

Frío Industrial y Aire Acondicionado (I.T.I.)

T6.- Refrigerantes y Salmueras

Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. Al alumno le pueden servir como guía para recopilar información (libros, ...) y elaborar sus propios apuntes

Departamento: Ingeniería Eléctrica y Energética

Area: Máquinas y Motores Térmicos

CARLOS J RENEDO renedoc@unican.es

Despachos: ETSN 236 / ETSIIT S-3 28

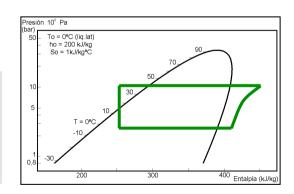
http://personales.unican.es/renedoc/index.htm

Tlfn: ETSN 942 20 13 44 / ETSIIT 942 20 13 82

INMACULADA FERNÁNDEZ fernandei@unican.es

Despacho: ETSIIT S-3 74

Tlfn: ETSIIT 942 20 09 32

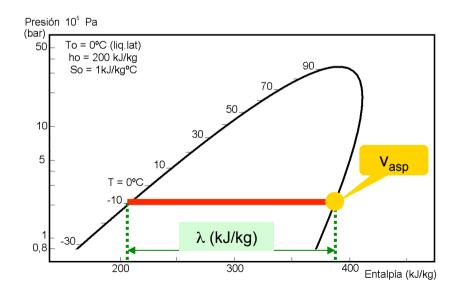


- 1.- Introducción
- 2.- Refrigerantes
- 3.- Clasificación de los Refrigerantes
- 4.- Fluidos Puros y Mezclas
- 5.- Nomenclatura de los Refrigerantes
- 6.- Problemática de los Refrigerantes
- 7.- Comparativa de Refrigerantes
- 8.- Amoniaco
- 9.- CO₂
- 10.- Salmueras

1.- Introducción

Refrigerante es el fluido utilizado en la transmisión de calor que, en un sistema frigorífico, absorbe calor a bajas T y presión, cediéndolo a T y presión más elevadas. Este proceso tiene lugar con cambios de estado del fluido

Salmuera es un refrigerante secundario; transfiere el efecto frigorífico desde un circuito primario de refrigeración (desde el evaporador en donde le enfría un refrigerante), al producto a enfriar



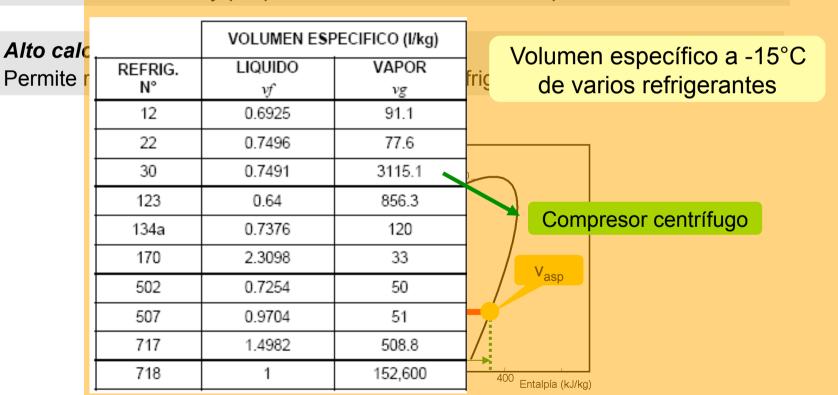
2.- Refrigerantes (I)

Las características y propiedades termodinámicas que han de tener son:

Alto calor latente de vaporización: λ (kJ/kg)

Permite reducir el caudal másico circulante de refrigerante (kg/s)

Bajo volumen específico del vapor en la aspiración: v_{asp} (m^3/kg)

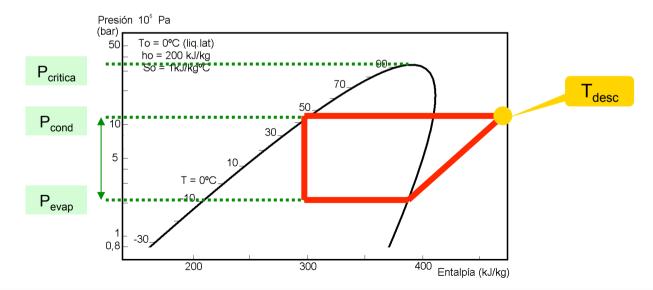

Permite reducir el tamaño del equipo (compresor y tuberías)

2.- Refrigerantes (I)

Las características y propiedades termodinámicas que han de tener son:

Bajo volumen específico del vapor en la aspiración: v_{asp} (m^3/kg)

Permite reducir el tamaño del equipo (compresor y tuberías)


2.- Refrigerantes (II)

Las características y propiedades termodinámicas que han de tener son:

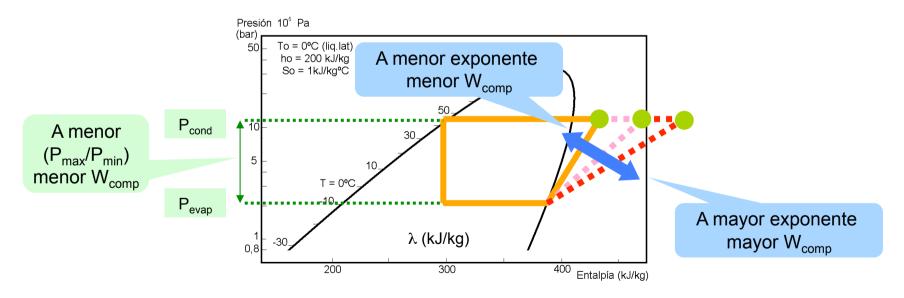
Presiones de trabajo moderadas

P_{cond} << P_{crítica} (permite que el ciclo tenga recorrido)

P_{evap} > P_{atmos} (evita entrada de humedad)

Temperatura de descarga moderada

Evitar la descomposición del lubricante y el asociado daño para el compresor

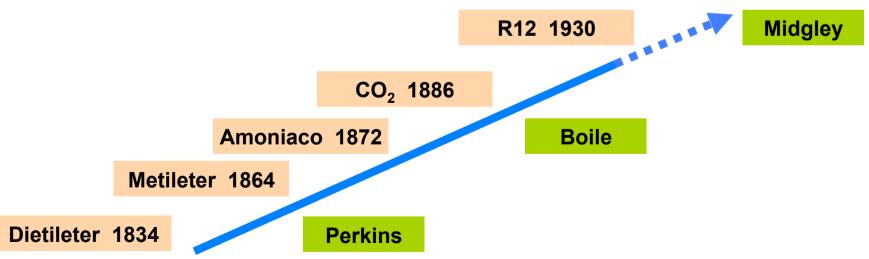


2.- Refrigerantes (III)

Las características y propiedades termodinámicas que han de tener son:

Tasa de compresión y exponente isoentrópico reducidos:

Punto de congelación bajo Sin efectos secundarios para personas, materiales y género Disponible y de bajo costo



2.- Refrigerantes (IV)

Midgley y su equipo buscaban un refrigerante apropiado para aplicaciones domésticas (lo menos tóxico, inflamable posible)

Así llegaron los FREONES, siendo el primero el dicloro-difluoruro-metano (CF₂Cl₂)

Los FREONES desplazaron a la mayoría de los refrigerantes anteriores

3.- Clasificación de los Refrigerantes (I)

Por las *presiones de trabajo*:

- Baja presión, a P atm su T ebullición es alta, superior a +20°C
- Media presión, T ebullición entre +20°C y –30°C
- Alta presión, T ebullición es baja, entre –30°C y –80°C
- Muy alta presión, a T ebullición es muy baja, inferior a –80°C

