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*This Unit: Multithreading

Application
OS
Compiler Firmware
CPU /0O
Memory

Digital Circuits

Gates & Transistors
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Why multithreading (MT)?

e Utilization vs. performance

Three implementations
e Coarse-grained MT
e Fine-grained MT
e Simultaneous MT (SMT)
Example
e The Sun UltraSparc T1

Research topics



e Performance (IPC) important
e Utilization (actual IPC / peak IPC) important too

e Even moderate superscalars (e.g., 4-way) not fully utilized
e Average sustained IPC: 1.5-2 — < 50% utilization
e Mis-predicted branches
e Cache misses, especially L2
e Data dependences

e Multi-threading (MT)
e Improve utilization by multi-plexing multiple threads on single CPU
e One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can
e Multi-programmed OS generalization:
e |/O—>CPU Stall
e Context Switches - Thread Switches
e Stack of software - Zero software
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souperscalar Under-utilization

e Time evolution of issue slot

e 4-issue processor

cache
miss

Superscalar

Thread Level Parallelism Il: Multithreading




“Simple Multithreading

e Time evolution of issue slot

e 4-issue processor

time

Fill in with instructions
from another thread

cache
miss

Superscalar Multithreading
e Where does it find a thread? Same problem as multi-core

e Same shared-memory abstraction
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“"I;gtency vs Throughput

e MT trades (single-thread) latency for throughput
— Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads
+ Improves utilization

e Example

4

Thread A: individual latency=10s, latency with thread B=15s
Thread B: individual latency=20s, latency with thread A=25s
Sequential latency (first A then B or vice versa): 30s

Parallel latency (A and B simultaneously): 25s

MT slows each thread by 5s

But improves total latency by 5s

e Different workloads have different parallelism
e SpecFP has lots of ILP (can use an 8-wide machine)
e Server workloads have TLP (can use multiple threads)
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S'MT Implementations: Similarities

e How do multiple threads share a single processor?
e Different sharing mechanisms for different kinds of structures
e Depend on what kind of state structure stores

e No state: ALUs
e Dynamically shared

e Persistent hard state (aka “context”): PC, registers
e Replicated

e Persistent soft state: caches, bpred

e Dynamically partitioned (like on a multi-programmed uni-processor)
e TLBs need thread ids, caches/bpred tables don’t (PA/VA???)
e Exception: ordered “soft” state (BHR, RAS) is replicated

e Transient state: pipeline latches, ROB, RS
e Partitioned ... somehow
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"MT Inmplementations: Differences

e Main question: thread scheduling policy
e When to switch from one thread to another?
e Related question: pipeline partitioning

e How exactly do threads share the pipeline itself?

e Choice depends on
e What kind of latencies (specifically, length) you want to tolerate
e How much single thread performance you are willing to sacrifice

e Three designs
e Coarse-grain multithreading (CGMT)
e Fine-grain multithreading (FGMT)
e Simultaneous multithreading (SMT)

Thread Level Parallelism II: Multithreading




~ The Standard Multithreading-Picture

e Time evolution of issue slots
e Color =thread

time

"h

Superscalar CGMT FGMT SMT
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S Coarse-Grain Multithreading (CGMT)

e Coarse-Grain Multi-Threading (CGMT)
+ Sacrifices very little single thread performance (of one thread)

— Tolerates only long latencies (e.g., L2 misses)
e Thread scheduling policy
e Designate a “preferred” thread (e.g., thread A)
e Switch to thread B on thread A L2 miss
e Switch back to A when A L2 miss returns
e Pipeline partitioning
e None, flush on switch
— Can’t tolerate latencies shorter than twice pipeline depth
e Need short in-order pipeline for good performance

e Example: IBM Northstar/Pulsar (RS/6000)
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regfile ‘
I 1
D$
B >
P

o CGMT

thread scheduler

'_ i: regfile '

D

A A
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“Fine-Grain Multithreading (FGMIT)

e Fine-Grain Multithreading (FGMT)

