

Topic 6. Network time sync service: ISC NTP

José Ángel Herrero Velasco

Department of Computer and Electrical Engineering

This work is published under a License:

Creative Commons BY-NC-SA 4.0

open **course** ware

Topic 6. Network time sync service: ISC NTP

Secure information service: Puzzle

Topic 6. Network time sync service: ISC NTP

Target: ...server convergence

- Installation, configuration and deployment of *third-party* network services for local *networking* management on the INTRANET:
 - Dynamic configuration service (DHCP): ISC dhcpd.
 - Domain name service (DNS): ISC bind9:
 - Network time service (NTP): ISC ntpd:
 - Keeping the **software time** synchronized in accordance with a common time reference.
 - EVERY network host must have the <u>same</u> software time:
 - Reference time.
 - Regular checks (sync).

open course ware

Topic 6. Network time sync service: ISC NTP

Computer time

- In computer systems:
 - Time = number of seconds elapsed since a reference time (01/01/1970)^{Unix}
- Every computer has 2 clocks:
 - Hardware clock:
 - Integrated in motherboard and powered by a small battery:
 - Computer keeps the hardware time even during shutdowns.
 - If you take out this battery → "Reset" (time, BIOS password ?!?!? ···):
 - » Beware if battery runs out!!!!!!
 - Hardware time can be changed by OS or BIOS.
 - It is used to configure the computer **local time**.
 - Software clock:
 - It uses the UTC → Coordinated Universal Time:
 - Primary time standard by which the world regulates clocks and time → From 1 January 1960.
 - Successor to Greenwich Mean Time (GMT).
 - UTC (from 1970) is defined by:
 - » International Atomic Time (IAT):
 - Atomic reference clocks Cesium atoms ightarrow Distributed by GPS (and radio), modems \cdots
 - » With leap seconds added:
 - At irregular intervals to compensate for the slowing of Earth's rotation (31s/century ΔT).
 - » UTC according to geographic zones (Time Zones):
 - Positive or negative offsets (24) from UTC.
 - In the past, "GMT" was used as reference \rightarrow Greenwich Mean Time: Mean solar time:
 - Astronomical base.
 - Stable but not constant...
 - → Both of them are independent of each other, except when OS boots:
 - OS uses HW time to set up its SW time (on boot).
 - Then, SW time is synchronized (UTC) by NTP.

open course ware

Topic 6. Network time sync service: ISC NTP

NTP: Network time sync protocol

- NTP: Network Time Protocol.
- Motivation:
 - Many services and network apps need software clocks to be <u>100% synchronized</u> (timestamps):
 - Kerberos, batch processing systems, distributed file systems & databases, log systems, developing tools (makes), etc...
- Definition (NTP):
 - NTP is a **protocol** designed to <u>synchronize the clocks</u> of computers in a variable-latency data network.
 - → Selects the best time among several time sources and minimizes cumulative delay.
 - Targets:
 - **1. Optimize** *local time* accuracy for *UTC*.
 - 2. All hosts on a LAN have their clocks synchronized (use the same software time).
- Origins and history:
 - One of the oldest protocols on the Internet (since 1979):
 - Internet Clock Service (RFC 778):
 - → Internet services running over a trans-Atlantic satellite network.
 - Accuracy of only several hundred milliseconds.
 - Versions:
 - 1985. Fuzzball and Unix implemented the **NTPv0** (RFC 958):
 - David L. Mills (Delaware University USA).
 - 1988. The first complete specification: a much more complete specification in the **NTPv1** (RFC 1059).
 - 1889. Introduction of symmetric-key authentication in the NTPv2 (RFC 1119).
 - 1992. Introduction of formal correctness principles in NTPv3 (RFC 1305):
 - 1994: NTPv3 works for a new version of NTP: SNTP (RFC 2030).
 - 1994-XX. Analysis of all sources of error, external pulses calibration and more new features...
 - 2010. NTPv4 (RFCs 5905/6/7 y 8) → Continues to be a <u>developing version</u>:
 - The reference implementation is currently maintained as an open source project led by Harlan Stenn.

