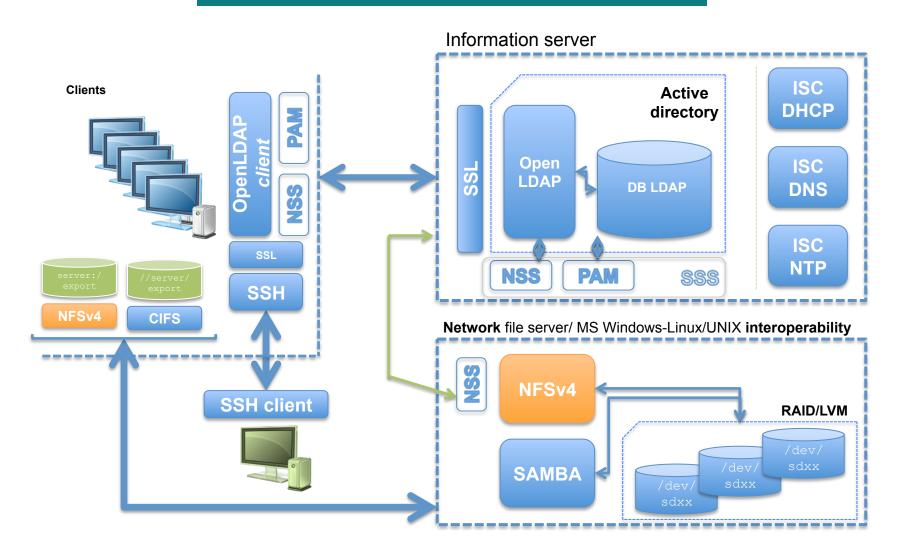


Topic 7. Network file system service: NFSv4

José Ángel Herrero Velasco

Department of Computer and Electrical Engineering

This work is published under a License:


Creative Commons BY-NC-SA 4.0

open course ware

Topic 7. Network file system service: NFSv4

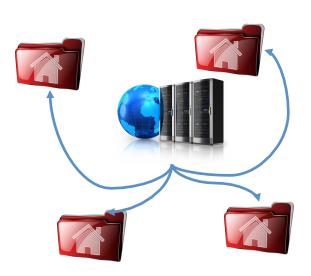
Secure information service: Puzzle

Topic 7. Network file system service: NFSv4

Target: ...breaking down the boundaries of local data

- Deployment and development of a secure network file and resource system, based on NFS & SMB/CIFS (SAMBA) technology:
 - Network file system:
 - It is about **centralizing** the storage of (mainly) user files from a computer environment.
 - Computational resources sharing system:
 - MS Windows Linux/UNIX interoperability.

open course ware


Topic 7. Network file system service: NFSv4

Distributed file systems

- A distributed file system is a suite of logic structures, methods and (remote) procedures that are managed through a group of services:
 - Takes charge of storage, setup, recovery, naming, sharing and security of data:
 - Data is stored in files that can be located on different servers.
 - Enables the client host processes to access files in a transparent and efficient way:
 - "Centralized" view of the data (files) as a unique data volume.

Advantage:

- Any user/app is able to access its files <u>from anywhere</u>.
- Provides a software programming interface that hides the location details of data (files).
- "Simple" management (centralized storage):
 - All data on one (or group) server.
- Provides security mechanisms:
 - ACL system.
 - Disk quotas.
 - Kerberos integration.
 - "Failover capability" (metadata, files...).
- Improves reliability, with regard to local systems:
 - Using RAID devices on server.
 - Replication techniques.
- High performance, despite network:
 - Using cache on clients.

