

Topic 2. Active directory secure service: LDAP (over SSL)

José Ángel Herrero Velasco

Department of Computer and Electrical Engineering

This work is published under a License:

Creative Commons BY-NC-SA 4.0

sign-on" model

"Single

Computer System Design and Administration

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

Secure information service: Puzzle

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

Target: Building the "Single sign-on" core

- Implementation and development of a **secure** and **centralized** system for the management of **account and computational information** in an enterprise (corporative) environment, using **LDAP** protocol:
 - SSO components:
 - 1. Centralized Active Directory store:
 - OpenLDAP.
 - **2. Tools** for managing the information in the directory:
 - LDAP-utils, phpLDAPadmin...
 - 3. A **mechanism** for authenticating user identities:
 - OpenLDAP (itself), Kerberos.
 - 4. Centralized **identity** and **authentication** aware versions of C-library routines:
 - INTEGRATION: NSS/PAM (SSSd).
 - TLS/SSL security:
 - TLS/SSL encrypted communications.

(VALIDATION)

Identification

+
authentication

Secure

Single sign-on

 Any valid user in the organization can log in any system with the same credentials.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

How to manage the computational information of a corporative environment?

- A directory service is just a "database" used by an enterprise environment to manage centrally their huge amounts of computational data:
 - It is (such services) distinguished by having:
 - Data object relatively small.
 - Information is attributed-based.
 - High levels of read accesses:
 - Searching is a common operation.
 - Low volatility:
 - Storage information which suffers few changes.
 - Updates are limited to owners and admins.
 - It is defined as:
 - Hierarchical collection of objects and attributes arranged in a particular way:
 - Sets what information is stored and how it should be organized.
 - Allows locating information easily and quickly.
 - It is composed by:
 - Front-end: Access protocol.
 - Back-end: Directory manager:
 - (Specialized database).
 - It implements a:
 - Server-client service.
- In real life...:
 - Phone book, library catalog.

You can understand it as a specialized database.

NO transactional, NO SQL support.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Directory service

- LDAP → Lightweight Directory Access Protocol:
 - Open, standard and cross-platform protocol designed to provide a "lightweight" access to distributed directory information on TCP/IP networks:
 - Originally:
 - Developed by the University of Michigan, in 1993.
 - Based on DAP protocol (Access protocol of X.500):
 - » Designed for allowing TCP/IP clients access to X.500 active directory service.
 - » Initially, it replaced DAP protocol (Directory Access Protocol) in X.500 as front-end of the service.
 - Nowadays:
 - Provides a full directory service → LDAP is anything but lightweight:
 - » Linux implementation: OpenLDAP.
 - » Microsoft's Active Directory.
 - For many systems and applications:
 - » Mail/Web servers.

- Key:
 - "... Write once, read many times...".
- Main features:
 - Read-write ratio: reads optimized.
 - Extensibility: LDAP schemas.
 - **Distribution:** with LDAP data can be near where it is needed.
 - Replication: with LDAP data can be stored in multiple locations.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Directory service

– Other features:

- Use TCP/IP protocols (application layer) instead of OSI.
- It is a stand-alone service:
 - 389/636 ports.
- It supports secure communications (encrypted):
 - SSL/TLS.
- Nowadays, version 3 of the protocol (LDAPv3):
 - RFC 2251 y RFC 2256 (doc. Base), RFC 2829 (auth), RFC 2830 (SSL/TLS)...
- Open standard:
 - Many implementations.
 - OpenLDAP:
 - » Developed by GNU "opensource": GPL.

– It's based on 4 models:

- Information model:
 - Structure of information <u>stored</u> in an LDAP directory.
 - LDAP defines the content of <u>messages</u> exchanged between a LDAP client and server.
- Naming model:
 - How information is <u>identified</u> and <u>organized</u>.
- Functional model:
 - It describes what <u>operations</u> can be performed on the information stored in LDAP directory.
- Security model:
 - It describes how the information can be <u>protected</u> from unauthorized access.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Data model

<u>Hierarchical</u> structure (tree):

- **D**irectory Information **T**ree
- Directory with a tree structure (DIT).

dn: cn=Robert Smith, ou=People, dc=example, dc=com

Source: https://docs.typo3.org.

