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This Unit: Multithreading (MT)

• Why multithreading (MT)?
• Utilization vs. performance

• Three implementations
• Coarse-grained MT

• Fine-grained MT

• Simultaneous MT (SMT)

• Example
• The Sun UltraSparc T1

• Research topics

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU



Thread Level Parallelism II: Multithreading 3

Performance And Utilization

• Performance (IPC) important
• Utilization (actual IPC / peak IPC) important too

• Even moderate superscalars (e.g., 4-way) not fully utilized
• Average sustained IPC: 1.5–2  < 50% utilization

• Mis-predicted branches
• Cache misses, especially L2
• Data dependences

• Multi-threading (MT)
• Improve utilization by multi-plexing multiple threads on single CPU
• One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can
• Multi-programmed OS generalization: 

• I/OCPU Stall
• Context Switches  Thread Switches
• Stack of software  Zero software
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Superscalar Under-utilization

• Time evolution of issue slot
• 4-issue processor

Superscalar
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Simple Multithreading

• Time evolution of issue slot
• 4-issue processor

• Where does it find a thread?  Same problem as multi-core
• Same shared-memory abstraction
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Latency vs Throughput

• MT trades (single-thread) latency for throughput
– Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads

+ Improves utilization

• Example
• Thread A: individual latency=10s, latency with thread B=15s

• Thread B: individual latency=20s, latency with thread A=25s

• Sequential latency (first A then B or vice versa): 30s

• Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

+ But improves total latency by 5s

• Different workloads have different parallelism
• SpecFP has lots of ILP (can use an 8-wide machine)

• Server workloads have TLP (can use multiple threads)



Thread Level Parallelism II: Multithreading 7

MT Implementations: Similarities

• How do multiple threads share a single processor?
• Different sharing mechanisms for different kinds of structures

• Depend on what kind of state structure stores

• No state: ALUs
• Dynamically shared

• Persistent hard state (aka “context”): PC, registers
• Replicated

• Persistent soft state: caches, bpred
• Dynamically partitioned (like on a multi-programmed uni-processor)

• TLBs need thread ids, caches/bpred tables don’t (PA/VA???)

• Exception: ordered “soft” state (BHR, RAS) is replicated

• Transient state: pipeline latches, ROB, RS
• Partitioned … somehow
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MT Implementations: Differences

• Main question: thread scheduling policy
• When to switch from one thread to another?

• Related question: pipeline partitioning
• How exactly do threads share the pipeline itself?

• Choice depends on
• What kind of latencies (specifically, length) you want to tolerate

• How much single thread performance you are willing to sacrifice

• Three designs
• Coarse-grain multithreading (CGMT)

• Fine-grain multithreading (FGMT)

• Simultaneous multithreading (SMT)
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The Standard Multithreading Picture

• Time evolution of issue slots
• Color = thread

CGMT FGMT SMTSuperscalar
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Coarse-Grain Multithreading (CGMT)

• Coarse-Grain Multi-Threading (CGMT)
+ Sacrifices very little single thread performance (of one thread)

– Tolerates only long latencies (e.g., L2 misses)

• Thread scheduling policy

• Designate a “preferred” thread (e.g., thread A)

• Switch to thread B on thread A L2 miss

• Switch back to A when A L2 miss returns

• Pipeline partitioning

• None, flush on switch

– Can’t tolerate latencies shorter than twice pipeline depth

• Need short in-order pipeline for good performance

• Example: IBM Northstar/Pulsar (RS/6000)



Thread Level Parallelism II: Multithreading 11

CGMT

• CGMT
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Fine-Grain Multithreading (FGMT)

• Fine-Grain Multithreading (FGMT)
– Sacrifices significant single thread performance

+ Tolerates latencies (e.g., L2 misses, mispredicted branches, etc.)

• Thread scheduling policy

• Switch threads every cycle (round-robin), L2 miss or no

• Pipeline partitioning

• Dynamic, no flushing

• Length of pipeline doesn’t matter so much

– Need a lot of threads

• Extreme example: Denelcor HEP (‘81-’85)

• So many threads (100+), it didn’t even need caches

• Failed commercially

• Not popular today

• Many threads  many register files
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Fine-Grain Multithreading

• FGMT
• Multiple threads in pipeline at once

• (Many) more threads

regfile

regfile

regfile

regfile

thread scheduler
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Vertical and Horizontal Under-Utilization

• FGMT and CGMT reduce vertical under-utilization
• Loss of all slots in an issue cycle

• Do not help with horizontal under-utilization
• Loss of some slots in an issue cycle (in a superscalar processor)

CGMT FGMT SMT
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SMT
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Simultaneous Multithreading (SMT)

• What can issue insns from multiple threads in one cycle?
• Same thing that issues insns from multiple parts of same program…

• …out-of-order execution

• How different PCs are managed?