open course ware

Topic 7. Network file system service: NFSv4

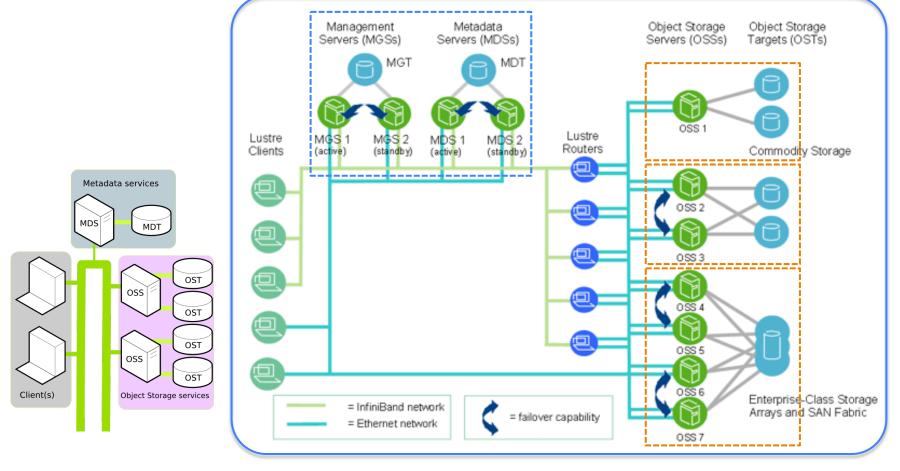
Distributed file systems

• Requirements:

- Transparency.
- Concurrence.
- Performance.
- Replication.
- Heterogeneity.
- Consistency.
- Fault tolerance.
- Security.

Classification:

- DFS and Clustered file systems:
 - AFS, ClusterFS, GlusterFS, Google file system...
 - HDFS (Hadoop).
 - Lustre.
 - Microsoft DFS.
- Cloud file systems:
 - **Dropbox**, Oracle Cloud file system, SCFS...
- Parallel file systems:
 - **PVFS2**, orangeFS...
- *P2P* file systems:
 - Wuala, PAST...
- Network file systems:
 - NFS, pNFS...



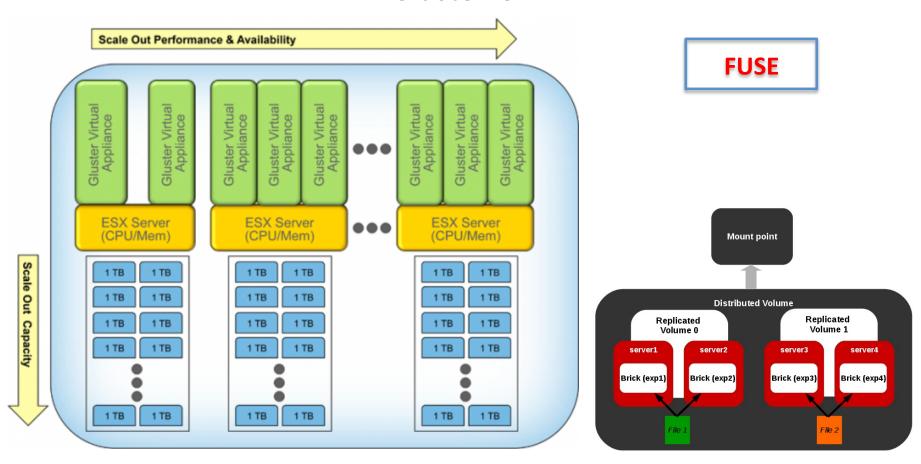
open course ware

Topic 7. Network file system service: NFSv4

Distributed file systems

Lustre

Source: http://lustre.org.



Topic 7. Network file system service: NFSv4

Distributed file systems

GlusterFS

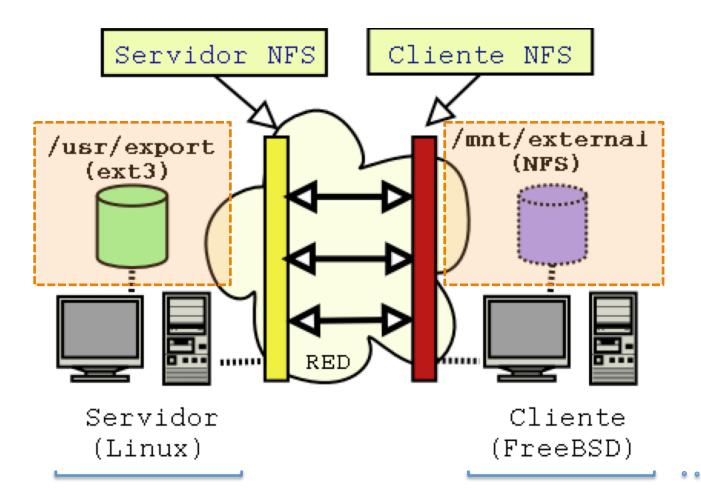
Source: http://www.tecmint.com.

