Reading:
H&P: Appendix F

Data Level Parallelism

"I:his Unit: Data Level Parallelism

Application

OS

Compiler

Firmware

— CPU

/0O

H| Memory

Digital Circuits

Gates & Transistors

Data Level Parallelism

e Data-level parallelism
e \ector processors

e Message-passing multiprocessors (Multi-
computers)

e Flynn Taxonomy

~'Latency, Throughput, and Parallelism

e Latency
e Time to perform a single task
— Hard to make smaller
e Throughput
e Number of tasks that can be performed in a given amount of time
+ Easier to make larger: overlap tasks, execute tasks in parallel

® One form of parallelism: insn-level parallelism (ILP)
e Parallel execution of insns from a single sequential program
e Pipelining: overlap processing stages of different insns
e Superscalar: multiple insns in one stage at a time

e Have seen

Data Level Parallelism 3 UC rﬁ

"‘Eggposing and Exploiting

e |LPis outthere...
e Integer programs (e.g., gcc, gzip): ~10-20
e Floating-point programs (e.g., face-rec, weather-sim): ~50-250
+ It does make sense to build 4-way and 8-way superscalar

e ..but compiler/processor work hard to exploit it
e |Independent insns separated by branches, stores, function calls
e Overcome with dynamic scheduling and speculation
— Modern processors extract ILP of 1-3

Data Level Parallelism 4 uc rﬁ

“'Iégndamental Problem with ILP

e Clock rate and IPC are at odds with each other
e Pipelining
+ Fast clock
— Increased hazards lower IPC
e Wide issue
+ Higher IPC
— N2 bypassing slows down clock

e Can we get both fast clock and wide issue?

e Yes, but with a parallelism model less general than ILP

e Data-level parallelism (DLP)
e Single operation repeated on multiple data elements
e Less general than ILP: parallel insns are same operation

Data Level Parallelism 5 uc rﬁ

~'Data:Level Parallelism (DLP)

for (I = 0; I < 100; I++)
Z[I] = A*X[I] + Y[I];

0: 1df X(rl),f1l // I is in rl
mulf £0,£f1l,£2 // A is in f£O0
1df Y(rl), £3
addf £2,£f3,f4
stf £f4,Z(rl)
addi rl,4,rl
blti rl,400,0

e One example of DLP: inner loop-level parallelism

e |terations can be performed in parallel

Data Level Parallelism

A

regfile

A A

A

V-regfile

e One way to exploit DLP: vectors
e Extend processor with vector “data type”
e Vector: array of MVL 32-bit FP numbers

e Maximum vector length (MVL): typically 8—64
e Vector register file: 816 vector registers (vO—v15)

Data Level Parallelism

~Vector ISA Extensions

e \ector operations
e Versions of scalar operations: op.v
e Each performs an implicit loop over MVL elements
for (I=0;I<MVL;I++) opl[I];
e Examples
1df.v X(rl) ,bvl:load vector
for (I=0;I<MVL;I++) 1df X+I(rl),v1[I];
stf.v vl1l,X(rl): store vector
for (I=0;I<MVL;I++) stf v1[I],X+I(rl);
addf.vv vl,v2,v3:add two vectors
for (I=0;I<MVL;I++) addf v1[I],v2[I],Vv3I[I];
addf .vs vl,£f2,v3:add vector to scalar
for (I=0;I<MVL;I++) addf v1[I],f f2,v3[I];

Data Level Parallelism 8 UC rﬁ

ectorizing SAXPY (With MVL=4)

1df X (rl), £l
mulf £0,fl,£f2
1df Y(rl),£3
addf f£2,£3,f4
stf f£4,Z(rl)

1df X (rl), £l
mulf £0,fl,£2
1df Y(rl),£3
addf £2,£3,f4
stf £4,Z(rl)

1df X (rl), f1
mulf £0,f1,£2
1df Y(rl),£3
addf f£2,£3,f4
stf £4,%(rl)