Por el Reglamento de Seguridad (I)

- GRUPO PRIMERO: si no es combustible ni toxico.
- GRUPO SEGUNDO: tóxica o corrosiva; combustible o explosiva a un 3,5 % o más en volumen
- GRUPO TERCERO: comb. o expl. a menos de un 3,5%

G 1º		
R 12 / R 22		
R 134a		
R 404a		

G 2° R 717

	G 3	0
Pı	ropano	R 290
В	utano	R 600

3.- Clasificación de los Refrigerantes (II)

- Toxicidad (concentración y tiempo de exposición); Dos Grupos: A y B
 - **TVL (TWA):** valor límite umbral de concentración para la jornada laboral, 8 h/día, sin sufrir efectos adversos
 - **TVL (STEL):** valor límite umbral de concentración para 15 min, que no se debe exceder en la jornada laboral
 - **TVL (C):** valor límite umbral de concentración instantánea que no se debe pasar
- Inflamabilidad y Explosividad (% vol. o ppm), tres Grupos: 1, 2 y 3
 - LI, límite de concentración el aire a partir del cual la mezcla puede ser explosiva
 - LS, límite de concentración el aire a partir del cual la mezcla deja de ser explosiva por falta de oxígeno

Nueva Designación	No propaga llama (1)	Baja Inflam. (2)	Alta Inflam. (3)
Baja Toxicidad (A)	A1 G1	A2G3b	A3 G3
Alta Toxicidad (B)	B1 G2	B2 G2	B3G3a

3.- Clasificación de los Refrigerantes (III)

Por su *composición química* (I): Inorgánicos y orgánicos (hidrocarburos)

<u>CFC's:</u> dos átomos Cl, muy estables en la atmósfera (+100 años), contribuyen a la destrucción del ozono. *R11, R12, R113, R114, R115, R-500 y R-502*

<u>HCFC's</u>: un solo átomo de Cl, vida 2 a 28 años, afectan la capa de ozono 2 al 10% de los CFC, han sido una solución intermedia; influyen en mayor medida que los CFC en el calentamiento del planeta. *R-22, R-123, R-124 y R-141b*

Los <u>HFC's:</u> H, F y C, no destruyen el ozono, pero algunos de ellos tienen un efecto importante sobre el efecto invernadero. *R-152a, R-32, R-125 y R-143a*

El *R134a* niveles de toxicidad muy bajos, propiedades termodinámicas parecidas al R-12 en alta y media T. Como inconvenientes: disminuye el COP a medida que desciende T evaporación y aumenta la de condensación, no es miscible con aceites convencionales

3.- Clasificación de los Refrigerantes (IV)

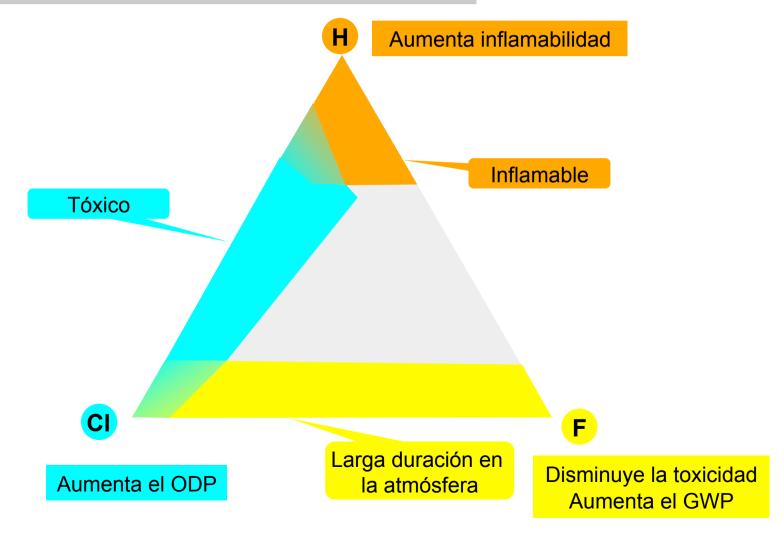
Por su composición química (II): Inorgánicos y orgánicos (hidrocarburos)

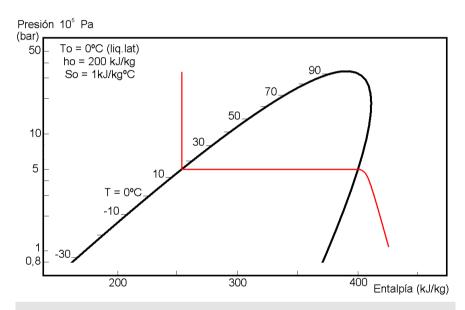
Mezclas: varían sus propiedades en función de la composición

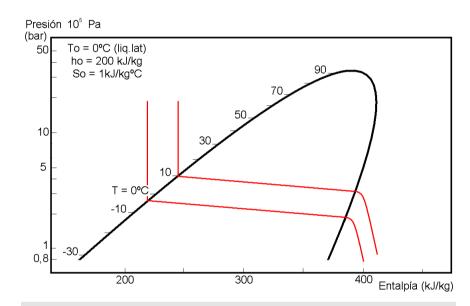
- Azeotrópica: evaporan y condensan a temperatura constante, R5XX
- Zeotrópica: presentan deslizamiento, R4XX

Fluidos de trabajo naturales:

- *El amoniaco R717 (NH*₃), excelente refrigerante, sus inconvenientes son su elevada toxicidad y no ser compatible con el cobre, componentes de acero
- Los hidrocarburos (HC's), propano (R290), butano (R600) y sus mezclas; su problema es su alta inflamabilidad
- El agua (R718) es un excelente fluido de trabajo para alta T
- CO₂ (R744)


3.- Clasificación de los Refrigerantes (V)


3.- Clasificación de los Refrigerantes (VI)



4.- Fluidos Puros y Mezclas (I)

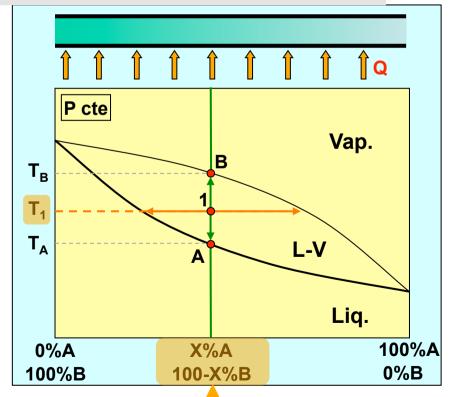
El refrigerante está formado por un único componente. A una P determinada la T de cambio de estado permanece cte

El fluido está formado por combinación de varios componentes (diferente volatilidad)

- Zeotrópica
- Azeotrópicas

Clasificación de seguridad de las mezclas: Como pueden separarse, se hace atendiendo a las peores condiciones

4.- Fluidos Puros y Mezclas (II)