- The DIT (tree) can be geographically distributed on many servers:
 - Distribution ("main feature").

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Data model

- Every branch (leaf) of the tree (DIT) composes a LDAP entry:
 - They represent objects from real life.
 - It is the minimal information unit for LDAP.
- Every *entry* →
 - Unique ID(Distinguished Name, DN):
 - It establishes the **search path** to the data (sequence of **RDNs**):
 - dn: unique=3,dc=People,dc=ds,dc=example,dc=org.
 - Attributes:
 - They include information of the entry (object):
 - cn, ou, objetClass, etc.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Data model

- Every attribute includes:
 - Name (type).
 - Value(s):
 - Multiples values.
- Attribute types:
 - Data attributes:
 - They contain data from the entries:
 - UID, CN (name), SN (surname), OU, etc.
 - Operative attributes (slapcat):
 - ... Or meta-attributes.
 - Server has only access to:
 - Modification dates.

- LDIF:
 - LDAP Data Interchange Format.

Source: http://www.redbooks.ibm.com.

- objectClass.
- dc (domain component).
- uid (username).
- cn (common name).
- st (nombre del estado).
- sn (surname).
- o (organitation name).
- ou (organitational unit).
- ...

For example:

dn: cn=Jose A.,dc=ce,dc=unican,dc=es

objectClass: person
uid=jherrero
cn=Jose A.
uidNumber: 2001

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Data model

- Attributes are <u>well-defined</u> in the *schema files*:
 - Notation (syntax).
 - Meaning (semantics).
 - Dependance relationships, heritage...
- The schemas define the rules concerning what objects can be storage into a DIT:
 - ObjectClass attribute:
 - Specifies what attributes an entry can contain:
 - List of attributes for every object.
 - They establish where in a DIT a certain object can appear.
- Schema-checking:
 - Ensures that the relationships among attributes are correct according to the schemas before adding a new entry.

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Naming model

- It defines how entries are identified and organized:
 - Tree-like structure called the Directory Information Tree (DIT).
 - Entries are arranged within the DIT based on their distinguished name (DN) → RDNs.
 - They are used as *primary keys* of entries in the directory:

- The organization of the entries in the DIT are restricted by their corresponding objectclass definitions:
 - According to the schemas.
- The DNs are an important key for LDAP client requests.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Operational model

Methods:

- LDAP provides to users methods to:
 - Connect and disconnect to LDAP DB (TCP/IP model).
 - Search information.
 - Compare information.
 - · Add new entries.
 - Modify entries.
 - Remove entries.

• Operations (functions):

- ... Which carry on requests to...:
 - Search, modify and remove entries.

– Most relevant:

- **Abandon** (Abandonar): cancel a operation previously sent to the server.
- Add (Agregar): Add a new entry to directory.
- **Bind** (Enlazar): Create a new session on LDAP server (TCP/IP model).
- Compare (Comparar): Compare entries in a directory by criteria.
- **Delete** (Eliminar): Remove an entry from directory.
- Extended (Extendido): Carry out extended operations.
- Rename (Cambiar nombre): Rename an entry from directory.
- Search (Buscar): Search an entry by criteria.
- **Unbind** (Desenlazar): Close a session on LDAP server (TCP/IP model).

LDAP protocol

OpenLDAP tools

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

LDAP: Security model

Access control:

- It defines the mechanisms to assure that:
 - Access to LDAP information is restricted → control access list.
 - LDAP client and server communications are safe.

Authentication:

Assurance that the opposite party (machine or person) really is who he/she/it claims to be.

• Integrity:

- Assurance that the information that arrives is really the same as what was sent:
 - Messages exchanged.

Confidentiality.

