g

Thread Level Paralleli | l:
Multlcores

(Shared Memory Multiprocessors)

Readings:
H&P: Chapter 4

Thread Level Parallelism |:"'Mu

APP | | APP | | APP | e Thread-level parallelism (TLP)

System software | o shared memory model

e Multiplexed uniprocessor

Me /O

e Hardware multihreading

e Multiprocessing

e Synchronization
e Lock implementation
e Locking gotchas

e Cache coherence

e Bus-based protocols
e Directory protocols

e Memory consistency models

Thread Level Parallelism I: Multicores

S'Multiplying Performance

e Asingle processor can only be so fast
e Limited clock frequency
e Limited instruction-level parallelism
e Limited cache hierarchy

e What if we need even more computing power?
e Use multiple processors!
e But how?

e High-end example: Sun Ultra Enterprise 25k
e 72 UltraSPARC IV+ processors, 1.5Ghz
e 1024 GBs of memory
e Niche: large database servers

* 555

Thread Level Parallelism I: Multicores

IEERIERRITERR AT

Multicore: Mainstream Multiprocessors

Multicore chips

IBM Power5
e Two 2+GHz PowerPC cores
e Shared 1.5 MB L2, L3 tags

AMD Quad Phenom
e Four 2+ GHz cores
e Per-core 512KB L2 cache
e Shared 2MB L3 cache
Intel Core 2 Quad
e Four cores, shared 4 MB L2
e Two 4MB L2 caches
e |tis adualdie chip
Sun Niagara

e 8simple cores, each 4-way
threaded

e Shared 2MB L2, shared FP
e For servers, not desktop

Why multicore? What else would
you do with 500 million transistors?

Thread Level Parallelism I: Multicores

‘ﬁgadmap of near-future Multicores

e |ntel
o .../P6/NetBurst/Core/Nehalem/...

(tick) Nehalem-EP (Beckton) (45nm): 4 cores per die (up to 8 cores per
chip in dual die chips) [now]

(tack) Westmere (32nm): 6-8 Cores per die [3Q, 2009]

(tick) Sandy Bridge (32nm): 6-8 Cores per die [2010]

(tack) Ivy Bridge (22nm): 16 Cores per die? 32 per chip? [20117?]
e AMD:

e San Marino: 6 Cores per chip [2Q, 2009]
e Magny-cours: 8-12 Cores per chip [2010]

e |nterlagos: 12-16 Cores per chip [2011]

e Sun Microsystems (aka Oracle ?)
e Sun Rock: 16 Cores per chip/die (each 4-way threaded) [20097]

Thread Level Parallelism I: Multicores

SApplication Ubomains ror

~"Multiprocessors

Scientific computing/supercomputing
e Examples: weather simulation, aerodynamics, protein folding
e lLarge grids, integrating changes over time
e Each processor computes for a part of the grid

Server workloads
e Example: airline reservation database
e Many concurrent updates, searches, lookups, queries
e Processors handle different requests

Media workloads
e Processors compress/decompress different parts of image/frames

Desktop workloads...
Gaming workloads...
Cloud computing...
But software must be written to expose parallelism

Thread Level Parallelism I: Multicores

"Bgt First, ‘Uniprocessor Concurrency

e Software “thread”

Independent flow of execution

Context state: PC, registers

Threads generally share the same memory space

“Process” like a thread, but different memory space

Java has thread support built in, C/C++ supports P-threads library

e Generally, system software (the O.S.) manages threads

n”n u

e “Thread scheduling”, “context switching”
e All threads share the one processor

e Hardware timer interrupt occasionally triggers O.S.
e Quickly swapping threads gives illusion of concurrent execution

e Refresh already known OS topics (¢ ?)

Thread Level Parallelism I: Multicores

‘Multithreaded Programming Model

e Programmer explicitly creates multiple threads

e Allloads & stores to a single shared memory space

e Each thread has a private stack frame for local variables

e A “thread switch” can occur at any time
e Pre-emptive multithreading by OS

¢ Common uses:
e Handling user interaction (GUI programming)
e Handling I/0 latency (send network message, wait for response)
e Expressing parallel work via Thread-Level Parallelism (TLP)

Thread Level Parallelism I: Multicores

=

> :
Redfil
E:,- 1$. egfile0

I side: Hardware Multithreading

A\ 4
A\ 4

\ 4

\ 4

\ 4

\

Regfilel

THR

e Hardware Multithreading (MT)

Multiple threads dynamically share a single pipeline (caches)
Replicate thread contexts: PC and register file
Coarse-grain MT: switch on L2 misses Why?
Simultaneous MT: no explicit switching, fine-grain interleaving
e Pentium4 is 2-way hyper-threaded, leverages out-of-order core
MT Improves utilization and throughput
e Single programs utilize <50% of pipeline (branch, cache miss)
MT does not improve single-thread performance
e |ndividual threads run as fast or even slower... especially in Pentium4

Thread Level Parallelism I: Multicores

' Redfile

=
=

' Redfile

> S

e Replicate entire processor pipeline!
e |nstead of replicating just register file & PC
e Exception: share caches (we’ll address this bottleneck later)

e Same “shared memory” or “multithreaded” model
e Loads and stores from two processors are interleaved

e Advantages/disadvantages over hardware multithreading?

Thread Level Parallelism I: Multicores

‘éhargd Memory Implementations

e Multiplexed uniprocessor
e Runtime system and/or OS occasionally pre-empt & swap threads
e |Interleaved, but no parallelism

e Hardware multithreading
e Tolerate pipeline latencies, higher efficiency
e Same interleaved shared-memory model

e Multiprocessing
e Multiply execution resources, higher peak performance
e Same interleaved shared-memory model
e Foreshadowing: allow private caches, further disentangle cores

e All have same shared memory programming model

Thread Level Parallelism I: Multicores

"‘Shargd Memory Issues

e Three in particular, not unrelated to each other

e Synchronization

e How to regulate access to shared data?
e How to implement critical sections?

e Cache coherence
e How to make writes to one cache “show up” in others?

e Memory consistency model

e How to keep programmer sane while letting hardware optimize?
e How to reconcile shared memory with out-of-order execution?

Thread Level Parallelism I: Multicores

my id() my id()

A B C

for (I = 0; I < 100; I++)
for (J =0; J < 100; J++)
for (K = 0; K < 100; K++)
C[TI][J] += A[I][K] * BI[K][J];

e How to parallelize matrix multiply over 100 processors?
e One possibility: give each processor 100 iterations of |

for (J =0; J < 100; J++)
for (K= 0; K< 100; K++)
Clmy id()][J] += A[my_ id()][K] * B[K][J];

e Each processor runs copy of loop above
e my id() function gives each processor ID from 0 to N
e Parallel processing library provides this function

Thread Level Parallelism I: Multicores

“Eggample: Thread-Level Parallelism

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];

int id, amt; 0: addi rl,accts,r3

if (accts[id] .bal >= amt) 1: 1d 0(x3),r4

{ 2: blt r4,r2,6
accts[id] .bal -= amt; 3: sub r4,r2,r4
give cash() ; 4: st r4,0(xr3)

} - 5: call give cash

 Thread-level parallelism (TLP)
e Collection of asynchronous tasks: not started and stopped together
e Data shared “loosely” (sometimes yes, mostly no), dynamically

e Example: database/web server (each query is a thread)
e acctsisshared, can’t register allocate even if it were scalar
e idand amt are private variables, register allocated to rl, r2

e Running example

Thread Level Parallelism I: Multicores

Thread 0

addi rl,accts,r3

: blt r4,r2,6
sub r4,r2,r4

o s W N H+HE O

call give cash

e Two $S100 withdrawals from account #241 at two ATMs

e Each transaction maps to thread on different processor
e Track accts[241] .bal (addressis in r3)

Thread Level Parallelism I: Multicores

Swil]

Thread 1 Mem
500
1d 0 (I3) , L4 <
St Td,0 (L3) rerrssrsssssmsninmnmnnisnannininisa s ———————————————1—, | 200
0: addi rl,accts,r3
L e
2: blt r4,r2,6
3: sub r4,r2,r4
47 'St RO 3 ST i g e - | 300
5: call give cash

UL

Thread 0 Thread 1 Mem
0: addi rl,accts,r3 500
1: 1d 0(r3),r4 "N R A AR A R A A AR A R A A AR R R R AR AR R R AR AN R R AR AEEEEEEEEEEEEEEEEEEEEEE
2: blt r4,r2,6
3: sub r4,r2,r4
<<<L Interrupt >>>
0: addi rl,accts,r3
1: 1d 0(r3),rd <.
2: blt r4,r2,6
3: sub r4,r2,r4
4 st r4,0(r3) * 400
5: call give cash
4d: St rd,0(r3) cecrcrrrcimmcimmcirnir i e e * 400

5: call give cash

e Problem: wrong account balance! Why?

e Solution: synchronize access to account balance

Thread Level Parallelism I: Multicores

“Synchronization

e Synchronization: a key issue for shared memory

e Regulate access to shared data (mutual exclusion)

e Software constructs: semaphore, monitor, mutex

e Low-level primitive: lock
e Operations: acquire (lock) and release (lock)
e Region between acquire and release is a critical section
e Must interleave acquire and release
e Interfering acquire will block

struct acct t { int bal; };

shared struct acct t accts[MAX ACCT];

shared int lock;

int id, amt;

acquire (lock) ;

i ;22?;?1[;?]1)2?1_: a:l?t) { /[critical section
give cash(); }

release (lock) ;