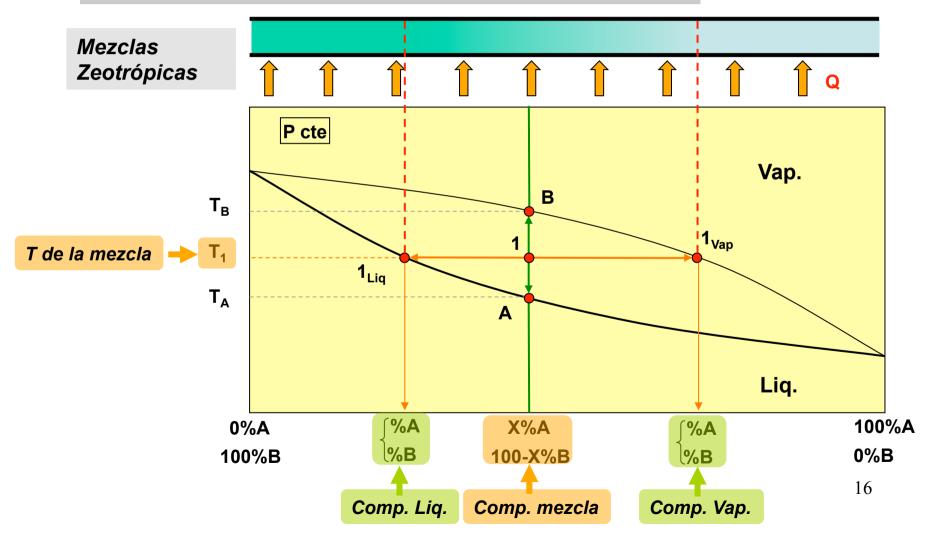

Mezclas Zeotrópicas (R4XX)

A una presión dada presentan *deslizamiento* de T durante el cambio de fase Se debe a cambios de composición por diferentes volatilidades de los componentes

Evaporación:

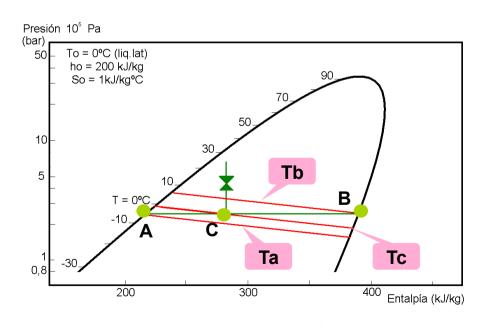
Al ir absorbiendo calor a P cte se llega a una mezcla bifásica (pto 1), en la que el vapor será más rico en el componente más volátil

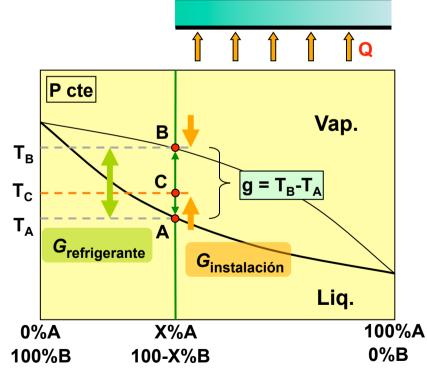
La mezcla líquida será más rica en el componente menos volátil, elevando su punto de ebullición



Composición de la mezcla

4.- Fluidos Puros y Mezclas (II)

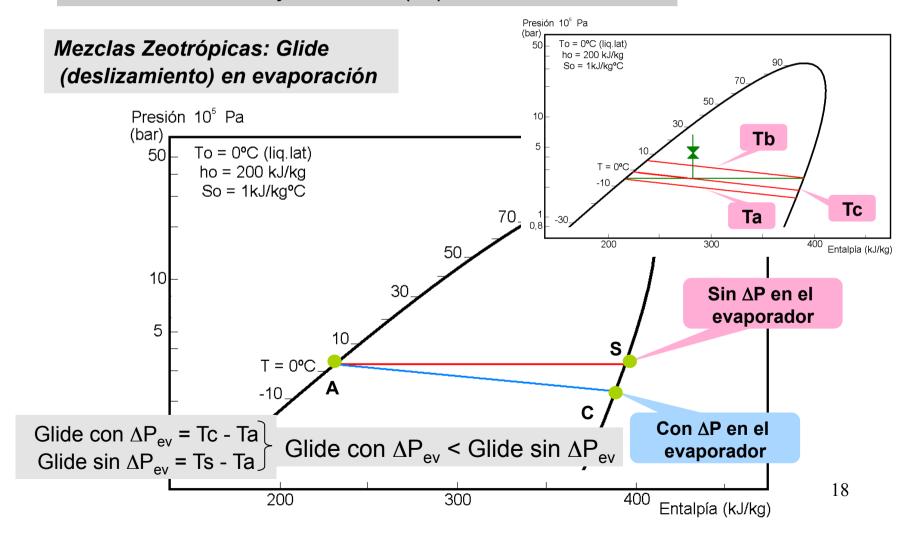




4.- Fluidos Puros y Mezclas (III)

Mezclas Zeotrópicas: Glide (deslizamiento)

Deslizamiento de T^a : g = Tb - Ta

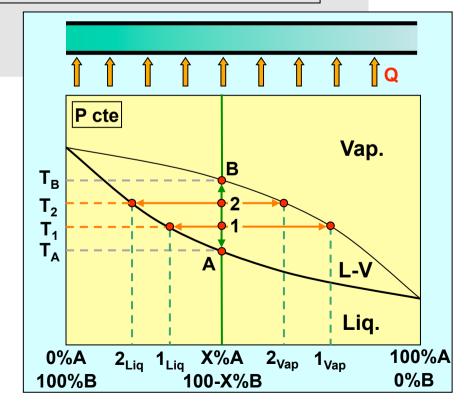


$$g_{instalación} = Tb - Tc$$

4.- Fluidos Puros y Mezclas (IV)

4.- Fluidos Puros y Mezclas (V)

Mezclas Zeotrópicas: Glide


Fraccionamiento: Cambio de composición en los cambios de estado

Fugas

• Cargas de refrigerante

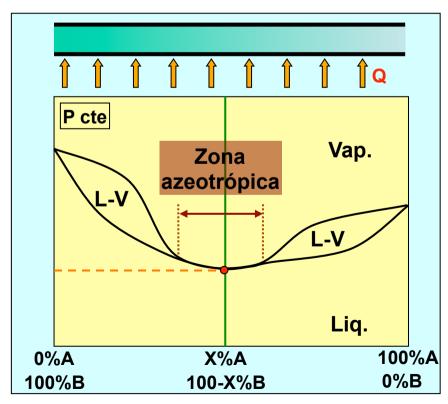
• Evaporadores inundados, ...

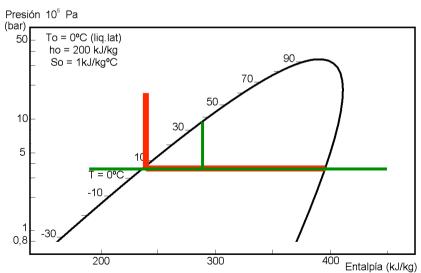
Deslizamiento de T^a : g = Tb - Ta

4.- Fluidos Puros y Mezclas (VI)

Cambio en la composición del R-404A durante la ebullición a 20°C

% en peso	Composición del Líquido (% en peso)		
hervido	R22	R152a	R124
0	53,0	13,0	34,0
20	46,6	13,2	40,2
40	37,3	13,6	49,1
60	27,5	13,7	58,8
80	13,8	12,5	73,7
98	0,0	2,5	97,5

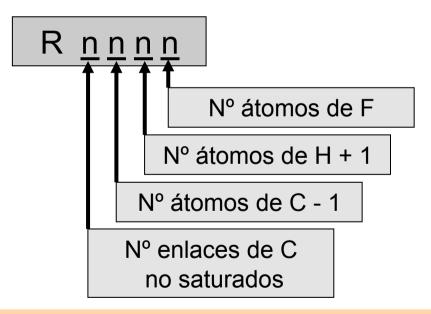




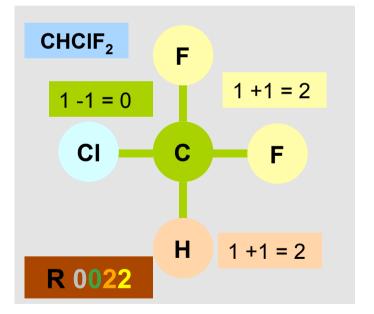
4.- Fluidos Puros y Mezclas (VII)