open course ware

Topic 7. Network file system service: NFSv4

Network file systems

- Main gaps with distributed systems:
 - Provide a client-server service to export local file systems through TCP/IP networks:
 - ext2/ext3/ext4, xfs, raiserfs...
 - Store data (files) on a <u>unique server</u>:
 - Implications:
 - Performance.
 - Management.
 - Security.
 - Fault tolerance.
- The most representative example of network file systems is NFS:
 - NFS: Network File System.



open course ware

Topic 7. Network file system service: NFSv4

NFS: Network File System

NFS

open course ware

Topic 7. Network file system service: NFSv4

NFS: Network File System

Definition:

- → Breaking down the boundaries of local data:
 - Set of rules (protocol) that enables sharing <u>local file systems</u> over TPC/IP networks in a transparent way.
 - NFS is a special (unusual) distributed file system type.
 - NFS is built over other protocols and mechanisms:
 - Uses the Sun RPC mechanism and Sun eXternal Data Representation (XDR) standard:
 - RMI: the *object-oriented* programming.
 - Defined as a set of remote procedures.
 - Protocol is <u>stateless</u> (initially):
 - Each procedure call contains all the information necessary to complete the call.
 - Server maintains no "between call" information.

Topic 7. Network file system service: NFSv4

NFS: Network File System

History and protocol development:

- Developed by SUN Micro. in 1984:
 - To be used on diskless hosts.
 - Along with protocols:
 - DHCP, TFTP, BOOTP (?!?!).
- Nowadays, NFS is available for every UNIX/Linux distribution:
 - Including MS Windows systems.
- Versions:
 - NFSv1 (1984): used only for in-house experimental environments (not published).
 - NFSv2 (1989): RFC 1094:
 - Over UDP; Virtual File System interface.
 - Only allows the first 2 GB of a file to be read due to 32 bits limitations.
 - NFSv3 (1995): RFC 1813:
 - Support for 64-bit file sizes and offsets; asynchronous writes on the server; file handles long file names.
 - And many more improvements.
 - NFSv4 (2000): RFC 3530:
 - Includes significant <u>security</u> enhancements and...
 - » Performance.
 - » Server maintains client state.
 - » Multi-Component Messages → Less Network traffic.
 - » Mandates strong security architecture.
 - » Elimination of 'side-car' protocols → No rpc.statd or In-kernel lockd.
 - » Only port 2049.
 - → Compatible versions:

 $nfsv2 \leftrightarrow nfsv3 \leftrightarrow nfsv4$.

Topic 7. Network file system service: NFSv4

NFS: The user's perspective

- From the **user's perspective**, there <u>aren't</u> any differences between a *local* file system and a *remote* file system:
 - Local device (Ext4) → Remote device (NFS).

- Transparency in usability:
 - On clients, data (files) is accessed through a directory (mount point):
 - Like the rest of local devices.
 - Penalty on performance may even be minimal compared with local devices:
 - Disk and network technology.
 - Performance will be heavily dependent on:
 - Number of client hosts accessing simultaneously:
 - » (Very important issue!!!).
 - Network technology and design (server side).
- Uniform vision of user files:
 - Users have files available from any client host in the network:
 - P.e. \rightarrow \$HOME.
 - Handy and easy.

Topic 7. Network file system service: NFSv4

NFS: The sysadmin's perspective

• Centralized data:

- All data (files) housed on <u>one server</u>:
 - This can be good and bad at the same time ← "PoF".
- Make service management easier:
 - System managers happier.
 - Management tasks can be concentrated.

• Storage system **optimization**:

- Regarding to security and management.
- Disks→ RAID/LVM devices...
- Backup process.

