

Topic 4. Network configuration service: ISC DHCP

José Ángel Herrero Velasco

Department of Computer and Electrical Engineering

This work is published under a License:

Creative Commons BY-NC-SA 4.0

open course ware

Topic 4. Network configuration service: ISC DHCP

Secure information service: Puzzle

open **course** ware

Topic 4. Network configuration service: ISC DHCP

Target: ... server convergence

- Installation, configuration and deployment of *third-party* network services for local *networking* management on the INTRANET:
 - Dynamic configuration service (DHCP): ISC dhcpd:
 - **Dynamic host configuration** of network parameters in local hosts.
 - Domain name service (DNS): ISC bind9.
 - Network time service (NTP): ISC ntpd.

open **course** ware

Topic 4. Network configuration service: ISC DHCP

DHCP: Dynamic Host Configuration Protocol

- It allows hosts from a TCP/IP network to "*lease*" their <u>network and administrative configuration</u>:
 - Hosts don't need to know that configuration previously.
- It is suitable for "dynamic" environments (ISPs):
 - When a connected host boots, DHCP <u>automatically</u> assign (rents) a full network configuration:
 - This can be **reused** by other hosts when this is *off-line*.
- It is suitable for "static" environments too (LANs):
 - Centralized network configuration:
 - It simplifies the global network configuration.
 - It makes the system administrator's life easier.
- It is an evolution of BOOTP (67/UDP port):
 - Initially it was deployed to boot diskless UNIX hosts:
 - In this case, DHCP service should send to clients a full network configuration:
 - Network configuration and kernel + initrd (boot SO ramdisk) included.
 - DHCP service should provide everything.
 - DHCP can operate with BOOTP.

Topic 4. Network configuration service: ISC DHCP

DHCP: "Leased" networking parameters

- IP address and netmasks.
- DNS name servers.
- NTP servers.
- Gateways (default network routes).
- Remote Syslog servers.
- WINS, proxy and X Servers (if applicable).
- TFTP (+ PXE) network boot servers:
 - Diskless boot.
- ... There are dozens more (RFC2131/2):
 - http://www.rfc-base.org/rfc-2132.html.

open course ware

Topic 4. Network configuration service: ISC DHCP

DHCP: Parameter assignment

- The leased parameters (*lease*) **must be renewed** by client hosts:
 - Periodically (when lease time is half over).
 - If lease time is over and the lease is not renewed:
 - The lease expires → DHCP server "removes" them!!!
 - Service is free to be reused by other clients.
 - Lease time is configurable:
 - From hours to days... endless even.
- Service can assign network parameters in 2 ways:
 - Dynamically →
 - Regardless of who the client is:
 - → floating IP.
 - Statically →
 - Settings are pre-assigned for each client:
 - Uniquely.
 - Through interface MAC address.
- More than one operative DHCP service could even exist in a LAN:
 - Conflicts???

Topic 4. Network configuration service: ISC DHCP

DHCP: Operation

When client-host boots, it sends a
 DISCOVER message →

DHCPDISCOVER:

- In broadcast mode (IPv4):
 - To the whole network.
- This message contains client data, such as:
 - MAC address.
 - ...

(**) → **DISCOVER** message can be relayed out of its subnet, using a "relay agent"...

CLI

Topic 4. Network configuration service: ISC DHCP

DHCP: Operation

- The DHCP Server(s) responds with an OFFER message
 → DHCPOFFER:
 - It contains the IP address and other network parameters:
 - If there were more than two DHCP servers running on the subnet, any of them could answer the client request simultaneously:
 - The client takes:
 - » The <u>first</u> reply.
 - » Preset.
- The client replies to DHCP server with a **REQUEST** message
 → DHCPREQUEST:
 - In broadcast mode (IPV4):
 - The message contains the "winner" DHCP server data.
- The DHCP server responds with an ACK message
 → DHCPACK:
 - and "blocks" the assigned IP address.
- Before using it, the client checks the IP address:
 - That is, if it is not in use!!:
 - According to its ARP table.
 - If it is, the client responds with a **DECLINE** message > DHCPDECLINE:
 - The dialog restarts!!!

SERV

CLI

SERV

TI

Topic 4. Network configuration service: ISC DHCP

DHCP: Operation

• You can see that "talk" between DHCP server and client in the log files:

Topic 4. Network configuration service: ISC DHCP

DHCP: Operation

- Network data expiration:
 - The network configuration has a defined "time to live" parameter:
 - "Lease Time".
 - When this value is half over, the client attempts to renew its lease:
 - Sends a REQUEST...
 - If it doesn't do so, DHCP server will revoke the client network configuration.
- Client runs a Graceful shutdown:
 - When client host shutdowns, it sends a RELEASE message to notify the server that its network configuration must be discarded.
- The DHCP server is obliged to keep track of the configurations:
 - Keep the same IP address for the client.
 - Even if client reboots.
- If DHCP server fails and...:
 - "Lease time" is running out or client reboots:
 - →Clients won't be able to connect again.
 - → Unless we have **dhcpclient** properly configured.