Mezclas Azeotrópicas:

Formadas por varios componentes, en los que sus cambios de estado a una P se producen a T cte



5.- Nomenclatura de los Fluidos Refrigerantes (I)

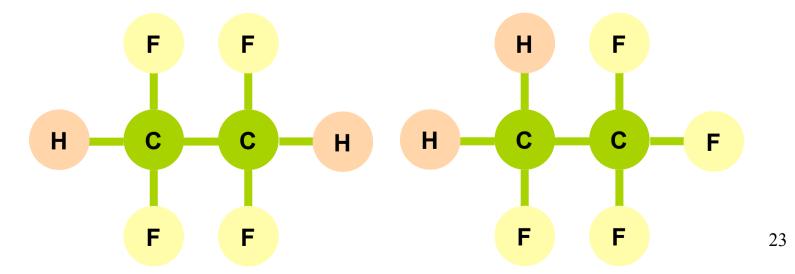

El nombre se establece a partir de la fórmula química como:

R, seguido de una expresión numérica, con posibilidad de añadir una letra final

Si la molécula tiene átomos de Br se añade una B a la derecha seguida del Nº átomos de Br

En los derivados cíclicos se añade una C a la izquierda

RC <u>n n n n</u> B1

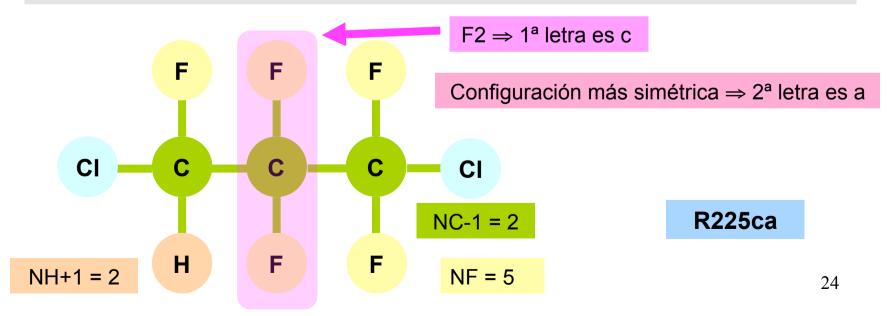

5.- Nomenclatura de los Fluidos Refrigerantes (II)

Isomería:

Una molécula de más C tiene varios tipos de asociación, isomérica (NC ≥ 2)

NC = 2: una letra minúscula al final de la designación define al isómero

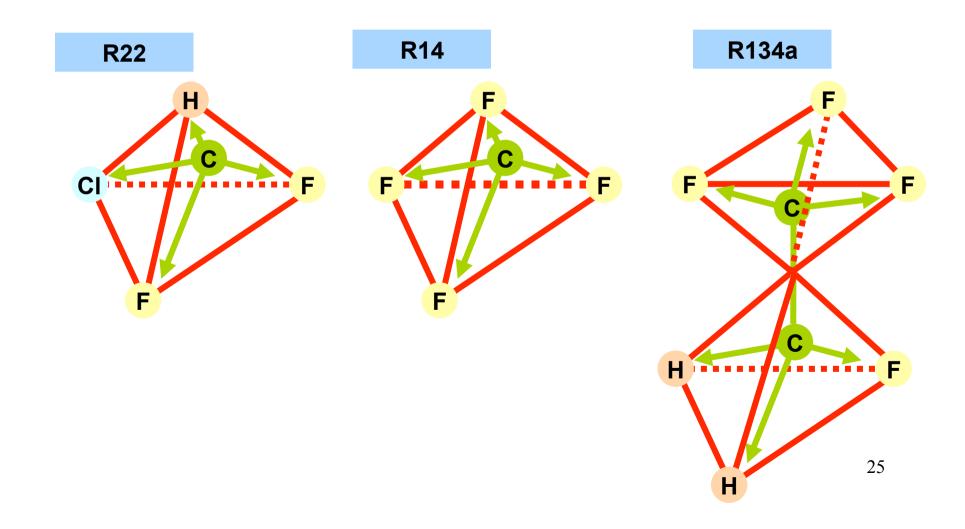
Se toman los pesos atómicos ligados a cada C. La configuración que más uniformemente los distribuya no posee letra alguna, las siguientes las letras "a", "b",...



5.- Nomenclatura de los Fluidos Refrigerantes (III)

Isomería:

NC = 3: La 1ª letra designa los átomos del enlace intermedio (a Cl₂, b Cl-F, c F₂, d Cl-H, e H-F, f H2)
 La 2ª letra designa la creciente simetría en pesos atómicos


(a configuración más simétrica, b, c. ... menos simétricas)

5.- Nomenclatura de los Fluidos Refrigerantes (IV)

5.- Nomenclatura de los Fluidos Refrigerantes (V)

Mezclas:

Zeotrópicas: R400 (R410A, R401B, R402A, etc)

Azeotrópicas: R500 (R501, R502, ...R508A, etc)

Al final de la designación se añade una letra mayúscula (A, B, ...) en caso de estar formada por los mismos componentes pero en diferente proporción

Ej: R407 (R23 / 125 / 134a)

R407A (R23 / 125 / 134a) (20 / 40 / 40%)

R407B (R23 / 125 / 134a) (10 / 70 / 20%)

R407C (R23 / 125 / 134a) (23 / 35 / 52%)

5.- Nomenclatura de los Fluidos Refrigerantes (VI)

Inorgánicos:

R700 + Peso Molecular del compuesto

Amoniaco (NH₃
$$\Rightarrow$$
 3×1 + 14 = 17) R 717

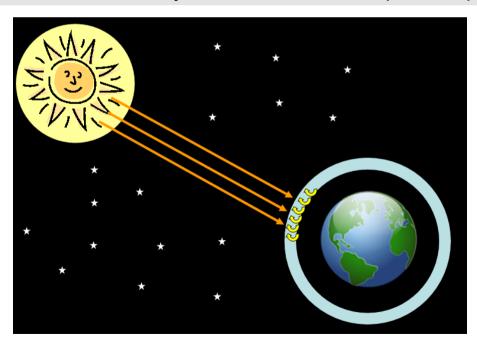
Agua
$$(H_2O \Rightarrow 2x1 + 16 = 18)$$
 R 718

Dióxido de Carbono (CO₂
$$\Rightarrow$$
 2×16 + 12 = 44) R 744

5.- Nomenclatura de los Fluidos Refrigerantes (VII)

No.	NOMBRE QUIMICO	FORMULA QUIMICA
10 11 12 13 20 21 22 23 30 40 50	Serle Metano Tetraclorometano (tetracloruro de carbono) Tricloromonofluorometano Diclorodifluorometano Clorotrifluorometano Triclorometano (cloroformo) Diclorofluorometano Clorodifluorometano Trifluorometano Trifluorometano Diclorometano (cloruro de metileno) Clorometano (cloruro de metilo) Metano	CCl4 CCl3F CCl2F2 CCIF3 CHCl3 CHCl2F CHCIF2 CHCIF2 CHF3 CH2Cl2 CH3Cl
110 113 115 123 134a 141b 150a 152a 160 170	Serle Etano Hexacloroetano 1,1,2-triclorotrifluoroetano Cloropentafluoroetano 2,2-Dicloro - 1,1,1-Trifluoroetano 1,1,2-Tetrafluoroetano 1,1-Dicloro-1-fluoroetano 1,1-Dicloroetano 1,1-Difluoroetano Cloroetano (cloruro de etilo) Etano	CCl ₃ CCl ₃ CCl ₂ FCClF ₂ CClF ₂ CF ₃ CHCl ₂ CF ₃ CH ₂ FCF ₃ CH ₃ CCl ₂ F CH ₃ CHCl ₂ CH ₃ CHF ₂ CH ₃ CH ₂ Cl CH ₃ CH ₃ CH
290 600 600a	Hldrocarburos Propano Butano 2-Metilpropano (isobutano)	CH3CH2CH3 CH3CH2CH2CH3 CH(CH3)3

