5400
“LongRun”

Intel X-Scale
(StrongARM2)

f (MHz) 300–1000 (step=50) 200–700 (step=33) 50–800 (step=50)

V (V) 0.9–1.7 (step=0.1) 1.1–1.6V (cont) 0.7–1.65 (cont)

High-speed 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W

Low-power 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W

Thread Level Parallelism I: Multicores 112

Multiprocessing & Power Consumption

• Multiprocessing can be very power efficient

• Recall: dynamic voltage and frequency scaling
• Performance vs power is NOT linear
• Example: Intel’s Xscale

• 1 GHz  200 MHz reduces energy used by 30x

• Impact of parallel execution
• What if we used 5 Xscales at 200Mhz?
• Similar performance as a 1Ghz Xscale, but 1/6th the energy

• 5 cores * 1/30th = 1/6th

• Assumes parallel programming (a difficult task)
• Assumes parallel speedup (even more difficult task)

• Remember Ahmdal’s law

Shared Memory Programming

• Standard Alternatives
• Posix Threads

• Implicit communication
• Explicit synchronization

• OpenMP
• Implicit communication
• Implicit synchronization

• …

• Non-standard Alternatives
• SysV
• IRIX Sprocs
• WIN32
• ...

Thread Level Parallelism I: Multicores 113

What is OpenMP?

• Characteristics
• Shared-memory Open standard for HPC programming
• Highly portable

• Components
• Preprocessor directives (bindings for C/C++/F77/F90/Ada…)
• Libraries
• Runtime
• Environment

• Advantages over pthreads (OS)
+ Easy to parallelize many HPC codes (in some cases is fully automatic)
+ Many nasty constructs and calls to threads library are hidden
+ Better portability (??)
- Specific for HPC

Thread Level Parallelism I: Multicores 114

Hello.c
#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main(int argc, char * argv[]) {

int nthreads, nprocs;

// Ask for the num of idle

// processors

nprocs = omp_get_num_procs();

printf(“Hello World! There is%i
processor \n",nprocs);

// Overwrtiable with env. Variable

//OMP_NUM_THREADS (gcc doesn’work?)

//http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/

omp_set_num_threads(nprocs);

Thread Level Parallelism I: Multicores 115

// parallel region

#pragma omp parallel

{

printf(“Hello from %i\n", omp_get_thread_num());

if(omp_get_thread_num() == 0)

{

// How many threads here?.

nthreads = omp_get_num_threads();

printf(“Número de threads = %i\n",nthreads);

}

} //join

omp_set_num_threads(2);

#pragma omp parallel

{

printf(“Ahora somos dos threads y to soy %i\n”,

omp_get_thread_num());

}

return 0;

}

gcc –fopenmp hello.c
With gcc4.2>=

http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/
http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/
http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/

Parallel regions and execution flow

Thread Level Parallelism I: Multicores 116

Ejemplo:  (sec.)

static long num_steps = 1000000000;

double step;

void main ()

{

int i;

double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++)

{

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

Thread Level Parallelism I: Multicores 117

  0
41

1

0

1

1

0

2









 xtg
x

dx

1

Example :  (par.)
#include <omp.h>

static long num_steps = 1000000000;

double step;

#define NUM_THREADS 2

void main ()

{

int i;

double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

double x; int id;

id = omp_get_thread_num();

sum[id]=0.0;

for (i=id*num_steps/NUM_THREADS, i< (id+1)*num_steps/NUM_THREADS; i++)

{

x = (i+0.5)*step;

sum[id] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<NUM_THREADS;i++) pi += sum[i] * step;

}

Thread Level Parallelism I: Multicores 118

Example:  (loop)

#include <omp.h>

static long num_steps = 1000000000;

double step;

#define NUM_THREADS 2

void main ()

{

int i; double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

for(i=0;i<NUM_THREADS;i++) sum[i]=0.0;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x)

for (i=0;i< num_steps; i++)

{

x = (i+0.5)*step;

sum[omp_get_thread_num()] += 4.0/(1.0+x*x);

}

for(i=0, pi=0.0;i<NUM_THREADS;i++)

pi += sum[i] * step;

}

Thread Level Parallelism I: Multicores 119

#pragma omp critical

#include <omp.h>

static long num_steps = 1000000000;

double step;

#define NUM_THREADS 2

void main ()

{

int i;

double x, pi, sum;

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) shared (sum)

for (i=0;i< num_steps; i++)

{

x = (i+0.5)*step;

#pragma omp critical

sum+= 4.0/(1.0+x*x);

}

pi = sum * step;

}

Thread Level Parallelism I: Multicores 120

Strongly Specific

#include <omp.h>

static long num_steps = 1000000000;

double step;

#define NUM_THREADS 2

void main ()

{

int i;

double x, pi, sum;

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i< num_steps; i++)