• Simultaneous multithreading (SMT): OOO + FGMT
• Aka “hyper-threading”

• Observation: once insns are renamed, scheduler doesn’t care which thread 
they come from (well, for non-loads at least)

• Some examples

• IBM Power5: 4-way issue, 2 threads

• Intel Pentium4: 3-way issue, 2 threads

• Intel “Nehalem”: 4-way issue, 2 threads

• Alpha 21464: 8-way issue, 4 threads (canceled)

• Notice a pattern? #threads (T) * 2 = #issue width (N)
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Simultaneous Multithreading (SMT)

• SMT
• Replicate map table, share (larger) physical register file
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SMT Resource Partitioning

• Physical regfile and insn buffer entries shared at fine-grain
• Physically unordered and so fine-grain sharing is possible

• How are physically ordered structures (ROB/LSQ) shared?
– Fine-grain sharing (below) would entangle retire (and flush)

• Allowing threads to commit independently is important

map tables

I$

B

P

D$

thread scheduler

regfile



Thread Level Parallelism II: Multithreading 19

Static & Dynamic Resource Partitioning

• Static partitioning (below)
• T equal-sized contiguous partitions

± No starvation, sub-optimal utilization (fragmentation)

• Dynamic partitioning
• P > T partitions, available partitions assigned on need basis

± Better utilization, possible starvation

• ICOUNT: fetch policy prefers thread with fewest in-flight insns

• Couple both with larger ROBs/LSQs
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Multithreading Issues

• Shared soft state (caches, branch predictors, TLBs, etc.)

• Key example: cache interference
• General concern for all MT variants

• Can the working sets of multiple threads fit in the caches?

• Shared memory SPMD threads help here

+ Same insns  share I$

+ Shared data  less D$ contention

• MT is good for workloads with shared insn/data

• To keep miss rates low, SMT might need a larger L2 (which is OK)

• Out-of-order tolerates L1 misses

• Large physical register file (and map table)
• physical registers = (#threads * #arch-regs) + #in-flight insns

• map table entries = (#threads * #arch-regs)
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Notes About Sharing Soft State

• Caches are shared naturally…
• Physically-tagged: address translation distinguishes different threads

• … but TLBs need explicit thread IDs to be shared
• Virtually-tagged: entries of different threads indistinguishable

• Thread IDs are only a few bits: enough to identify on-chip contexts

• Thread IDs make sense on BTB (branch target buffer)
• BTB entries are already large, a few extra bits / entry won’t matter

• Different thread’s target prediction  automatic mis-prediction

• … but not on a BHT (branch history table)
• BHT entries are small, a few extra bits / entry is huge overhead

• Different thread’s direction prediction  mis-prediction not automatic

• Ordered soft-state should be replicated
• Examples: Branch History Register (BHR), Return Address Stack (RAS)

• Otherwise it becomes meaningless… Fortunately, it is typically small



The real cost of SMT
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Not always a good thing
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Multithreading vs. Multicore

• If you wanted to run multiple threads would you build a…
• A multicore: multiple separate pipelines?

• A multithreaded processor: a single larger pipeline?

• Both will get you throughput on multiple threads
• Multicore core will be simpler, possibly faster clock

• SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP

• Multicore is mainly a TLP (thread-level parallelism) engine

• Do both 
• Sun’s Niagara (UltraSPARC T1), Chip Multiprocessor

• 8 processors, each with 4-threads (non-SMT threading)

• 1Ghz clock, in-order, short pipeline (6 stages or so)

• Designed for power-efficient “throughput computing”
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Multithreading Summary

• Latency vs. throughput

• Partitioning different processor resources

• Three multithreading variants
• Coarse-grain: no single-thread degradation, but long latencies only

• Fine-grain: other end of the trade-off

• Simultaneous: fine-grain with out-of-order

• Multithreading vs. chip multiprocessing



EXAMPLE: THE SUN UNLTRASPARC

T1 MULTIPROCESSOR

Thread Level Parallelism II: Multithreading 26



The SUN UltraSparc T1  
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Floor plan
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Enclosure (SunFire T2000)
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Power Breakdown
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The SUN UltraSparc T1 Pipeline

Thread Level Parallelism II: Multithreading 31



Cost
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Performance

Thread Level Parallelism II: Multithreading 33



Performance (Pentium D normalized)
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Sun UltraSparc T2