1df X (rl), £l
mulf £0,fl,£2
1df Y(rl),£3
addf £2,£3,f4
stf £4,Z(rl)

addil rl,4,rl

addil rl,4,rl addil rl ,4,rl

addil rl ,4,rl

bIti rl,400,0

bIti rl,400,0

blIti rl,400,0

bIti ¥1,400,0

1df.v X(rl) ,vl

mulf.vs vl1l,£f0,v2

ldf.v ¥ (rl) ,v3

addf.vv v2,v3,v4

stf.v v4,Z(rl)

S —

e Pack loop body into vector insns
e Horizontal packing changes execution order

e Aggregate loop control

addi rl,16,rl

e Addincrement immediates

blti rl1,400,0

Data Level Parallelism

"égalar SAXPY Performance

1df X(rl), £l
mulf £0,fl,£2
1df Y(rl),£3
addf f£2,£3,f4
stf £4,Z(rl)

addi rl,4,rl
slti rl1l,400,r2
bne Loop

e Scalar version
e 5-cyclemulf, 2-cycle addf, 1 cycle others

e 100 iters * 11 cycles/iter = 1100 cycles

1 2 3 4 5|6 7 8 91011121314 1516|17 18 19
1df X(rl),fl FDXMW
mulf £0,fl,f2 F D d* EX|E*X E* E* E* W
1df Y(rl),f3 Fp*DIXMW
addf f£2,f3,f4 FID d*d*d*E+E+ W
stf £4,Z(rl) Fp*p*p*D X MW
addi r1,4,r1 FDXMW
blt rl,r2,0 FDXMW
1df X(rl),fl FDXMW

Data Level Parallelism

"(Igctgr SAXPY Performance

1df.v X(rl) ,vl
mulf.vs vl1l,£f0,v2
1df.v ¥ (rl) ,v3
addf.vv v2,v3,v4
stf.v v4,Z(rl)

addi rl,16,r1l
slti rl,400,r2
bne r2,Loop

1df.v X(rl) ,vl
mulf.vv vl1,£f0,v2
1df.v ¥ (rl) ,hv3
addf.vv v2,v3,v4
stf.v £4,Z(rl)
addi rl1,4,rl
blt rl1,r2,0

e \/ector version

e 4 element vectors

e 25iters * 11 insns/iteration * = 275 cycles

+ Factor of 4 speedup

6 7 8 9 101112131415 16

17 18 19

M|~

i O|IN

E* E* EX E* W
XMW
Bt <t ES Et
F p* p* p* D

n O X|lw
£

5

- Qa
%
n oM sS|u

1df X(rl) ,f1l

Data Level Parallelism

“Ngt S0 Fast

e A processor with 32-element vectors
e 1Kb (32 *32)tocache?
e 32 FP multipliers?

e No: vector load/store/arithmetic units are pipelined

e Processors have L (1 or 2) of each type of functional unit (super-escalar)
e L is called number of vector lanes

e Micro-code streams vectors through units M data elements at once
e Pipelined vector insn timing

® Tooctor= Vecalar T (MVL/L)—1

e Example: 64-element vectors, 10-cycle multiply, 2 lanes

o T urw=10+(64/2)-1=41

+ Not bad for a loop with 64 10-cycle multiplies

Data Level Parallelism 12 uc rﬁ

1df.v X(rl),vl e \ector version

mulf.vs vl1,£f0,v2

1df.v Y(rl),v3 e 4-element vectors, 1 lane

ZEEES WY W o 4-cycle1df.v/stf.v

stf.v v4,Z(rl)

addi rl,16,rl e 8-cyclemulf.sv, 5-cycle addf.vv
slti rl1l,400,r2 : * . .

bne r2,Loop e 25 iters * 20 cycles/iter = 500 cycles

e Factor of 2.2 speedup

1 2 3456 7 8(91011121314151617 18 19
1df.v X(rl),vl FDXMMMMW
mulf.sv vl,£0,v2 END: Sdis dr disdia X EX EXI R X ErcEs T A
1df.v ¥(rl),v3 Fp*p*p*p* DI X MMMMW
addf.vv v2,v3,v4 F|D d* d* d* d* d* d*E+E+E+E+
stf.v £4,Z(rl) FS pipit DD Rt plaBaS R *
addi rl,4,rl F D p* p*
blt rl1,r2,0 ESpaaps
1df.v X(rl),fl

