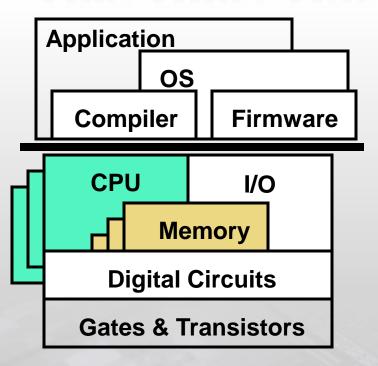
Data Level Parallelism

Reading: H&P: Appendix F

Data Level Parallelism

This Unit: Data Level Parallelism



- Data-level parallelism
 - Vector processors
 - Message-passing multiprocessors (Multicomputers)
- Flynn Taxonomy

Latency, Throughput, and Parallelism

• Latency

- Time to perform a single task
- Hard to make smaller
- Throughput
 - Number of tasks that can be performed in a given amount of time
 - + Easier to make larger: overlap tasks, execute tasks in parallel
- One form of parallelism: insn-level parallelism (ILP)
 - Parallel execution of insns from a single sequential program
 - Pipelining: overlap processing stages of different insns
 - Superscalar: multiple insns in one stage at a time
 - Have seen

Exposing and Exploiting ILP

- ILP is out there...
 - Integer programs (e.g., gcc, gzip): ~10–20
 - Floating-point programs (e.g., face-rec, weather-sim): ~50–250
 - + It does make sense to build 4-way and 8-way superscalar
- ...but compiler/processor work hard to exploit it
 - Independent insns separated by branches, stores, function calls
 - Overcome with dynamic scheduling and speculation
 - Modern processors extract ILP of 1–3

Fundamental Problem with ILP

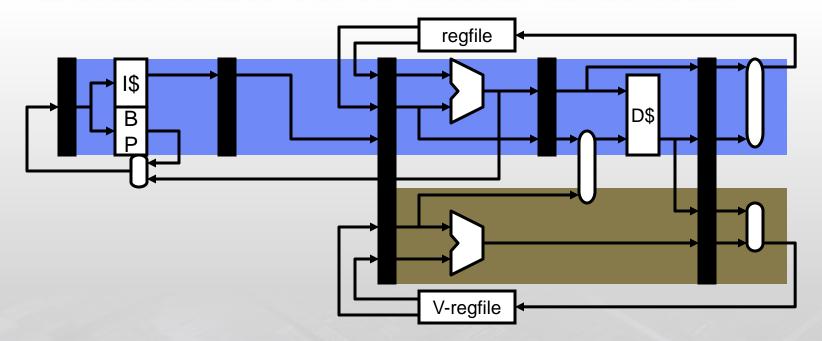
- Clock rate and IPC are at odds with each other
 - Pipelining
 - + Fast clock
 - Increased hazards lower IPC
 - Wide issue
 - + Higher IPC
 - N² bypassing slows down clock
- Can we get both fast clock and wide issue?
 - Yes, but with a parallelism model less general than ILP
- Data-level parallelism (DLP)
 - Single operation repeated on multiple data elements
 - Less general than ILP: parallel insns are same operation

Data-Level Parallelism (DLP)

for (I = 0; I < 100; I++)
Z[I] = A*X[I] + Y[I];</pre>

- One example of DLP: inner loop-level parallelism
 - Iterations can be performed in parallel

Exploiting DLP With Vectors



- One way to exploit DLP: vectors
 - Extend processor with vector "data type"
 - Vector: array of MVL 32-bit FP numbers
 - Maximum vector length (MVL): typically 8–64
 - Vector register file: 8–16 vector registers (v0-v15)

Vector ISA Extensions

- Vector operations
 - Versions of scalar operations: **op**.**v**
 - Each performs an implicit loop over MVL elements

for (I=0;I<MVL;I++) op[I];</pre>

- Examples
- ldf.v X(r1), v1: load vector
 for (I=0; I<MVL; I++) ldf X+I(r1), v1[I];
- stf.v v1,X(r1): store vector

for (I=0;I<MVL;I++) stf v1[I],X+I(r1);</pre>

• addf.vv v1,v2,v3: add two vectors

for (I=0;I<MVL;I++) addf v1[I],v2[I],v3[I];</pre>

• addf.vs v1,f2,v3: add vector to scalar

for (I=0;I<MVL;I++) addf v1[I],f2,v3[I];</pre>

Vectorizing SAXPY (With MVL=4)