Thread Level Parallelism I: Multicores

"'A Synchronized Execution

Thread 0 Thread 1 Mem
call acquire (lock) 500
0: addi rl,accts,r3
1: 1d O (r3),L4 <rrrrerrrrmrrri s
2: blt r4,r2,6
3: sub r4,r2,r4
<<< Interrupt >>> call acquire(lock) Spins!
<<<L Interrupt >>>
R o L 12 5 e e e e e R e | 200
call release(lock)
5: call give cash (still in acquire)
0: addi rl,accts,r3
1: 1d 0(xr3) ,rd <« ovrmvrmimmnnmniinncnnanann:
e Fixed, but how do 2: blt rd,r2,6
we implement 3: sub r4,r2,r4
acquire & release? 4amst 74 030t d.......... ... »| 300
5: call give cash

Thread Level Parallelism I: Multicores

UL

sotrawman Lock

e Spin lock: software lock implementation
e acquire(lock): while (lock !'= 0); lock =

e “Spin” while lock is 1, wait for it to turn O

AO: 1d O(&lock),r6
Al: bnez r6,A0

A2: addi r6,1,re6
A3: st r6,0(&lock)

e release(lock): lock = 0;

RO: st r0,0(&lock)

Thread Level Parallelism I: Multicores

// r0 holds O

1;

sotrawman Lock

Thread 0 Thread 1 Mem | 1=
B0: 1d 0 (&LOCK) | T6 u..oooeeereesessnsssssssssssesssssees o 1B
Al: bnez r6,#A0 AO: 1d r6,0(&lock) c.rrvrrcerecercercaeraene
A2: addi r6,1,r6 Al: bnez r6,#AO0
A3: st 6,0(slock) A2: addi r6,1,26 =
CRITICAL SECTION A3: st r6,0(&lock)

CRITICAL SECTTON T f 1

v

e Spin lock makes intuitive sense, but doesn’t actually work
e Loads/stores of two acquire sequences can be interleaved
e Lock acquire sequence also not atomic
e Same problem as before!

e Note, release is trivially atomic

Thread Level Parallelism I: Multicores

A Corpect Implementation: SYSCALL Lock

ACQUIRE LOCK:

Al: disable interrupts atomic
A2: 1d r6,0(&lock)

A3: bnez r6,#A0

Ad: addi r6,1,r6

A5: st r6,0(&lock)

A6: enable interrupts

A7: return

e Implement lock in a SYSCALL
e Only kernel can control interleaving by disabling interrupts
+ Works...
— Large system call overhead
— But not in a hardware multithreading or a multiprocessor...

Thread Level Parallelism I: Multicores

~'Better Spin Lock: Use Atomic Swap

e |SA provides an atomic lock acquisition instruction
e Example: atomic swap
swap rl,0(&lock) mov rl->r2

e Atomically executes: 1d rl,0(&lock)
st r2,0(&lock)

e New acquire sequence
(value of rl is 1)
AQ: swap rl,0(&lock)
Al: bnez rl,A0
e If lock was initially busy (1), doesn’t change it, keep looping
e |f lock was initially free (0), acquires it (sets it to 1), break loop

e |nsures lock held by at most one thread

e Other variants: exchange, compare-and-swap,
test-and-set (t&s), or fetch-and-add

Thread Level Parallelism I: Multicores

Update/Swap Implementation

PC . ~ ~

> Regfile : & :
> > >

PC . - -

> Regfile : & :
> >

>

e How is atomic swap implemented?
e Need to ensure no intervening memory operations
e Requires blocking access by other threads temporarily (yuck)
e How to pipeline it?
e Both aload and a store (yuck)
e Not very RISC-like
e Some ISAs provide a “load-link” and “store-conditional” insn. pair

Thread Level Parallelism I: Multicores

“‘F.!_ISQ Test-And-Set

 t&s:aloadand storein one insn is not very “RISC”

e Broken up into micro-ops, but then how are mops made atomic?

e 11/sc:load-locked / store-conditional

e Atomic load/store pair
11 rl,0(&lock)
// potentially other insns
sc r2,0(&lock)

e On 11, processor remembers address...
e ..And looks for writes by other processors
e If write is detected, next sc to same address is annulled
e Sets failure condition

e Some kind of predication but in reverse direction with the
condition (is output not input)

Thread Level Parallelism I: Multicores

TOWAP Implementation (Example)

e Atomic swap (between rd and 0(rl))
try:mov r4,r3
11 r2, 0(rl) //toggle internal flags,
//address and wvalue
sc r3,0(rl) //if internal flags matches
//0(rl) is mod. And r3 is set

beqz r3,try //went wrong. Someone wrote
//0(rl) in the middle of 1llé&sc
mov r2,r4 //Store (until release) previous

// 0(rl) content
* t&s canbeseenasaswap (1, lock)

Thread Level Parallelism I: Multicores

"'Lgck Lorrectness

Thread 0 Thread 1

AO: swap rl,0(&lock)

Al: bnez rl,#A0 AQ: swap

CRITICAL SECTION Al: bnez
AQ: swap
Al: bnez

rl,0(&lock)
rl, #A0
rl,0(&lock)
rl, #A0

+ Test-and-set lock actually works...

e Thread 1 keeps spinning

Thread Level Parallelism I: Multicores

“'I' est-and-Set Lock Performance

Thread 0 Thread 1

AO: t&s rl,0(&lock)

Al: bnez rl, #A0 AO: t&s rl,0(&lock)

AQ: t&s rl,0(&lock) Al: bnez rl,#a0

Al: bnez rl, #A0 AO: t&s rl,0(&lock)
Al: bnez rl, #A0

...but performs poorly

e Consider 3 processors rather than 2
* Processor 2 (not shown) has the lock and is in the critical section
e But what are processors 0 and 1 doing in the meantime?
e Loops of t&s, each of which includesa st
— Repeated stores by multiple processors costly (more in a bit)
— Generating a ton of useless interconnect traffic
o (But.. st wasn’t annulled?)

Thread Level Parallelism I: Multicores

-T est-and-Test-and-Set Locks

o Solution: test-and-test-and-set locks

e New acquire sequence
AO: 1d rl,0(&lock)
Al: bnez rl,A0
A2: addi rl1l,1,rl
A3: t&s rl,0(&lock)
Ad: bnez rl,A0

e Within each loop iteration, before doing a t&s
e Spin doing a simple test (1d) to see if lock value has changed
e Onlydoa té&s (st) if lock is actually free
e Processors can spin on a busy lock locally (in their own cache)
+ Less unnecessary interconnect traffic
e Note: test-and-test-and-set is not a new instruction!
e Just different software

Thread Level Parallelism I: Multicores

Jueue Locks

e Test-and-test-and-set locks can still perform poorly
e |flock is contended for by many processors
e Lock release by one processor, creates “free-for-all” by others
— Interconnect gets swamped with t&s requests

e Software queue lock
e Each waiting processor spins on a different location (a queue)
e When lock is released by one processor...
e Only the next processors sees its location go “unlocked”
e Others continue spinning locally, unaware lock was released
e Effectively, passes lock from one processor to the next, in order
+ Greatly reduced network traffic (no mad rush for the lock)
+ Fairness (lock acquired in FIFO order)
— Higher overhead in case of no contention (more instructions)
— Poor performance if one thread gets swapped out

Thread Level Parallelism I: Multicores

"‘Isrogramming With Locks Is . Tricky

e Multicore processors are the way of the foreseeable future
e thread-level parallelism anointed as parallelism model of choice
e Just one problem...

e Writing lock-based multi-threaded programs is tricky!

e More precisely:
e Writing programs that are correct is “easy” (not really)
e Writing programs that are highly parallel is “easy” (not really)
— Writing programs that are both correct and parallel is difficult
e And that’s the whole point, unfortunately
e Why?
e Locking

Thread Level Parallelism I: Multicores

- Coarse-Grain Locks: Correct but Slow

e Coarse-grain locks: e.g., one lock for entire database
+ Easy to make correct: no chance for unintended interference
— Limits parallelism: no two critical sections can proceed in parallel

struct acct t { int bal; };

shared struct acct t accts[MAX ACCT];
int id,amt;

shared int lock;

acquire (lock) ;

if (accts[id] .bal >= amt) {
accts[id] .bal -= amt;
give cash(); }

release (lock) ;

Thread Level Parallelism I: Multicores

~'Fine-Grain‘Locks: Parallel But Difficult

e Fine-grain locks: e.g., multiple locks, one per record
+ Fast: critical sections (to different records) can proceed in parallel
— Difficult to make correct: easy to make mistakes
* This particular example is easy
* Requires only one lock per critical section
* Consider critical section that requires two locks...

struct acct t { int bal,lock; };
shared struct acct t accts[MAX ACCT];
int id,amt;

acquire (accts[id] .lock) ;

if (accts[id] .bal >= amt) {
accts[id] .bal -= amt;
give cash(); }

release (accts[id] .lock) ;

Thread Level Parallelism I: Multicores

“Multiple Locks

e Multiple locks: e.g., acct-to-acct transfer
* Must acquire both id from, id to locks

e Running example with accts 241 and 37
Simultaneous transfers 241 — 37 and 37 — 241
Contrived... but even contrived examples must work correctly too

struct acct t { int bal,lock; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

acquire (accts[id from].lock) ;

acquire (accts[id to].lock);

if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }

release (accts[id to].lock);

release (accts[id from].lock) ;

Thread Level Parallelism I: Multicores

“"Multiple Locks And Deadlock

Thread 0

id from = 241 ;
id to = 37;

acquire (accts[241] .1lock) ;
// wait to acquire lock 37
// waiting..