Data Level Parallelism 13 uc ‘ﬁ

~'Not - So Slow

e For a given vector operation

e All MVLresults complete after T, .+ (MVL/L)-1
e First M results (e.g., v1[0] andv1l[1l])ready afterT

e Start dependent vector operation as soon as those are ready

scalar

e Chaining: pipelined vector forwarding

° Tvectorl = lscalarn T (MVL/ L) =l
e Tvector2 = Tscalarz + (MVL/ L) szl
2 Tvectorl i Tvectorz 2 Tscalarl + Tscalarz + (MVL/ L) L

Data Level Parallelism 14 UC ﬁ

hained Vector SAXPY Performance

fiehs oy C(EL) e Vector version

mulf.vs vl1,£f0,v2

1df.v Y(rl),v3 e 1lane

EEEoTAT N2 T e 4-cycle1df.v/stf.v

stf.v v4,Z(rl)

addi rl,16,rl e 8-cyclemulf.sv, 5-cycle addf.vv
slti rl,400,xr2 : * ; —

bne r2,Loop e 25iters * 11 cycles/iter = 275 cycles

+ Factor of 4 speedup again

1 2 3456 7 8/91011121314151617 18 19
1df.v X(rl),vl FDXMMMMW
mulf.sv vl,£f0,v2 F D d?Ej‘*E* EX* EX|E* E* EX E* W
1df.v Y(rl),v3 Fp*D Xs*M N\h_
addf.vv v2,v3,v4 F D p* d*a* E+E+E+ E+ W
stf.v £4,Z(rl) E “Ba* D MMMMW
addi r1,4,r1 F D XMW
blt rl,r2,0 F DX MW
1df.v X(rl),fl FDXMMMMW

Data Level Parallelism 15 uc ‘ﬁ

~Vector Performance

e Where does it come from?
+ Fewer loop control insns: addi, blt, etc.
e Vector insns contain implicit loop control
+ RAW stalls taken only once, on “first iteration”
e Vector pipelines hide stalls of “subsequent iterations”

e How does it change with vector length?

+ Theoretically increases, think of Tvector/MVL
. Tvector scalar + (MVL/ L)
e MVL=1— (Tvector/MVL) = Tscalar

e MVL=1000— (T,..../MVL) =
— But vector regfile becomes Iarger and slower

vector

Data Level Parallelism 16 uc rﬁ

“"Amdahl’s Law

e Amdahl’s law: the law of diminishing returns

e speedup,,.,=1/[% / speedup, .o, + (1-%

vector vector)]

e Speedup due to vectorization limited by non-vector portion
e |n general: optimization speedup limited by unoptimized portion

* Example: %, = 90%
* speedup,, = 10 — speedup,,, =1/[0.9/10+0.1] =5.3
* speedup,, = 100 — speedup,,, =1/[0.9/100+0.1] =9.1
* Speedup,,, = e —> speedup,, = 1/[0.9/°2 +0.1] = 10

Data Level Parallelism 17 UC ﬁ

“Vgriable Length Vectors

e Vector Length Register (VLR): 0 < VLR < MVL

e What happens with {D,S}AXPY if N<MVL? (N it’s know usually at runtime)
for (I=0; I<N; I++)
Z[I] = A*X[I]+Y[I];

e General scheme for cutting up loops is strip mining
e Similar to loop blocking (cuts arrays into cache-sized chunks)

VLR = N $ MVL;
for (J=0; J<N; J+=VLR)
for (I=J; I<J+VLR; I++)
Z[I] = A*X[I]+Y[I];

Data Level Parallelism 18 Uc "ﬁ

“‘Vgctgr Predicates

e Vector Mask Register (VMR): 1 bit per vector element
e Implicit predicate in all vector operations
for (I=0; I<VLR; I++) if (VMR[I]) { vop.. }
e Used to vectorize loops with conditionals in them
seq.v,slt.v, slti.v, etc.: sets vector predicates
cvmr: clear vector mask register (set to ones)

for (I=0; I<32; I++)
if (X[I] '= 0) Z[I] = A/X[I];