ldf X(r1),f1	ldf X(r1),f1	ldf X(r1),f1	ldf X(r1),f1
<pre>mulf f0,f1,f2</pre>	<pre>mulf f0,f1,f2</pre>	<pre>mulf f0,f1,f2</pre>	<pre>mulf f0,f1,f2</pre>
ldf Y(r1),f3	ldf Y(r1),f3	ldf Y(r1), f3	ldf Y(r1),f3
addf f2,f3,f4	addf f2,f3,f4	addf f2,f3,f4	addf f2,f3,f4
<pre>stf f4,Z(r1)</pre>	<pre>stf f4,Z(r1)</pre>	<pre>stf f4,Z(r1)</pre>	<pre>stf f4,Z(r1)</pre>
addi r1,4,r1	addi r1,4,r1	addi r1,4,r1	addi r1,4,r1
blti r1,400,0	blti r1,400,0	blti r1,400,0	blti r1,400,0

ldf.v X(r1),v1
mulf.vs v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v v4,Z(r1)
addi r1,16,r1
blti r1,400,0

- Pack loop body into vector insns
 - Horizontal packing changes execution order
- Aggregate loop control
 - Add increment immediates

Scalar SAXPY Performance

<pre>ldf X(r1),f1 mulf f0,f1,f2</pre>
ldf Y(r1),f3
addf f2,f3,f4
<pre>stf f4,Z(r1)</pre>
addi r1,4,r1
slti r1,400,r2
bne Loop

- Scalar version
 - 5-cycle **mulf**, 2-cycle **addf**, 1 cycle others
 - 100 iters * 11 cycles/iter = 1100 cycles

ldf X(r1),f1
<pre>mulf f0,f1,f2</pre>
ldf Y(r1),f3
addf f2,f3,f4
<pre>stf f4,Z(r1)</pre>
addi r1,4,r1
blt r1,r2,0
ldf X(r1) f1

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	F	_														///			
		F			E*				E*	W									
			F	p*	D				4*	E+	E .	14/							
					-	-				D			W/						
- 21							Ρ	Ρ	Ρ				M	W					
										1			X		W				
				2					£		55	F	D	Х	Μ	W			

ᆂᆂ

Λ(ΙΙ),

Vector SAXPY Performance

ldf.v X(r1),v1
<pre>mulf.vs v1,f0,v2</pre>
ldf.v Y(r1),v3
addf.vv v2,v3,v4
<pre>stf.v v4,Z(r1)</pre>
addi rl, <mark>16</mark> ,rl
slti r1,400,r2
bne r2,Loop

- Vector version
 - 4 element vectors
 - 25 iters * 11 insns/iteration * = 275 cycles
 - + Factor of 4 speedup

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ldf.v X(r1),v1	F	D	Х	Μ	W														
<pre>mulf.vv v1,f0,v2</pre>		F	D	d*	E*	E*	E*	E*	E*	W									
ldf.v Y(r1),v3			F	p*	D	X	Μ	W											
addf.vv v2,v3,v4					F	D	d*	d *	d*	E+	E+	W							
stf.v f4,Z(r1)	X					F	p*	p*	p*	D	Х	Μ	W						
addi r1,4,r1	10									F	D	Х	Μ	W					
blt r1,r2,0										1	F	D	Х	Μ	W	×.			
ldf X(r1),f1												F	D	Х	Μ	W			

Not So Fast

- A processor with 32-element vectors
 - 1 Kb (32 * 32) to cache?
 - 32 FP multipliers?
- No: vector load/store/arithmetic units are pipelined
 - Processors have L (1 or 2) of each type of functional unit (super-escalar)
 - L is called number of vector lanes
 - Micro-code streams vectors through units M data elements at once
- Pipelined vector insn timing
 - T_{vector} = T_{scalar} + (MVL / L) 1
 - Example: 64-element vectors, 10-cycle multiply, 2 lanes
 - $T_{mulf.vv} = 10 + (64 / 2) 1 = 41$
 - + Not bad for a loop with 64 10-cycle multiplies

Pipelined Vector SAXPY Performance

ldf.v X(r1),v1
<pre>mulf.vs v1,f0,v2</pre>
ldf.v Y(r1),v3
addf.vv v2,v3,v4
<pre>stf.v v4,Z(r1)</pre>
addi rl, <mark>16</mark> ,rl
slti r1,400,r2
bne r2,Loop

- Vector version
 - 4-element vectors, 1 lane
 - 4-cycle ldf.v/stf.v
 - 8-cycle mulf.sv, 5-cycle addf.vv
 - 25 iters * 20 cycles/iter = 500 cycles
 - Factor of 2.2 speedup