// still waiting..

Thread 1

id from = 37;
id to = 241;

acquire (accts[37] .1lock) ;

// wait to acquire lock 241
// waiting..

Vo fr

e Deadlock: circular wait for shared resources
e Thread 0 has lock 241 waits for lock 37
e Thread 1 has lock 37 waits for lock 241

e Obviously this is a problem

e The solutionis ...

Thread Level Parallelism I: Multicores

siGorrect Multiple Lock Program

e Always acquire multiple locks in same order

e Just another thing to keep in mind when programming

struct acct t { int bal,lock; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

int id first = min(id from, id to);
int id second = max(id from, id to);

acquire (accts[id first].lock);
acquire (accts[id second] .lock);
if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }
release (accts[id second] .lock) ;
release (accts[id first].lock);

Thread Level Parallelism I: Multicores

sGorrect Multiple Lock Execution

Thread 0

id from = 241;

id to = 37;

id first = min(241,37)=37;
id second = max(37,241)=241;

acquire (accts[37] .1lock) ;

acquire (accts[241] .1lock) ;
// do stuff

release (accts[241] .1lock) ;
release (accts[37] .1lock) ;

e QGreat, are we done? No

Thread Level Parallelism I: Multicores

Thread 1

id from = 37;

id to = 241;

id first = min(37,241)=37;
id second = max(37,241)=241;

// wait to acquire lock 37
// waiting..

L

(/i

o o
acquire (accts[37] .1lock) ;

"‘Mpre Lock Madness

e What if...

e Some actions (e.g., deposits, transfers) require 1 or 2 locks...
e ..and others (e.g., prepare statements) require all of them?
e Can these proceed in parallel?

e What if...

e There are locks for global variables (e.g., operation id counter)?
e When should operations grab this lock?

e What if... what if... what if...

e So lock-based programming is difficult...
e ..wait, it gets worse

Thread Level Parallelism I: Multicores

“"And Jo Make It Worse...

e Acquiring locks is expensive...
e By definition requires a slow atomic instructions
e Specifically, acquiring write permissions to the lock

e Ordering constraints (see soon) make it even slower

e ..and 99% of the time un-necessary
e Most concurrent actions don’t actually share data
— You paying to acquire the lock(s) for no reason

e Fixing these problem is an area of active research

e One proposed solution “Transactional Memory”

Thread Level Parallelism I: Multicores

~'Research: Transactional Memory (TM)

e Transactional Memory
+ Programming simplicity of coarse-grain locks
+ Higher concurrency (parallelism) of fine-grain locks
e Critical sections only serialized if data is actually shared
+ No lock acquisition overhead
e Hottest thing since sliced bread (or was a few years ago)

e Sun Rock processor has hardware support for it

e ..s0, starting to be less Research and more Practice

Thread Level Parallelism I: Multicores

~Transactional Memory: The Big Idea

e Bigidea l: no locks, just shared data

e Look ma, no locks

e Bigidea Il: optimistic (speculative) concurrency
e Execute critical section speculatively, abort on conflicts
e “Better to beg for forgiveness than to ask for permission”

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

begin transaction() ;

if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }

end transaction();

Thread Level Parallelism I: Multicores

“iransactiona

e Read set: set of shared addresses critical section reads
e Example: accts[37] .bal, accts[241] .bal

o Write set: set of shared addresses critical section writes
e Example: accts[37] .bal, accts[241] .bal

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

begin transaction() ;

if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }

end transaction();

Thread Level Parallelism I: Multicores

S Jransactional Memor

* begin transaction
e Take a local register checkpoint
e Begin locally tracking read set (remember addresses you read)
e See if anyone else is trying to write it

Locally buffer all of your writes (invisible to other processors)
+ Local actions only: no lock acquire

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

begin transaction() ;

if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }

end transaction();

Thread Level Parallelism I: Multicores

S ransactional Memor

* end transaction
e Check read set: is all data you read still valid (i.e., no writes to any)
e Yes? Commit transactions: commit writes
e No? Abort transaction: restore checkpoint (lazy conflict detection)

e lazy / Eager approaches to detect conflicts.

struct acct t { int bal; };
shared struct acct t accts[MAX ACCT];
int id from,id to,amt;

begin transaction() ;

if (accts[id from] .bal >= amt) ({
accts[id from] .bal -= amt;
accts[id to] .bal += amt; }

end transaction();

Thread Level Parallelism I: Multicores

ransactional Memory Implementation

e How are read-set/write-set implemented?

Track locations accessed using bits in the cache

e Read-set: additional “transactional read” bit per block

Set on reads between begin_transaction and end_transaction

Any other write to block with set bit = triggers abort (eager conflict
detection) / abort at commit (lazy conflict detection)

Flash cleared on transaction abort or commit

e Write-set: additional “transactional write” bit per block

Set on writes between begin_transaction and end_transaction
Before first write, if dirty, initiate writeback (“clean” the block)
Flash cleared on transaction commit

On transaction abort: blocks with set bit are invalidated

Aside: Where to write new values? (Version management): Eager (on-place)
Lazy (somewhere else)

Thread Level Parallelism I: Multicores

S ransactional Execution

Thread 0

id from = 241 ;
id to = 37;

begin transaction();
if (accts[241] .bal > 100) {

// write accts[241] .bal
// abort (eager)

Thread Level Parallelism I: Multicores

Thread 1

id from = 37;
id to = 241;

begin transaction();

if (accts[37] .bal > 100) {
accts[37] .bal -= amt;
acts[241] .bal += amt;

}

end transaction();

// no writes to accts[241] .bal

// no writes to accts[37] .bal

// commit

S Transactional Execution I (More Likely)

Thread 0 Thread 1

id from = 241; id from = 450;

id to = 37; id to = 118;

begin transaction(); begin transaction();

if (accts[241] .bal > 100) { if (accts[450] .bal > 100) {
accts[241] .bal -= amt; accts[450] .bal -= amt;
acts[37] .bal += amt; acts[118] .bal += amt;

} }

end transaction(); end transaction();

// no write to accts[240] .bal // no write to accts[450] .bal
// no write to accts[37] .bal // no write to accts[118] .bal
// commit // commit

e C(Critical sections execute in parallel

Thread Level Parallelism I: Multicores

*Transaction Semantics -

~VACI Properties

e Atomicity — All or Nothing

e Consistency — Correct at beginning and end (no matter if the
transaction is successful or not)

e |solation — Partially done work not visible to other threads

e D?—Very different context: this is not a DBMS, although uses
loosely related concepts, not the same problem!

Thread Level Parallelism I: Multicores

0, Let’s'Just Do Transactions?

e Whatif...
e Read-set or write-set bigger than cache?
e Transaction gets swapped out in the middle?
e Transaction wants to do I/O or SYSCALL (not-abortable)?
e Transaction nesting?

e How do we transactify existing lock based programs?

* Replace acquire withbegin trans does not always work

e Weak automaticity ¢ strong atomicity
e Several different kinds of transaction semantics

e Are transactions atomic relative to code outside of transactions?
e Do we want transactions in hardware or in software?

e What we just saw is hardware transactional memory (HTM)

e That’s what these research groups are looking at

Thread Level Parallelism I: Multicores

‘1ﬁ The Meantime: Do SLE

Processor 0O

acquire (accts[37] .1lock); // don’t actually set lock to 1
// begin tracking read/write sets

// CRITICAL SECTION

// check read set

// no conflicts? Commit, don’t actually set lock to 0
// conflicts? Abort, retry by acquiring lock

release (accts[37] .1lock) ;

e Until TM interface solidifies...

e .. speculatively transactify lock-based programs in hardware
e Speculative Lock Elision (SLE) [Rajwar+, MICRO’01]
+ No need to rewrite programs
+ Can always fall back on lock-based execution (overflow, 1/0O, etc.)
e Modified rumor: this is what Sun’s Rock actually does

Thread Level Parallelism I: Multicores

""Un_it Checkpoint

App App App o
System software

Me /O

e (Cache coherence
» Bus-based protocols
e Directory protocols

e Memory consistency models

Thread Level Parallelism I: Multicores

rocessor

' Redfile

=
=

' Redfile

> S >

e What if we don’t want to share the L1 caches?
e Bandwidth and latency issue

e Solution: use per-processor (“private”) caches
e Coordinate them with a Cache Coherence Protocol

Thread Level Parallelism I: Multicores

“‘Shared-Memory Multiprocessors

e Conceptual model
e The shared-memory abstraction
e Familiar and feels natural to programmers

e Life would be easy if systems actually looked like this...