//vmr bits are “set” by default

1df X(rl),vl

sne.v vl,f0 // 0.0 is in £0. vmr implicitly ch.
divf.sv vl,£fl,v2 // A is in f1

stf.v v2,Z(rl)

cvmr

Data Level Parallelism 19 UC rﬁ

“ILP us. DLP

e Recall: fundamental conflict of ILP
e High clock frequency or high IPC, not both

e High clock frequency — deep pipeline — more hazards — low IPC
e High IPC — superscalar — complex issue/bypass — slow clock

e DLP (vectors) sidesteps this conflict

+ Key: operations within a vector insn are parallel - no data hazards
+ Key: loop control is implicit = no control hazards

e High clock frequency — deep pipeline + no hazards — high IPC

e High IPC — natural wide issue + no bypass — fast clock

Data Level Parallelism 20 uc rﬁ

“"Histqry of Vectors

e Vector-register architectures: “RISC” vectors
e Most modern vector supercomputers (Cray-1, Convex,... Earth Simulator)
e Like we have talked about so far
e Optimized for short-medium sized (8—64 element) vectors

e Memory-memory vector architectures: “CISC” vectors
e Early vector supercomputers (TI ASC, CDC STAR100)
e Optimized for (arbitrarily) long vectors
e All vectors reside in memory
— Require a lot of memory bandwidth
— Long startup latency

Data Level Parallelism 29 UC ﬁ

~'Maodern Vectors

e Both floating-point and integer vectors common today

e But both of the parallel (not pipelined) variety with “short” vectors
e |nteger vectors

* Image processing: a pixel is 4 bytes (RGBA)

e Also: speech recognition, geometry, audio, tele-communications
e Floating-point vectors

e Useful for geometry processing: 4x4 translation/rotation matrices
e Also: scientific/engineering programs, digital signal processing

Data Level Parallelism 22 uc rﬁ

iGCammon-Vectorial Extensions

e |ntel SSE2 (Streaming SIMD Extensions 2) - 2001
e 16 128bit floating point registers (xmmO—xmm15)
e Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)
e Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
e Or 1x64b or 1x32b FP (just normal scalar floating point unit)
e Original SSE: only 8 registers, no packed integer support

e (Other vector extensions
e AMD 3DNow!: 64b (2x32b)
e PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

e Looking forward for x86
e Intel’s “Sandy Bridge” will bring 256-bit vectors to x86
e Intel’s “Larrabee” graphics chip will bring 512-bit vectors to x86

Data Level Parallelism

e Automatic vectorization

e Compiler conversion of sequential code to vector code
— Very difficult
e Vectorization implicitly reorders operations

e |nvariably, loads and stores are some of those operations
e How to tell whether load/store reordering is legal?
e Possible in languages without references: e.g., FORTRAN
— Hard (impossible?) in languages with references: e.g., C, Java
e GCC's “-ftree-vectorize” option near-to-useless in C/C++/Java (similar to
Openmp autoparallelizers)
e Use alibrary someone else wrote

e Let them do the hard work: Libraries of routines that exploit efficiently
vectorial units are hand assembled

e Matrix and linear algebra packages

Data Level Parallelism

S Wector Energy

e Vectors are more power efficient than superscalar
e For a given loop, vector code...
+ Fetches, decodes, issues fewer insns (obvious)
+ Actually executes fewer operations too (loop control)
e Also remember: clock frequency is not power efficient
+ Vectors can trade frequency (pipelining) for parallelism (lanes)

e |n general: hardware more power efficient than software
e Custom circuits more efficient than insns on general circuits
e Think of vectors as custom hardware for array-based loops

Data Level Parallelism

"‘I\!gt Everything Easy To Vectorize

for (I = 0; I < N; I++)
for (J = 0;, J < N; J++)
for (K = 0; K < N; K++)
C[I][J] += A[I][K] * B[K][J];

e Matrix multiply difficult to vectorize
e Vectorization works on inner loops
e The iterations in this inner loop are not independent

e Need to transform it

for (I = 0; I < N; I++)

for (J =0; J < N; J+=MVL)\\\\
for (K = 0; K < N; K++)

for (JJ = 0; JI<MVL; JJ++)
C[I][J+JJ] += A[I][K] * B[K][J+JJ];