open **course** ware

Topic 6. Network time sync service: ISC NTP

NTP: Basis & features

Fundamentals:

- NTP needs a reference time to define the <u>true time</u> (network time):
 - NTP system uses UTC as reference time, based on International Atomic Time (IAT).
 - This "reference time" will be assigned by the *hierarchical system*.
- NTP is a fault tolerant protocol (Bellman-Ford shortest-path spanning tree):
 - The time data comes from multiple sources.
- NTP is highly scalable:
 - It can increase in client numbers...
- NTP can sync the **host time** even though network is "down":
 - Temporally... (fudge + driftfile).

Precision:

- Strongly dependent on the <u>type of network</u>:
 - From 5-100 ms (Internet) to 200 μs (LAN).

Architecture:

- NTP uses a hierarchical system of servers on the Internet (Servers → Peers):
 - NTP **stratum** model.
 - Each level → stratum (ID).
- Many *peers* provide time **redundancy.**

• TCP/IP protocol:

- Transport layer.
- NTP package format (NTP/SNTPv4):
 - The following to IP/UDP headers...
 - The 64-bit timestamps:
 - Compute the offsets.

NTP architecture

TRANSPORT layer (TCP/IP)

		Octet + 0	Octet +1	Octet +2	Octet +3	
		76543210	76543210	76543210	76543210	
	+0	LI VN 000	Statum	Poll	Precision	
	+4	Synchronizing Distance				
	+8	Estimated Drift rate				
	+12	Reference clock Identifier				
	+16	Reference clock Timestamp				
	+24	Originate Timestamp				
	+32	Receive Timestamp				
	+40	Transmit Timestamp				
			· ·			

open course ware

Topic 6. Network time sync service: ISC NTP

NTP: Computing the "right time"

- NTP algorithms for time computing:
 - The key:
 - → Selects the *best time* among many sources.
 - Minimizes cumulative delay (minimizes the accumulated error).
 - Architecture and Algorithms:
 - (1) Clock Filter algorithm:
 - Time references are calculated based on round trip delay and interval observations.
 - Then, it selects the offset with minimum delay.
 - (3) Clustering algorithm:
 - Selects the best suite of servers (peers) and combines their differences to determine the offset.
 - (2) Intersection algorithm (default):
 - Based on Marzullo's algorithm.
 - A typical NTP client will regularly pool 3 or more servers on diverse networks:
 - » Client must compute their time offset and round-trip delay.
 - » Among several servers, it requires that the midpoint of the interval be at the intersection.
 - (4) Combinational Algorithm:
 - Computes the mean time offsets.
 - **(5) Clock Discipline** Algorithm:
 - It is an adaptive parameter, hybrid phase/frequency-lock feedback loop → Minimize the jitter (dispersion).

open course ware

Topic 6. Network time sync service: ISC NTP

NTP: Service architecture (Topology)

- NTP uses a **hierarchical**, semi-layered system of time sources:
 - Each level of this hierarchy is termed a "stratum".
 - Each stratum is assigned a ID (0 .. N).
- The **stratum ID** represents the **distance from the reference clock (n + 1)**:
 - Stratum is not always an indication of quality or reliability.
- Clock strata:
 - Stratum 0:
 - High-precision timekeeping devices → Atomic (cesium, rubidium) clocks.
 - Stratum 1:
 - These are computers whose system clocks are synchronized within a few microseconds of their attached stratum 0 devices.
 - They may peer with other stratum 1 servers (backups).
 - Stratum 2, 3... to 14 (although it supports up to 256):
 - These are computers that are synchronized over a network to a stratum 1, 2... to 13 servers.
 - They can themselves act as servers for stratum 3 computers, and so on.

