
Data Level Parallelism

Reading:

H&P: Appendix F

Data Level Parallelism 1

Data Level Parallelism 2

This Unit: Data Level Parallelism

• Data-level parallelism
• Vector processors

• Message-passing multiprocessors (Multi-
computers)

• Flynn Taxonomy

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

Data Level Parallelism 3

Latency, Throughput, and Parallelism

• Latency
• Time to perform a single task

– Hard to make smaller

• Throughput
• Number of tasks that can be performed in a given amount of time

+ Easier to make larger: overlap tasks, execute tasks in parallel

• One form of parallelism: insn-level parallelism (ILP)
• Parallel execution of insns from a single sequential program

• Pipelining: overlap processing stages of different insns

• Superscalar: multiple insns in one stage at a time

• Have seen

Data Level Parallelism 4

Exposing and Exploiting ILP

• ILP is out there…
• Integer programs (e.g., gcc, gzip): ~10–20

• Floating-point programs (e.g., face-rec, weather-sim): ~50–250

+ It does make sense to build 4-way and 8-way superscalar

• …but compiler/processor work hard to exploit it
• Independent insns separated by branches, stores, function calls

• Overcome with dynamic scheduling and speculation

– Modern processors extract ILP of 1–3

Data Level Parallelism 5

Fundamental Problem with ILP

• Clock rate and IPC are at odds with each other
• Pipelining

+ Fast clock

– Increased hazards lower IPC

• Wide issue

+ Higher IPC

– N2 bypassing slows down clock

• Can we get both fast clock and wide issue?
• Yes, but with a parallelism model less general than ILP

• Data-level parallelism (DLP)
• Single operation repeated on multiple data elements

• Less general than ILP: parallel insns are same operation

Data Level Parallelism 6

Data-Level Parallelism (DLP)

for (I = 0; I < 100; I++)

Z[I] = A*X[I] + Y[I];

0: ldf X(r1),f1 // I is in r1

mulf f0,f1,f2 // A is in f0

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

blti r1,400,0

• One example of DLP: inner loop-level parallelism
• Iterations can be performed in parallel

Data Level Parallelism 7

Exploiting DLP With Vectors

• One way to exploit DLP: vectors
• Extend processor with vector “data type”

• Vector: array of MVL 32-bit FP numbers

• Maximum vector length (MVL): typically 8–64

• Vector register file: 8–16 vector registers (v0–v15)

regfile

I$

B

P

D$

V-regfile

Data Level Parallelism 8

Vector ISA Extensions

• Vector operations
• Versions of scalar operations: op.v

• Each performs an implicit loop over MVL elements

for (I=0;I<MVL;I++) op[I];

• Examples

• ldf.v X(r1),v1: load vector

for (I=0;I<MVL;I++) ldf X+I(r1),v1[I];

• stf.v v1,X(r1): store vector

for (I=0;I<MVL;I++) stf v1[I],X+I(r1);

• addf.vv v1,v2,v3: add two vectors

for (I=0;I<MVL;I++) addf v1[I],v2[I],v3[I];

• addf.vs v1,f2,v3: add vector to scalar

for (I=0;I<MVL;I++) addf v1[I],f2,v3[I];

Data Level Parallelism 9

Vectorizing SAXPY (With MVL=4)

• Pack loop body into vector insns
• Horizontal packing changes execution order

• Aggregate loop control
• Add increment immediates

ldf X(r1),f1

mulf f0,f1,f2

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

blti r1,400,0

ldf.v X(r1),v1

mulf.vs v1,f0,v2

ldf.v Y(r1),v3

addf.vv v2,v3,v4

stf.v v4,Z(r1)

addi r1,16,r1

blti r1,400,0

ldf X(r1),f1

mulf f0,f1,f2

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

blti r1,400,0

ldf X(r1),f1

mulf f0,f1,f2

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

blti r1,400,0

ldf X(r1),f1

mulf f0,f1,f2

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

blti r1,400,0

Data Level Parallelism 10

Scalar SAXPY Performance

• Scalar version
• 5-cycle mulf, 2-cycle addf, 1 cycle others

• 100 iters * 11 cycles/iter = 1100 cycles

ldf X(r1),f1

mulf f0,f1,f2

ldf Y(r1),f3

addf f2,f3,f4

stf f4,Z(r1)

addi r1,4,r1

slti r1,400,r2

bne Loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf X(r1),f1 F D X M W
mulf f0,f1,f2 F D d* E* E* E* E* E* W
ldf Y(r1),f3 F p* D X M W
addf f2,f3,f4 F D d* d* d* E+ E+ W
stf f4,Z(r1) F p* p* p* D X M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