Isolation:

- Disks are actually located on servers that are not accessed by users:
 - Dedicated (private) networks.

• Fault tolerant (partially):

- Advantage:
 - Critical faults on clients are less "critical" faults.
 - Data (files) is not located on clients.
- Disadvantage:
 - If the server goes "down" → Clients can't access data (files).
 - Although you can deploy "high ability" measures (Failover).

José Ángel Herrero Velasco

open course ware

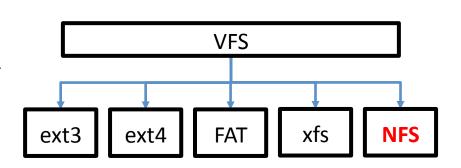
Topic 7. Network file system service: NFSv4

NFSv4: Main features

• Basics:

- Uniform namespaces:
 - → 90% "Root space" (kernel).
- "In Kernel lock" and "mount" protocols have been integrated to NFSv4 core:
 - portmapper, rpc.mountd, rpc.lockd & rpc.statd → KERNEL Linux.
- Statefulness & Sessions:
 - Read/write operations use state description.
- Compound operations.
- Caching → Directory & File Delegations.
- Sparse File Support.
- Space Reservation.
- Firewalls (NAT) compatibility.
- Disk quotas (user/group) support.
- It enables exporting many FS through a simple root (fsid = 0).
- Files export is based on **virtual file system (VFS)** abstraction \rightarrow Transparency.

Security:


- Only port \rightarrow 2049 (TCP).
- Kerberos support (GSS).
- ACLs (Access control lists) support.

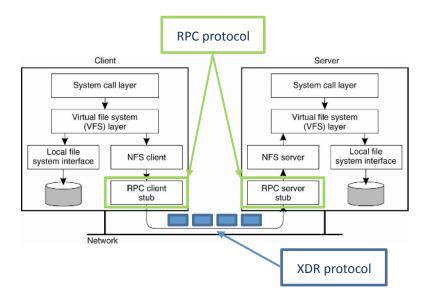
• Performance:

- Multiplatform (client & sever side):
 - Good performance on low bandwidth networks.
- Strongly dependent on:
 - Disk and network technology.
 - Number of clients (writes).

Management:

- Centralized service.
- No maintenance.

Topic 7. Network file system service: NFSv4


NFSv4: Main features

Architecture:

- Client/server architecture:
 - Server:
 - Current exports will work seamlessly:
 - » /etc/exportfs.
 - Clients:
 - A mount configuration file.

Network sharing file service:

- Common process (services):
 - nfs:
 - Starts RPC processes needed to resolve NFS file requests.
 - nfslock:
 - Optional service.
 - RPC process control to lock files requested by clients.
 - → <u>Unused on NFSv4</u> (deprecated) → <u>Functionality integrated in Linux Kernel</u>.
 - portmap:
 - Linux RPC service: RPC management (server side).
 - It configures the RPC connections for each RPC request.
 - → <u>Unused on NFSv4</u> (deprecated) → <u>Functionality integrated in Linux Kernel</u>.

Topic 7. Network file system service: NFSv4

NFSv4: Main features

- NFSv4 RPC daemons (UNIX process):
 - Server side:
 - rpc.nfsd:
 - NFS server process.
 - The main functionality is handled by the *nfsd kernel* module.
 - Implements the <u>user level</u> part of the NFS service: sockets and threads the kernel should listen to and use.
 - rpc.rquotad:
 - Quota manager for "remote" users on NFS server.
 - It also allows setting of quotas on NFS mounted filesystem.
 - The daemon is started by NFS service on server side. Clients don't need these kinds of configurations.
 - rpc.idmapd (both server and client side):
 - The daemon provides to server and clients the upcalls to translate the name (user@dominio) and UIDs/GIDs on the system in NFSv4.
 - rpc.svcgssd:
 - The daemon provides to server the transport mechanisms to the Kerberos authentication process (NFSv4).
 - → It enables *authentication* between server and clients (host level).
 - Client side:
 - rpc.idmapd (both server and client side):
 - The daemon provides to server and clients the upcalls to translate the name (user@dominio) and UIDs/GIDs on the system in NFSv4.
 - rpc.gssd:
 - The daemon provides to clients the <u>transport mechanisms</u> to the <u>Kerberos</u> authentication process (NFSv4).
 - → It enables *authentication* between server and clients.