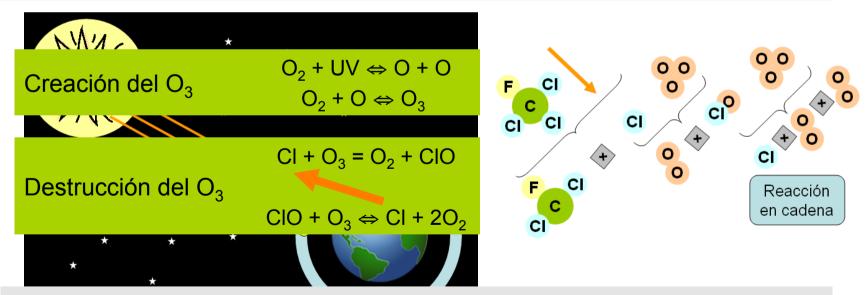
702 704 717 718 720 728 732 744 764	Compuestos Inorgánicos Hidrógeno Helio Amoníaco Agua Neón Nitrógeno Oxígeno Bióxido de Carbono Bióxido de Azufre	H ₂ He NH ₃ H ₂ O Ne N ₂ O ₂ CO ₂ SO ₂
407A 407B	R-22/152a/124 (61/11/28) R-22/125/290 (38/60/2)	
500 502 503 507	Mezclas Azeotrópicas R-12/152a (73.8/26.2) R22/115 (48.8/51.2) R-223/13 (40.1/59.9) R-125/143a (50/50)	



6.- Problemas de los Refrigerantes (I)

La *capa de ozono* es un filtro para los rayos ultravioleta que legan a la Tierra. Esta radiación produce efectos como afecciones en la piel, vista, etc.

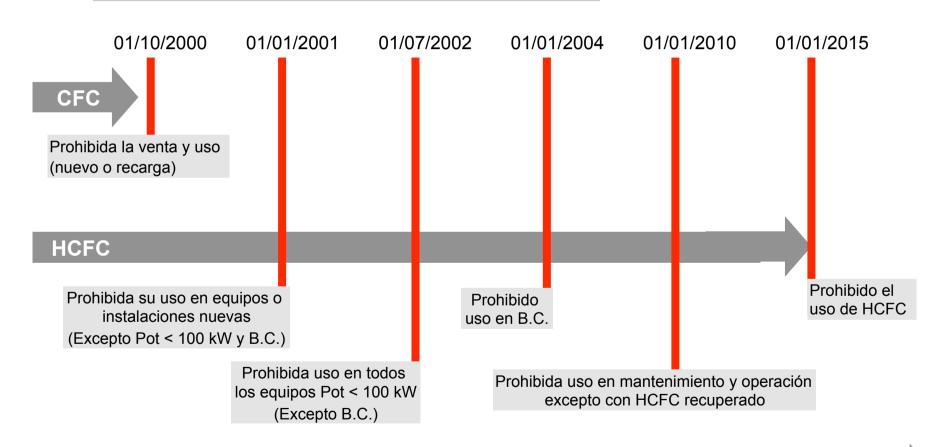
En 1974 Rowland y Molina lanzaron la hipótesis que los CFC agotan la capa de O₃



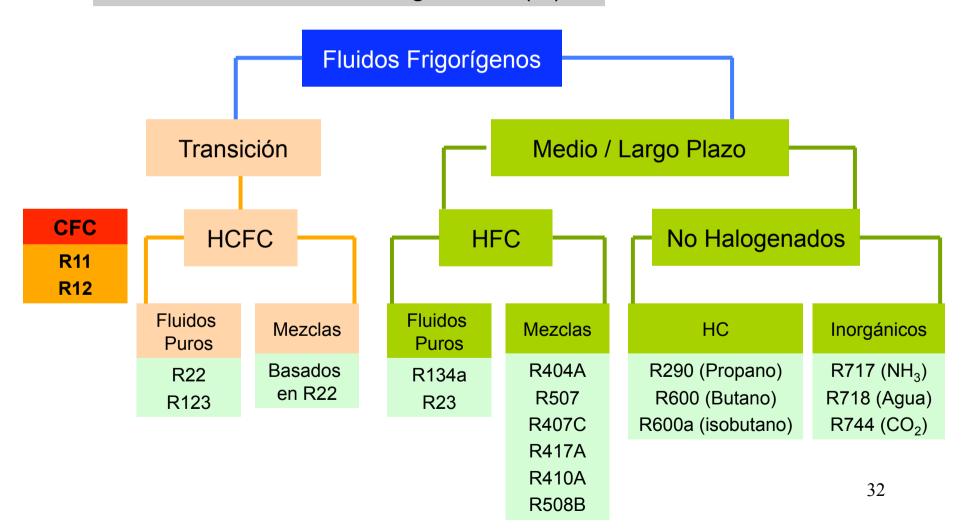
6.- Problemas de los Refrigerantes (I)

La *capa de ozono* es un filtro para los rayos ultravioleta que legan a la Tierra. Esta radiación produce efectos como afecciones en la piel, vista, etc.

En 1974 Rowland y Molina lanzaron la hipótesis que los CFC agotan la capa de O₃



La evidencia llevó a la firma del Protocolo de Montreal (1987) para la sustitución de los CFC, temporalmente por HCF's y finalmente por HFC's


6.- Problemas de los Refrigerantes (II)

6.- Problemas de los Refrigerantes (III)

6.- Problemas de los Refrigerantes (IV)

El factor de destrucción de la capa de ozono se llama *ODP* (Ozone Depletion Potential). Es un valor comparativo con el efecto del R11 (1)

Refrig.	Cont. CI (%)	ODP	Vida
R11 (CFC)	77,4	1	60
R12 (CFC)	58,6	0,95	130
R22 (HCFC)	41	0.05	15
R134a (HFC)	0	0	16

6.- Problemas de los Refrigerantes (V)

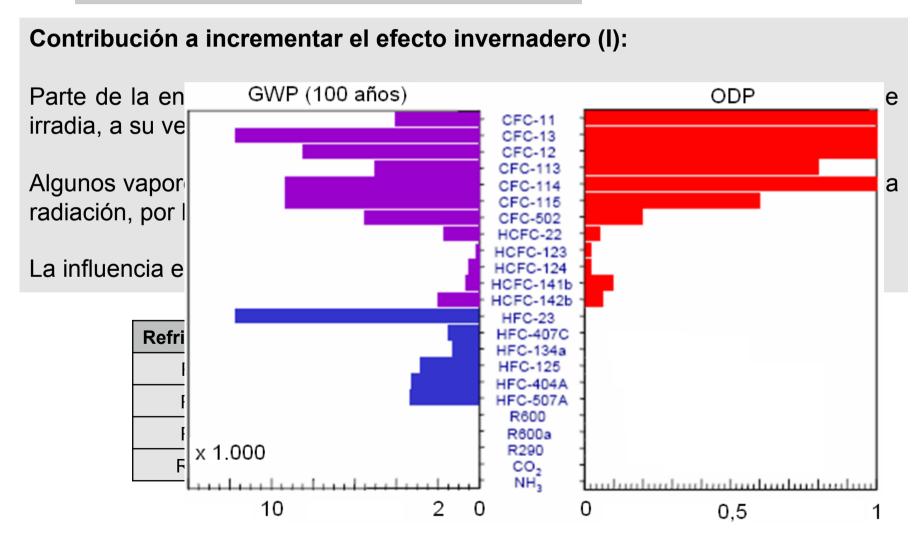
Contribución a incrementar el efecto invernadero (I):