Thread Level Parallelism I: Multicores

"‘Shared-Memory Multiprocessors

e _.but systems actually look more like this
e Processors have caches
e Memory may be physically distributed
e Arbitrary interconnect

...... ||||

$ [[Mg[]| 8 [IM||$|IM]]$||M,
| | | I | | | |

Router/interface| |Router/interface| |Router/interface| |Router/interface

Thread Level Parallelism I: Multicores

‘6hip Multiprocessors (CIMP)

e Add another level to the hierarchy

Router/interface Router/interface

Interconnect 2

Thread Level Parallelism I: Multicores

~'Revisiting Our Maetivating

Processor 0 Processor 1 CPUO CPUL1 Mem
0: addi $r3,S$rl, &accts

l: 1w $r4,0(Sxr3)

2: blt $r4,5r2,6 critical section

3: sub $r4,$r4,5r2 (locks not shown)

4: sw $r4,0(Sr3)

5: jal dispense cash : addi $r3,$rl, &accts

: 1lw $r4,0($r3)

: blt $r4,$r2,6

sub $r4,$r4d,$r2
sw $r4,0($r3)

jal dispense cash

critical section
(locks not shown)

o s W N+ O

e Two $S100 withdrawals from account #241 at two ATMs

e Each transaction maps to thread on different processor
e Track accts[241] .bal (address is in Sxr3)

Thread Level Parallelism I: Multicores

Processor 0 Processor 1
: addi $r3,$rl, &accts

1w Srd,0 (Sr3) <
: blt $r4,$r2,6

sub $r4,$r4,$r2

SW ST, 0(SI3) . a s
jal dispense cash 0: addi $r3,Srl, &accts
l: 1w $r4,0(Sxr3)
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4

5

o s W N H+HE O

sw $r4,0($r3)

jal dispense cash

e Scenario |: processors have no caches

e No problem

Thread Level Parallelism I: Multicores

CPUO CPUl1 Mem

$500

............. $500

Processor 0
: addi $r3,$rl, &accts

: blt $r4,$r2,6

sub $r4,$r4,S$r2
sw $r4,0($r3)
jal dispense cash

o s W N H+HE O

Processor 1

- 1w $r4’0($r3)4 ...

: addi $r3,$rl, &accts
: 1w $Sr4,0(Sr3)
: blt $r4,$r2,6

sub $r4,$r4,$r2
sw $r4,0($r3)

jal dispense cash

CPUO CPU1

Mem

$500

. $500 B

$500

$500

-$400-|- $500+

$500

-$406-F $400

$500

e Scenario ll(a): processors have write-back caches
e Potentially 3 copies of acects[241] .bal: memory, p0S, plS

e Can get incoherent (inconsistent)

Thread Level Parallelism I: Multicores

Processor 0
: addi $r3,$rl, &accts

: blt $r4,$r2,6

: sub $r4,$r4d,S$r2
: sw $r4,0(Sxr3)
jal dispense cash

o s W N H+HE O

Processor 1 CPUO CPUl1 Mem

: 1w Sr4,0(Sr3) <o

$500

... - $500 $500

.. $400 ""m""+$400
: addi $r3,$rl, &accts

: 1w $r4,0(Sr3) Qoo $400--1- $400 |$400

: blt $r4,$r2,6

0
1
2
3: sub $r4,$r4,$r2
4
5

: sw Sr4,0(Sr3)
jal dispense cash = -5400-+ $300 -p$300

e Scenario ll(b): processors have write-through caches
e This time only 2 (different) copies of accts[241] .bal

e No problem? What if another withdrawal happens on processor 0?

Thread Level Parallelism I: Multicores

“What To-Do?

e No caches?
— Slow

e Make shared data uncachable?
— Faster, but still too slow
e Entire accts database is technically “shared”
e Definition of “loosely shared”
e Data only really shared if two ATMs access same acct at once

e Flush all other caches on writes to shared data?
e May as well not have caches

e Hardware cache coherence
e Rough goal: all caches have same data at all times
+ Minimal flushing, maximum caching — best performance

Thread Level Parallelism I: Multicores

e Simple multiprocessors use a bus
e All processors see all requests at the same time, same order

e Memory
e Single memory module, -or-
e Banked memory module

Thread Level Parallelism I: Multicores

ardware Cache Coherence

e Coherence
CPU e all copies have same data at all times

e Coherence controller:
e Examines bus traffic (addresses and data)

e Executes coherence protocol

e What to do with local copy when you see different
things happening on bus

Three processor-initiated events
e R:read W: write WB: write-back

Two remote-initiated events
e BR: bus-read, read miss from another processor
e BW: bus-write, write miss from another processor

e Three responses event:
e SD:send data BR:asktoread BW: ask to write

[
»

-
<

D$ tags [€
D$ data

[
»

Thread Level Parallelism I: Multicores

+ ¥l [MI) Coherence Protocol

BR/BW e VI (valid-invalid) protocol: aka M
e Two states (per block in cache)
| e V (valid): have block
e | (invalid): don’t have block
+ Can implement with valid bit
e Protocol diagram (left)
e Convention: event=>generated-event
e Summary
e If anyone wants to read/write block
e Give it up: transition to | state
e Write-back if your own copy is dirty

e This is an invalidate protocol

e Update protocol: copy data, don’t invalidate
e Sounds good, but wastes a lot of bandwidth

\

»
»

BR/BW=SD, WB=S

R=>BR, W=BW

V

I R/W

Thread Level Parallelism I: Multicores

L Protocol State Transition Table

This Processor Other Processor
State Load Store | Load Miss Store Miss

Invalid (1) | "y o | O

Send Data | Send Data

Valid (V) Hit Hit > >

Rows are “states”
IvsV

Columns are “events”
Writeback events not shown

Memory controller not shown
Responds when no other processor would respond

e Memory controller has his own table (to know when has to respond)
o If multiple Cache levels present => each one has his own CC (protocol and state per block)

Thread Level Parallelism I: Multicores

| Protocol (Write-Back Cache)

Processor 0 Processor 1

0: addi $r3,S$rl, &accts

l: 1w $r4,0(Sxr3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw $r4,0(Sxr3)

5: jal dispense cash : addi $r3,$rl, &accts

: 1lw $r4,0($r3)

: blt $r4,$r2,6

sub $r4,$r4,$r2
sw $r4,0($r3)

jal dispense cash

o s W N+ O

e 1w by processor 1 generates a BR (bus read)

CPUO CPUl1 Mem

500

V:500

500

V:400

500

V:400

400

V:300

400

e processor 0 responds by sending its dirty copy, transitioning to |

Thread Level Parallelism I: Multicores

v | BR=,BW= e VI protocol is inefficient
— Only one cached copy allowed in entire system

— Multiple copies can’t exist even if read-only

3 e Not a problem in example
% ﬂ d&) e Big problem in reality
N = Q\d, e MSI (modified-shared-invalid)
= 9; A\ e Fixes problem: splits “V” state into two states
N %9 e M (modified): local dirty copy
% e S (shared): local clean copy
] e Allows either
v N=BW < e Multiple read-only copies (S-state) --OR--
> e Single read/write co M-state
T g / py ()
1 R=,W=> R=,BR=

Thread Level Parallelism I: Multicores

MSI Protocol State Transition Table

This Processor Other Processor
State Load Store | Load Miss Store Miss
. Miss Miss
Invalid (I) S5 S Y = —
Shared . Upg Miss -
(S) Hit > M > 1
Modified Hit Hit Send Data | Send Data
(M) => S > 1

e M =>» S transition also updates memory
o After which, memory willl respond (as all processors will be in S)

Thread Level Parallelism I: Multicores

. Protocol (Write-Back .Cache)

Processor 0 Processor 1 CPUO CPU1 Mem
0: addi $r3,S$rl, &accts 500
1: 1w $r4,0($Sr3) S:500 500
2: blt $r4,$r2,6
3: sub $r4,$r4,$r2
4: sw $r4,0(Sr3) M:400 500
5: jal dispense cash : addi $r3,$rl, &accts

LB R el S:400 [S:400[400

: blt $r4,$r2,6

sub $r4,$r4,$r2
sw $r4,0($r3)

jal dispense cash

| M:300| 400

o s W N+ O

e 1w by processor 1 generates a BR

e Processor 0 responds by sending its dirty copy, transitioning to S
e sw by processor 1 generates a BW

e Processor O responds by transitioning to |

Thread Level Parallelism I: Multicores

ache Coherence and Cache Misses

e Coherence introduces two new kinds of cache misses
e Upgrade miss: delay to acquire write permission to read-only block
e Coherence miss: miss to a block evicted by bus event
e Example: direct-mapped 4B cache, 2B blocks

Cache contents (prior to access) Request Outcome

TTOB TT1B

e | | — o SGaeee S BT RO OSR Compulsory miss
100 | TTROA™: S+ | ——== =Sl sl T'0 0 W Upgrade miss
1100|1101:M it — — =0 0010 BW - (no action)
1100|1101:M |----|----:I |[1101 BW - (evict)
55 | 0L TN 10 ORR Coherence miss
1100 M1 01 : S ———— [——=—:T 0000 R Compulsory miss
0000|0001:s ———— [SEEE T 1100 w Conflict miss