{

x = (i+0.5)*step;

sum+= 4.0/(1.0+x*x);

}

pi = sum * step;

}

Thread Level Parallelism I: Multicores 121

Multi-computers

• Non-shared-memory architecture, slower network

• Message-passing paradigm… even harder than shared memory

• More next year…

Thread Level Parallelism I: Multicores 122

P0 P1 P2 P3

$ M0

interface

Interconnect

$ M1

interface

$ M2

interface

$ M3

interface

I/O I/O I/O I/O

Example:  with MPI
#include <stdio.h>

#include "mpi.h"

double pieza_de_pi(int,int,long);

void main(int argc, char ** argv)

{

long intervalos=160000000;

int miproc, numproc;

double pi, di;

int i;

MPI_Status status;

double t3, t4;

t3 = MPI_Wtime(); /* tiempo de inicio */

MPI_Init (&argc, &argv); /* Inicializar MPI */

MPI_Comm_rank(MPI_COMM_WORLD,&miproc); MPI_Comm_size(MPI_COMM_WORLD,&numproc);

MPI_Barrier(MPI_COMM_WORLD);

if (miproc == 0)

{

for (i = 1; i < numproc; i++)

MPI_Send(&intervalos, 1, MPI_LONG, i, 98, MPI_COMM_WORLD);

}

else

MPI_Recv(&intervalos, 1, MPI_LONG, 0, 98, MPI_COMM_WORLD, &status);

/* cada proceso ejecuta pieza_de_pi */

pi = pieza_de_pi(miproc, numproc, intervalos);

MPI_Barrier (MPI_COMM_WORLD); /* sección de sincronización */

if (miproc == 0) /* si es maestro recoge los resultados, suma y los imprime */

{

for (i = 1; i < numproc; i++)

{

MPI_Recv (&di, 1, MPI_DOUBLE, i, 99, MPI_COMM_WORLD, &status);

pi += di;

}

Thread Level Parallelism I: Multicores 123

MPI_Barrier(MPI_COMM_WORLD);

t4 = MPI_Wtime(); /* tiempo final */

printf("Valor de pi: %lf \n",pi);

printf("Tiempo de ejecucion: %.3lf seg\n",t4-t3);

}

else

{ /* el esclavo envia los resultados al maestro */

MPI_Send(&pi, 1, MPI_DOUBLE, 0, 99, MPI_COMM_WORLD);

MPI_Barrier (MPI_COMM_WORLD);

}

MPI_Finalize ();

}

double pieza_de_pi(int idproc, int nproc, long intervalos)

{

double ancho, x, localsum;

long j;

ancho = 1.0 / intervalos; /* peso de la muestra */

localsum = 0.0;

for (j = idproc; j < intervalos; j += nproc)

{

x = (j + 0.5) * ancho;

localsum += 4 / (1 + x * x);

}

return(localsum * ancho);

}

Parallel Programming

• Parallel programming is also hard because:
• Thread scheduling & load balancing
• Lack of deterministic behavior
• …

• Thread scheduling load balance
• What if thread creation/destruction is “mostly” free?
• Already happening in GPU assisted processing (nVidia CUDA, ATI Stream)
• General purpose processing?
• Could synchronization be avoidable too?

• Lack of deterministic behavior
• Record, via hardware, winners in races-for-data
• Use that information to “replay” execution in program debugging
• Deterministic back-track (as we are used to see in sequential programming).

One of the uses of VM

Thread Level Parallelism I: Multicores 124

Delegate the problem?

• Some advocates for add another level to the stack: specialized
languages (called Domain Specific Languages) plus runtime
• Only runtime programmer should deal with the problem

• Conventional programmer has to know only the DSL interface, runtime
does the “nasty” work.

• Examples:

• SQL (data parallelism)

• Matlab (scientific)

• Ruby/Rails (Web)

• Will be productive the “classic way” in 100+ core age?

Thread Level Parallelism I: Multicores 125

Scalability of parallel programming:
Amdahl law

• Queremos obtener un speedup de 80 para una aplicación que debe ser
ejecutada en un computador paralelo de 100 procesadores: ¿Qué porcentaje
del código deberá ser susceptible de paralelizar?

Thread Level Parallelism I: Multicores 126

80
100

1


p

p

Tejec

Tejec
Speedup

)FracciónFracción(Tejec

)FracciónFracción(TejecTejec

paralelaparalelap

uenciasecparalelapp





11

11

9975080

1
100

1

1
100

1100

.Fracción

Fracción
Fracción

Speedup

)Fracción
Fracción

(TejecTejec

paralela

paralela

paralela

paralela

paralela

pp









Solo el 0.25%

puede ser secuencial!!!

Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

• Slides re-adapted by V. Puente of University of Cantabria

Thread Level Parallelism I: Multicores 127