open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Security features

- Preliminary considerations:
 - /etc/exports file:
 - Beware of syntax errors and blanks:
 - It establishes <u>which</u> local file systems are exported, by <u>whom</u> and export <u>restrictions</u>:

Blanks

- Beware of wildcard and meta-characters ("*").
- Beware of "no_root_squash" option:
 - Distinction between "root" user on server side and "root" user on client side.
 - nfsnobody.
- More options:
 - secure:
 - This option requires that requests originate on an Internet port less than IPPORT_RESERVED:
 - » < 1024.
 - ro/rw:
 - Read only; allows only read requests on the exported NFS volume.
 - Read/Write; allows both read and write requests on the exported NFS volume.
 - noaccess:
 - It is used to <u>deny</u> access of PATHs in exported file systems:
 - » P.e.: export /home directory and deny access to/home/jherrero directory.
 - nohide:
 - It makes an exported FS child "not hidden" if you mount its exported FS parent.
 - crossmnt:
 - It makes it possible for clients to move from the filesystem marked with *crossmnt* to exported filesystems mounted on it.

Topic 7. Network file system service: NFSv4

NFSv4: Security features

- Network level security in NFS processes (daemons):
 - Services:
 - NFSv2/NFSv3:
 - portmap:
 - » Dynamic port assignment.
 - mountd:
 - » Remote file systems mount.
 - rquotad:
 - » Disk quotas management on NFS exported systems (remote).
 - NFSv4:
 - nfsd (2049 TCP port), rpc.rquotad (944 TCP port).
 - NFS service processes.
 - How?:
 - TCP Wrappers (inetd/xinetd tcpd):
 - /etc/hosts.allow:
 - » Host (network) list which are allowed to access.
 - /etc/hosts.deny:
 - » Host (network) list of those NOT allowed to access and use such services.
 - IPtables:
 - It enables us to configure a software TCP/IP firewall.
 - We can take control of TCP/IP (input/output) access through the server.
 - Policy (good practices):
 - → At first, DENY every host and ALLOW them on demand...

José Ángel Herrero Velasco

open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Security features

User level security in NFS processes:

mount and remote access

- Once the exported NFS file system is mounted in "RW" mode on client, the protection of each exported file will be depend on its UNIX permissions (owner and access rights):
 - If *two* users, from *two* different client hosts, share the <u>same UID</u> and access the same NFS directory, then both of them will be able to modify the files.
 - Also, any local "root" user could modify files owned by other local users by using the "su" command (no password).
- Recommendations:
 - Use the "root squash" option (default):
 - It changes the "root" ID of any NFS client host to "nobody" → Local "root" as regular user.
 - Use the next options:
 - all_squash:
 - » Every user as nobody user (UID).
 - squash uids and squash gids:
 - » A subset of users or groups UID(s) or GID(s) as nobody user (UID).
 - anonuid and anongid:
 - » Only one user or group as *nobody* user (UID).
 - Use a unique users (UIDs) space for NFS:
 - Centralized information service: LDAP.
 - Use authentication mechanisms → Kerberos.

open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Security features

- File access level security in NFS clients:
 - NFSv4 Access control lists: ACLs:
 - Useful for privilege separation.
 - Provides semantics richer than UNIX mechanisms for NFS file access:
 - Read/write/execute <> Owner/Group/Other.
 - Support:
 - NFSv2 y NFSv3:
 - ACLs POSIX.
 - NFSv4:
 - ACL own mechanism integrated.
 - None of the filesystems which the linux server exports support NFSv4 ACLs:
 - Read http://wiki.linux-nfs.org/wiki/index.php/ACLs.
 - NFSv4 ACLs are "default-deny":
 - If a permission is not explicitly granted by an Allow ACE, it is denied.
 - ACEs mechanism:
 - Types (4):
 - A (allow), D (deny), U (Audit), L (Alarm).
 - Flags:
 - Group \rightarrow g.
 - Inheritance → d, f, n, i.
 - Administrative → S, F.
 - Principals:
 - The owner :: OWNER@.
 - A user :: [principal]@[domain].
 - The owner group :: GROUP@.
 - Through a privilege mask :: EVERYONE@.
 - Permissions:
 - 14 bits are user to access control.