 Protection of information disclosure by means of data encryption to those who are not intended to receive it.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: a LDAP protocol deployment

- openLDAP is a LDAPv3 protocol implementation for GNU:
 - Developed and maintained by "The OpenLDAP project".
 - Opensorce → OpenLDAP public license:
 - http://www.openIdap.org/software/release/license.htm.
 - It supports:
 - SSL/TLS security.
 - Replication.
 - Authentication integration frameworks supports → SASL/GSSAPI.
 - Third-party authentication mechanisms → kerberos 5.
 - Password algorithms → Crypt, MD5 and SHA.
 - Backend systems → LDBM y DB2.
 - Multi-Platform support → Linux, UNIX (AIX, Solaris, BSD...), MS Windows.
 - APIs to C, C++, PHP, Python...
 - http://www.openIdap.org.
- Others:
 - 389 Directory server (<u>www.port389.org</u>):
 - Superior documentation.
 - Open source too!

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Daemons involved

- OpenLDAP runs as an OS stand-alone service.
- The suite includes:
 - slapd:
 - Listens to clients' requests to the LDAP DB.
 - **Performs** operations on the LDAP DB.
 - Sends results to clients.
 - Manages the LDAP DB replication.
 - Libraries implementing the LDAP protocol.
 - Utilities, tools...
- Replication service:
 - Adds high ability to the LDAP service.
 - Keeps the secondary (es) LDAP DB fully updated.
 - Up to 2.4 \rightarrow "old style":
 - Slurpd daemon.
 - Only push mode:
 - The master node pushed changes to the slaves.
 - Actually → "new style":
 - Syncrepl replication.
 - Multi-master capabilities:
 - Active (live) synchronization.

Slurpd: push mode.

Source: www.zvtrax.com

Syncrepl: *multi master.*

Source: www.zytrax.com

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: OLC configuration (cn=config)

- Up to 2.3 → "old style":
 - "Main single file" of base configuration:
 - /etc/ldap/slapd.conf.
 - Other files:
 - schema files, module files, includes...
- From 2.3 to 2.4:
 - A new service configuration mechanism appears:
 - Henceforth, there will not be a single main configuration file.
 - Both configuration methods can be used:
 - You can even use a conversion method: slapd.conf → slapd.d/.
- Actually → "new style" OLC: "On Line Configuration":
 - It is not necessary restart service.
 - Service configuration is stored in a DIT:
 - cn=config.
 - Located in a system directory.
 - /etc/ldap/slapd.d (Initialization LDIF files).
 - Any change must be done through LDIF files, using:
 - LDAP client tools:
 - ldapmodify, ldapadd, ldapsearch...

José Ángel Herrero Velasco

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: LDIF files

- They are used to exchange information with LDAP directory:
 - OLC configuration and Corporative DITs.
- LDIF: LDAP Data Interchange Format:
 - They allow importing and exporting data to/from a LDAP directory using a text file:
 - ... And LDAP operations:
 - OpenLDAP "tools".
 - They allow adding and removing information to/from a LDAP directory:
 - Example:

```
dn: uid=ruizsr,ou=People,dc=localdomain
sn: Ricardo Ruiz
uid: ruizsr
cn: Ricardo Ruiz
givenName: ruizsr
uidNumber: 9034
gidNumber: 90
objectClass: top
objectClass: person
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: krb5Principal
objectClass: shadowAccount
homeDirectory: /afs/atc.unican.es/u/r/ruizsr
userPassword: {KERBEROS}ruizsr@atc.unican.es
shadowLastChange: 13684
shadowMin: 1
shadowMax: 3650
shadowWarning: 10
shadowInactive: 10
shadowExpire: -1
shadowFlag: 0
gecos: ruizsr@unican.es,26772,F. CIENCIAS
loginShell: /bin/bash
krb5PrincipalName: ruizsr@ATC.UNICAN.ES
```

ldapadd -x -D "cn=admin,dc=localdomain" -W -f example.ldif

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Where are the data???

- OpenLDAP keeps 2 DITs (at least):
 - OLC DIT and Backend DITs:

DN → cn=config

- /etc/ldap/slapd.d:
 - LDIF files hierarchy.

DN → dc=example,dc=com

dn: cn=Robert Smith, ou=People, dc=example, dc=com

The BACKEND

- /var/lib/ldap
 - Usually, HBD backend
 - Oracle Berkeley DB.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Commands & tools

Server tools:

- Most significant commands:
 - **slapadd**: Adds entries from an *LDIF* file.
 - slapcat: Gets information (entries) from LDAP directory (LDIF format).
 - **slapindex**: Re-indexes the LDAP directory.
 - **slappasswd**: Creates a new password for LDAP (console).
- Considerations:
 - These commands access the <u>ldap folder</u>: /var/lib/ldap:
 - You can not run them from other (remote) hosts.
 - It's important that the Idap service is stopped.