+

Sacrifices significant single thread performance
Tolerates latencies (e.g., L2 misses, mispredicted branches, etc.)
Thread scheduling policy
e Switch threads every cycle (round-robin), L2 miss or no
Pipeline partitioning
e Dynamic, no flushing
e Length of pipeline doesn’t matter so much
Need a lot of threads
Extreme example: Denelcor HEP (‘81-'85)
e So many threads (100+), it didn’t even need caches
e Failed commercially
Not popular today
e Many threads — many register files
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~'Fine-Grain Multithreading

e FGMT

e Multiple threads in pipeline at once
e (Many) more threads

regfile
thread scheduler regfile

regfile

y
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e FGMT and CGMT reduce vertical under-utilization

e Loss of all slots in an issue cycle

e Do not help with horizontal under-utilization

e Loss of some slots in an issue cycle (in a superscalar processor)

S

time

CGMT
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IA
vilv

FGMT

SMT
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SSimultaneous Multithreading (SMT)

e What canissue insns from multiple threads in one cycle?
e Same thing that issues insns from multiple parts of same program...
e ..out-of-order execution
e How different PCs are managed?

¢ Simultaneous multithreading (SMT): OO0 + FGMT
e Aka “hyper-threading”

e Observation: once insns are renamed, scheduler doesn’t care which thread
they come from (well, for non-loads at least)

e Some examples
e |BM Power5: 4-way issue, 2 threads
Intel Pentium4: 3-way issue, 2 threads
Intel “Nehalem”: 4-way issue, 2 threads
Alpha 21464: 8-way issue, 4 threads (canceled)
Notice a pattern? #ithreads (T) * 2 = #issue width (N)
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map table

regfile

»
»

»

»
»
»

D$

)

o SMT

e Replicate map table, share (larger) physical register file

thread scheduler map table_

)
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IMT, Resource Partitioning

e Physical regfile and insn buffer entries shared at fine-grain
e Physically unordered and so fine-grain sharing is possible
e How are physically ordered structures (ROB/LSQ) shared?

— Fine-grain sharing (below) would entangle retire (and flush)
e Allowing threads to commit independently is important

thread scheduler map tables
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static & Dynamic Resource Partitioning

e Static partitioning (below)
e T equal-sized contiguous partitions
+ No starvation, sub-optimal utilization (fragmentation)
e Dynamic partitioning
e P> T partitions, available partitions assigned on need basis

+ Better utilization, possible starvation
e |COUNT: fetch policy prefers thread with fewest in-flight insns

e Couple both with larger ROBs/LSQs

A 4

A A

Thread Level Parallelism lI: Multithreading




"Multithreading Issues

e Shared soft state (caches, branch predictors, TLBs, etc.)

o Key example: cache interference

e General concern for all MT variants

e Can the working sets of multiple threads fit in the caches?

e Shared memory SPMD threads help here
+ Same insns — share IS
+ Shared data — less DS contention
e MT is good for workloads with shared insn/data

e To keep miss rates low, SMT might need a larger L2 (which is OK)
e Qut-of-order tolerates L1 misses

e lLarge physical register file (and map table)
e physical registers = (#threads * #arch-regs) + #in-flight insns
e map table entries = (#threads * #arch-regs)
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‘ otes About Sharing Soft State

e (Caches are shared naturally...
e Physically-tagged: address translation distinguishes different threads
... but TLBs need explicit thread IDs to be shared

e Virtually-tagged: entries of different threads indistinguishable
e Thread IDs are only a few bits: enough to identify on-chip contexts

Thread IDs make sense on BTB (branch target buffer)
e BTB entries are already large, a few extra bits / entry won’t matter
e Different thread’s target prediction — automatic mis-prediction

e ... but noton a BHT (branch history table)

e BHT entries are small, a few extra bits / entry is huge overhead

e Different thread’s direction prediction — mis-prediction not automatic
e Ordered soft-state should be replicated

e Examples: Branch History Register (BHR), Return Address Stack (RAS)
e Otherwise it becomes meaningless... Fortunately, it is typically small
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HyperThreading Technology:
What was added?; i

Instruction Streaming
Buffers

Next Instruction Pointer

Return Stack
Predictor

Trace Cache
Next IP

Trace Cache
Fill Buffers

Instruction TLB

Register Alias
Tables
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“Not always a good thing