ACEs: Access Control Entry

```
[access type]:[flags]:[principal]:[permissions]

[access type] → A (allow) / D (deny) ... L / U
[flags] → group, inheritance, and administrative
        g (group) / d (directory-inherit) / n (directory-inherit) / i ...
[principal] → username / group (flags)
[permissions] → NFSv4 ACLs

$ nfs4_setfacl -a "A:fdi:use1@localdomain:rwaDxtTcCy" file
```


Topic 7. Network file system service: NFSv4

NFSv4: Security features

ID	Access
r	read-data (files) / list-directory (directories).
w	write-data (files) / create-file (directories).
а	append-data (files) / create-subdirectory (directories).
х	execute (files) / change-directory (directories).
d	delete - delete the file/directory.
D	delete-child - remove a file or subdirectory from within the given directory.
t	read-attributes - read the attributes of the file/directory.
Т	write-attributes - write the attributes of the file/directory.
n	read-named-attributes - read the named attributes of the file/directory.
N	write-named-attributes - write the named attributes of the file/directory.
С	read-ACL - read the file/directory NFSv4 ACL.
С	write-ACL - write the file/directory NFSv4 ACL.
o	write-owner - change ownership of the file/directory.
Υ	synchronize - allow clients to use synchronous I/O with the server.

open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Disk quotas

Data growth level security:

In the **same way** as local file systems.

disk quotas:

- rpc.rquotad daemon.
- Controls the growth of the exported NFS file systems on client hosts:
 - Limits the amount of disk space that can be used:
 - Disk size (bytes).
 - Number of files.
 - For each user and/or group.
 - NFS manages independently one disk quota system for each exported file system.
- It enables 2 limits:
 - Hard:
 - It can never be exceeded.
 - Soft:
 - It can be exceeded for a "certain" time.
 - + grace period:
 - Period of time during which users may violate their "soft" quota.
 - If it is exceeded, the soft quota becomes a hard quota.
 - This period is restarted when the quota is returned (soft):
 - » We remove files.

open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Service installation

Previous:

- Recommendations:
 - Server must be physically safe.
 - Use NFSv4 when the computational environment provides:
 - Local <u>DNS</u> service.
 - Local <u>NTP</u> service:
 - » Kerberos (auth. mechanism for NFSv4) is very sensitive to time sync.
 - Local/remote KDC (kerberos) services:
 - » If you want a very strong auth. mechanism.
 - Use <u>RAID</u> (5,6) mechanisms in your disk devices (store backend):
 - Hardware/software.
 - + Security and + performance.

– Checking:

- NFS support in our kernel:
 - We need NFS support (kernel):
 - » Otherwise we should re-compile kernel.
 - Take a look at the Kernel config file:

```
» /boot/config-3.2.*:
CONFIG_NFS_FS=m o y
CONFIG_NFS_V3=m o y
CONFIG_NFS_V4=m o y
CONFIG_NFSD=m o y
CONFIG_NFSD_V3=m o y
CONFIG_NFSD_V4=m o y
```

José Ángel Herrero Velasco

Topic 7. Network file system service: NFSv4

NFSv4: Service installation

NFS service and tools installation:

```
Server side 
$ apt-get update $ apt-get install nfs-kernel-server nfs-common nfs4-acl-tools $ apt-get install quota

Client side $ apt-get install nfs-common nfs4-acl-tools
```