Data Level Parallelism 11

Vector SAXPY Performance

• Vector version
• 4 element vectors

• 25 iters * 11 insns/iteration * = 275 cycles

+ Factor of 4 speedup

ldf.v X(r1),v1

mulf.vs v1,f0,v2

ldf.v Y(r1),v3

addf.vv v2,v3,v4

stf.v v4,Z(r1)

addi r1,16,r1

slti r1,400,r2

bne r2,Loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M W
mulf.vv v1,f0,v2 F D d* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* D X M W
addf.vv v2,v3,v4 F D d* d* d* E+ E+ W
stf.v f4,Z(r1) F p* p* p* D X M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

Data Level Parallelism 12

Not So Fast

• A processor with 32-element vectors
• 1 Kb (32 * 32) to cache?

• 32 FP multipliers?

• No: vector load/store/arithmetic units are pipelined
• Processors have L (1 or 2) of each type of functional unit (super-escalar)

• L is called number of vector lanes

• Micro-code streams vectors through units M data elements at once

• Pipelined vector insn timing
• Tvector = Tscalar + (MVL / L) – 1

• Example: 64-element vectors, 10-cycle multiply, 2 lanes

• Tmulf.vv = 10 + (64 / 2) – 1 = 41

+ Not bad for a loop with 64 10-cycle multiplies

Data Level Parallelism 13

Pipelined Vector SAXPY Performance

• Vector version
• 4-element vectors, 1 lane

• 4-cycle ldf.v/stf.v

• 8-cycle mulf.sv, 5-cycle addf.vv

• 25 iters * 20 cycles/iter = 500 cycles

• Factor of 2.2 speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M M M M W
mulf.sv v1,f0,v2 F D d* d* d* d* E* E* E* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* p* p* p* D X M M M M W
addf.vv v2,v3,v4 F D d* d* d* d* d* d* E+E+E+ E+
stf.v f4,Z(r1) F p* p* p* p* p* p* D X d* d*
addi r1,4,r1 F D p* p*
blt r1,r2,0 F p* p*
ldf.v X(r1),f1

ldf.v X(r1),v1

mulf.vs v1,f0,v2

ldf.v Y(r1),v3

addf.vv v2,v3,v4

stf.v v4,Z(r1)

addi r1,16,r1

slti r1,400,r2

bne r2,Loop

Data Level Parallelism 14

Not So Slow

• For a given vector operation
• All MVL results complete after Tscalar + (MVL / L) – 1

• First M results (e.g., v1[0] and v1[1]) ready after Tscalar

• Start dependent vector operation as soon as those are ready

• Chaining: pipelined vector forwarding
• Tvector1 = Tscalar1 + (MVL / L) – 1

• Tvector2 = Tscalar2 + (MVL / L) – 1

• Tvector1 + Tvector2 = Tscalar1 + Tscalar2 + (MVL / L) – 1

Data Level Parallelism 15

Chained Vector SAXPY Performance

• Vector version
• 1 lane

• 4-cycle ldf.v/stf.v

• 8-cycle mulf.sv, 5-cycle addf.vv

• 25 iters * 11 cycles/iter = 275 cycles

+ Factor of 4 speedup again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M M M M W
mulf.sv v1,f0,v2 F D d* E* E* E* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* D X s* M M M M W
addf.vv v2,v3,v4 F D p* d* d* E+E+E+ E+ E+ W
stf.v f4,Z(r1) F p* p* p* D X M M M M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf.v X(r1),f1 F D X M M M M W

ldf.v X(r1),v1

mulf.vs v1,f0,v2

ldf.v Y(r1),v3

addf.vv v2,v3,v4

stf.v v4,Z(r1)

addi r1,16,r1

slti r1,400,r2

bne r2,Loop

Data Level Parallelism 16

Vector Performance

• Where does it come from?
+ Fewer loop control insns: addi, blt, etc.

