
Thread Level Parallelism II:
Multithreading

Readings:

H&P: Chapter 3.5

Paper: NIAGARA: A 32-WAY MULTITHREADED …

Thread Level Parallelism II: Multithreading 1

Thread Level Parallelism II: Multithreading 2

This Unit: Multithreading (MT)

• Why multithreading (MT)?
• Utilization vs. performance

• Three implementations
• Coarse-grained MT

• Fine-grained MT

• Simultaneous MT (SMT)

• Example
• The Sun UltraSparc T1

• Research topics

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

Thread Level Parallelism II: Multithreading 3

Performance And Utilization

• Performance (IPC) important
• Utilization (actual IPC / peak IPC) important too

• Even moderate superscalars (e.g., 4-way) not fully utilized
• Average sustained IPC: 1.5–2  < 50% utilization

• Mis-predicted branches
• Cache misses, especially L2
• Data dependences

• Multi-threading (MT)
• Improve utilization by multi-plexing multiple threads on single CPU
• One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can
• Multi-programmed OS generalization:

• I/OCPU Stall
• Context Switches  Thread Switches
• Stack of software  Zero software

Thread Level Parallelism II: Multithreading 4

Superscalar Under-utilization

• Time evolution of issue slot
• 4-issue processor

Superscalar

cache

miss

Thread Level Parallelism II: Multithreading 5

Simple Multithreading

• Time evolution of issue slot
• 4-issue processor

• Where does it find a thread? Same problem as multi-core
• Same shared-memory abstraction

Superscalar

cache

miss

Multithreading

Fill in with instructions

from another thread

ti
m

e

Thread Level Parallelism II: Multithreading 6

Latency vs Throughput

• MT trades (single-thread) latency for throughput
– Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads

+ Improves utilization

• Example
• Thread A: individual latency=10s, latency with thread B=15s

• Thread B: individual latency=20s, latency with thread A=25s

• Sequential latency (first A then B or vice versa): 30s

• Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

+ But improves total latency by 5s

• Different workloads have different parallelism
• SpecFP has lots of ILP (can use an 8-wide machine)

• Server workloads have TLP (can use multiple threads)

Thread Level Parallelism II: Multithreading 7

MT Implementations: Similarities

• How do multiple threads share a single processor?
• Different sharing mechanisms for different kinds of structures

• Depend on what kind of state structure stores

• No state: ALUs
• Dynamically shared

• Persistent hard state (aka “context”): PC, registers
• Replicated

• Persistent soft state: caches, bpred
• Dynamically partitioned (like on a multi-programmed uni-processor)

• TLBs need thread ids, caches/bpred tables don’t (PA/VA???)

• Exception: ordered “soft” state (BHR, RAS) is replicated

• Transient state: pipeline latches, ROB, RS
• Partitioned … somehow

Thread Level Parallelism II: Multithreading 8

MT Implementations: Differences

• Main question: thread scheduling policy
• When to switch from one thread to another?

• Related question: pipeline partitioning
• How exactly do threads share the pipeline itself?

• Choice depends on
• What kind of latencies (specifically, length) you want to tolerate

• How much single thread performance you are willing to sacrifice

• Three designs
• Coarse-grain multithreading (CGMT)

• Fine-grain multithreading (FGMT)

• Simultaneous multithreading (SMT)

Thread Level Parallelism II: Multithreading 9

The Standard Multithreading Picture

• Time evolution of issue slots
• Color = thread

CGMT FGMT SMTSuperscalar

ti
m

e

Thread Level Parallelism II: Multithreading 10

Coarse-Grain Multithreading (CGMT)

• Coarse-Grain Multi-Threading (CGMT)
+ Sacrifices very little single thread performance (of one thread)

– Tolerates only long latencies (e.g., L2 misses)

• Thread scheduling policy

• Designate a “preferred” thread (e.g., thread A)

• Switch to thread B on thread A L2 miss

• Switch back to A when A L2 miss returns

• Pipeline partitioning

• None, flush on switch

– Can’t tolerate latencies shorter than twice pipeline depth

• Need short in-order pipeline for good performance

• Example: IBM Northstar/Pulsar (RS/6000)

Thread Level Parallelism II: Multithreading 11

CGMT

• CGMT

regfile

D$
I$

B

P

regfile

regfile

thread scheduler

L2 miss?