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ldf.v X(r1),v1	F	_											7/13						
<pre>mulf.sv v1,f0,v2</pre>		F						E *							E *	W			
ldf.v Y(r1),v3			F	p*	p*	p*	p *	D	X	Μ	Μ	Μ	Μ	W					
addf.vv v2,v3,v4								F	D	d*	d *	d^*	d^*	d^*	d^*	E+	E+	E+E	E+
<pre>stf.v f4,Z(r1)</pre>	ð								F	p*	p *	D	Х	d* (d*				
addi r1,4,r1	14								~							F	D	p*	p*
blt r1,r2,0										1					1	ř.	F	p *	p*
ldf.v X(r1),f1																			

Not So Slow

- For a given vector operation
 - All MVL results complete after $T_{scalar} + (MVL / L) 1$
 - First M results (e.g., v1[0] and v1[1]) ready after T_{scalar}
 - Start dependent vector operation as soon as those are ready
- Chaining: pipelined vector forwarding
 - $T_{vector1} = T_{scalar1} + (MVL / L) 1$
 - $T_{vector2} = T_{scalar2} + (MVL / L) 1$
 - $T_{vector1} + T_{vector2} = T_{scalar1} + T_{scalar2} + (MVL / L) 1$

Chained Vector SAXPY Performance

ldf.v X(r1),v1
<pre>mulf.vs v1,f0,v2</pre>
ldf.v Y(r1),v3
addf.vv v2,v3,v4
<pre>stf.v v4,Z(r1)</pre>
addi r1,16,r1
slti r1,400,r2
bne r2,Loop

- Vector version
 - 1 lane
 - 4-cycle ldf.v/stf.v
 - 8-cycle mulf.sv, 5-cycle addf.vv
 - 25 iters * 11 cycles/iter = 275 cycles
 - + Factor of 4 speedup again

ldf.v X(r1),v1
mulf.sv v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v f4,Z(r1)
addi r1,4,r1
blt r1,r2,0
ldf.v X(r1),f1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

 v2
 F
 D
 X
 M
 M
 M
 W
 E*
 D
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M

Vector Performance

- Where does it come from?
 - + Fewer loop control insns: addi, blt, etc.
 - Vector insns contain implicit loop control
 - + RAW stalls taken only once, on "first iteration"
 - Vector pipelines hide stalls of "subsequent iterations"
- How does it change with vector length?
 - + Theoretically increases, think of T_{vector}/MVL
 - $T_{vector} = T_{scalar} + (MVL / L) 1$
 - MVL = 1 \rightarrow (T_{vector}/MVL) = T_{scalar}
 - MVL = $1000 \rightarrow (T_{vector}/MVL) = 1$
 - But vector regfile becomes larger and slower

Amdahl's Law

- Amdahl's law: the law of diminishing returns
 - speedup_{total} = $1 / [\%_{vector} / speedup_{vector} + (1-\%_{vector})]$
 - Speedup due to vectorization limited by **non-vector portion**
 - In general: optimization speedup limited by unoptimized portion
 - Example: %_{opt} = 90%
 - speedup_{opt} = $10 \rightarrow$ speedup_{total} = 1 / [0.9/10 + 0.1] = 5.3
 - speedup_{opt} = $100 \rightarrow \text{speedup}_{\text{total}} = 1 / [0.9/100 + 0.1] = 9.1$
 - Speedup_{opt} = $\infty \rightarrow$ speedup_{total} = 1 / [0.9/ ∞ + 0.1] = 10

Variable Length Vectors

- Vector Length Register (VLR): 0 < VLR < MVL
 - What happens with {D,S}AXPY if N<MVL? (N it's know usually at runtime)

for (I=0; I<N; I++)
Z[I] = A*X[I]+Y[I];</pre>

- General scheme for cutting up loops is strip mining
 - Similar to loop blocking (cuts arrays into cache-sized chunks)

VLR = N % MVL; for (J=0; J<N; J+=VLR) for (I=J; I<J+VLR; I++) Z[I] = A*X[I]+Y[I];

Vector Predicates

- Vector Mask Register (VMR): 1 bit per vector element
 - Implicit predicate in all vector operations
 for (I=0; I<VLR; I++) if (VMR[I]) { vop... }
 - Used to vectorize loops with conditionals in them
 seq.v, slt.v, slti.v, etc.: sets vector predicates
 cvmr: clear vector mask register (set to ones)

```
for (I=0; I<32; I++)
if (X[I] != 0) Z[I] = A/X[I];</pre>
```

```
//vmr bits are "set" by default
ldf X(r1),v1
sne.v v1,f0 // 0.0 is in f0. vmr implicitly ch.
divf.sv v1,f1,v2 // A is in f1
stf.v v2,Z(r1)
```