Parte de la energía recibida del sol es absorbida por la tierra, que se calienta e irradia, a su vez, calor hacia el espacio

Algunos vapores (CO₂, vapor de agua, el metano, los CFC's) retienen parte de la radiación, por lo que la tierra se calienta. Es el **efecto invernadero**

La influencia es el índice *GWP*, que mide la acción directa del refrigerante

Refrigerante	GWP
R11	4.000
R12	8.500
R22	1.700
R113	5.000


Refrigerante	GWP
R134a	1.300
R407C	1.609
R718	0
R744	1

Refrigerante	GWP
R717	0
R170	3
R290	3
R600	3

6.- Problemas de los Refrigerantes (V)

6.- Problemas de los Refrigerantes (VI)

Contribución a incrementar el efecto invernadero (II):

El índice *TEWI* tiene en cuenta las emisiones que se generan en el ciclo de vida (tiene importancia el COP, la cantidad y el tipo de energía consumida)

$$TEWI = Efecto \ Directo + Efecto \ Indirecto$$

$$TEWI = GWP \left[Per_{Refrig} \ V_U + M_{Refrig} \ (1 - Rec_{Refrig}) \right] + \alpha \ E \ V_U$$

- Directo (fugas de refrigerante)
- Indirecto (la energía consumida)

GWP_{Refrig}: valor del GWP asignado al refrigerante

Per_{Refrig} pérdidas anuales medias de refrigerante por fugas del sistema en kg/año

V_{II}: vida útil de la instalación en años

M_{Refrig}: kg de refrigerante liberados a la atmósfera durante el funcionamiento de la

instalación en toda su vida

Rec_{Refria}: es el factor de recuperación del refrigerante al final de la vida útil, es decir, la

fracción de m que se puede recuperar

α: factor de conversión para determinar el CO₂ por kWh electrico en función de

las fuentes energéticas primarias

E_{Anual}: kWh consumidos al año por la instalación

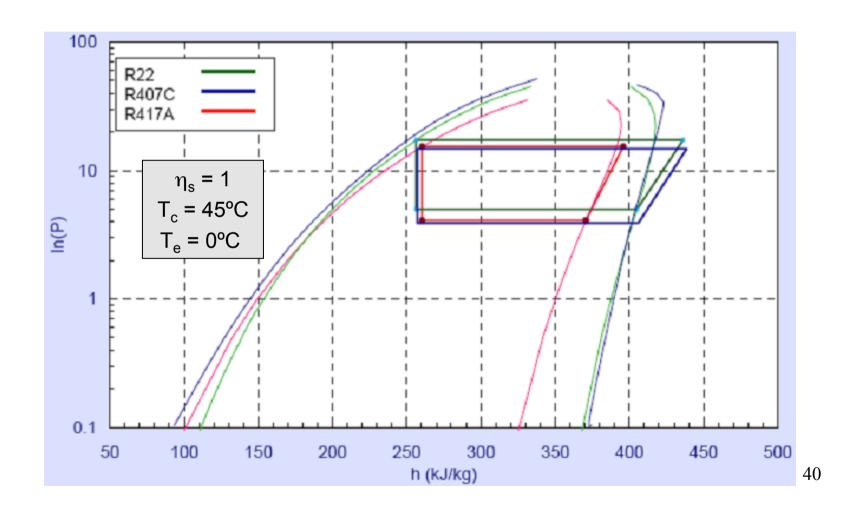
6.- Problemas de los Refrigerantes (VII)

Tipo	de máquina	Enfriamiento de condensador	Refrigerante	COP -	Energía (1.000 h/año) MWh/año
(a)-	Alternativo	Aire	R22	2,6	241
(b)-	Tornillo	Aire	R134a	3,2	193
(c)-	Alternativo	Agua	R134a	3,5	179
(d)-	Alternativo	Agua	R407c	3,6	174
(e)-	Alternativo	Agua	R22	4,0	156
(f)-	Alternativo	Agua	R707	4,4	147
(g)-	Tornillo	Agua	R134a	4,5	139
(h)-	Turbo	Agua	R134a	5,5	118
(i)-	Tornillo	Evaporativo	R707	5,1	128

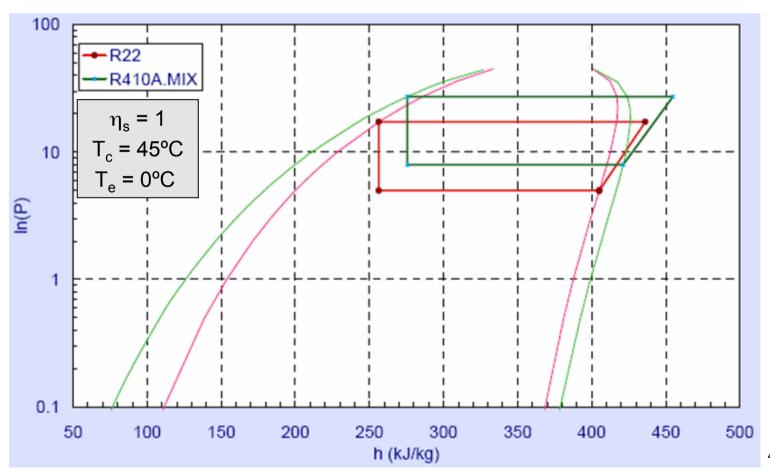
6.- Problemas de los Refrigerantes (VII)

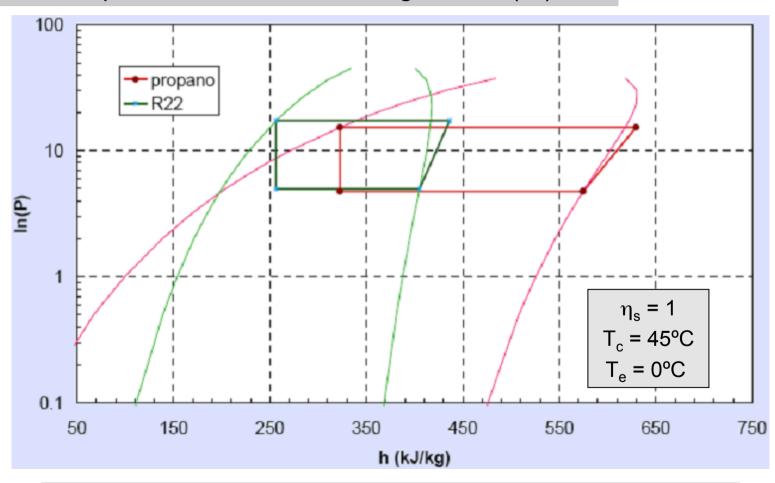
		Enfriamiento de			iergía (1.000 h/año
Tipo	de máquina	condensador	Refrigerante	_	MWh/año
(a)-	Alternativo	Aire	R22	2,6	241
(b)-	Tornillo	Aire	R134a	3,2	193
(c)-	Alternativo	Agua	R134a	3,5	179
(d)-	Alternativo	Agua	300		-
(e)-	Alternativo	Agua	}		
(f)-	Alternativo	Agua			
(g)-	Tornillo	Agua	(ořa 220 -		
(h)-	Turbo	Agua	CO2/año)		
(i)-	Tornillo	Evaporativo	용 200		
			lada:		
			150 ton		
			in al		
			TEWI annual (toneladas		
			P 100		-
			50		
			800	1.000	1.200 1 Horas and
					Horas a