8F.crafty
97 parser

—_ — — — T

176.gcc 1M
181.mcf [ 0
156.crafty [
197.parser [ [ I 1
zszeon NN
253.perlbmk 1111
z54.gap
Zohwvortex
Z56.bzip?
300.byolf
1EEwUpwise
171.5wim
172.mgrid

173.applu EEEEEEEE
177.mesa N EEN
178.art
183.equake

B
B
B
188.ammp N

zonsirack [NIEEEEEE R
s0taps MEEREEEEEN
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DO O zszeon
HEENEE e NN NN 2s4gep

(N (Y o oy vt

[]

[]

[]

|

H

H
HEEEENEEEE NN NN zsebzipz

([ o 3000 b
AEEEEEEEEEEEEEEEEEEEEE
AEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEENE
EEEEEEEEEEEEEEEEEEEEENm
ANEEEEEEEEEEEEEEEEEEENE

BEwUpwise
71.swim
7e.mgrid
7a.applu
77.mesa
7d.art
g3.eqguake
S8.ammp

— — — ™ ™™ ™ ™ T

HEEEEEN
HEEEEEN
0 zoo.sidrack
B 301.apsi

| Speedup = 30%

B speedup 25 to 30%
| Speedup 20 to 25%
B speedup 15 to 20%
B speedup 10to 15%
| apeedup 5 to 10%
B ~pprox same

B slowdown 5to 10%
B slowdown 10to 15%
B siowdown 15 to 20%
B siowdown = 20%




S'Multithreading vs. Multicore

e |f you wanted to run multiple threads would you build a...
e A multicore: multiple separate pipelines?
e A multithreaded processor: a single larger pipeline?

e Both will get you throughput on multiple threads
e Multicore core will be simpler, possibly faster clock
e SMT will get you better performance (IPC) on a single thread
e SMT is basically an ILP engine that converts TLP to ILP
e Multicore is mainly a TLP (thread-level parallelism) engine

e Do both

e Sun’s Niagara (UltraSPARC T1), Chip Multiprocessor

e 8 processors, each with 4-threads (non-SMT threading)
e 1Ghz clock, in-order, short pipeline (6 stages or so)

e Designed for power-efficient “throughput computing”
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“"Multithreading Summary.

e Latency vs. throughput
e Partitioning different processor resources
e Three multithreading variants

e Coarse-grain: no single-thread degradation, but long latencies only
e Fine-grain: other end of the trade-off
e Simultaneous: fine-grain with out-of-order

e Multithreading vs. chip multiprocessing
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EXAMPLE: THE SUN UNLTRASPARC
T1 MULTIPROCESSOR

- UC R
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~dhe SUN-UltraSparc T1

JTAG

Floating Point

Unit
DRAM Control
_ DDR2
Core 0 L2 | Channel 0 |«——
Core 1 Bank 0 144@400 MT/s
Core 2 e L2 *| Channel 1 | POR2
Core 3 g Bank 1 144@400 MT/s
DDR2
Core 4 g L2 .| Channel 2 [«~—
Core 5 O Bank 2 144@400 MT/s
Core 6 L2 | Channel 3 ._.DDRz
Core 7 Bank 3 ] 144@400 MT/s
Clock Control Y YVYY
& Test [—| Register JBUS System |__, ;ys (200 MHz)
| Interface |
Unit Interface
SSIROM [, ssi1 (50 MHz)
Interface
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~Floor, plan

Features:

* 8 64-bit Multithreaded

« SPARC Cores

[l . Shared 3 MB, 12-way 64B
4| line writeback L2 Cache
M= .16 KB, 4-way 32B line

| ICache per Core

| b=t Ll SIS ||| . 8 KB, 4-way 16B line write-
"r"‘:_,%a CLK & 1% 1] 1| through DCache per Core

T2t ":f,‘;:.:«d CR L8 Sl o paas "+ 4 144-bit DDR-2 channels
] - Bankcad | +3.2GBI/sec JBUS I/O
Technology:

* TI's 90nm CMOS Process
=11 *9LM Cu Interconnect

#| .63 Watts @ 1.2GHz/1.2V
* Die Size: 379mm?