open course ware

Topic 6. Network time sync service: ISC NTP

NTP: Operational basis

- When a NTP client requests a time sync (Client/server mode):
 - If server is a direct time source (stratum 0):
 - The server sends its "local time", "time zone" and stratum.
 - Else:
 - The server sends a *computed time*:
 - Using data from servers of the same or higher stratum.
 - Using <u>NTP algorithms</u>.
- The client must recalculate the time obtained:
 - Using the **Intersection** algorithm:
 - Time offset and round-trip delay.
- Public NTP server list:
 - Public NTP Primary (stratum 1) Time Servers:
 - http://support.ntp.org/bin/view/Servers/StratumOneTimeServers.
 - Public NTP Secondary (stratum 2) Time Servers:
 - http://support.ntp.org/bin/view/Servers/StratumTwoTimeServers.
 - Public NTP Pool Time Servers:
 - http://support.ntp.org/bin/view/Servers/NTPPoolServers.

Source: https://memoria.rnp.br.

open **course** ware

Topic 6. Network time sync service: ISC NTP

NTP: Network time sync service

• NTP on Linux/UNIX:

- Service managed by the ntpd daemon (most of protocol is implemented in it):
 - Operation modes:
 - Client/server mode:
 - » The client requests "time sync" to a particular NTP server.
 - Broadcast mode (client/server):
 - » Many clients may be sync with one or more NTP servers.
 - » Operation:
 - Server sends "time" to everybody.
 - Clients listen only!!!
 - → It reduces network traffic (LAN).
 - Multicast mode:
 - » One or more servers periodically *multicast* the time to the servers in the network.
 - » Only in NTPv4.
 - Symmetric mode:
 - » It enables NTP servers to synchronize with each other to provide "time reference" copies (Horizontal sync):
 - To improve the accuracy of their synchronization over time.
 - NTP is defined for TCP/IP networks:
 - UDP 123
 - NTP security:
 - NTP (v4) is able to guarantee the server authenticity.
 - NTP may use symmetric-key and public key-cryptography modes:
 - » Public/private keys.

Protocol alternatives:

- Thera are different deployments of the same protocols (NTP)
 - Protocol variants.
 - SNTP (Simple Netwok Time Protocol): RFC 5905:
 - More simple (no storage of previous connections) and less precise!!!
 - For embedded devices.

Topic 6. Network time sync service: ISC NTP

NTP: Service installation (ISC NTP)

- NTP server and tools installation (Server):
 - Stage 1. Hardware clock setting:

```
$ hwclock --set --date="10/11/2010 16:27:30"
```

- \$ hwclock --hctosys
- Stage 2. Time zone setting (local):
 - \$ dpkg-reconfigure tzdata
- Stage 3. Service software installation:
 - \$ apt-get update
 - \$ apt-get install ntp ntp-doc
 - \$ update-rc.d ntp defaults
- Lab 2. We should deploy a local NTP service.

open **course** ware

Topic 6. Network time sync service: ISC NTP

NTP: Service configuration

- NTPd service main configuration file:
 - \$ vi /etc/ntp.conf
 - Main configuration entries:
 - server <ip>:
 - NTP source public servers list (1/2 stratums).
 - It is recommended to have at least 3 servers.
 - restrict <ip> [opciones]:
 - Access control restrictions.
 - By default, the NTP server will be accessible from all internet hosts.
 - It establishes which hosts can use the NTP service and which do not.
 - fudge <ip> stratum <num>:
 - Routing control (pseudo IP) → Backup.
 - It is only used when NTP servers fail (unavailable):
 - » NTP server sync itself.
 - keys <fichero>:
 - Key file for queries.
 - driftfile <fichero>:
 - Drift file → The drift file is used to store the frequency offset between the system clock running at its nominal frequency and the frequency required to remain in synchronization with UTC.
 Default: /var/lib/ntp/ntp.drift.
 - statsdir <directorio>:
 - Logs and statistics file for NTP service.
 - broadcast <ip>:
 - Server configuration in broadcast mode.

Topic 6. Network time sync service: ISC NTP

NTP: Daemon configuration

- NTPd daemon main configuration file:
 - \$ vi /etc/default/ntp
 - NTP daemon (ntpd) parameters defined as variables:
 - They are used by startup script:
 - /etc/init.d/ntp.
 - Sample:
 - NTPD_OPTS='-g'
 - To view the options available in the NTP service:
 - \$ man ntpd.
- More important things about NTP service:
 - Firewalls:
 - It is necessary to keep port 123 open for UDP:
 - For incoming and outgoing traffic.