Topic 7. Network file system service: NFSv4

NFSv4: Service configuration

• Previous configuration (server side):

```
$ vi /etc/fstab
```

- Features:
 - Previously, we must have the local file systems (backend) ready for their NFS export:
 - ext4, xfs, raiserfs...
 - The (NFS) disk quota must be enabled now:
 - Over the local file systems.
 - Later, rpc. quotad daemon will be in charge of the client quota management.
 - usrquota, grpquota.
- Format:

```
<device> <assembly point> <file system type>
  <options> <dump-freq> <pass-num>
```


open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Service configuration

Service configuration (server side):

- Features:
 - NFSv4 needs to be able to identify each filesystem that it exports:
 - NFS can define the "root" directory concept \rightarrow fsid = root or fsid = 0:
 - In terms of NFS exported file.
 - It enables exporting more than one local FS through only one "root" directory.
 - Other filesystems can be identified with a small integer.
- Format:

```
/directorio_a_exportar/ <Filtros de seguridad>([opciones])
```


open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Service configuration

- <security filters>:
 - hostname; That host is the only host allowed for using the resource.
 - ippaddr/mascara; Hosts (Subnet) allowed. =
 - @GruposNIS → Deprecated.
 - gss/krb5x; KERBEROS security options:
 - sys: No crypt.
 - krb5: only kerberos 5 auth.
 - **krb5i**: krb5 and integrity (checksum).
 - krb5p: krb5i and privacy (top security).
- [options]:
 - fsid Identifier of exported file system. If fsid = root or fsid = 0 then the FS is distinguished as the root.
 - ro read-only export.
 - rw read and write export.
 - rw=hostname1, ... "rw" export mode for this list only ("ro" export mode for the rest).
 - root squash Restrict the local root permissions on the remote disk:
 - "Root" users on clients are considered a regular user: "nobody".
 - Default.
 - no root squash No restrictions for client "root" user...:
 - Dangerous!!!
 - wdelay: It enables delaying write operations over the NFS server. Operation groups:
 - Improves performance.
 - sync/async writes:
 - Worst performance (sync).
 - acl:
 - It enables the access control lists.

Take care using **wildcards** int (*,?).

Topic 7. Network file system service: NFSv4

NFSv4: Service check & start up

Checking the devices exported by NFS:

(server side) → /etc/exports:

- \$ exportfs -v
- Applying the NFS configuration setting:

(server side) → /etc/exports:

- \$ exportfs -ra.
- You can restart the NFS service:
 - \$ service nfs-kernel-server restart.

Topic 7. Network file system service: NFSv4

NFSv4: Server (daemons) configuration

- Server side configuration:
 (main configuration file)
 - \$ vi /etc/default/nfs-kernel-server
 - Options:
 - RPCNFSDCOUNT=<num process>:
 - Number of NFS server instances (process).
 - RPCMOUNTDOPTS="":
 - rpc.mountd daemon options.
 - If a firewall is running on server, you must fix the NFS port here:
 - \rightarrow "--port xxxxx".
 - For more details:
 - » \$man rpc.mountd.
 - → It is not necessary for NFSv4.
 - NEED SVCGSSD=<yes/no>:
 - To start (or not) the rpc. svcgssd daemon.
 - It is necessary to integrate with <u>Kerberos</u> (NFSv4).
 - RPCSVCGSSDOPTS="":
 - rpc.svcgssd daemon options.
 - For more details:
 - » \$man rpc.svcgssd.

Topic 7. Network file system service: NFSv4

NFSv4: Server (daemons) configuration

Server side configuration:

(common NFS configuration: Server and client side)

- \$ vi /etc/default/nfs-common
 - Options:
 - NEED STATD=<yes/no>:
 - To start (or not) statd daemon.
 - It is not necessary for NFSv4.
 - STATDOPTS="":
 - rpc.statd daemon run options.
 - For more details:
 - » \$man rpc.statd.
 - NEED IDMAPD=<yes/no>:
 - To start (or not) rpc.idmapd daemon.
 - It is necessary to integrate with <u>Kerberos</u> (NFSv4).
 - NEED GSSD=<yes/no>:
 - To start (or not) daemon rpc.gssd.
 - It is necessary to integrate with Kerberos (NFSv4).

Client side too!!

Both Server and client side.

