
UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

Appendix B. The Object Constraint
Language
The Object Constraint Language 2.0 (OCL) is an addition to the UML 2.0 specification that
provides you with a way to express constraints and logic on your models. For example, you
can use OCL to convey that a person's age must always be greater than 0 or that a branch
office must always have one secretary for every 10 employees.

OCL isn't new to UML 2.0; it was first introduced in UML 1.4. However, as of UML 2.0, it was
formalized using the Meta-Object Facility and UML 2.0. From a user's perspective the
language has been updated and refined but the fundamentals remain the same. This appendix
introduces the basic concepts of OCL. For more detailed information, consult the OCL
specification available from the Object Management Group's web site (http://www.omg.org/).

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

B.1. OCL Basics

The Object Constraint Language is just that: a language. It obeys a syntax and has keywords.
However, unlike other languages, it can't be used to express program logic or flow control. By
design, OCL is a query-only language; it can't modify the model (or executing system) in any
way. It can be used to express preconditions, postconditions, invariants (things that must
always be TRue), guard conditions, and results of method calls.

OCL can be used virtually anywhere in UML and is typically associated with a classifier using a
note. When an OCL expression is evaluated, it is considered to be instantaneous, meaning the
associated classifier can't change state during the evaluation of an expression.

B.1.1. Basic Types

OCL has several built-in types that can be used in OCL expressions:

Boolean

Must be either true or false. Supports the logical operators and, or, xor, not, implies,
and if-then-else.

Integer

Any integer value (e.g., 100, -12345, 5211976, etc.). Supports the operators *, +, -, /,
and abs().

Real

Any decimal value (e.g., 2.222003, -67.76, etc.). Supports the operators *, +, -, /, and
floor().

String

A series of letters, numbers, or symbols interpreted as a string (e.g., "All writing and no
play make Dan..."). Supports the operators concat(), size(), and substring().

In addition to the built-in types, any classifier used in your UML model is recognized as a type
by OCL. Because OCL is a strongly typed language, you can't compare values of one type
directly with values of another type.

B.1.2. Casting

OCL does support casting objects from one type to another as long as they are related
through a generalization relationship. To cast from one type to another use the operation

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

oldType. oclAsType(newType) . For example, to cast a Java List to an ArrayList to call the
size() operation, use the expression:

 List.oclAsType(ArrayList).size()

If the actual object isn't an instance of the new type, the expression is considered undefined.

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

B.2. OCL Syntax
The remainder of this chapter uses examples from the class diagram shown in Figure B-1.

B.2.1. Constraints on Classifiers

Each OCL expression must have some sense of context that an expression relates to. Often
the context can be determined by where the expression is written. For example, you can link
a constraint to an element using a note. You can refer to an instance of the context classifier
using the keyword self. For example, if you had a constraint on Student that their GPA must
always be higher than 2.0, you can attach an OCL expression to Student using a note and
refer to the GPA as follows:

 self.GPA > 2.0

Figure B-1. Example class diagram used in this chapter

It's important to realize that this OCL expression is an invariant, meaning the system would
be in an invalid state if a student's GPA dropped to less than 2.0. If you want to allow a GPA
of less than 2.0 and send out a letter to the student's parents in the event such a low GPA is
achieved, you would model such behavior using a UML diagram such as an activity or
interaction diagram.

You can follow associations between classifiers using the association end names as though
they were attributes of the originating classifier. The following invariant on Course ensures
that the instructor is being paid:

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

 self.instructor.salary > 0.00

If an association has a multiplicity of 0..1, you can treat the association end as a Set and
check to see if the value is set by using the built-in notEmpty() operation. To call the
notEmpty() operation on a set you must use an arrow (->) rather than a dot (.). See
"Collections" for more information on sets. The following invariant on Course enforces that a
course has an instructor:

 self.instructor->notEmpty()

If an association role name isn't specified, you can use the classifier name. The following
invariant on School checks that each course has a room assignment:

 self.Course->forAll(roomAssignment <> 'No room!')