Topic 6. Network time sync service: ISC NTP

Examples: Service configuration

Sample

•/etc/ntp.conf

```
driftfile /var/lib/ntp/ntp.drift
statsdir /var/log/ntpstats/
statistics loopstats peerstats clockstats
filegen loopstats file loopstats type day enable
filegen peerstats file peerstats type day enable
                                                                       Server list for ½
filegen clockstats file clockstats type day enable
                                                                          stratum.
server hora.rediris.es
server 0.pool.ntp.org
server 127.127.1.0
                                                                         Pseudo-IP
fudge 127.127.1.0 stratum 13
                                                                       address. If any
restrict default kod notrap nomodify nopeer noquery
                                                                       error happens,
restrict 127.0.0.1 nomodify
                                                                       NTP syncs itself.
broadcast 192.168.0.255
```

•/etc/default/ntp

NTPD OPTS='-g'

Topic 6. Network time sync service: ISC NTP

NTP: Client installation

- NTP client is based on the scheduled run of ntpdate-debian command.
- NTP client installation (client):
 - The recommendations for server installation, as in the previous steps, are also valid for NTP clients.
 - Stage 1. Hardware clock setting:

```
$ hwclock --set --date="10/11/2010 16:27:30"
```

- \$ hwclock --hctosys
- Stage 2. Time zone setting (local):
 - \$ dpkg-reconfigure tzdata
- Stage 3. Client software installation:

```
$ apt-get update
```

\$ apt-get install ntpdate

Topic 6. Network time sync service: ISC NTP

NTP: Client configuration

- **ntpdate-debian** configuration:
- \$ vi /etc/default/ntpdate
 - Options:
 - DATE_USE_NTP_CONF:
 - It's only used if host runs ntpd.
 - » /etc/ntp.conf.
 - NTPSERVERS:
 - NTP servers list used by ntpdat-debian.

Topic 6. Network time sync service: ISC NTP

Examples: Client configuration

Sample

•/etc/default/ntpdate

```
# The settings in this file are used by the program ntpdate-debian, but not
# by the upstream program ntpdate.

# Set to "yes" to take the server list from /etc/ntp.conf, from package ntp,
# so you only have to keep it in one place.
NTPDATE_USE_NTP_CONF=no

NTPSERVERS="192.168.0.11 0.debian.pool.ntp.org 1.debian.pool.ntp.org"

# Additional options to pass to ntpdate
NTPOPTIONS=""
```


Topic 6. Network time sync service: ISC NTP

NTP: Client configuration (regular sync)

- To maintain a client regular time sync, we must use the CRON service:
 - Option 1. Root crontab:

```
$ crontab -e
  */15 * * * * /usr/sbin/ntpdate-debian
$ /etc/init.d/cron reload
```

- Option 2. Temporary crontab / etc/cron. {daily, hourly}

```
$ vi /etc/cron.hourly/ntpdate
  /usr/sbin/ntpdate-debian
$ chmod 755 /etc/cron.hourly/ntpdate
$ /etc/init.d/cron reload
```


Topic 6. Network time sync service: ISC NTP

NTP: Checking

- **Checking** if NTP service is "running":
 - \$ /etc/init.d/ntp restart
 - \$ pgrep ntpd
 - \$ ps -elf |grep ntp
 - \$ netstat -atunp
- **Checking** if a *firewall* is setting:
 - \$ iptables -L
- **Checking** the NTP service sync according to the upper stratum:
 - \$ ntpq -p (prints the current software time).
 - \$ ntpdc -loopinfo (prints how the software time is drifted).
 - \$ ntpdc -kerninfo (prints the current aggregated correction).
 - \$ ntptime
- **Sync** the client software time:
 - \$ ntpdate-debain <ntp server>
- Sync the client hardware time according to hardware time:
 - \$ hwclock --systohc