• Vector insns contain implicit loop control

+ RAW stalls taken only once, on “first iteration”

• Vector pipelines hide stalls of “subsequent iterations”

• How does it change with vector length?
+ Theoretically increases, think of Tvector/MVL

• Tvector = Tscalar + (MVL / L) – 1

• MVL = 1  (Tvector/MVL) = Tscalar

• MVL = 1000  (Tvector/MVL) = 1

– But vector regfile becomes larger and slower

Data Level Parallelism 17

Amdahl’s Law

• Amdahl’s law: the law of diminishing returns
• speeduptotal = 1 / [%vector / speedupvector + (1–%vector)]

• Speedup due to vectorization limited by non-vector portion

• In general: optimization speedup limited by unoptimized portion

• Example: %opt = 90%

• speedupopt = 10  speeduptotal = 1 / [0.9/10 + 0.1] = 5.3

• speedupopt = 100  speeduptotal = 1 / [0.9/100 + 0.1] = 9.1

• Speedupopt = ∞  speeduptotal = 1 / [0.9/∞ + 0.1] = 10

Data Level Parallelism 18

Variable Length Vectors

• Vector Length Register (VLR): 0 < VLR < MVL
• What happens with {D,S}AXPY if N<MVL? (N it’s know usually at runtime)

for (I=0; I<N; I++)

Z[I] = A*X[I]+Y[I];

• General scheme for cutting up loops is strip mining

• Similar to loop blocking (cuts arrays into cache-sized chunks)

VLR = N % MVL;

for (J=0; J<N; J+=VLR)

for (I=J; I<J+VLR; I++)

Z[I] = A*X[I]+Y[I];

Data Level Parallelism 19

Vector Predicates

• Vector Mask Register (VMR): 1 bit per vector element
• Implicit predicate in all vector operations

for (I=0; I<VLR; I++) if (VMR[I]) { vop… }

• Used to vectorize loops with conditionals in them

seq.v, slt.v, slti.v, etc.: sets vector predicates

cvmr: clear vector mask register (set to ones)

for (I=0; I<32; I++)

if (X[I] != 0) Z[I] = A/X[I];

//vmr bits are “set” by default

ldf X(r1),v1

sne.v v1,f0 // 0.0 is in f0. vmr implicitly ch.

divf.sv v1,f1,v2 // A is in f1

stf.v v2,Z(r1)

cvmr

Data Level Parallelism 20

ILP vs. DLP

• Recall: fundamental conflict of ILP
• High clock frequency or high IPC, not both

• High clock frequency  deep pipeline  more hazards  low IPC

• High IPC  superscalar  complex issue/bypass  slow clock

• DLP (vectors) sidesteps this conflict

+ Key: operations within a vector insn are parallel  no data hazards

+ Key: loop control is implicit  no control hazards

• High clock frequency  deep pipeline + no hazards  high IPC

• High IPC  natural wide issue + no bypass  fast clock

Data Level Parallelism 21

History of Vectors

• Vector-register architectures: “RISC” vectors
• Most modern vector supercomputers (Cray-1, Convex,… Earth Simulator)

• Like we have talked about so far

• Optimized for short-medium sized (8–64 element) vectors

• Memory-memory vector architectures: “CISC” vectors
• Early vector supercomputers (TI ASC, CDC STAR100)

• Optimized for (arbitrarily) long vectors

• All vectors reside in memory

– Require a lot of memory bandwidth

– Long startup latency

Data Level Parallelism 22

Modern Vectors

• Both floating-point and integer vectors common today
• But both of the parallel (not pipelined) variety with “short” vectors

• Integer vectors
• Image processing: a pixel is 4 bytes (RGBA)

• Also: speech recognition, geometry, audio, tele-communications

• Floating-point vectors
• Useful for geometry processing: 4x4 translation/rotation matrices

• Also: scientific/engineering programs, digital signal processing

Data Level Parallelism 23

Common Vectorial Extensions

• Intel SSE2 (Streaming SIMD Extensions 2) - 2001
• 16 128bit floating point registers (xmm0–xmm15)

• Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)

• Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)

• Or 1x64b or 1x32b FP (just normal scalar floating point unit)

• Original SSE: only 8 registers, no packed integer support

• Other vector extensions
• AMD 3DNow!: 64b (2x32b)

• PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

• Looking forward for x86
• Intel’s “Sandy Bridge” will bring 256-bit vectors to x86

• Intel’s “Larrabee” graphics chip will bring 512-bit vectors to x86

Data Level Parallelism 24

Automatic Vectorization

• Automatic vectorization
• Compiler conversion of sequential code to vector code

– Very difficult

• Vectorization implicitly reorders operations

• Invariably, loads and stores are some of those operations

• How to tell whether load/store reordering is legal?