ILP vs. DLP

- Recall: fundamental conflict of ILP
 - High clock frequency **or** high IPC, not both
 - High clock frequency \rightarrow deep pipeline \rightarrow more hazards \rightarrow low IPC
 - High IPC \rightarrow superscalar \rightarrow complex issue/bypass \rightarrow slow clock
- DLP (vectors) sidesteps this conflict
 - + Key: operations within a vector insn are parallel \rightarrow no data hazards
 - + Key: loop control is implicit \rightarrow no control hazards
 - High clock frequency \rightarrow deep pipeline + no hazards \rightarrow high IPC
 - High IPC \rightarrow natural wide issue + no bypass \rightarrow fast clock

History of Vectors

- Vector-register architectures: "RISC" vectors
 - Most modern vector supercomputers (Cray-1, Convex,... Earth Simulator)
 - Like we have talked about so far
 - Optimized for short-medium sized (8–64 element) vectors
- Memory-memory vector architectures: "CISC" vectors
 - Early vector supercomputers (TI ASC, CDC STAR100)
 - Optimized for (arbitrarily) long vectors
 - All vectors reside in memory
 - Require a lot of memory bandwidth
 - Long startup latency

Modern Vectors

- Both floating-point and integer vectors common today
 - But both of the parallel (not pipelined) variety with "short" vectors
- Integer vectors
 - Image processing: a pixel is 4 bytes (RGBA)
 - Also: speech recognition, geometry, audio, tele-communications
- Floating-point vectors
 - Useful for geometry processing: 4x4 translation/rotation matrices
 - Also: scientific/engineering programs, digital signal processing

Common Vectorial Extensions

• Intel SSE2 (Streaming SIMD Extensions 2) - 2001

- 16 128bit floating point registers (xmm0-xmm15)
- Each can be treated as 2x64b FP or 4x32b FP ("packed FP")
 - Or 2x64b or 4x32b or 8x16b or 16x8b ints ("packed integer")
 - Or 1x64b or 1x32b FP (just normal scalar floating point unit)
- Original SSE: only 8 registers, no packed integer support
- Other vector extensions
 - AMD 3DNow!: 64b (2x32b)
 - PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)
- Looking forward for x86
 - Intel's "Sandy Bridge" will bring 256-bit vectors to x86
 - Intel's "Larrabee" graphics chip will bring 512-bit vectors to x86

Automatic Vectorization

Automatic vectorization

- Compiler conversion of sequential code to vector code
- Very difficult
- Vectorization implicitly reorders operations
- Invariably, loads and stores are some of those operations
- How to tell whether load/store reordering is legal?
 - Possible in languages without references: e.g., FORTRAN
 - Hard (impossible?) in languages with references: e.g., C, Java
- GCC's "-ftree-vectorize" option near-to-useless in C/C++/Java (similar to Openmp autoparallelizers)
- Use a library someone else wrote
 - Let them do the hard work: Libraries of routines that exploit efficiently vectorial units are hand assembled
 - Matrix and linear algebra packages

Vector Energy

- Vectors are more power efficient than superscalar
 - For a given loop, vector code...
 - + Fetches, decodes, issues fewer insns (obvious)
 - + Actually executes fewer operations too (loop control)
 - Also remember: clock frequency is not power efficient
 - + Vectors can trade frequency (pipelining) for parallelism (lanes)
- In general: hardware more power efficient than software
 - Custom circuits more efficient than insns on general circuits
 - Think of vectors as custom hardware for array-based loops

Not Everything Easy To Vectorize

```
for (I = 0; I < N; I++)
for (J = 0; J < N; J++)
for (K = 0; K < N; K++)
C[I][J] += A[I][K] * B[K][J];</pre>
```

- Matrix multiply difficult to vectorize
 - Vectorization works on inner loops
 - The iterations in this inner loop are not independent
- Need to transform it

```
for (I = 0; I < N; I++)
for (J = 0; J < N; J+=MVL)
for (K = 0; K < N; K++)
for (JJ = 0; JJ<MVL; JJ++)
C[I][J+JJ] += A[I][K] * B[K][J+JJ];</pre>
```