Thread Level Parallelism I: Multicores

A% —qressrrsareisanranaaas
79 S Miss rate
Miss rate
1 2 4 8 16
Processor count
Barnes _
19 e eearamearanan s Miss rate
Miss rata

1 2 4 8 16

Processor count

20%
18%
16%
1d%
12%
10%

8%

6%

1 2 4 8 16

Processor count

Ocean

1 2 4 8 16

Processor count

B Coherence miss rate

Thread Level Parallelism I: Multicores

Cache,Parameters and Coherence Misses

— Larger capacity: more coherence misses

e But the effect offset (by far) by reduction in capacity misses

— Increased block size: more coherence misses

e False sharing: “sharing” a cache line without sharing data

e Creates pathological “ping-pong” behavior

e Careful data placement may help, but is difficult

Cache contents (prior to access) Request Outcome

TTOB TT1B

= | =@l [NG R L0 0 R Compulsory miss

1100|1101:s = 1100 W Upgrade miss

1100/1101:M |----|----:I |[1101 BW - (evict)

==l I SRS — : TR T QR Coherence miss (false sharing)

— More processors: (usually) also more coherence misses

Thread Level Parallelism I: Multicores

Exclusive Clean Protocol Optimization

Processor 0 Processor 1

0: addi $r3,S$rl, &accts

l: 1w $r4,0(Sxr3)

2: blt $r4,$r2,6

3: sub $r4,$r4,$r2

4: sw Sr4,0(Sr3) (No miss)
5: jal dispense cash : addi $r3,$rl, &accts

: 1lw $r4,0($r3)

: blt $r4,$r2,6

sub $r4,$r4,$r2
sw $r4,0($r3)

jal dispense cash

o s W N+ O

e Most modern protocols also include E (exclusive) state

CPUO CPUl1 Mem

500

E:500

500

M:400

500

S:400

S:400

400

M:300

400

e Interpretation: “I have the only cached copy, and it’s a clean copy”

e Why would this state be useful?

Thread Level Parallelism I: Multicores

1 Sl .Protocol State Transition Table

This Processor Other Processor
State Load Store | Load Miss Store Miss
Invalid Miss Miss
(I) > SorE| =» M
Shared . Upg Miss L
(S) Hit > M > 1
Exclusive Hit Hit Send Data | Send Data
(E) > M => S > I
Modified Hit Hit Send Data | Send Data
(M) => S > 1

Thread Level Parallelism I: Multicores

"M_ES! Protocol and Cache Misses

e MESI protocol reduces upgrade misses

e And miss traffic.

Cache contents (prior to access) Request Outcome

TTOB TT1B

s - L | IS A RLEO0SR Compulsory miss (block from memory)
1100]11101:E | ----|----:I |1100 W - (no upgrade miss)
1100|1101:M it — — =0 0010 BW - (no action)

1100/1101:M | ----|----:T |1101 BW - (evict)

=Seo | T = N 11 O ORR Coherence miss

11008101 : Eu ———— [——=—:T 0000 R Compulsory miss

0000j0001:S |--——|-—-—-:I |1100 W Conflict miss (no writeback)

Thread Level Parallelism I: Multicores

"'Another Protocol Optimization

BR/BW e Cache-to-cache transfers (CCT)
e |f data you need is in both memory and other cache...

e Better to get it from the other cache

K e SRAM is faster than DRAM
ﬂ e Especially true if cache block is dirty
g e Otherwise, writeback followed by memory read
m % e |f multiple blocks have copies, who does CCT?
% T;T e One cache designated as “owner”
g
W=BW
M | s
BR=WB
1 EcT |ENR
R/W BR —CCT

Thread Level Parallelism I: Multicores

ESI| Protocol State Transition Table

This Processor Other Processor
State Load Store Load Miss Store Miss
Invalid Miss Miss - e
(I) > SorE = M
Shared . Upg Miss N
(S) Hit > M = I
Exclusive Hit Hit Send Data Send Data
(E) > M => 0 > I
Owner . Upg Miss Send Data
(0) Hit > M Send Data > 1
Modified Hit Hit Send Data | Send Data
(M) => 0 > 1

Thread Level Parallelism I: Multicores

nooping Bandwidth Requirements

e Coherence events generated on...

e |2 misses (and writebacks)

e Some parameters
e 2 GHz CPUs, 2 IPC, 33% memory operations,
e 2% of which miss in the L2, 64B blocks, 50% dirty
e (0.33 *¥0.02 *1.5) =0.01 events/insn
e 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns
e Address request: 0.04 events/ns * 4 B/event = 0.16 GB/s
e Dataresponse: 0.04 events/ns * 64 B/event = 2.56 GB/s

e That’s 2.5 GB/s ... per processor
e With 16 processors, that’s 40 GB/s!

e With 128 processors, that’s 320 GB/s!!
e ...Increasing the number of processor doesn't increase the available BW

Thread Level Parallelism I: Multicores

~"More,Snooping Bandwidth Problems

e Bus bandwidth is not the only problem

e Also processor snooping bandwidth
e 0.01 events/insn * 2 insn/cycle = 0.02 events/cycle per processor
e 16 processors: 0.32 bus-side tag lookups per cycle
e Add 1 port to cache tags? Sure
e 128 processors: 2.56 bus-side tag lookups per cycle!
e Add 3 ports to cache tags? Oy vey!
e Implementing inclusion (L1 is strict subset of L2) helps a little
e 2 additional ports on L2 tags only
e Processor doesn’t use existing tag port most of the time

e |f L2 doesn’t care about bus-side transactions (99% of the time), no need
to bother L1

— Still kind of bad though

e What if bus/snooping bandwidth is not enough?
e Contention

Thread Level Parallelism I: Multicores

“Spalable Cache Coherence

BR/BW

e Partl: bus bandwidth

e Replace non-scalable bandwidth substrate (bus)...

e ...with scalable interconnection network (one that scale his bandwidth
when you increase the count of processor)

e Part ll: processor snooping bandwidth
e Most snoops result in no action
e Replace non-scalable broadcast protocol (spam everyone)...
e ...with scalable directory protocol (only notify processors that care)

Thread Level Parallelism I: Multicores

“Isgrt l: How is a Scalable Network?

@ ® O
®-0 0-0—0-0 D/E'
bt D
o o] V)
(b) 4-node (c) 8-node (d) 16-node

(d) 32-node

_ _ — — - mearougr

(e) 64-node

Thread Level Parallelism I: Multicores

“"Elements

e Network links
e The wires used by the information to travel from source to destination
e Could be optical or electrical

e Routers
e The element that interconnect network links
e Similar to LAN/WAN routers, but usually only best-effort

e Network interfaces

e Responsible to regulate the access to network
e Similar to Network Card, but in most cases no software

e More processors => more routers => more links => more BW

Thread Level Parallelism I: Multicores

‘Isgrt ll: Scalable Cache Coherence

CPU($) CPU($) “p/mp/mTip/mip/ml
Mem|R Mem

A A 'p;‘m |.Jf'm pfm pfm-

y
\ 4
A

p/mie/mTe/mp/mf

A
A

Mem Mem
CPU(%) CPU($) |

p/m™Tp/m T e/m™p/mf
| | | |

e Point-to-point interconnects
e Massively parallel processors (MPPs)
+ Can be arbitrarily large: 10000’s of processors
e Non uniform view of the memory -or- Non-cache coherent
e Scalable multi-processors
e Companies have much smaller systems: 32—64 processors
* Intel Nehalem/ AMD Opteron — point-to-point, glueless, broadcast

e Distributed memory: non-uniform memory architecture (NUMA)

Thread Level Parallelism I: Multicores

e Observe: address space statically partitioned

+ Can easily determine which memory module holds a given line

e That memory module sometimes called “home”
— Can’t easily determine which processors have line in their caches
e Bus-based protocol: broadcast events to all processors/caches

+ Simple and fast, but non-scalable

e Directories: non-broadcast coherence protocol
e Extend memory to track caching information
e For each physical cache line whose home this is, track:
e Owner: which processor has a dirty copy (l.e., M state)
e Sharers: which processors have clean copies (l.e., S state)
e Processor sends coherence event to home directory
e Home directory only sends events to processors that care

Thread Level Parallelism I: Multicores

e Processor side

e Directory follows its own protocol (obvious in principle)

e Similar to bus-based MSI
e Same three states
d& e Same five actions (keep BR/BW names)
Q\ e Minus grayed out arcs/actions
< e Bus events that would not trigger action anyway

W=BW
BW=SD, WB

W=BW

BR=SD

I R=,W=

Thread Level Parallelism I: Multicores

+ Directory won’t bother you unless you need to act

R=,

PO

P1 Directory

Processor 0 Processor 1
0: addi rl,accts,r3 ——:500
1: 1d 0(xr3) ,r4
2: blt rd4,r2,6 S:500 S:0:500
3: sub r4,r2,r4
4: st r4,0(xr3)
5: call dispense cash 0: addi rl,accts,r3 |M:400 M:0:500
- 1: 1d 0(r3),r4 (stale)
2: blt r4,r2,6
3: sub rd, r2,r4 S:400 | S:400 |S:0,1:400
4: st r4,0(xr3)
5: call dispense cash M:3001M:1:400

e 1d by P1 sends BR to directory

e Directory sends BR to PO, PO sends P1 data, does WB, goes to S

e st byPlsendsBW to directory
e Directory sends BW to PO, PO goes to |

Thread Level Parallelism I: Multicores

Jirectory Flip Side: Lateney

e Directory protocols
+ Lower bandwidth consumption — more scalable
— Longer latencies