• Possible in languages without references: e.g., FORTRAN

– Hard (impossible?) in languages with references: e.g., C, Java

• GCC’s “-ftree-vectorize” option near-to-useless in C/C++/Java (similar to
Openmp autoparallelizers)

• Use a library someone else wrote
• Let them do the hard work: Libraries of routines that exploit efficiently

vectorial units are hand assembled

• Matrix and linear algebra packages

Data Level Parallelism 25

Vector Energy

• Vectors are more power efficient than superscalar
• For a given loop, vector code…

+ Fetches, decodes, issues fewer insns (obvious)

+ Actually executes fewer operations too (loop control)

• Also remember: clock frequency is not power efficient

+ Vectors can trade frequency (pipelining) for parallelism (lanes)

• In general: hardware more power efficient than software
• Custom circuits more efficient than insns on general circuits

• Think of vectors as custom hardware for array-based loops

Data Level Parallelism 26

Not Everything Easy To Vectorize

for (I = 0; I < N; I++)

for (J = 0; J < N; J++)

for (K = 0; K < N; K++)

C[I][J] += A[I][K] * B[K][J];

• Matrix multiply difficult to vectorize
• Vectorization works on inner loops

• The iterations in this inner loop are not independent

• Need to transform it

for (I = 0; I < N; I++)

for (J = 0; J < N; J+=MVL)

for (K = 0; K < N; K++)

for (JJ = 0; JJ<MVL; JJ++)

C[I][J+JJ] += A[I][K] * B[K][J+JJ];

Data Level Parallelism 27

Summary

• Data-level parallelism (DLP)
+ Easier form of parallelism than ILP

– Hard to exploit automatically

• Vectors (SIMD)
• Extend processor with new data type: vector

+ Very effective

– Only handles inner-loop parallelism

• GPGPU (General Purpose GPU) computing are “some-sort” of
generalized SIMD
• Instead of op.v complete functions (called kernels)

• As vector, not everything fit in “stream processing” model

Data Level Parallelism 28

Exploiting DLP With Parallel Processing

for (I = 0; I < 100; I++)

for (J = 0; J < 100; J++)

for (K = 0; K < 100; K++)

C[I][J] += A[I][K] * B[K][J];

• Matrix multiplication can also be parallelized

• Outer loop parallelism
• Outer loop iterations are parallel

• Run entire I or J loop iterations in parallel

• Each iteration runs on a different processor

• Each processor runs all K inner loop iterations sequentially

• Which is better? Do both!

Data Level Parallelism 29

Vectorizable Shared Memory
“shared” float A[100][100], B[100][100], C[100][100];
for (J = 0; J < N; J+=MVL)

for (K = 0; K < N; K++)
for (JJ = 0; JJ<MVL; JJ++)
C[my_id()][J+JJ] += A[my_id()][K] * B[K][J+JJ];

• Alternative I (already known): shared memory
• All copies of program share (part of) an address space
• Implicit (automatic) communication via loads and stores
 Simple software

• No need for messages, communication happens naturally
– Maybe too naturally

• Supports irregular, dynamic communication patterns
– Complex hardware

• Create a uniform view of memory
• More complex on with caches

Alternative II: Multi-computers

• Message Passing & Multi-computer

Data Level Parallelism

30

P0 P1 P2 P3

$ M0

Net Interface C

Interconnect

$ M1 $ M2 $ M3

SYS net

I/O net

Net Interface C

SYS net

I/O net

Net Interface C

SYS net

I/O net

Net Interface C

SYS net

I/O net

Data Level Parallelism 31

Message Passing

• No shared-memory, so we have to use something else: message
passing

• Each copy of the program has a private virtual address space
• Explicit communication through messages

• Messages to other processors look like I/O (O.S. intervention)
+ Simple hardware

• Any network configuration will do
• No need to synchronize memories

– Complex software
• Must orchestrate communication
• Mostly programs with regular (static) communication patterns

• Message-passing programs are compatible with shared-memory
Multiprocessors

• Shared-memory programs are incompatible with multi-computers (if
you are expecting a reasonable performance – SW shared memory)

Data Level Parallelism 32

Parallelizing Matrix Multiply

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)

C[my_id()][J] += A[my_id()][K] * B[K][J];

• How to parallelize matrix multiply over N machines in a cluster?