Client tools:

- Most significant commands:
 - ldapadd: Adds entries from an LDIF file.
 - ldapmodify: Modifies entries from an LDIF file.
 - ldapdelete: Deletes entries from LDAP directory.
 - **ldapsearch**: Searches information according to filters.
 - **ldappasswd**: Changes the password attribute from a DIT entry.

– Considerations:

- That tools are installed from a third-party package.
- To use them, the Idap service must be in operation:
 - They access the ldap directory through the ldap service.
 - You can run them from other (remote) hosts.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Server & client side installation

- From debian repositories:
- OpenLDAP:
 - Installation of libraries and tools (clients/server).

```
$ apt-get install slapd ldap-utils $ dpkg-reconfigure slapd (opcional)

cliente | $ apt-get install ldap-utils libpam-ldap libnss-ldap nscd
```


Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Service configuration

- From 2.4.23, the LDAP service configuration is changed → "new style":
 - OLC configuration: DIT → cn=config
 - \$ /etc/ldap/slapd.d
- It contains the same elements and features as "old style".
- But now...:
 - Do not need to restart the LDAP service:
 - "On the fly".
 - Through <u>LDIF files</u> + client tools.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Service configuration

- "new style" basic procedures:
 - Search of configurations:
 - \$ ldapsearch -Y EXTERNAL -H ldapi:/// -b "cn=config"
 - Modification (added) of configuration:

```
$ cat <file.ldif>
```

dn: olcDatabase={1}hdb,cn=config

changetype: modify

add: olcDbIndex

olcDbIndex: cn pres, sub, eq

\$ ldapmodify -Y EXTERNAL -H ldapi:/// -f <file.ldif>

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Daemon configuration

- Server daemon configuration:
 - This file sets the running parameters of the LDAP daemon:
 - \$ vi /etc/default/slapd
- LDAP user and group:

```
SLAPD_USER="openIdap", SLAPD_GROUP="openIdap"
```

- Protocol version (type), server hostname and TCP ports:
 - ldap://.../ → service instance for LDAP over TCP (389 port).
 - · No security.
 - ldaps://.../ → service instance for LDAP over TCP (636 port).
 - SSL/TLS security.
 - ldapi://.../ → service instance for LDAP over IPC (Unix-domain socket)
 for service maintenance tasks.
 - Local scope:

```
SLAPD_SERVICES="ldap://server-01.localdomain:389/ ldaps:/// ldapi:///"
```

- Additional parameters:
 - Debug modes...:
 SLAPD OPTIONS="-g ..."

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Client side configuration

- Client side configuration (elements most relevant):
 - Main file of LDAP client side:
- \$ vi /etc/ldap/ldap.conf
 - Name Service Switch (NSS) LDAP configuration files:
 - Needed for identification of OS entities (users, groups...) managed by LDAP directory.

```
$ vi /etc/libnss-ldap.conf**
```

- Pluggable Authentication Modules (PAM) configuration files:
 - Needed for authentication of PAM clients/apps managed by LDAP directory.
 - \rightarrow sshd

```
$ vi /etc/pam_ldap.conf**
$ vi /etc/pam.d/sshd
```

- Name Service Switch (NSS) main configuration file:
 - It sets the identification methods and in what order they will be used
 - Identification of users, machines, services, apps...

```
$ vi /etc/nsswitch.conf
```

^{**} Both files maintain an identical configuration.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: Secure communications