Topic 7. Network file system service: NFSv4

NFSv4: Server (daemons) configuration

```
    Server side configuration:

 (rpc.idmapd daemon)
 $ vi /etc/idmapd.conf:
    – Options:
        • [General]:
            - Domain = <Network domain>
  (rpc.rquotad daemon)
 $ vi /etc/default/quota:
    – Options:
          [General]:
            - RPCRQUOTADOPTS="-p <n° PORT>"
```


open course ware

Topic 7. Network file system service: NFSv4

NFSv4: Client side configuration

- Client side configuration:
 - \$ vi /etc/default/nfs-common
 - It uses the same options as the server...
- \$ vi /etc/fstab
 - System (core) config for automatic permanent mounting (on boot):
 - → Local device.
 - → Remote devices (NFS...).
 - When the system boots, the <u>specified devices</u> are mounted.
 - When the system goes downs, the specified devices are unmounted.

dump

fsck

- For NFS, there will be another entry:
 - Similarly to the local devices.

```
$ mount -a.
```

• Syntax:

servidor:/<directorio exportado> /<directorio local> nfs4 (opciones)

open **course** ware

Topic 7. Network file system service: NFSv4

NFSv4: Client side configuration

Options:

server:/<exported directory> /<local directory> nfs4 (opciones) 0 0

- rw: read/write filesystem.
- read-only filesystem. Remote NFS clients can't modify the filesystem.
- hard: applications using files stored on an NFS will always wait if the server goes down. User cannot terminate the process unless the option intr is set.
- soft: applications using files stored on an NFS will wait a specified time (using the timeo option) if the server goes down, and after that, will throw an error.
- intr: allows user interruption of processes waiting for a NFS request.
- noexec: disables execution of binaries or scripts on an NFS share.

Remote directory NOT *root* (**fsid** = **0**).

Local (client side) directory.

Manual mounting:

\$ mount -t nfs4 -o acl <nombre servidor>:<dir s> <dir d>

Topic 7. Network file system service: NFSv4

AutoFS: Dinamic mounting on demand

- When many hosts share an NFS data store, the /etc/fstab static mechanism can become a problem:
 - Ona change in NFS config → Change every /etc/fstab file for each host:
 - Each one with different formats.
 - If NFS server goes "down"... chaos is guaranteed.
- Automount simplifies it on the <u>client side</u> and reduces the workload server:
 - On client side, NFS (remote) device is only mounted by user/apps when necessary:
 - Mounting on demand.
 - Allows automounters to specify alternative servers when the first one is "down":
 - Fault tolerant.

Backup servers.

Topic 7. Network file system service: NFSv4

AutoFS: Installation and config

• **Installation** ("root"):

```
$ apt-get update
$ apt-get install autofs
```

Configuration:

(Example for /home):

- \$ vi /etc/auto.master
 - Sets up in autofs where the config file is for each entry.
 - /home /etc/auto.mi_servidor --timeout=60.
- \$ vi /etc/auto.mi servidor
 - * -fstype=nfs4,acl <server name>:<directory>/&.

NFSv4 main options.

Topic 7. Network file system service: NFSv4

NFSv4: Checking and management

• ACLs:

- Getting the ACLs of a specific object:
 - \$ nfs4 getfacl <file|folder>
- Setting the ACLs of a specific object:

```
$ nfs4_setfacl -a "A::user1@localdomain:rwaDxtTcCy" <file|folder>
$ nfs4_editfacl < file|folder >
```

Disk quotas:

- Monetarization (samples):
 - \$ repquota -a:
 - Executed on server by "root".
 - \$ quota -v:
 - Executed on clients by "regular" users.
- Edition/setting of quotas:
 - \$ edquota <user|group>:
 - Executed on server by "root".

Management (checking):

- \$ nfsstat:
- List NFS statistics (server).
- \$ nfsiostat:
- Emulate iostat for NFS mount points using /proc/self/mountstats (clients).
- \$ rpcinfo -p:
- Report RPC information (server/clients).
- \$ showmount -a:
- Show mount information for an NFS server (server).
- \$ exportfs -r:
- Maintain table of exported NFS file systems (server).