Data Level Parallelism 26 Uc "ﬁ

Toummary

e Data-level parallelism (DLP)
+ Easier form of parallelism than ILP
— Hard to exploit automatically

e Vectors (SIMD)

e Extend processor with new data type: vector
+ Very effective
— Only handles inner-loop parallelism

 GPGPU (General Purpose GPU) computing are “some-sort” of
generalized SIMD
* |nstead of op.v complete functions (called kernels)
* Asvector, not everything fit in “stream processing” model

Data Level Parallelism 27 uc rﬁ

~ Exploiting"DLP With Parallel Processing

for (I = 0; I < 100; I++)
for (J =0; J < 100; J++)
for (K = 0; K < 100; K++)
C[I][J] += A[I][K] * B[K][J]’

e Matrix multiplication can also be parallelized

e Quter loop parallelism
e Quter loop iterations are parallel
e Run entire | or J loop iterations in parallel
e Each iteration runs on a different processor
e Each processor runs all Kinner loop iterations sequentially

e Which is better? Do both!

Data Level Parallelism 28 UC rﬁ

“Vgctgrizable Shared Memory

“‘shared” float A[100][100], B[100][100], C[100][1007];
for (J = 0; J < N; J+=MVL)
for (K = 0; K < N; K++)
for (JJ = 0; JI<MVL; JJ++)
Clmy id()][J+JJ] += A[my id()][K] * B[K][J+JJT];

e Alternative | (already known): shared memory
e All copies of program share (part of) an address space
e Implicit (automatic) communication via loads and stores
+ Simple software
* No need for messages, communication happens naturally
— Maybe too naturally
e Supports irregular, dynamic communication patterns
— Complex hardware
e Create a uniform view of memory
e More complex on with caches

Data Level Parallelism 29 uc rﬁ

/0O net /O net /0O net /0O net

Net Interface C Net Interface C Net Interface C Net Interface C

Data Level Parallelism

essage Passing

B

e No shared-memory, so we have to use something else: message
passing

e Each copy of the program has a private virtual address space

e Explicit communication through messages
e Messages to other processors look like 1/0 (O.S. intervention)

+ Simple hardware
e Any network configuration will do
e No need to synchronize memories

— Complex software
e Must orchestrate communication
e Mostly programs with regular (static) communication patterns

e Message-passing programs are compatible with shared-memory
Multiprocessors

e Shared-memory programs are incompatible with multi-computers (if
you are expecting a reasonable performance — SW shared memory)

Data Level Parallelism 31 uc ‘ﬁ

my id() my id()

A B C

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)
Clmy id()][J] += A[my id ()] [K] * BI[K][J]’

e How to parallelize matrix multiply over N machines in a cluster?

e One possibility: give each computer an 1 iteration
e Each computer runs copy of loop above
e my id() function gives each computer ID from O to N

e Parallel processing library (e.g., MPI, PVM,...) provides this function: hides
HW details (guarantees portability)

e Have to also divide matrices between N computers
e Each computer getsrowmy id () of A, C, columnmy id()ofB
e |ets assume one processor eq. one computer

Data Level Parallelism

‘*Pgra!lelizing Matrix Multiply

if (my_id() == 0) {
memcpy (tmp A, &A[I][O0], 100);
memcpy (tmp B, &B[0][J], 100);
for (id = 1; id < 100; id++)
{ send(id, &A[id] [0], 100); send(id, &B[0][id], 100); }

}

else { recv(0, &my A, 100); recv(0, &my B, 100); }
//comp.

if (my id() == 0)

for (id = 1; id < 100; id++)
recv(id, &C[id][0], 100);
else send(0, &my C, 100);

e Data initialization/collection
e Processor O (master) must initialize others with portions of A, B matrices
e Processor O (master) must collect C matrix portions from other processors
* To have a balanced load master has to do computation too