Comments can be inserted into an expression by prefixing each comment with two dashes (),
like this:

 -- make sure this student could graduate
 self.GPA > 2.0

If you can't determine the context of an expression by looking at the UML model, or if you
want to be explicit with the context, use the OCL keyword context, followed by the classifier
name. If you use this notation, you should say what the expression represents. In the
following case, we're showing an invariant, so we use the keyword inv. Other types of
expressions are explained in later sections.

 context Student
 inv: self.GPA > 2.0

Instead of using the keyword self, you can assign a name to a classifier that you can use in
the expression. Write the name you want to use, followed by a colon (:) and then the
classifier name. For example, you can name the instance of Student as s:

 context s : Student
 inv: s.GPA > 2.0

Finally, you can name an expression by placing a label after the expression type but before
the colon (:). The label is purely decorative; it serves no OCL function.

 context s : Student
 inv minimumGPARule: s.GPA > 2.0

B.2.2. Constraints on Operations

Beyond basic classifiers, OCL expressions can be associated with operations to capture

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

preconditions and postconditions. Place the signature of the target operation (classifier,
operation name, parameters, etc.) after the context keyword. Instead of the invariant
keyword, use either pre or post for preconditions and postconditions, respectively.

The following expression ensures that any student who will be registered for a course has paid
their tuition:

 context Course::registerStudent(s : Student) : boolean
 pre: s.tuitionPaid = true

When writing postconditions, you can use the keyword result to refer to the value returned
by an operation. The following expressions verify that a student's tuition was paid before
registering for a course and that the operation registerStudent returned true:

 context Course::registerStudent(s : Student) : boolean
 pre: s.tuitionPaid = true
 post: result = true

As you can with invariants, you can name preconditions and postconditions by placing a label
after the pre or post keywords:

 context Course::registerStudent(s : Student) : boolean
 pre hasPaidTuition: s.tuitionPaid = true
 post studentWasRegistered: result = true

Postconditions can use the @pre keyword to refer to the value of some element before an
operation executes. The following expression ensures that a student was registered and that
the number of students in the course has increased by 1. This expression uses the self
keyword to reference the object that owns the registerStudent operation.

 context Course::registerStudent(s : Student) : boolean
 pre: s.tuitionPaid = true
 post: result = true AND self.students = self.students@pre + 1

You may specify the results of a query operation using the keyword body. Because OCL
doesn't have syntax for program flow, you are limited to relatively simple expressions. The
following expression indicates that honors students are students with GPAs higher than 3.5.
The collection syntax used in this example is described in the "Collections" section.

 context Course::getHonorsStudents() : Student
 body: self.students->select(GPA > 3.5)

B.2.3. Constraints on Attributes

OCL expressions can specify the initial and subsequent values for attributes of classifiers.
When using OCL expressions with attributes, you state the context of an expression using the
classifier name, two colons (::), the attribute name, another colon (:), and then the type of
the attribute. You specify the initial value of an attribute using the keyword init:

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

 context School::tuition : float
 init: 2500.00

You can specify the value of attributes after their initial value using the derive keyword. The
following example increases the tuition value by 10% every time you query it:

 context: School::tuition : float
 derive: tution * 10%

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

B.3. Advanced OCL Modeling
Like any other language, OCL has an order of precedence for operators, variable declarations, and
logical constructs (only for evaluating your expressions, not for program flow). The following
sections describe constructs that you can use in any OCL expression.

B.3.1. Conditionals

OCL supports basic boolean expression evaluation using the if-then-else-endif keywords. The
conditions are used only to determine which expression is evaluated; they can't be used to
influence the underlying system or to affect program flow. The following invariant enforces that a
student's year of graduation is valid only if she has paid her tuition:

 context Student inv:
 if tuitionPaid = true then
 yearOfGraduation = 2005
 else
 yearOfGraduation = 0000
 endif

OCL's logic rules are slightly different from typical programming language logic rules. The boolean
evaluation rules are:

True OR-ed with anything is true.1.