• Second iteration of Niagara

• 8 pipelined cores, 8-way SMT  64 hardware threads per chip

• 4MB L2

• 8 Fully pipelined FPU (1 per core)

• Dual 10 GbE and PCIe integrated

• Security processor per core: DES, 3DES, AES, etc…

• 65nm, 1.4Ghz, <95W (chip), +60GB/s BW (4 FB DIMM 
controllers)

• Sun UltraSparc T3 (a.k.a. Niagara Falls)
• 16 cores 16-way SMT, 4-chip servers
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RESEARCH
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Research: Speculative Multithreading

• Speculative multithreading
• Use multiple threads/processors for single-thread performance

• Speculatively parallelize sequential loops, that might not be parallel

• Processing elements (called PE) arranged in logical ring

• Compiler or hardware assigns iterations to consecutive PEs

• Hardware tracks logical order to detect mis-parallelization

• Techniques for doing this on non-loop code too

• Detect reconvergence points (function calls, conditional code)

• Effectively chains ROBs of different processors into one big ROB

• Global commit “head” travels from one PE to the next

• Mis-parallelization flushes one PEs, but not all PEs

• Also known as split-window or “Multiscalar”

• Not commercially available yet… eventually will be??

• But it is the “biggest idea” from academia not yet adopted 
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Research: Multithreading for Reliability

• Can multithreading help with reliability?
• Design bugs/manufacturing defects? No

• Gradual defects, e.g., thermal wear? No

• Transient errors? Yes

• Staggered redundant multithreading (SRT)
• Run two copies of program at a slight stagger

• Compare results, difference? Flush both copies and restart

– Significant performance overhead



Research: QoS CMP

• Server Consolidation Definition :

• Server consolidation is an approach to the efficient usage of 
computer server resources in order to reduce the total 
number of servers or server locations that an organization 
requires
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Motivation: CMP & Server 
consolidation

• CMP based system are pervasive and an ideal hardware 
platform (in terms of cost) to deploy server consolidation
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64-core CMPwww server
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Virtualization

• Virtualization is the most suitable tool to achieve server 
consolidation 
• Hides all the nasty details to the user

• Eases system administration 

• Performance?

• Most virtualization layers provide a huge set of parameters to 
regulate the access to shared resources
• Disk

• Memory 

• Network

• Time sharing CPU
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Performance Isolation & CMP

• CMP introduces a new dimension in shared resources
• A large portion of the memory hierarchy will be shared

• Two mayor potential problems
• On-chip cache capacity and/or bandwidth

• Off-chip bandwidth

• Question that arises:
• Too fine grained to be effective at software level? 

• Has to be the CMP aware of virtualization layer? 

• Has to provide the hardware some mechanism to apply virtualization 
policies?

• …
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Is it a problem?
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• Let’s analyze the problem with state-of-the-art infrastructure

• Consolidated servers
• Significant workload to be consolidates (SPECWeb2005) with Apache 

Tomcat

• Misbehaving workload that stresses CMP (on-chip capacity & off-chip 
bandwidth)

• Software stack
• Virtualization layer (XEN & Solaris Zones) with resource controls

• Realistic Operating systems (GNU/Linux Debian5, Solaris 10)



Hardware Setup
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Sun Fire T1000 HP Proliant DL160 G5

Processor Model Sun UltraSparc T1 Intel Xeon X5472 

Threads, Cores, dies, chips 32, 8, 1, 1 8, 8, 4, 2

L1I Private, 16KB 4-way set 
associative, 32-byte lines, 1-per 
core

Private, 32KB, 8-way set 
associative, 64-byte lines, 1-per 
core

L1D Private, 8KB 4-way set 
associative, 16-byte lines, write-
through, 1 per core 

Private, 32KB, 8-way set 
associative, 64-byte lines, 1-per 
core

L2 3MB  Shared per chip, 12-way 
set associative, 64-byte lines 

6MB Shared per die, 24-way 
set associative, 64 byte lines  

Memory 8GB, 533Mhz, DDR2 16GB, 667Mhz 
FB-DIMM

Hard disk 1 SATA 2 SATA RAID 0

NIC Dual Gigabit Ethernet 
(bounded)

Dual Gigabit Ethernet 
(bounded)



Misbehaving application on T1000
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Performance isolation on T1000
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Performance Isolation on Xeon
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What to do?

• Current virtualization + hardware is not enough to provide the 
expected level of performance

• Could a provider guarantee SLA?
• Potentially could reduce the server consolidation degree

• Potentially could loss its customers

• With many core-CMP advent the problem will exacerbate

• We need some sort of QoS provision 
• Hardware level mechanisms to control the access to common resources

• Software could specify policies for those mechanisms
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