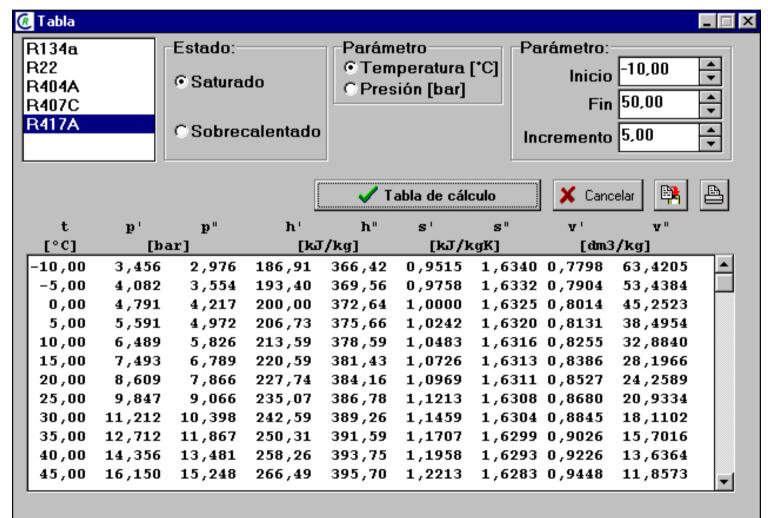
7.- Comparación de Fluidos Refrigerantes (I)


Propiedades de algunos Refrigerantes

Número ASHRAE	Composición (en peso)	ODP	Influencia en efecto invernadero	Desliz	Punto de ebullición normal	Capacidad de enfriamiento (-5/+45°C)	Nombre comercial Observ.
R-22	CHCLF2	0,05	0,35	0 K	-40,8	100%	HCFC
R-407c	R32/R125/R134a 23% / 25% / 52%	0	0,29	5-7 K	-43,6 -36, 8	97%	SUVA 9000 KLEA 66 AZ20 Zeotrópico
R-410a	R32 / R125	0	0,41	CASI 0 K	-50,5	141%	AZ20 Cuasi-azeotrópico
R-410b	R-32 / R-125 45% / 55%	0	0,41	CASI 0 K	-51,3 -51,2	137%	SUVA 9100 Cuasi-azeotrópico
R-507	R 125 / R 143a 50 / 50	0	0,98	οĸ	-46,7	96%	AZ50 Azeotrópico
R-717	NH₃	0	0	0K	-33,6	112%	Amoniaco Inflamable γ tóxico


7.- Comparación de Fluidos Refrigerantes (II)


7.- Comparación de Fluidos Refrigerantes (III)


7.- Comparación de Fluidos Refrigerantes (IV)

7.- Comparación de Fluidos Refrigerantes (V)

7.- Comparación de Fluidos Refrigerantes (VI)

Aplicaciones
Refrigeración doméstica
Climatización Enfriadoras ↑Q
Refrigeración comercial (+)
Refrigeración comercial (-)
Refrigeración industrial
Refrigeración muy baja T ^a
Climatización
Climatización automóvil

Anteriores
R12
R500
R11, R12
R717, R500
R12
R502
R22
R717
R13
R503
R22
R500
R12
R500

Transición
R401A
R409a
R123
R22
R401A
R402A
R408A
R22
R22

Largo Plazo
R134a R600a
R134a R717
R134a R404A, R507
R404A R507
R404A, R507 R717
R23 R508a, R508b
R407C, R410A R290
R134a R744

7.- Comparación de Fluidos Refrigerantes (VII)

REFRIG.		REFRIGERANT	E SUBSTITUTO	_		APLICACION	REEMPLAZO	
ANTERIOR	NO. DE ASHRAE	NOMBRE COMERCIAL	FABRICANTE	TIPO	LUBRICANTE	TIPICA	INTERINO	LARGO PLAZO
		Suva Centri-LP	DuPont					
R-11	R-123	Genetrón 123	Quimobásicos	Compuesto Puro	Alquil Benceno o Aceite Mineral	*Enfriadores de Agua con Compresores Centrífugos.		Х
		Forane-123	Elf Atochem					
		Suva Cold MP	DuPont			*Equipos Nuevos y Reacondicionamientos.		
	R-134a	Genetrón 134a	Quimobásicos	Compuesto	Poliol Ester	*Refrigeración Doméstica y Comercial (Temp. de Evaporación arriba de -7 °C).		x
	R-134a	Forane 134a	Elf Atochem	Puro		*Aire Acond. Residencial y Comercial.		^
		Klea 134a	ICI		PAG	*Aire Acondicionado Automotríz.		
R-12	R-401A	Suva MP39	DuPont	Mezclas Zeotrópicas (Blends)	Alquil Benceno	*Reacondicionamientos en Refrigeración Comercial (arriba de -23 °C).	X	
K-12		Genetrón MP39	Quimobásicos				^	
	R-401B	Suva MP66	DuPont			*Reacondicionamientos en Refrigeración Comercial (abajo de -23 °C). *Transportes Refrigerados.	X	
		Genetrón MP66	Quimobásicos				^	
	D 400A	Genetrón 409A	Quimobásicos	1		*Reacondicionamientos.	V	
	R-409A	FX-56	Elf Atochem			-Reacondicionamientos.	Х	
R-13	Sin	Suva 95	DuPont	Mezcla Azeot.	Poliol Ester	*Muy Baja Temperatura		Х
	R-410A	Genetrón AZ-20	Quimobásicos	Mezclas	Poliol Ester	*Sistemas Unitarios de Aire Acondicionado.		Х
	R-410B	Suva 9100	DuPont	Azeotrópicas	Poliol Ester	Sistemas Officarios de Aire Acondicionado.		Х
R-22	R-407C	Suva 9000	DuPont	Mezcla		*Aire Acondicionado Residencial y Comercial. *Bombas de Calor. (Equipos Nuevos y Reacondicionamientos).		
R-22		Genetrón 407C	Quimobásicos	Zeotrópica	Poliol Ester			Х
		Klea 66	ICI	(Blend)				
	R-507	Genetrón AZ-50	Quimobásicos	Azeótropo	Poliol Ester	*Refrigeración Comercial (Temp. Media y Baja).		Х

7.- Comparación de Fluidos Refrigerantes (VII)

REFRIG.		REFRIGERANT	E SUBSTITUTO			APLICACION	REEMPLAZO	
ANTERIOR	NO. DE ASHRAE	NOMBRE COMERCIAL	FABRICANTE	TIPO	LUBRICANTE	TIPICA	INTERINO	LARGO PLAZO

	R-402A	Suva HP80	DuPont			*Refrigeración Comercial (Temp. Media y Baja).	Х	
		Genetrón HP80	Quimobásicos]		(Principalmente en Reacondicionamientos).		
	R-402B	Suva HP81	DuPont	(Bielids)	Alquil Benceno	*Máquinas de Hielo y Otros Equipos Compactos.	Х	
	Su	Suva HP-62	DuPont		Poliol Ester			
R-502	R-404A	R-404A Genetrón 404A	Quimobásicos					Х
		FX-70	Elf Atochem			*Refrigeración Comercial (Temp. Media y Baja).		
	R-407A	Klea 60	ICI		Poliol Ester	(Equipos Nuevos y Reacondicionamientos).		Х
	R-408A	FX-10	Elf Atochem]	Alquil Benceno		Х	
	R-507 Genetrón AZ-50 Quim		Quimobásicos	Azeótropo	Poliol Ester			Х
R-503	Sin	Suva 95	DuPont	Mezcla Azeot.	Poliol Ester	*Muy Baja Temperatura.		Х