False AND-ed with anything is false.2.

False IMPLIES anything is TRue.3.

The implies keyword evaluate the first half of an expression, and, if that first half is true, the result
is taken from the second half. For example, the following expression enforces that if a student's
GPA is less than 1.0, their year of graduation is set to 0. If the GPA is higher than 1.0, Rule #3
applies, and the entire expression is evaluated as true (meaning the invariant is valid).

 context Student inv:
 self.GPA < 1.0 IMPLIES self.yearOfGraduation = 0000

OCL's boolean expressions are valid regardless of the order of the arguments . Specifically, if the
first argument of an AND operator is undefined, but the second operator is false, the entire
expression is false. Likewise, even if one of the arguments to an OR operator is undefined, if the
other is true, the expression is true. If-then-else-endif constructs are evaluated similarly; if the
chosen branch can be evaluated to TRue or false, the nonchosen branch is completely disregarded
(even if it would be undefined).

B.3.2. Variable Declaration

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

OCL supports several complex constructs you can use to make your constraints more expressive
and easier to write. You can break complex expressions into reusable pieces (within the same
expression) by using the let and in keywords to declare a variable. You declare a variable by
giving it a name, followed by a colon (:), its type, an expression for its value, and the in keyword.
The following example declares an expression that ensures a teacher of a high-level course has an
appropriate salary:

 context Course inv:
 let salary : float = self.instructor.salary in
 if self.courseLevel > 4000 then
 salary > 80000.00
 else
 salary < 80000.00
 endif

You can define variables that can be used in multiple expressions on a classifier-by-classifier basis
using the def keyword. For example, instead of declaring salary as a variable using the let
keyword, you can define it using the def keyword for the Course context. Once you define a
variable using the def keyword, you may use that variable in any expression that is in the same
context. The syntax for the def keyword is the same as that for the let keyword:

 context Course
 def: salary : float = self.instructor.salary

So, now you can write the previous invariant as:

 context Course inv:
 if self.courseLevel > 4000 then
 salary > 80000.00
 getHonorsStudentselse
 salary < 80000.00
 endif

B.3.3. Operator Precedence

OCL operators have the following order of precedence (from highest to lowest):

@pre

dot (.) and arrow (->) operations

not and unary minus (-)

* and /

+ and -

if-then-else-endif

<, >, <=, and >=

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

= and <>

and, or, and xor

implies

You can use parentheses to group expressions, which will be evaluated from the innermost set of
parentheses to the outermost.

B.3.4. Built-in Object Properties

OCL provides a set of properties on all objects in a system. You can invoke these properties in your
expressions as you do any other properties. The built-in properties are:

oclIsTypeOf (t : Type) : Boolean

Returns true if the tested object is exactly the same type as t.

oclIsKindOf(t : Type) : Boolean

Returns TRue if the tested object is the same type or a subtype of t.

oclInState(s : State) : Boolean

Returns TRue if the tested object is in state s. The states you can test must be part of a state
machine attached to the classifier being tested.

oclIsNew() : Boolean

Designed to be used in a postcondition for an operation, it returns true if the object being
tested was created as a result of executing the operation.

oclAsType (t : Type) : Type

Returns the owning object casted to Type. If the object isn't a descendant of t, the operation
is undefined.

Here are some examples of the built-in properties:

 -- test that the instructor is an instance of Teacher
 context Course
 inv: self.instructor.oclIsTypeOf(Teacher)

 -- cast a Date class to a java.sql.Date to verify the minutes
 -- (it's very unlikely the foundationDate would be a java.sql.Date
 -- so this invariant would be undefined, but this is an example
 -- of using oclAsType())
 context School
 inv: self.foundationDate.oclAsType(java.sql.Date).getMinutes() = 0

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

B.3.5. Collections

OCL defines several types of collections that represent several instances of a classifier. The basic
type is Collection, which is the base class for the other OCL collection classes. Quite a few
operations are defined for Collection; see the OCL specification for the complete list.