2 hop miss 3 hop miss
e Two read miss situations @ @ @
e Unshared: get data from memory
e Snooping: 2 hops (PO—memory—P0) @ @

e Directory: 2 hops (PO—>memory—P0)

e Shared or exclusive: get data from other processor (P1)
e Assume cache-to-cache transfer optimization
e Snooping: 2 hops (PO—P1—P0)
— Directory: 3 hops (PO—memory—>P1—P0)
e Common, with many processors high probability someone has it

Thread Level Parallelism I: Multicores

Directory Flip Side: Complexity

e Latency not only issue for directories
e Subtle correctness issues as well
e Stem from unordered nature of underlying inter-connect

e |ndividual requests to single cache must be ordered

e Bus-based Snooping: all processors see all requests in same order

e Ordering automatic

e Point-to-point network: requests may arrive in different orders
Directory has to enforce ordering explicitly
Cannot initiate actions on request B...
Until all relevant processors have completed actions on request A
Requires directory to collect acks, queue requests, etc.

e Directory protocols
e Obvious in principle
— Complicated in practice

Thread Level Parallelism I: Multicores

“'B.‘e,st*of Both Worlds?

* |gnore processor snooping bandwidth for a minute

e Can we combine best features of snooping and directories?
e From snooping: fast two-hop cache-to-cache transfers
e From directories: scalable point-to-point networks

e |n other words...

e Can we use broadcast on an unordered network?

e Yes, and most of the time everything is fine
e But sometimes itisn’t ... protocol race

e Research Proposal: Token Coherence (TC)

e An unordered broadcast snooping protocol ... without data races

Thread Level Parallelism I: Multicores

Thread Level Parallelism I: Multicores

L

L

A

- - [LIGETX L2 L1 L AclData AckData | AckData
- LIGETX [LIGETX — = = = . i | Ack AckData [T = | == . CompleteLast Completelast |Complete
LIGETS |L1GE o o i | DL |Eeplacement Replacement Replacement |Speciall1GETS |SpecialLIGETX |DataShared |DataCwued |DataAllTokens Ack Owmned AllTckens CompleteFirst |CompleteQther N ~ N _L
NoAcks Eequest Writeback Control Last
| l@g o fsuwow/S isuwow/Qlisuwow /M o
o o o 50y mw o
o o
o o
= z 3 =] o paymw lsayow /PO suvow PO lag
z z Z oo o suwpw PT suwow PO suwow PO lap icent IM |PX
= z dalzlon X o uymw suyow lag
IM |rfn lcrd ko ﬁs.‘.z |zx z ic if£n o |s bf pw |5 bf mw |5 bf oo lag |cr ke ot crlocnt BX coxxgmd ficem pLlg
LIGETX L1 L2 L1 AclData |AckData | 2 f
- [LIGETX [L1GETX b— h— — . < |Speci c 2L pleteFirst | Compl CompleteLa:t Completelast
LIGETS |[LIGETX Dome | DL Acls DL Repl |Eeplacement Eeplacement (Speciall IGETS |Special L IGETX |DataShared |DataOwned DataAllTolens % Owned AllTolens CompleteFirst | CompleteQther Com-l:lil_'lt cm:'nl::.{:‘[i_‘:};:‘;&:
Token nck: LICache - L2Cache - Directon
e i ey AL s S | e TS g (D DatsdTahent Ak P R B B DT i Mt Tore i
Lo ek Seww |y SIS Ty MG 0 g v 7 Xk o Dun e - . R By srie Dnfimmy
122 in
I Bl T o e 3 » ' ba B = !
TR
4]
MA ML o XKk he . iy Tl 0 . - b3
] =k
O ML ML 3w 73 M0 MuRSTE AlbaIX Yuaro MREE . bate ane =
ol vl Y Ml B MhutD Lk « £
MEL Nb b XekeIX ac B0 b B Mhal0 : = & 1 = N
B & K 3 ‘s i us . . sukne ue s . = b
Mg 3 & 3 % % k ' RN 2 e =ik o
MEL EL B 3 5 5 3 ' " E 13 - — “pe Tk N
5
B 3§ - 4 A 3 » = Y K L} T kB S r
2
b ks
AN < z . - Fua M Rz M Mx» . = - - [41
w1 [N
mxl hi EE oy Hledisns dala i X L s 2 e M Mesand el B - o
3 3 a0
F N
[Tl T A 42 e 5 B \ r = an i
. - A Ak Ak
Lood [liech spoe | B s ESSGIS |y o b TN (ko | Dotcoenes DesstllTobens 8k M0 1R ot Burivard DusasliTabens s Birnd Farore [Dnfioess
Degdecrrwm e L1} Lat Qm

"69herence on Real Machines

e Many uniprocessors designed with on-chip snooping logic
e Can be easily combined to form multi-processors
e E.g., Intel Pentium4 Xeon
e Multi-core

e Larger scale (directory) systems built from smaller MPs
e E.g., Sun Wildfire, NUMA-Q, IBM Summit

e Some shared memory machines are not cache coherent
e E.g.,, CRAY-T3D/E, Cell Broadband Engine
e Shared data is uncachable
e |f you want to cache shared data, copy it to private data section
e Basically, cache coherence implemented in software
e Have to really know what you are doing as a programmer

Thread Level Parallelism I: Multicores

~Unit.Checkpoint

App | [APp | | APP e Thread-level parallelism (TLP)

System software e Shared memory model
e Multiplexed uniprocessor

e Hardware multihreading
e Multiprocessing
e Synchronization
e |[ock implementation
e Locking gotchas
e (Cache coherence

o Bus-based protocols
e Directory protocols

e Memory consistency models

Me /O

Thread Level Parallelism I: Multicores

~'Fiding Store Miss Latency

e Recall (back from caching unit)

e Hiding store miss latency
e How? Write buffer

e Said it would complicate multiprocessors

e Yes. Itdoes.

Thread Level Parallelism I: Multicores

ecall: Write Misses and Wirite Buffers

e Read miss?
e Load can’t go on without the data, it must stall

e Write miss? Processor

e Technically, noinstruction is waiting for data, why stall?
WB
e Write buffer: a small buffer
e Stores put address/value to write buffer, keep going Vi
e Write buffer writes stores to DS in the background Cache
e Loads must search write buffer (in addition to DS)

+ Eliminates stalls on write misses (mostly)

WBB
— Creates some problems (later)

: : L2 SN
e Write buffer vs. writeback-buffer s
e Write buffer: “in front” of DS, for hiding store misses cache

e Writeback buffer: “behind” DS, for hiding writebacks

Thread Level Parallelism I: Multicores

//Library/Mail Downloads/08_memhier.ppt

"Mem,ory Consistency

e Memory coherence
e Creates globally uniform (consistent) view...
e Of a single memory location (in other words: cache line)
— Not enough
e Cache lines A and B can be individually consistent...
e But inconsistent with respect to each other

e Memory consistency
e Creates globally uniform (consistent) view...
e Of all memory locations relative to each other

e Who cares? Programmers

— Globally inconsistent memory creates mystifying behavior

Thread Level Parallelism I: Multicores

A=flag=0;

Processor 0 Processor 1
A=1; while (!'flag); // spin
flag=1; print A;

e Intuition says: P1 prints A=1

e Coherence says: absolutely nothing
e P1cansee PQ’s write of £1lag before write of Al!l How?
e Maybe coherence event of A is delayed somewhere in network
e Or PO has a coalescing write buffer that reorders writes

e |magine trying to figure out why this code sometimes “works”
and sometimes doesn’t

e Real systems act in this strange manner

Thread Level Parallelism I: Multicores

equential Consistency (SC)

A=flag=0;
Processor 0 Processor 1
A=1; while (!'flag); // spin
flag=1; print A;

e Sequential consistency (SC)
e Formal definition of memory view programmers expect
* Processors see their own loads and stores in program order
+ Provided naturally, even with out-of-order execution
e But also: processors see others’ loads and stores in program order
e And finally: all processors see same global load/store ordering
— Last two conditions not naturally enforced by coherence

e Lamport definition: multiprocessor ordering...

e Corresponds to some sequential interleaving of uniprocessor orders
e Indistinguishable from multi-programmed uni-processor

Thread Level Parallelism I: Multicores

+'SC Doesn’t “Happen Naturally”. Why?

e What is consistency concerned with?
e P1 doesn’t actually view PO’s commitd loads and stores
e Views their coherence events instead

e “Consistency model”’: how observed order of coherence events relates to
order of committed insns

e What does SC say?

e Coherence event order must match committed insn order
e And be identical for all processors

e Let’s go SC and forget this!