Data Level Parallelism az UC ﬁ

"Pgrallelizing Matrix Multiply

for (J = 0; J < 100; J++) {
if (J == my_id()) {
memcpy (tmp B, my B, 100);
for (id = 0; id < 100; id++)
if (id '= my id())
send(id, &my B, 100);
}
else recv(J, &tmp B, 100);
for (K = 0; K< 100; K++)
my C[J] += my A[K] * tmp B[K];

e Data communication
* Processors send their portions of B (my B) to other processors
e Library provides send (), recv () functions for this

Data Level Parallelism 34 Uc "ﬁ

for (J = 0; J < 100; J++)
for (K = 0; K< 100; K++)
Clmy_id()] [J] += A[my_id()] [K] * BI[K] [J]’

Data Level Parallelism

~'Parallel Matrix Multiply Performance

e (Gross assumptions

10 cycles per FP instruction, all other instructions free
50 cycles + 1 cycle for every 4 B to send/receive a message (pipelined)

e Sequential version: no communication

Computation: 2M FP-insn * 10 cycle/FP insn = 20M cycles

e Parallel version: calculate for processor O (takes longest)

Computation: 20K FP-insn * 10 cycle/FP-insn = 200K cycles
Initialization: ~200 send * 150 cycle/send = 30K cycles
Communication: ~200 send * 150 cycle/send = 30K cycles
Collection: ~100 send * 150 cycle/send = 15K cycles

Total: 275K cycles

73X speedup (not quite 100X)

32% communication overhead

Data Level Parallelism

arallel Performance

P (peak speedup) 10 100 1000
Computation 200,000*10=2M 20,000*10=200K 2000*10=20K
Initialization 20*(50+1000)=21K| 200*(50+100)=30K|2000*(50+10)=120K
Communication 20*(50+1000)=21K| 200*(50+100)=30K|2000*(50+10)=120K
Collection 10*(50+1000)=11K| 100*(50+100)=15K| 1000*(50+10)=60K
Total 2.05M 275K 320K
Actual speedup 9.7 73 63
Actual/Peak 97% 73% 6.3%

e How does it scale with number of processors P?
— 97% efficiency for 10 processors, 73% for 100, 6.3% for 1000
— 1000 processors actually slower than 100
e Must initialize/collect data from too many processors
e Each transfer is too small, can’t amortize start-up overhead

Barallelization limited by non-parallel portion (which

e Speedup due to
is function of P!

e Communication overhead also grows

-~ Message Passing Automatic Parallelization?

e You have to be kidding!

e |f Shared-memory programming or vectorization is hard, this is
almost black magic
e Very few specialized people can deal with it

e Even less people are able to push to the limit a 100.000+ processor
system

e _..butits possible to do using interdisciplinary group of people

Data Level Parallelism 38 UC rﬁ

“’ngmar\]: Flynn Taxonomy

e Flynn taxonomy: taxonomy of parallelism
e Two dimensions
e Number of instruction streams: single vs. multiple
e Number of data streams: single vs. multiple

e SISD: single-instruction single-data

e Pipelining and ILP on a uniprocessor

e SIMD: single-instruction multiple-data

e DLP on a vector processor

e MIMD: multiple-instruction multiple-data
e DLP, TLP on a parallel processor/computer
e SPMD: single-program multiple data

Data Level Parallelism

“SISD,_vs. SIMD vs. SPMD

e SISD ruled the 1990s

e |LP techniques found in all processors

e SIMD has its niche

e Multimedia, tele-communications, engineering

e CPU-GPU?

e SPMD is starting to dominate commercially
+ Handles more forms of parallelism
e Inner-loop DLP, outer-loop DLP, and TLP
+ More economical: just glue together cheap uniprocessors
+ Better scalability: start small, add uniprocessors

Data Level Parallelism

r cknowledgments

e Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

e Slides enhanced by Milo Martin and Mark Hill with sources
that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen,
Smith, Sohi, Vijaykumar, and Wood

e Slides re-adapted by V. Puente of University of Cantabria

Data Level Parallelism