- OpenLDAP supports secure communications in client-server transactions:
 - Using SSL/TLS layer.
- Protocols:
 - SSL: Secure Sockets Layer:
 - Is part of the Transport and Session Layer (OSI).
 - TLS: Transport Layer Security:
 - SSLv3 is the predecessor of TLS.
- SSL/TLS are cryptographic protocols that provide communication security over a computer network (TCP/IP):
 - Symmetric and Asymmetric crypt:
 - Size keys up to 256 bits (symmetric) and 4096 bits (asymmetric).
 - Originally developed (SSL) by Netscape (Mastercard, Bank of America, MCI y Silicon Graphic) in the 1990s.
 - Clients-server communications.
- TLS aims primarily to provide <u>authentication</u>, <u>privacy</u> and data <u>integrity</u> between two communicating computer applications:
 - Client and server communication has the following properties:
 - Privacy → to encrypt the data transmitted (symmetric crypt).
 - Authenticity → to authenticate the ends (asymmetric crypt).
 - Integrity → message integrity check (message authentication code).
 - ... To prevent *eavesdropping* and *tampering*.
- Most famous and used implementations:
 - SSLeay, OpenSSL, GnuTLS.
- Protocol versions:
 - SSLv2, SSLv3.
 - TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3 (*).
- Some services/protocols that use SSL/TLS:
 - https, ssh, ldaps, smtps/pop3s/imaps.

TLS: SSLv3 Update

Topic 2. Active Directory secure service: LDAP (over SSL)

[Internet Engineering Task Force]

TLS: Transport Layer Security

- Developed from SSLv3:
 - By IETF (1999). RFCs updated: RFC 5246 and RFC 6176.
- Based on PKI (asymmetric crypt) and symmetric crypt:
 - Private/public keys & session keys.
 - Digital certificates X.509 (defined by UIT-T).
 - CAs (Certificate Authorities).
- Server (secure service):
 - Service certificate → [(public key)certificate]CApk
- A digital certificate signed by a CA provides <u>2 important</u> features:
 - When a CA issues a signed certificate, it certifies the identity of the organization which is providing the secure service.
 - Client apps are able to recognize the service certificate automatically without asking users.
- There are *self-signed certificates too:*
 - Unsafe!!
 - Only local use.

CA: Trusted entity that *issues* and *revokes* **digital certificates** which are used by an organization to validate its identity and to ensure its communications.

open **course** ware

Topic 2. Active Directory secure service: LDAP (over SSL)

TLS/SSL: The protocol

• <u>3 stages</u>:

– HANDSHAKE:

- Both client and server **negotiate** the crypt algorithms to authenticate themselves and encrypt the information.
- There are actually several options:
 - Public-key cryptography: RSA, Diffie-Hellman, DSA (Digital Signature Algorithm) or Forteza.
 - Symmetric cryptography: RC2, RC4, IDEA (International Data Encryption Algorithm), DES
 (Data Encryption Standard), Triple DES or AES (Advanced Encryption Standard).
 - Hash functions: MD5, SSHA.

– VALIDATION AND KEY EXCHANGE:

- **Step 1:** the ends are validated by <u>digital certificate</u>.
- **Step 2:** they exchange keys to encrypt each other, according to the previous stage (**HANDSHAKE**).

– SERCURE COMMUNICATION:

The ends can begin the encrypted data transmission.

The standards:

- − The first one: TLS (TLS 1.0) \rightarrow RFC 2246.
- At present (2014 October), TLS 1.3 has been defined as a draft.

Topic 2. Active Directory secure service: LDAP (over SSL)

TLS/SSL: The protocol

- Client and server message exchange "in detail":
 - Step 1 [Hello], the ends agree on the algorithms to be used for keeping confidentiality and authenticating.
 - Step 2 [server validation], server sends information about itself:

Optional

- Step 3 (Optional) [client validation], server requests to client a X.509 certificate:
 - So they are both validated.
- Step 4 [session key production], which will be used to encrypt data:
 - It is often the client that produces this key.
- Step 5 [session key exchange], client sends this key to server:
 - (session key) 🔐 RSA by server_{public key}
- Step 6 [Finish], It shows that client/server can start a new secure communication.

Topic 2. Active Directory secure service: LDAP (over SSL)

TLS/SSL: Mode of operation

Topic 2. Active Directory secure service: LDAP (over SSL)

openSSL: SSL/TLS deployment

- Collaborative project from "SSLeay" (Eric Andrew Young[1] and Tim J. Hudson):
 - "European" branch of SSLeay.
 - "... 2014 two thirds of all webservers use OpenSSL".
- Protocol implementations:
 - Secure Sockets Layer (SSL v2/v3).
 - Transport Layer Security (TLS v1.2).
- Some outstanding features:
 - Set of encrypting libraries written in C:
 - Provide *cryptographic functions* to software programmers.
 - They allow using digital certificates.
 - Opensource.
 - Multi-platform:
 - Unix (Solaris, MAC OS...), Linux, Microsoft Windows...