e Not so easy: Let’s see what that implies

Thread Level Parallelism I: Multicores

‘énforcing SC

e What does it take to enforce SC?
e Definition: all loads/stores globally ordered
e Use ordering of coherence events to order all loads/stores

e When do coherence events happen naturally?
* On cache access
e For stores: commitment — in-order — good
e No write buffer? Yikes, but OK with write-back DS
For loads: execution — out-of-order — bad
— No out-of-order execution? Double yikes

e |s it true that multi-processors cannot be out-of-order?
— That would be really bad

e Qut-of-order is needed to hide cache miss latency
e And multi-processors not only have more misses...
e ... but miss handling takes longer (coherence actions)

Thread Level Parallelism I: Multicores

G+, Out-of-Order

e Recall: opportunistic load scheduling in a uni-processor
e Loads issue speculatively relative to older stores
e Stores scan for younger loads to same address have issued (at LQ)
e Find one? Ordering violation — flush and restart
e In-flight loads effectively “snoop” older stores from same process (at SQ)

e SC+ 000 can be reconciled using same technique

e “Invalidation” requests from other processors snoop in-flight loads (at
LQ)

e Think of load/store queue as extension of the cache hierarchy
e MIPS R10K does this

e SCimplementable, but overheads still remain:
e \Write buffer issues
e Complicated load/store queue

Thread Level Parallelism I: Multicores

"SC +,0ut-of-Order

fime

A=0;B=0;
Processor 0 Processor 1
1:.=B(0); // ooo exec
N K\ 0:B=1; // in-order commit
Insn# value _1:a=1:
0:.=A(1) ;«
0:.=A(l); // in-order commit
1:.=B(0);

e What s this?
e PO sees P1’s write of A
e PO should also see P1’s write of B (older than write of A)
— But doesn’t because it read of B out-of-order w.r.t. read of A

e Does this mean no out-of-order? (that would be bad)
e Fortunately, there is a way

Thread Level Parallelism I: Multicores

G+, Out-of-Order

A=0;B=0;
ProcesSof“g_‘r,,,———””” cessor 0
1:.=B(0);" // ooo exec 1:.=B(0); // ooo exec

0:B=1; 0:B=1; // LQ search
0:B=1; // io commit squash
1:.=B(0); \\ 1:.=B(1);
0:B=1; // io commit
This doesn'’t actually happen 1:.=B(1);

e What would happen if...

e PO executed read of B out-of-order w.r.t. its own write of B?

e Would read of B get the wrong value?

e No, write of B searches LQ, discovers read of B went early, flushes
e Same solution here...

e Commit of B on P1 searches load queue (LQ) of PO

Thread Level Parallelism I: Multicores

“SC +,0ut-of-Order

A=0;B=0;

Processor 0O

_—

1:.=B(0): // ooo exec

LQ search, squash
0:.=A(1) ;/
1:.=B(1)
0:.=A(1l); // io commit
1:.=B(1);

Thread Level Parallelism I: Multicores

Processor 1

0:B=1;
1:A=1;

// io commit

"SC + \Write Buffers

e Store misses are slow
e Global acquisition of M state (write permission)
— Multiprocessors have more store misses than uniprocessors
e Upgrade miss: | have block in S, require global upgrade to M

e Apparent solution: write buffer

e Commit store to write buffer, let it absorb store miss latency
e But a write buffer means...
e | see my own stores commit before everyone else sees them

e Orthogonal to out-of-order execution

e Even in-order processors have write buffers

Thread Level Parallelism I: Multicores

"SC + \Write Buffers

A=0; B=0;
Processor 0 Processor 1
A=1; // in-order to WrBu B=1; // in-order to WrBu
if (B==0) // in-order commit if (A==0) // in-order commit
A=1; // in-order to DS$ B=1; // in-order to D$

e Possible for both (B==0) and (A==0) to be true
e Because B=1 and A=1 are just sitting in the write buffers

e Which is wrong
e So does SC mean no write buffer?

— Yup, and that hurts
e Research direction: use deep speculation to hide latency

e Beyond the out-of-order window, looks like transactional memory:
BulkSC

Thread Level Parallelism I: Multicores

‘15 SC Really Necessar

o SC

+ Most closely matches programmer’s intuition (don’t under-estimate)

— Restricts optimization by compiler, CPU, memory system
e Supported by MIPS, HP PA-RISC

e |s full-blown SC really necessary? What about...
e All processors see others’ loads/stores in program order
e But not all processors have to see same global order
+ Allows processors to have in-order write buffers
— Doesn’t confuse programmers too much
e Synchronized programs (e.g., our example) work as expected
e Processor Consistency (PC): e.g., Intel/AMD x86, SPARC

Thread Level Parallelism I: Multicores

e For properly synchronized programs...
e ..onlyacquires/releases must be strictly ordered

e Why? acquire-release pairs define critical sections
e Between critical-sections: data is private
e Globally unordered access OK
e Within critical-section: access to shared data is exclusive
e Globally unordered access also OK
e Implication: compiler or dynamic scheduling is OK
e As long as re-orderings do not cross synchronization points

e Weak Ordering (WO): Alpha, Itanium, ARM, PowerPC
e |SA provides £ence to indicate scheduling barriers
e Proper use of fences is somewhat subtle
e Use synchronization library, don’t write your own

Thread Level Parallelism I: Multicores

~'Fences aka Memory Barriers

* Fences (memory barriers): special insns
e Ensure that loads/stores don’t cross acquire release boundaries
e Very roughly
acquire
fence
critical section
fence
release

e How do they work?

« fence insn must commit before any younger insn dispatches
e This also means write buffer is emptied
— Makes lock acquisition and release slow(er)

e Use synchronization library, don’t write your own: Portability

Thread Level Parallelism I: Multicores

e Synchronization: regulated access to shared data
e Key feature: atomic lock acquisition operation (e.g., t&s)

e Performance optimizations: test-and-test-and-set, queue locks

e Coherence: consistent view of individual cache lines
e Absolute coherence not needed, relative coherence OK
e VI and MSI protocols, cache-to-cache transfer optimization
* |Implementation? snooping, directories

e Consistency: consistent view of all memory locations
e Programmers intuitively expect sequential consistency (SC)

e Global interleaving of individual processor access streams

— Not always naturally provided, may prevent optimizations

e Weaker ordering: consistency only for synchronization points

Thread Level Parallelism I: Multicores

WRAP-UP
+ POWER
- PROGRAMMING

UC R

Thread Level Parallelism I: Multicores 108

“ﬁ_ecall: Reducing Dynamic Power

e Target each component: Py .. ™ N*C*V2*f*A
e Reduce number of transistors (N)

e Use fewer transistors/gates

e Reduce capacitance (C)
e Smaller transistors (Moore’s law)
e Reduce voltage (V)
e (Quadratic reduction in energy consumption!
e But also slows transistors (transistor speed is ~ to V)
e Reduce frequency (f)
e Slower clock frequency (reduces power but not energy) Why?
e Reduce activity (A)

e “Clock gating” disable clocks to unused parts of chip
e Don’t switch gates unnecessarily

Thread Level Parallelism I: Multicores

~'Recall: Reducing Static Power

e Reduce number of transistors (N)

e Target each component: P
e Use fewer transistors/gates
e Reduce voltage (V)
e Linear reduction in static energy consumption
e But also slows transistors (transistor speed is ~ to V)
e Disable transistors (also targets N)
e “Power gating” disable power to unused parts (long latency to power up)
e Power down units (or entire cores) not being used
e Dual V,— use a mixture of high and low V, transistors
e Use slow, low-leak transistors in SRAM arrays
e Requires extra fabrication steps (cost)
e Low-leakage transistors
e High-K/Metal-Gates in Intel’s 45nm process

e Note: reducing frequency can actually hurt static energy. Why?

Thread Level Parallelism I: Multicores

ecall: Voltage/Frequenc

-
Scaling

Mobile PentiumIII Transmeta 5400 Intel X-Scale
“SpeedStep” “LongRun” (StrongARM2)
f (MHz) 300—-1000 (step=50) | 200-700 (step=33) 50-800 (step=50)
V (V) 0.9-1.7 (step=0.1) 1.1-1.6V (cont) 0.7-1.65 (cont)
High-speed | 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W
Low-power | 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W

e Dynamic voltage/frequency scaling
e Favors parallelism

Thread Level Parallelism I: Multicores

e Multiprocessing can be very power efficient

e Recall: dynamic voltage and frequency scaling
e Performance vs power is NOT linear
e Example: Intel’s Xscale
e 1 GHz — 200 MHz reduces energy used by 30x

e |mpact of parallel execution
e What if we used 5 Xscales at 200Mhz?
e Similar performance as a 1Ghz Xscale, but 1/6th the energy
e 5 cores * 1/30th = 1/6th

e Assumes parallel programming (a difficult task)

e Assumes parallel speedup (even more difficult task)
e Remember Ahmdal’s law

Thread Level Parallelism I: Multicores

> Shared Memory Programminc

e Standard Alternatives

e Posix Threads
e Implicit communication
e Explicit synchronization

e OpenMP
e Implicit communication
e |mplicit synchronization

e Non-standard Alternatives
e SysV
e |RIX Sprocs
e \WWIN32

Thread Level Parallelism I: Multicores

"\Nhat. iIs OpenMP?