I$

B

P

D$

Thread Level Parallelism II: Multithreading 12

Fine-Grain Multithreading (FGMT)

• Fine-Grain Multithreading (FGMT)
– Sacrifices significant single thread performance

+ Tolerates latencies (e.g., L2 misses, mispredicted branches, etc.)

• Thread scheduling policy

• Switch threads every cycle (round-robin), L2 miss or no

• Pipeline partitioning

• Dynamic, no flushing

• Length of pipeline doesn’t matter so much

– Need a lot of threads

• Extreme example: Denelcor HEP (‘81-’85)

• So many threads (100+), it didn’t even need caches

• Failed commercially

• Not popular today

• Many threads  many register files

Thread Level Parallelism II: Multithreading 13

Fine-Grain Multithreading

• FGMT
• Multiple threads in pipeline at once

• (Many) more threads

regfile

regfile

regfile

regfile

thread scheduler

D$
I$

B

P

Thread Level Parallelism II: Multithreading 14

Vertical and Horizontal Under-Utilization

• FGMT and CGMT reduce vertical under-utilization
• Loss of all slots in an issue cycle

• Do not help with horizontal under-utilization
• Loss of some slots in an issue cycle (in a superscalar processor)

CGMT FGMT SMT

ti
m

e

SMT

Thread Level Parallelism II: Multithreading 15

Thread Level Parallelism II: Multithreading 16

Simultaneous Multithreading (SMT)

• What can issue insns from multiple threads in one cycle?
• Same thing that issues insns from multiple parts of same program…

• …out-of-order execution

• How different PCs are managed?

• Simultaneous multithreading (SMT): OOO + FGMT
• Aka “hyper-threading”

• Observation: once insns are renamed, scheduler doesn’t care which thread
they come from (well, for non-loads at least)

• Some examples

• IBM Power5: 4-way issue, 2 threads

• Intel Pentium4: 3-way issue, 2 threads

• Intel “Nehalem”: 4-way issue, 2 threads

• Alpha 21464: 8-way issue, 4 threads (canceled)

• Notice a pattern? #threads (T) * 2 = #issue width (N)

Thread Level Parallelism II: Multithreading 17

Simultaneous Multithreading (SMT)

• SMT
• Replicate map table, share (larger) physical register file

regfile

D$
I$

B

P

map table

map tables

I$

B

P

D$

thread scheduler

regfile

Thread Level Parallelism II: Multithreading 18

SMT Resource Partitioning

• Physical regfile and insn buffer entries shared at fine-grain
• Physically unordered and so fine-grain sharing is possible

• How are physically ordered structures (ROB/LSQ) shared?
– Fine-grain sharing (below) would entangle retire (and flush)

• Allowing threads to commit independently is important

map tables

I$

B

P

D$

thread scheduler

regfile

Thread Level Parallelism II: Multithreading 19

Static & Dynamic Resource Partitioning

• Static partitioning (below)
• T equal-sized contiguous partitions

± No starvation, sub-optimal utilization (fragmentation)

• Dynamic partitioning
• P > T partitions, available partitions assigned on need basis

± Better utilization, possible starvation

• ICOUNT: fetch policy prefers thread with fewest in-flight insns

• Couple both with larger ROBs/LSQs

I$

B

P

D$

regfile

Thread Level Parallelism II: Multithreading 20

Multithreading Issues

• Shared soft state (caches, branch predictors, TLBs, etc.)

• Key example: cache interference
• General concern for all MT variants

• Can the working sets of multiple threads fit in the caches?

• Shared memory SPMD threads help here

+ Same insns  share I$

+ Shared data  less D$ contention

• MT is good for workloads with shared insn/data

• To keep miss rates low, SMT might need a larger L2 (which is OK)

• Out-of-order tolerates L1 misses

• Large physical register file (and map table)
• physical registers = (#threads * #arch-regs) + #in-flight insns

• map table entries = (#threads * #arch-regs)

Thread Level Parallelism II: Multithreading 21

Notes About Sharing Soft State

• Caches are shared naturally…
• Physically-tagged: address translation distinguishes different threads

• … but TLBs need explicit thread IDs to be shared
• Virtually-tagged: entries of different threads indistinguishable