Topic 2. Active Directory secure service: LDAP (over SSL)

gnuTLS: SSL/TLS deployment

- It's a GNU project to develop an implementation of SSL/TLS protocols.
- Sets of libraries and tools to make possible **secure communications** among clients and servers:
 - (API) Developed in C.
 - GNU Opensource → GPL (LGPLv2.1+).
- Protocols:
 - SSL **v3.0**.
 - TLS 1.0, TLS 1.1 and **TLS 1.2**.
 - DTLS 1.0 and 1.2 (UDP).
- Provide an APIs to make digital certificates:
 - X.509, PKCS, OpenPGP...

Topic 2. Active Directory secure service: LDAP (over SSL)

SSL/TLS: More deployments...

- Other implementations of SSL/TLS protocols:
 - LibreSSL.
 - BoringSSL.
 - SharkSSL.
 - PolarSSL.
 - SecureBlackbox.
 - Network Secure Services.
- Are they actually a secure option?:
 - SSLv3: insecure!!!:
 - POODLE (https://blog.mozilla.org/security/2014/10/14/the-poodle-attack-and-the-end-of-ssl-3-0/).
 - TLSv1.1 & TLSv1.2: safer!!!:
 - They solve many bugs of SSLv3 protocol.
 - TLSv1.3 (if approved):
 - For the moment (December 28, 2015), TLSv1.3 is not used very much (Developing...).
 - https://tools.ietf.org/html/draft-ietf-tls-tls13-11.
- But, what should we do if we want to deploy a fully safe service?:
 - We must always use SSL/TLS implementation updated.
 - DO NOT use SSLv3. It is no longer safe:
 - "False security".

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

OpenSSL/GnuTLS: Installation and creation of certificates

- From debian repositories. certificate OpenSSL: Installation of openSSL libraries and tools: \$ apt-get update. \$ apt-get install libssl1.0.0 libssl-dev openssl ssl-cert Creation of self-signed certificate (*): \$ mkdir /etc/ldap/ssl \$ cd /etc/ldap/ssl \$ openss1 req --newkey rsa:1024 --x509 -nodes --out CA server-01.localdomain.cert -- keyout CA server-01.localdomain.cert --days 365 GnuTLS: Installation of GnuTLS libraries and tools: \$ apt-get update \$ apt-get install gnutls-bin ssl-cert Creation of self-signed certificate (*): \$ mkdir /etc/ldap/ssl \$ cd /etc/ldap/ssl \$ certtool --generate-privkey --outfile CA server-01.localdomain.key \$ certtool --generate-self-signed --load-privkey CA server-01.localdomain.key --template CA server-01.localdomain.info --outfile CA server-01.localdomain.cert
 - (*) It can be useful for testing a service under construction \rightarrow CA certificate in DGSI.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

SSL/TLS certificates:

```
$ openssl s_client -connect <nombre servidor>:636
-showcerts
$ gnutls-cli-debug -p 636 <nombre servidor>
```

LDAP server running and access to its active directory:

```
$ netstat -aptnu
$ nmap <nombre servidor>
$ slapcat
```

• LDAP service running:

```
$ ldapsearch -x -H...
$ getent shadow
$ id <username ldap>
```

• The whole LDAP service, through a "third-party" service:

```
$ ssh -1 <username_ldap> <nombre servidor>
```


open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

- "Old style" REPLICATION method:
 - slurpd:
 - Through an additional daemon, LDAP (openLDAP) will be able to deploy a "failover" schema itself:
 - If the main daemon (slapd) goes down, the service keeps going through a secondary slapd instance running on a <u>secondary server</u>:
 - » The switching is automatic (for client side).
 - slurpd maintains the LDAP directory <u>REPLICATED</u> in a secondary directory:
 - Running on different servers.