« 279M Transistors

+ Flip-chip ceramic LGA
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"Power Breakdown

10s (T W)

SPARC Cores
(16.3'W)

Global Clock (0.5 W)

Interconnect (10.3 W)

Misc Units (1.1 W)
Floating Point (0,6 W)
L2 Buff Unit (1.3 W)

L2 Tag Unit (2 W)

Crossbar (3.8W)

L2 Data Unit (3.8 W)

Leakage (16W)
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“The SUN UltraSparc T1 Pipeline

H—»

Fetch Thrd Sel

Decode Execute Memory WB

Redgfilej«
x4 -
ICache —!Inst (g Alu
. Thrd N
Itib bufx4 | |Sel | |Decod€ ™ Mul
JMux Shft
* Div
Thread selects | | Thread +
+« Mmisses
select |
logic 1
Thrd| | |PC logic
o
Sel ] 4
Mux X
-
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Instruction type

DCache
Dtib
Stbuf x 4

E——
Crossbar

Interface
l——

traps & interrupts
resource conflicts




Sun Fire T2000
CPU UltraSPARC T1
Sockets 1
Height 2U
Performance 14001
sze(c):(\)RS/eb Power 330 W
Perf/Watt 42.4
Performance | 63378 BOPS
sze(;: 3153B Power 298 W
Pert/Watt 212.7
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E10K

1997

32 x US2
77.4 ft*
2000 Ibs
13,456 W
52,000 BTUs/hr

172000

2005
1xUST1

0.85 ft?

37 1bs

~300 W

1,364 BTUs/hr

o=




"Performance

Characteristic SUNTI1 AMD Opteron Intel Pentium D IBM Power5
Cores 8 2 2 2
Instruction issues per clock per I 3 3 4

core

Multithreading Fine-grained No SMT SMT
Caches 16/8 64/64 2K uops/16 64/32

L1 I/D in KB per core 3 MB shared | MB/core | MB/core L2: 1.9 MB shared
L2 per core/shared L3:36 MB

.3 (off-chip)

Peak memory bandwidth (DDR2 34.4 GB/sec 8.6 GB/sec 4.3 GB/sec 17.2 GB/sec
DRAMSs)

Peak MIPS 9600 7200 9600 7600
FLOPS 1200 4800 (w. SSE) 6400 (w. SSE) 7600
Clock rate (GHz) 1.2 2.4 3.2 1.9
Transistor count (M) 300 233 230 276

Die size (mm”) 379 199 206 389
Power (W) 79 110 130 125
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- Performance (Pentium D normalized)

Performance relative to Pentium D

6.5

6.0 | B Powers+

55 F

50 | Opteron

4.5 B Sun T1

4.0

35

3.0 f

25

2.0

1.5

1.0

0.5 I
0 . . . . |

SPECintRate = SPECfRate @ SPECJBB05 SPECWeb05 TPC-like
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"éyn UltraSparc T2

e Second iteration of Niagara

e 8 pipelined cores, 8-way SMT =2 64 hardware threads per chip
e AMB L2

e 8 Fully pipelined FPU (1 per core)

e Dual 10 GbE and PCle integrated

e Security processor per core: DES, 3DES, AES, etc...

e 65nm, 1.4Ghz, <95W (chip), +60GB/s BW (4 FB DIMM
controllers)

e Sun UltraSparc T3 (a.k.a. Niagara Falls)
e 16 cores 16-way SMT, 4-chip servers
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esearch: Speculative Multithreading

e Speculative multithreading

e Use multiple threads/processors for single-thread performance

e Speculatively parallelize sequential loops, that might not be parallel
e Processing elements (called PE) arranged in logical ring
e Compiler or hardware assigns iterations to consecutive PEs
e Hardware tracks logical order to detect mis-parallelization

e Techniques for doing this on non-loop code too
e Detect reconvergence points (function calls, conditional code)

Effectively chains ROBs of different processors into one big ROB
e Global commit “head” travels from one PE to the next
e Mis-parallelization flushes one PEs, but not all PEs

Also known as split-window or “Multiscalar”