Summary

- Data-level parallelism (DLP)
 - + Easier form of parallelism than ILP
 - Hard to exploit automatically
- Vectors (SIMD)
 - Extend processor with new data type: vector
 - + Very effective
 - Only handles inner-loop parallelism
- GPGPU (General Purpose GPU) computing are "some-sort" of generalized SIMD
 - Instead of **op.v** complete functions (called kernels)
 - As vector, not everything fit in "stream processing" model



Exploiting DLP With Parallel Processing

```
for (I = 0; I < 100; I++)
for (J = 0; J < 100; J++)
for (K = 0; K < 100; K++)
C[I][J] += A[I][K] * B[K][J];</pre>
```

- Matrix multiplication can also be **parallelized**
- Outer loop parallelism
 - Outer loop iterations are parallel
 - Run entire I or J loop iterations in parallel
 - Each iteration runs on a different processor
 - Each processor runs all K inner loop iterations sequentially
- Which is better? Do both!

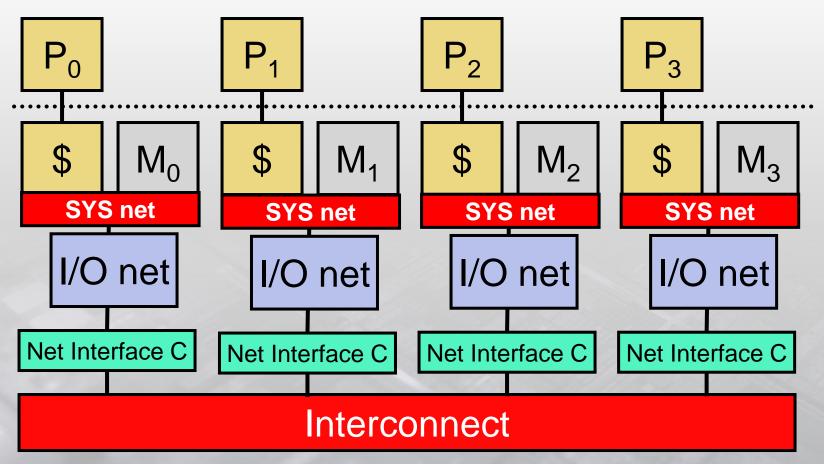
Vectorizable Shared Memory

```
"shared" float A[100][100], B[100][100], C[100][100];
for (J = 0; J < N; J+=MVL)
    for (K = 0; K < N; K++)
        for (JJ = 0; JJ<MVL; JJ++)
            C[my_id()][J+JJ] += A[my_id()][K] * B[K][J+JJ];
```

- Alternative I (already known): shared memory
 - All copies of program share (part of) an address space
 - Implicit (automatic) communication via loads and stores
 - + Simple software
 - No need for messages, communication happens naturally
 - Maybe too naturally
 - Supports irregular, dynamic communication patterns
 - Complex hardware
 - Create a uniform view of memory
 - More complex on with caches

Alternative II: Multi-computers

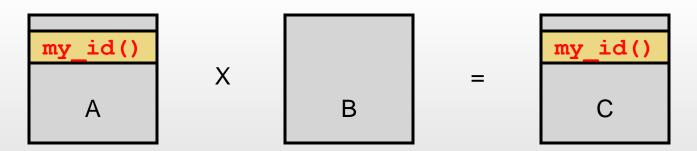
• Message Passing & Multi-computer



Message Passing

- No shared-memory, so we have to use something else: message passing
 - Each copy of the program has a private virtual address space
 - Explicit communication through messages
 - Messages to other processors look like I/O (O.S. intervention)
 - + Simple hardware
 - Any network configuration will do
 - No need to synchronize memories
 - Complex software
 - Must orchestrate communication
 - Mostly programs with regular (static) communication patterns
- Message-passing programs are compatible with shared-memory Multiprocessors
- Shared-memory programs are incompatible with multi-computers (if you are expecting a reasonable performance – SW shared memory)

Parallelizing Matrix Multiply



- How to parallelize matrix multiply over N machines in a cluster?
- One possibility: give each computer an 1 iteration
 - Each computer runs copy of loop above
 - my_id() function gives each computer ID from 0 to N
 - Parallel processing library (e.g., MPI, PVM,...) provides this function: hides HW details (guarantees portability)
- Have to also divide matrices between N computers
 - Each computer gets row my_id() of A, C, column my_id() of B
- Lets assume one processor eq. one computer