e Characteristics
e Shared-memory Open standard for HPC programming
e Highly portable

e Components
e Preprocessor directives (bindings for C/C++/F77/F90/Ada...)
e Libraries
e Runtime
e Environment

e Advantages over pthreads (OS)
+ Easy to parallelize many HPC codes (in some cases is fully automatic)
+ Many nasty constructs and calls to threads library are hidden
+ Better portability (??)
- Specific for HPC

Thread Level Parallelism I: Multicores

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

// parallel region
llel
int main(int argc, char * argv[]) { ?pragma omp paralle

intf (“Hello £ i ", h d ;
e R printf (“Hello from %i\n omp_get thread num())
if (omp get thread num() == 0)
{
// How many threads here?.
nprocs = om et num procs () : nthreads = omp get num threads();
P = omp_get_num_p ’ printf (“Numero de threads = %i\n" ,nthreads) ;

// Ask for the num of idle
// processors

printf (“Hello World! There is%i
processor \n", nprocs);

}
} //join
omp set num threads(2);

// Overwrtiable with env. Variable
#pragma omp parallel

//OMP NUM THREADS (gcc doesn’work?)
//

printf (“Ahora somos dos threads y to soy %i\n”,

omp set num threads (nprocs) ; omp_get_ thread num());

}

return O;

With gcc4.2>=

gcc —fopenmp hello.c

Thread Level Parallelism I: Multicores

http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/
http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/
http://gcc.gnu.org/onlinedocs/gcc-4.4.0/libgomp/

. N
~'Parallel regions and execution flow

o "
R
Master

Thread

B 45 ;
‘Parallel Regions

Thread Level Parallelism I: Multicores 116 UC ‘,ﬁ

~‘Ejemplo: = (sec.)

static long num steps = 1000000000;
double step;
void main ()

{ 1

int 1i; I dX2 — [tg‘lxﬁ —
double x, pi, sum = 0.0; 0
step = 1.0/ (double) num steps;
for (i=0;i< num steps; i++)

{

x = (1i+0.5) *step;
sum = sum + 4.0/ (1.0+x*x) ;

}

pi = step * sum;

Thread Level Parallelism I: Multicores

"Example : © (par.)

#include <omp.h>
static long num steps = 1000000000;
double step;
#define NUM THREADS 2
void main ()
{
int i;
double x, pi, sum[NUM THREADS] ;
step = 1.0/ (double) num steps;
omp_ set num threads (NUM_THREADS) ;
#pragma omp parallel
{
double x; int id;
id = omp_get thread num();
sum[id]=0.0;
for (i=id*num steps/NUM THREADS, i< (id+l)*num steps/NUM THREADS; i++)
{
x = (i40.5) *step;
sum[id] += 4.0/ (1.0+x*x) ;
}

}
for (i=0, pi=0.0;i<NUM THREADS;i++) pi += sum[i] * step;

Thread Level Parallelism I: Multicores

“Example: n (loop)

#include <omp.h>
static long num steps = 1000000000;
double step;
#define NUM THREADS 2
void main ()
{
int i; double x, pi, sum[NUM THREADS];
step = 1.0/ (double) num steps;
for (i=0;i<NUM THREADS;i++) sum[i]=0.0;
omp set num threads (NUM_THREADS) ;
#pragma omp parallel for private (x)
for (i=0;i< num steps; i++)
{
x = (1+40.5) *step;
sum[omp get thread num()] += 4.0/ (1.0+x*x);
}
for (i=0, pi=0.0;i<NUM THREADS;i++)
pi += sum[i] * step;

Thread Level Parallelism I: Multicores

S pragma omp critical

#include <omp.h>
static long num steps = 1000000000;
double step;
#define NUM THREADS 2
void main ()
{
int i;
double x, pi, sum;
step = 1.0/ (double) num steps;
omp set num threads (NUM_THREADS) ;
#pragma omp parallel for private (x)
for (i=0;i< num steps; i++)
{
x = (1i+0.5) *step;
#pragma omp critical
sum+= 4.0/ (1.0+x*x) ;
}

pPi = sum * step;

Thread Level Parallelism I: Multicores

shared (sum)

sotrongly -‘Specific

#include <omp.h>
static long num steps = 1000000000;
double step;
#define NUM THREADS 2
void main ()
{
int i;
double x, pi, sum;
step = 1.0/ (double) num steps;
omp set num threads (NUM_THREADS) ;
#pragma omp parallel for private(x) reduction (+:sum)
for (i=0;i< num steps; i++)
{
x = (1i+0.5) *step;
sum+= 4.0/ (1.0+x*x) ;
}

pi = sum * step;

Thread Level Parallelism I: Multicores

~'Multi-computers

e Non-shared-memory architecture, slower network

e Message-passing paradigm... even harder than shared memory

e More next year.

I:)O Pl I:)2 PB
...... ||||
$ |[[Mo | $[[M || S |IM|] S |[M
| | I I ! I | |
/O /O /0 /O
| ! | !
interface interface interface interface

Interconnect

' Example: © with MPI

#include <stdio.h>
#include "mpi.h" MPI Barrier (MPI COMM WORLD) ;

double pieza de pi(int,int, long);

void main (int argc, char ** argv)

{

t4 = MPI Wtime(); /* tiempo final */

printf ("Valor de pi: $1f \n",pi);

printf ("Tiempo de ejecucion: %.31f seg\n",td-t3
long intervalos=160000000;

int miproc, numproc; }

else

double pi, di;
{ /* el esclavo envia los resultados al maestro */

int i;
MPI Send (&pi, 1, MPI DOUBLE, 0, 99, MPI COMM WORLD)
MPI_Status status; MPI Barrier (MPI_COMM WORLD) ;
double t3, t4; }
t3 = MPI Wtime(); /* tiempo de inicio */ MPI Finalize ();

MPI Init (&argc, &argv); /* Inicializar MPI */
MPI Comm rank (MPI COMM WORLD, &miproc) ; MPI_Comm_size(MPI_COMM_WORLD,&nJmproc);
MPI Barrier (MPI_COMM WORLD) ;
if (miproc == 0) double pieza de pi(int idproc, int nproc, long intervalq
{ { —
for (i = 1; i < numproc; i++)

MPI Send(&intervalos, 1, MPI LONG, i, 98, MPI_COMM WORLD) ; Qo an CHOTR /- L oC T ol

) long j;
else
MPI Recv (&intervalos, 1, MPI LONG, 0, 98, MPI COMM WORLD, &status); ancho = 1.0 / intervalos; /* peso de la muestra */
§]] Tocal sums=S00L
/* cada proceso ejecuta pieza de pi */ Heie (Ge=alcloEeely I < int@Evelles) 9 4= npEee)
pi = pieza de pi (miproc, numproc, intervalos);
{
MPI Barrier (MPI_COMM WORLD); /* seccién de sincronizacién */ Xi=(j + 0.5) * anchoj;
if (miproc == 0) /* si es maestro recoge los resultados, suma y los imprime */localsum TR TR ; * %) ;
; ;
ifoie (0= 19711 < nibineeeer aksr) }
{) 4 return (localsum * ancho);
MPT Recv (&di, 1, MPI DOUBLE, i, 93, MPI COMM WORLD, &status)g;
Pa =Nk

Thread Level Parallelism I: Multicores

~'Parallel Programming

e Parallel programming is also hard because:
e Thread scheduling & load balancing
e Lack of deterministic behavior

e Thread scheduling load balance
e What if thread creation/destruction is “mostly” free?
e Already happening in GPU assisted processing (nVidia CUDA, ATI Stream)
e General purpose processing?
e Could synchronization be avoidable too?

e Lack of deterministic behavior
e Record, via hardware, winners in races-for-data
e Use that information to “replay” execution in program debugging

e Deterministic back-track (as we are used to see in sequential programming).
One of the uses of VM

Thread Level Parallelism I: Multicores

~'Delegate the problem?

e Some advocates for add another level to the stack: specialized
languages (called Domain Specific Languages) plus runtime
e Only runtime programmer should deal with the problem

e Conventional programmer has to know only the DSL interface, runtime
does the “nasty” work.

e Examples:
e SQL (data parallelism)
e Matlab (scientific)
e Ruby/Rails (Web)

e Will be productive the “classic way” in 100+ core age?

Thread Level Parallelism I: Multicores

ity or parallel programmings»

~"Amdahl law

e Queremos obtener un para una aplicacion que debe ser
ejecutada en un computador : ¢Qué porcentaje
del codigo debera ser susceptible de paralelizar?

Tejec
Speedup=_ - * =80

Tejec,y,
Tejec,, = Tejec, (Fraccion,, ., + Fraccion . . .i.) =

= Tejec,, (Fraccion .., +1—Fraccion)
_) Fraccion 5
Tejecloop = Tejeclp(100 P 41— |:rac:c:lOnparalela)
1 -
Speedup = Eacaion =80 = Fraccion ., = 0.9975
aralela P
100p T L FraCCIOnparalela Solo el 0.25%

puede ser secuenciall!!

Thread Level Parallelism I: Multicores

£ cknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

e Slides re-adapted by V. Puente of University of Cantabria

Thread Level Parallelism I: Multicores