• One possibility: give each computer an 1 iteration
• Each computer runs copy of loop above

• my_id() function gives each computer ID from 0 to N

• Parallel processing library (e.g., MPI, PVM,…) provides this function: hides
HW details (guarantees portability)

• Have to also divide matrices between N computers
• Each computer gets row my_id() of A, C, column my_id()of B

• Lets assume one processor eq. one computer

A B C

my_id() my_id()

X =

Data Level Parallelism 33

Parallelizing Matrix Multiply

if (my_id() == 0) {

memcpy(tmp_A, &A[I][0], 100);

memcpy(tmp_B, &B[0][J], 100);

for (id = 1; id < 100; id++)

{ send(id, &A[id][0], 100); send(id, &B[0][id], 100); }

}

else { recv(0, &my_A, 100); recv(0, &my_B, 100); }

//comp.

if (my_id() == 0)

for (id = 1; id < 100; id++)

recv(id, &C[id][0], 100);

else send(0, &my_C, 100);

• Data initialization/collection
• Processor 0 (master) must initialize others with portions of A, B matrices

• Processor 0 (master) must collect C matrix portions from other processors

• To have a balanced load master has to do computation too

Data Level Parallelism 34

Parallelizing Matrix Multiply

for (J = 0; J < 100; J++) {

if (J == my_id()) {

memcpy(tmp_B, my_B, 100);

for (id = 0; id < 100; id++)

if (id != my_id())

send(id, &my_B, 100);

}

else recv(J, &tmp_B, 100);

for (K = 0; K < 100; K++)

my_C[J] += my_A[K] * tmp_B[K];

}

• Data communication
• Processors send their portions of B (my_B) to other processors

• Library provides send(), recv() functions for this

Recall: Parallel Matrix Multiply in
SHMEN

for (J = 0; J < 100; J++)
for (K = 0; K < 100; K++)

C[my_id()][J] += A[my_id()][K] * B[K][J];

Data Level Parallelism 35

Data Level Parallelism 36

Parallel Matrix Multiply Performance

• Gross assumptions
• 10 cycles per FP instruction, all other instructions free

• 50 cycles + 1 cycle for every 4 B to send/receive a message (pipelined)

• Sequential version: no communication
• Computation: 2M FP-insn * 10 cycle/FP insn = 20M cycles

• Parallel version: calculate for processor 0 (takes longest)
• Computation: 20K FP-insn * 10 cycle/FP-insn = 200K cycles

• Initialization: ~200 send * 150 cycle/send = 30K cycles

• Communication: ~200 send * 150 cycle/send = 30K cycles

• Collection: ~100 send * 150 cycle/send = 15K cycles

• Total: 275K cycles

+ 73X speedup (not quite 100X)

– 32% communication overhead

Data Level Parallelism 37

Parallel Performance

• How does it scale with number of processors P?
– 97% efficiency for 10 processors, 73% for 100, 6.3% for 1000
– 1000 processors actually slower than 100

• Must initialize/collect data from too many processors
• Each transfer is too small, can’t amortize start-up overhead

• Speedup due to parallelization limited by non-parallel portion (which
is function of P!!)

• Communication overhead also grows

P (peak speedup) 10 100 1000

Computation 200,000*10=2M 20,000*10=200K 2000*10=20K

Initialization 20*(50+1000)=21K 200*(50+100)=30K 2000*(50+10)=120K

Communication 20*(50+1000)=21K 200*(50+100)=30K 2000*(50+10)=120K

Collection 10*(50+1000)=11K 100*(50+100)=15K 1000*(50+10)=60K

Total 2.05M 275K 320K

Actual speedup 9.7 73 63

Actual/Peak 97% 73% 6.3%

Data Level Parallelism 38

Message Passing Automatic Parallelization?

• You have to be kidding!

• If Shared-memory programming or vectorization is hard, this is
almost black magic
• Very few specialized people can deal with it

• Even less people are able to push to the limit a 100.000+ processor
system

• …but its possible to do using interdisciplinary group of people

Data Level Parallelism 39

Summary: Flynn Taxonomy

• Flynn taxonomy: taxonomy of parallelism
• Two dimensions

• Number of instruction streams: single vs. multiple

• Number of data streams: single vs. multiple

• SISD: single-instruction single-data
• Pipelining and ILP on a uniprocessor

• SIMD: single-instruction multiple-data
• DLP on a vector processor

• MIMD: multiple-instruction multiple-data
• DLP, TLP on a parallel processor/computer

• SPMD: single-program multiple data

Data Level Parallelism 40

SISD vs. SIMD vs. SPMD

• SISD ruled the 1990s
• ILP techniques found in all processors

• SIMD has its niche
• Multimedia, tele-communications, engineering

• CPU-GPU?

• SPMD is starting to dominate commercially
+ Handles more forms of parallelism

• Inner-loop DLP, outer-loop DLP, and TLP

+ More economical: just glue together cheap uniprocessors

+ Better scalability: start small, add uniprocessors

Acknowledgments

• Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

• Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

• Slides re-adapted by V. Puente of University of Cantabria

Data Level Parallelism 42