• Thread IDs are only a few bits: enough to identify on-chip contexts

• Thread IDs make sense on BTB (branch target buffer)
• BTB entries are already large, a few extra bits / entry won’t matter

• Different thread’s target prediction  automatic mis-prediction

• … but not on a BHT (branch history table)
• BHT entries are small, a few extra bits / entry is huge overhead

• Different thread’s direction prediction  mis-prediction not automatic

• Ordered soft-state should be replicated
• Examples: Branch History Register (BHR), Return Address Stack (RAS)

• Otherwise it becomes meaningless… Fortunately, it is typically small

The real cost of SMT

Thread Level Parallelism II: Multithreading 22

Not always a good thing

Thread Level Parallelism II: Multithreading 23

Thread Level Parallelism II: Multithreading 24

Multithreading vs. Multicore

• If you wanted to run multiple threads would you build a…
• A multicore: multiple separate pipelines?

• A multithreaded processor: a single larger pipeline?

• Both will get you throughput on multiple threads
• Multicore core will be simpler, possibly faster clock

• SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP

• Multicore is mainly a TLP (thread-level parallelism) engine

• Do both
• Sun’s Niagara (UltraSPARC T1), Chip Multiprocessor

• 8 processors, each with 4-threads (non-SMT threading)

• 1Ghz clock, in-order, short pipeline (6 stages or so)

• Designed for power-efficient “throughput computing”

Thread Level Parallelism II: Multithreading 25

Multithreading Summary

• Latency vs. throughput

• Partitioning different processor resources

• Three multithreading variants
• Coarse-grain: no single-thread degradation, but long latencies only

• Fine-grain: other end of the trade-off

• Simultaneous: fine-grain with out-of-order

• Multithreading vs. chip multiprocessing

EXAMPLE: THE SUN UNLTRASPARC

T1 MULTIPROCESSOR

Thread Level Parallelism II: Multithreading 26

The SUN UltraSparc T1

Thread Level Parallelism II: Multithreading 27

Floor plan

Thread Level Parallelism II: Multithreading 28

Enclosure (SunFire T2000)

Thread Level Parallelism II: Multithreading 29

Power Breakdown

Thread Level Parallelism II: Multithreading 30

The SUN UltraSparc T1 Pipeline

Thread Level Parallelism II: Multithreading 31

Cost

Thread Level Parallelism II: Multithreading 32

Performance

Thread Level Parallelism II: Multithreading 33

Performance (Pentium D normalized)

Thread Level Parallelism II: Multithreading 34

Sun UltraSparc T2

• Second iteration of Niagara

• 8 pipelined cores, 8-way SMT  64 hardware threads per chip

• 4MB L2

• 8 Fully pipelined FPU (1 per core)

• Dual 10 GbE and PCIe integrated

• Security processor per core: DES, 3DES, AES, etc…

• 65nm, 1.4Ghz, <95W (chip), +60GB/s BW (4 FB DIMM
controllers)

• Sun UltraSparc T3 (a.k.a. Niagara Falls)
• 16 cores 16-way SMT, 4-chip servers

Thread Level Parallelism II: Multithreading 35

RESEARCH

Thread Level Parallelism II: Multithreading 36

Thread Level Parallelism II: Multithreading 37

Research: Speculative Multithreading

• Speculative multithreading
• Use multiple threads/processors for single-thread performance

• Speculatively parallelize sequential loops, that might not be parallel

• Processing elements (called PE) arranged in logical ring

• Compiler or hardware assigns iterations to consecutive PEs

• Hardware tracks logical order to detect mis-parallelization

• Techniques for doing this on non-loop code too

• Detect reconvergence points (function calls, conditional code)

• Effectively chains ROBs of different processors into one big ROB

• Global commit “head” travels from one PE to the next

• Mis-parallelization flushes one PEs, but not all PEs

• Also known as split-window or “Multiscalar”

• Not commercially available yet… eventually will be??