Topic 4. Network configuration service: ISC DHCP

DHCP: Service installation (ISC DHCP)

- DHCP from www.ISC.org:
 - The most stable version for DHCP servers.
- In debian, by default...:
 - Installation from sources (**):
 - \$ wget ftp.isc.org...
 - \$./configure; make; make install.
 - Installation from DEBIAN repository (mirrors):

```
Server { $ apt-get install isc-dhcp-server.
Client { $ apt-get install isc-dhcp-client.
```

- Checking:
 - \$ vi /etc/dhcp/dhcpd.conf.
 - \$ cat /var/lib/dhcp/dhcpd.leases (log).
- → ** Debian repositories usually have older versions (but more stable).

Source: www.isc.org.

open course ware

Topic 4. Network configuration service: ISC DHCP

DHCP: Daemon and service configuration

- Server (daemon) configuration:
 - \$ vi /etc/default/isc-dhcp-server:
 - DHCPd daemon relative options:
 - DHCPD_CONF: main configuration file for DHCP service.
 - OPTIONS: secondary daemon options.
 - INTERFACES: Ethernet interfaces which DHCPd will operate.
- **Service** configuration:
 - \$ vi /etc/dhcp/dhcpd.conf:
 - This file is very syntax sensitive (as the rest of the config file... <a>(**)
 - If an (syntax) error exists, the service doesn't start.
 - When this file is modified, we must <u>restart</u> DHCP service.

Options:

- Domain name which DHCP service will manage:
 - option domain-name "domain name".
- Maximum and initial "lease time" for network parameters:
 - max-lease-time 24000.
 - default-lease-time 3600.

open course ware

Topic 4. Network configuration service: ISC DHCP

DHCP: Service configuration

- Network parameters for all clients: netmask, gateways, DNS servers, etc.:
 - option domain-name-servers <IP1>, <IP2>, ...
 - option routers <router IP>.
 - option subnet-mask <Network mask IP>.
 - option broadcast-address <broadcast IP>.
- Subnets managed:
 - Defined by <u>address ranges</u>: (from... to...):
 - Dynamic (floating IPs).
 - Static (according to client MAC address).
 - **subnet** 192.168.0.0 netmask 255.255.255.0 {range 192.168.0.20 192.168.0.30; }
- Both within and outside the subnet definitions, we can define hosts and host groups:
 - These host definitions enable static network parameters for each host (or host group).
 - group {
 <global parameter for every host in the group>

Topic 4. Network configuration service: ISC DHCP

DHCP: Service configuration

- TFTP/BOOTP configuration:
 - That configuration will be useful for booting diskless (or not installed) hosts:
 - Header parameters:

```
allow booting;
allow bootp;
```

• Global parameters:

```
option imageserver code 140 = text;
option imageserver "<IP servidor systemimager>";
```

- **Particular** (group and **host)** parameters:
 - Both can be used jointly -
 - next-server <IP servidor systemimager>;
 - filename "pxelinux.0";

Network **boot loader** image: located on system images server → /tftpboot/

open course ware

Topic 4. Network configuration service: ISC DHCP

DHCP: Service configuration

/etc/dhcp/dhcpd.conf

Sample

```
# Overall config options
allow booting;
allow bootp;
option domain-name "localdomain";
option domain-name-servers 192.168.0.11, 193.194.193.22;
option subnet-mask 255.255.255.0;
max-lease-time 7200;
# Dynamic IP range (Floating Ips - dynamic assignment)
subnet 192.168.0.0 netmask 255.255.255.0{
   range 192.168.0.100 192.168.0.120;}
# Static IP range (assigned according to the client MAC address)
subnet 192.168.0.0 netmask 255.255.255.0{
   range 192.168.0.20 192.168.0.40;
   option broadcast-address 192.168.0.255;
   option routers 192.168.0.2;
   host client {
        hardware ethernet 08:00:07:12:34:56;
        fixed-address 192.168.0.25;
    }
```


Topic 4. Network configuration service: ISC DHCP

DHCP: Is it Flexible? Is it Safe?

- Is it flexible?:
 - It allows a centralized network management:
 - Dynamic (floating) hosts:
 - Laptops, temporal ad-hoc networks, guest hosts.
 - Static (permanent) hosts:
 - @MAC.
 - Any network change that occurs will be easily solved:
 - For instance, any change on router or DNS IP.
 - All my network configuration <u>resides</u> in a single file.
- Is it safe?:
 - Initially, when we assign static parameters (IP) to clients, we know exactly what host it is for:
 - We can keep control.
 - But...:
 - MAC address is recorded in a ROM of the network interface.
 - → Impossible to modify ??!?!??!:
 - It doesn't prevent "unauthorized" hosts using our subnet:
 - » They can assign a MAC address themselves ← MAC spoofing.
 - If a single running DHCP service fails, our host clients become network-less:
 - So, at least it is very important to have dhcpclient service on clients or more DHCP servers.
 - It doesn't include any security mechanism (by default):
 - Typical attacks (... and very dangerous!!):
 - Authentication:
 - » Unauthorized DHCP servers providing false information to clients.
 - » Unauthorized clients gaining access to resources.
 - Attacks:
 - » DHCP man in the middle:
 - ARP spoofing.
 - MAC/IP spoofing.
 - » DHCP starvation:
 - Unauthorized DHCP server attacks.
 - → Deny of Service (DoS) from client side.
 - Authentication mechanism → RFC 3046, RFC 3118, EAPODHCP...

José Ángel Herrero Velasco

Attention!!

One Point of Failure (PoF)