José Ángel Herrero Velasco

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

- "Old style" REPLICATION method:
 - slurpd was the first type of replication.
 - slurpd was a standalone daemon plagued with problems (briefly):
 - slurpd never rerouted requests.
 - It was not reliable.
 - It was extremely sensitive to the ordering of records in the replog.
 - It could easily go out of sync, at which point manual intervention was required.
 - It wasn't very tolerant of unavailable servers.
 - It only worked in **push mode**.
 - It required stopping and restarting the master to add new slaves.
 - It only supported single master replication.
 - slurpd is no longer part of OpenLDAP:
 - From version 2.4.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

- "New style" **REPLICATION** method:
 - → From version 2.4, openLDAP supports a few more replication modes.
 - SyncRepl: lightweight replication engine for OpenLDAP
 - **Syncrepl** has none of the "old style" weaknesses as regards replication.
 - Replication schema:
 - Provider-consumer.
 - Both of them can process client request:
 - » Consumer only "reads", does not "write/update".

- ... And it adds:
 - MirrorMode (Active-Active Hot-standby).
 - N-Way Multimaster Replication.
 - And...:
 - » More sophisticated Syncrepl configurations.
 - » Delta-syncrepl.
 - » Replicating slapd configuration (syncrepl and cn=config).
- Optimization:
 - Delta-syncrepl replication.
 - Syncrepl Proxy mode.
 - MirrorMode replication.
 - N-Way Multi-Master replication.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

- Conventional Syncrepl replication: Basic LDAP Sync Replication:
 - Syncrepl engine is executed as slapd threads.
 - Replication operates at the **DIT level**, not the LDAP directory level:
 - · Different DITs to different servers:
 - Even DIT fragments.
 - Minimum unit of synchronization:
 - The entry.
 - Incremental:
 - Only changes after last sync.
 - Default replication schema:
 - Provider-consumer.
 - Consumer <u>always</u> initiates the update process.
 - Operation modes:
 - RefreshOnly:
 - Consumer pull:
 - » Burst mode.
 - » Replication cycle time.
 - RefreshAndPersist:
 - Provider push:
 - » Sync process remains active.
 - Syncrepl tracks status of the replication content by maintaining and exchanging synchronization cookies.

Source: www.zvtrax.com.

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

→Optimization:

Delta-syncrepl replication:

- Disadvantages of LDAP Sync replication:
 - LDAP Sync replication is an *object-based* replication:
 - When any attribute value is changed → the complete object (entry) is replicated.
 - Both the changed and unchanged attribute values are processed.
 - Excess traffic generated for small changes.

– Delta-syncrepl:

- Maintains a changelog on the provider.
- Consumer checks the changelog for the **operations** it needs to perform on consumer directory.

open course ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

Syncrepl Proxy Mode:

- When refreshAndPersist is initiated from the consumer.
- Firewalls may need provider initiated push-mode replication.
- Slapd-Idap proxy is set up near (or collocated with) the provider that points to the consumer.
- Syncrepl engine runs on the proxy and points to provider.

open **course** ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

MirrorMode replication:

- It is an Active-Active Hot-Standby solution:
 - External slapd front-end is needed.
 - It is Not a Multi-Master solution.
- Syncrepl also allows the provider nodes to re-synchronize after any downtime.
- Delta-Syncrepl can be used.
- 2 providers are set up to replicate from each other:
 - An external frontend is employed to direct all writes to only one of the two servers.
 - The second provider will only be used for writes if the first provider crashes.

open **course** ware

Topic 2. Active Directory secure service: LDAP (over SSL)

openLDAP: "Fail over" strategies

N_Way Multi_Master:

- Uses Syncrepl to replicate data to multiple providers ("Masters").
 - Up to 4096 to be exact!
- Avoids a single point of failure.
- Supports complex topologies:
 - Providers can be located in several physical sites.
- Good for failover/High Availability | NOTHING to do load balancing.
- Requires synchronized time source ntp.
- Providers must propagate writes to all the other servers:
 - Network traffic and write load spreads across all of the servers the same as for single-master.

Source: www.zytrax.com.

For more details:

http://www.openIdap.org/doc/admin24/replication.html