Not commercially available yet... eventually will be??
e Butitis the “biggest idea” from academia not yet adopted
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> 'Research: Multithreading for:Reliability

e Can multithreading help with reliability?
e Design bugs/manufacturing defects? No
e Gradual defects, e.g., thermal wear? No
e Transient errors? Yes

e Staggered redundant multithreading (SRT)
e Run two copies of program at a slight stagger
e Compare results, difference? Flush both copies and restart
— Significant performance overhead
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> 'Research:"QoS CMP

e Server Consolidation Definition :

e Server consolidation is an approach to the efficient usage of
computer server resources in order to reduce the total
number of servers or server locations that an organization

requires

www server
database server #2

database server #1

wlewari server #1

mlddleware server #1
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*iviotivation:

~‘consalidation

e CMP based system are pervasive and an ideal hardware
platform (in terms of cost) to deploy server consolidation

WWwW.selver 64-core CMP

L2 Cache

Core

pr

L1

N N
database server #1 e
I
N BN R
I I e
NN BN A

middleware server #1
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S WVirtualzation

e Virtualization is the most suitable tool to achieve server
consolidation
e Hides all the nasty details to the user
e Eases system administration
e Performance?

e Most virtualization layers provide a huge set of parameters to
regulate the access to shared resources
e Disk
e Memory
e Network
e Time sharing CPU
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“Isgrfgrmance Isolation & CMP

e CMP introduces a new dimension in shared resources

e Alarge portion of the memory hierarchy will be shared

e Two mayor potential problems

e On-chip cache capacity and/or bandwidth
e Off-chip bandwidth

e (Question that arises:
e Too fine grained to be effective at software level?
e Has to be the CMP aware of virtualization layer?

e Has to provide the hardware some mechanism to apply virtualization
policies?
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Sis.it.a problem?

e |et’s analyze the problem with state-of-the-art infrastructure

e Consolidated servers

e Significant workload to be consolidates (SPECWeb2005) with Apache
Tomcat

e Misbehaving workload that stresses CMP (on-chip capacity & off-chip
bandwidth)

e Software stack

e Virtualization layer (XEN & Solaris Zones) with resource controls
e Realistic Operating systems (GNU/Linux Debian5, Solaris 10)
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""ngdware Setup

Sun Fire T1000 HP Proliant DL160 G5

Processor Model Sun UltraSparc T1 Intel Xeon X5472
Threads, Cores, dies, chips 32,8,1,1 8,8, 4,2
L1I Private, 16KB 4-way set Private, 32KB, 8-way set
associative, 32-byte lines, 1-per | associative, 64-byte lines, 1-per
core core
L1D Private, 8KB 4-way set Private, 32KB, 8-way set
associative, 16-byte lines, write- | associative, 64-byte lines, 1-per
through, 1 per core core
L2 3MB Shared per chip, 12-way 6MB Shared per die, 24-way
set associative, 64-byte lines set associative, 64 byte lines
Memory 8GB, 533Mhz, DDR2 16GB, 667Mhz
FB-DIMM
Hard disk 1 SATA 2 SATA RAID 0
NIC Dual Gigabit Ethernet Dual Gigabit Ethernet
(bounded) (bounded)
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~'Misbehaving application-on T1000

1.2
c 1.2
()]
o) 1 o 1
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= =
Z 08 §0.8
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2w 06 & 0.6
Zao 5
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3 E 04 T 0.4
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‘.’Eo.z 2 02
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§ 0 o N = N = =
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5 &, OB G NS
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3 Primary VPS / Secondary VPS
Primary VPS / Secondary VPS
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“Isgrfgrmance isolation on T1000

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Normalized Performance

M Idle
B harm.on-chip
i harm.off-chip

Bank E-Commerce  Support Average
Benchmark
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M Die ( 1core per VPS) M Chip (2 cores per VPS) M Chip Interleaved (2 cores per VPS)

@ 0.8

2 0.2

Bank E-Commerce Support Average
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e Current virtualization + hardware is not enough to provide the
expected level of performance

e Could a provider guarantee SLA?
e Potentially could reduce the server consolidation degree
e Potentially could loss its customers

e With many core-CMP advent the problem will exacerbate

e We need some sort of QoS provision
e Hardware level mechanisms to control the access to common resources
e Software could specify policies for those mechanisms
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