• But it is the “biggest idea” from academia not yet adopted

Thread Level Parallelism II: Multithreading 38

Research: Multithreading for Reliability

• Can multithreading help with reliability?
• Design bugs/manufacturing defects? No

• Gradual defects, e.g., thermal wear? No

• Transient errors? Yes

• Staggered redundant multithreading (SRT)
• Run two copies of program at a slight stagger

• Compare results, difference? Flush both copies and restart

– Significant performance overhead

Research: QoS CMP

• Server Consolidation Definition :

• Server consolidation is an approach to the efficient usage of
computer server resources in order to reduce the total
number of servers or server locations that an organization
requires

Thread Level Parallelism II: Multithreading 39

www server

database server #1

database server #2

middleware server #1

middleware server #1

Motivation: CMP & Server
consolidation

• CMP based system are pervasive and an ideal hardware
platform (in terms of cost) to deploy server consolidation

Thread Level Parallelism II: Multithreading 40

64-core CMPwww server

database server #1

database server #2

middleware server #1

middleware server #1

Core

L2 Cache

L1

Virtualization

• Virtualization is the most suitable tool to achieve server
consolidation
• Hides all the nasty details to the user

• Eases system administration

• Performance?

• Most virtualization layers provide a huge set of parameters to
regulate the access to shared resources
• Disk

• Memory

• Network

• Time sharing CPU

Thread Level Parallelism II: Multithreading 41

Performance Isolation & CMP

• CMP introduces a new dimension in shared resources
• A large portion of the memory hierarchy will be shared

• Two mayor potential problems
• On-chip cache capacity and/or bandwidth

• Off-chip bandwidth

• Question that arises:
• Too fine grained to be effective at software level?

• Has to be the CMP aware of virtualization layer?

• Has to provide the hardware some mechanism to apply virtualization
policies?

• …

Thread Level Parallelism II: Multithreading 42

Is it a problem?

Thread Level Parallelism II: Multithreading 43

• Let’s analyze the problem with state-of-the-art infrastructure

• Consolidated servers
• Significant workload to be consolidates (SPECWeb2005) with Apache

Tomcat

• Misbehaving workload that stresses CMP (on-chip capacity & off-chip
bandwidth)

• Software stack
• Virtualization layer (XEN & Solaris Zones) with resource controls

• Realistic Operating systems (GNU/Linux Debian5, Solaris 10)

Hardware Setup

Thread Level Parallelism II: Multithreading 44

Sun Fire T1000 HP Proliant DL160 G5

Processor Model Sun UltraSparc T1 Intel Xeon X5472

Threads, Cores, dies, chips 32, 8, 1, 1 8, 8, 4, 2

L1I Private, 16KB 4-way set
associative, 32-byte lines, 1-per
core

Private, 32KB, 8-way set
associative, 64-byte lines, 1-per
core

L1D Private, 8KB 4-way set
associative, 16-byte lines, write-
through, 1 per core

Private, 32KB, 8-way set
associative, 64-byte lines, 1-per
core

L2 3MB Shared per chip, 12-way
set associative, 64-byte lines

6MB Shared per die, 24-way
set associative, 64 byte lines

Memory 8GB, 533Mhz, DDR2 16GB, 667Mhz
FB-DIMM

Hard disk 1 SATA 2 SATA RAID 0

NIC Dual Gigabit Ethernet
(bounded)

Dual Gigabit Ethernet
(bounded)

Misbehaving application on T1000

Thread Level Parallelism II: Multithreading 45

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 O

ff
-C

h
ip

 B
a

n
d

w
id

th
 A

v
a

il
a

b
le

 t
o

P

ri
m

a
ry

 V
P

S

Primary VPS / Secondary VPS

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Primary VPS / Secondary VPS

Performance isolation on T1000

Thread Level Parallelism II: Multithreading 46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bank E-Commerce Support Average

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Benchmark

Idle

harm.on-chip

harm.off-chip

Performance Isolation on Xeon

Thread Level Parallelism II: Multithreading 47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bank E-Commerce Support Average

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Die (1core per VPS) Chip (2 cores per VPS) Chip Interleaved (2 cores per VPS)

What to do?

• Current virtualization + hardware is not enough to provide the
expected level of performance

• Could a provider guarantee SLA?
• Potentially could reduce the server consolidation degree

• Potentially could loss its customers

• With many core-CMP advent the problem will exacerbate

• We need some sort of QoS provision
• Hardware level mechanisms to control the access to common resources

• Software could specify policies for those mechanisms

Thread Level Parallelism II: Multithreading 48

Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

• Slides re-adapted by V. Puente of University of Cantabria

Thread Level Parallelism II: Multithreading 49