Parallelizing Matrix Multiply

```
if (my_id() == 0) {
    memcpy(tmp_A, &A[I][0], 100);
    memcpy(tmp_B, &B[0][J], 100);
    for (id = 1; id < 100; id++)
        { send(id, &A[id][0], 100); send(id, &B[0][id], 100); }
}
else { recv(0, &my_A, 100); recv(0, &my_B, 100); }
//comp.</pre>
```

```
if (my_id() == 0)
    for (id = 1; id < 100; id++)
        recv(id, &C[id][0], 100);
else send(0, &my_C, 100);</pre>
```

• Data initialization/collection

- Processor 0 (master) must initialize others with portions of **A**, **B** matrices
- Processor 0 (master) must collect C matrix portions from other processors
- To have a balanced load master has to do computation too

Parallelizing Matrix Multiply

```
for (J = 0; J < 100; J++) {
    if (J == my_id()) {
        memcpy(tmp_B, my_B, 100);
        for (id = 0; id < 100; id++)
            if (id != my_id())
                send(id, &my_B, 100);
                send(id, &my_B, 100);
                for (K = 0; K < 100; K++)
                my_C[J] += my_A[K] * tmp_B[K];
}</pre>
```

Data communication

- Processors send their portions of B (my_B) to other processors
- Library provides **send()**, **recv()** functions for this

Recall: Parallel Matrix Multiply in SHMEN

Parallel Matrix Multiply Performance

- Gross assumptions
 - 10 cycles per FP instruction, all other instructions free
 - 50 cycles + 1 cycle for every 4 B to send/receive a message (pipelined)
- Sequential version: no communication
 - **Computation**: 2M FP-insn * 10 cycle/FP insn = **20M cycles**
- Parallel version: calculate for processor 0 (takes longest)
 - **Computation**: 20K FP-insn * 10 cycle/FP-insn = **200K cycles**
 - Initialization: ~200 send * 150 cycle/send = **30K cycles**
 - Communication: ~200 send * 150 cycle/send = 30K cycles
 - Collection: ~100 send * 150 cycle/send = 15K cycles
 - Total: 275K cycles
 - + 73X speedup (not quite 100X)
 - 32% communication overhead

Parallel Performance

P (peak speedup)	10	100	1000
Computation	200,000*10=2M	20,000*10=200K	2000*10=20K
Initialization	20*(50+1000)=21K	200*(50+100)=30K	2000*(50 +10)=120K
Communication	20*(50+1000)=21K	200*(50+100)=30K	2000*(50 +10)=120K
Collection	10*(50+1000)=11K	100*(50+100)=15K	1000*(50 +10)=60K
Total	2.05M	275K	320K
Actual speedup	9.7	73	63
Actual/Peak	97%	73%	6.3%

- How does it scale with number of processors P?
 - 97% efficiency for 10 processors, 73% for 100, 6.3% for 1000
 - 1000 processors actually slower than 100
 - Must initialize/collect data from too many processors
 - Each transfer is too small, can't amortize start-up overhead
- Speedup due to parallelization limited by non-parallel portion (which is function of P!!)
- Communication overhead also grows

Message Passing Automatic Parallelization?

- You have to be kidding!
- If Shared-memory programming or vectorization is hard, this is almost black magic
 - Very few specialized people can deal with it
 - Even less people are able to push to the limit a 100.000+ processor system
 - ...but its possible to do using interdisciplinary group of people

Summary: Flynn Taxonomy

- Flynn taxonomy: taxonomy of parallelism
 - Two dimensions
 - Number of instruction streams: single vs. multiple
 - Number of data streams: single vs. multiple
- **SISD**: single-instruction single-data
 - Pipelining and ILP on a uniprocessor
- **SIMD**: single-instruction multiple-data
 - DLP on a vector processor
- MIMD: multiple-instruction multiple-data
 - DLP, TLP on a parallel processor/computer
 - **SPMD**: single-program multiple data

SISD vs. SIMD vs. SPMD

- SISD ruled the 1990s
 - ILP techniques found in all processors
- SIMD has its niche
 - Multimedia, tele-communications, engineering
 - CPU-GPU?
- SPMD is starting to dominate commercially
 - + Handles more forms of parallelism
 - Inner-loop DLP, outer-loop DLP, and TLP
 - + More economical: just glue together cheap uniprocessors
 - + Better scalability: start small, add uniprocessors

Acknowledgments

- Slides developed by Amir Roth of University of Pennsylvania with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood.
- Slides enhanced by Milo Martin and Mark Hill with sources that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood
- Slides re-adapted by V. Puente of University of Cantabria