7.- Comparación de Fluidos Refrigerantes (VIII)

Operación y Mantenimiento (I)

Muy Higroscópicos

	MO	AB	M/A	POE	PAG
	Mineral Oil	Alquilbencenos	Minerales Alquibencénicos	Poliolester	Polialquilglicoles
(H)CFC	Adecuado	Adecuado	Adecuado	Con limitaciones	No compatible
HFC	No compatible	Con limitaciones	No compatible	Adecuado	Con limitaciones
НС	Adecuado	Adecuado	Adecuado	Adecuado	Con limitaciones
NH ₃	Adecuado	Con limitaciones	Con limitaciones	No compatible	Con limitaciones

7.- Comparación de Fluidos Refrigerantes (IX)

Operación y Mantenimiento (II)

Viscosidades de aceites recomendadas

CONDICION DEL	DEEDIG	VISCO	SIDAD				
SERVICIO	REFRIG.	cSt	SUS				
Temp. del Compresor							
Normal	Todos	32	150				
Alta	Halogenados	68	300				
	Amoniaco	68	300				
Temp. del Evaporado	r:						
Hasta -18°C (0°F)	Halogenados	32	150				
	Amoniaco	68	300				
De -18°C a -40°C	Halogenados	32	150				
(0°F a -40°F)	Amoniaco	32	150				
Abajo de -40°C (-40°F)	Halogenados	32	150				
	Amoniaco	32	150				
Aire Acondicionado A	utomotriz:						
	Halogenados	100	500				
Compresores Rotativos:							
Todos 100 500							
Compresores Centrífu	ıgos:						
	Todos	100	500				

7.- Comparación de Fluidos Refrigerantes (X)

R407C Deslizamiento de hasta 7°C

Presión de condensación 10% superior al R22

COP 5% menor que el R22

R410A Deslizamiento casi nulo 0,1°C

Presión de condensación 60% superior al R22

Gran capacidad específica volumétrica ⇒ equipos pequeños

R134a Presión de condensación inferior al R22

Menor capacidad específica volumétrica que el R22

8.- Amoniaco (R717) (I)

- Elevadas temperaturas de descarga
- Altísimo calor latente de vaporización
- Densidad mucho mas baja que cualquier refrigerante

Los efectos compensan el volumen desplazado

- > Es un gas incoloro, de fuerte olor, llega a ser tóxico e irrespirable
- Facilidad de detección de fugas
- Con presión y mezclado con aceite, puede formar una mezcla explosiva
- Combustible en determinadas proporciones con el aire del ambiente
- Estable hasta los 150 °C
- Corroe y ataca al cobre y todas sus aleaciones
- No se mezcla con los aceites de nafta ni los sintéticos
- Si hay una fuga, el amoniaco se disuelve en agua; todos los productos alimenticios contienen agua, puede hacer que estos tomen mal sabor, incluso que sean perjudiciales para la salud

8.- Amoniaco (R717) (II)

ppm	Efecto
5	Límite de detección
25	TWA media ponderada en el tiempo
35	STEL límite de exposición de corta duración
150-200	Ojos levemente afectados tras 1 min.
300	Nivel inferior de riesgo
450	Ojos afectados rápidamente
600	Lágrimas tras 30 sg
700	Lágrimas en pocos sg
1.000	Visión disminuida, respiración insoportable, irritación de piel en min.
1.500	Ambiente insoportable, reacción instantánea a salir del lugar
30.000	Dosis letal

9.- CO₂ (R744) (I)

- Gas inerte no contaminante es un producto natural
- Estable químicamente
- No corrosivo
- No deteriora los productos en caso de fuga
- No combustible, se utiliza en la extinción de incendios
- No es irritante, es inodoro: no causa alarma
- La descarga a la atmósfera es totalmente inocua a todos los efectos y pasa desapercibida
- Mucho más denso que el aire, sus fugas caen al suelo y desplazan el oxígeno, en concentraciones altas puede ser peligroso y letal
- Riesgo de congelación por despresurización

9.- CO₂ (R744) (II)

Su gran densidad hace que el volumen desplazado sea pequeño (6-8 veces amoniaco)

- Compresores de menor tamaño y cilindrada
- Menor cantidad de refrigerante en instalación
- Menor tamaño de recipientes y líneas

Esto es especialmente a baja presiones

10.- Salmueras (I)

La clasificación de las salmueras puede hacerse en:

- Salmueras de tipo salino
- Salmueras a base de *glicol*: (etilenglicol y propilenglicol)
- Salmueras para bajas temperaturas (alcoholes)
- Salmueras para aplicaciones especiales (aceites térmicos)

Las *aplicaciones*

- Aplicaciones Específicas como en las pistas de patinaje
- Industria Alimentaria; para enfriamiento y congelación por inmersión directa
- La Fabricación de Hielo en Barras
- Las Aplicaciones de Tipo Industrial
- En instalaciones centralizadas de aire acondicionado

Permiten el almacenamiento

Presentan problemas de **corrosión**, por lo que el sistema debe mantenerse sobrepresionado y sin contacto con la atmósfera

10.- Salmueras (II)

Los sistemas de **distribución** para las **salmueras** son similares a los de agua en circuito cerrado. La diferencia fundamental reside en la *viscosidad*

Las salmueras son líquidos térmicamente inferiores al agua, por lo que es preciso gastar **más energía** de bombeo.

Factores para seleccionar la salmuera:

- El coste de las salmueras, y de los tratamientos del agua y los inhibidores
- La corrosión y la incompatibilidad con ciertos materiales
- La toxicidad, especialmente cuando el producto a enfriar sea algún alimento, o cuando haya contacto con personas
- El calor especifico que determina el caudal másico
- La estabilidad a temperatura elevada
- La viscosidad, incide en la energía de bombeo
- El punto de congelación de las salmueras
- La tensión de vapor

10.- Salmueras (III)

	Agua	Agua glicolada				
% en peso	0	10	20	30	40	50
T ^a congelación (°C)	0	-3,2	-7,8	-14,1	-22,3	-33,8
Densidad (kg/m³)	1	1,02	1,03	1,05	1,06	1,08
Calor Específico (kJ/kg° C)	4,197	3,966	3,811	3,642	3,459	3,262
Conductividad Térmica (W/m°C)	0,582	0,528	0,486	0,447	0,411	0,377
Viscosidad dinámica (mPa s)	1,44	1,61	2,29	2,99	4,19	5,7

$$\uparrow \text{\% Glicol} \Rightarrow \begin{cases} \downarrow T^a \text{ Cong.} \\ \uparrow \text{ Densidad} \\ \downarrow Cp \Rightarrow \text{hay que bombear más caudal} \\ \uparrow \mu \end{cases} \Rightarrow \text{Enegía de bombeo}$$
56

Bibliografía del Tema (I)

Los Refrigerantes en las Instalaciones Frigoríficas *Ernesto Rodríguez*

Cuadernos de Climatización. Refrigerantes *Ferroli*

ASHRAE HANDBOOKS (CD`s) Fund.; Cap 19; 20; 21 Refrigeration; Cap 5; 7

Manuales (CD)

Kimikal

Bibliografía del Tema (II)

Comentarios al RITE 2007 IDAE

Revistas nacionales:

- El Instalador
- Montajes e Instalaciones

http://www.carburos.com/index.html

http://www2.dupont.com/Refrigerants/es_ES/

http://www.kimikal.es/presentacion.htm