All collections support a way to select or reject elements using the operations select() and
reject(), respectively. To invoke an operation on a collection, you use an arrow (->) rather than a
dot (.) (a dot accesses a property). The result of select or reject is another collection containing
the appropriate elements. Remember that since OCL can't modify a system in any way, the original
collection is unchanged. The notation for a select is:

 collection->select(boolean expression)

So, to select students with GPAs higher than 3.0, you can use the expression:

 context Course::getHonorsStudents() : Student
 body: self.students->select(GPA > 3.0)

Or, to eliminate honor students that haven't paid their tuition:

 context Course::getHonorsStudents() : Student
 body: self.students->select(GPA > 3.0)->reject(tuitionPaid = false)

In the previous examples, the context for the select and reject statements was implied. You can
explicitly name the element you want to use in the boolean expression by prefixing the expression
with a label and a pipe symbol (|). So, a rewrite of the GPA example using a label to identify each
student looks like this:

 context Course::getHonorsStudents() : Student
 body: self.students->select(curStudent | curStudent.GPA > 3.0)

Finally, you can specify the type of the element you want to evaluate. You indicate the type by
placing a colon (:) and the classifier type after the label. Each element of the collection you are
evaluating must be of the specified type, or else the expression is undefined. You can rewrite the
GPA example to be even more specific and require that it evaluate only Students:

 context Course::getHonorsStudents() : Student
 body: self.students->select(curStudent : Student | curStudent.GPA > 3.0)

Often you will need to express a constraint across an entire collection of objects, so OCL provides
the forAll operation that returns true if a given Boolean expression evaluates to true for all of the
elements in a collection. The syntax for forAll is the same as that for select and reject. So, you
can write a constraint that enforces that all students in a Course have paid their tuition:

 context Course
 inv: self.students->forAll(tuitionPaid = true)

UML 2.0 in a Nutshell
By Dan Pilone, Neil Pitman
...
Publisher: O'Reilly
Pub Date: June 2005
ISBN: 0-596-00795-7
Pages: 234

Table of Contents | Index

System developers have used modeling languages for decades to specify, visualize,
construct, and document systems. The Unified Modeling Language (UML) is one of those
languages. UML makes it possible for team members to collaborate by providing a common
language that applies to a multitude of different systems. Essentially, it enables you to
communicate solutions in a consistent, tool-supported language.

Today, UML has become the standard method for modeling software systems, which means
you're probably confronting this rich and expressive language more than ever before. And
even though you may not write UML diagrams yourself, you'll still need to interpret
diagrams written by others.

UML 2.0 in a Nutshell from O'Reilly feels your pain. It's been crafted for professionals like
you who must read, create, and understand system artifacts expressed using UML.
Furthermore, it's been fully revised to cover version 2.0 of the language.

This comprehensive new edition not only provides a quick-reference to all UML 2.0 diagram
types, it also explains key concepts in a way that appeals to readers already familiar with
UML or object-oriented programming concepts.

Topics include:

The role and value of UML in projects

The object-oriented paradigm and its relation to the UML

An integrated approach to UML diagrams

Class and Object, Use Case, Sequence, Collaboration, Statechart, Activity, Component,
and Deployment Diagrams

Extension Mechanisms

The Object Constraint Language (OCL)

If you're new to UML, a tutorial with realistic examples has even been included to help you
quickly familiarize yourself with the system.

As you can with select, you can name and type the variable used in the expression:

 context Course
 inv: self.students->forAll(curStudent : Student | curStudent.tuitionPaid = true)

If you need to check to see if there is at least one element in a collection that satisfies a boolean
expression, you can use the operation exists. The syntax is the same as that for select. The
following expression ensures that at least one of the students has paid their tuition:

 context Course
 inv: self.students->exists(tuitionPaid = true)

Like select, you can name and type the variables used in the expression:

 context Course
 inv: self.students->exists(curStudent : Student | curStudent.tuitionPaid = true)

You can check to see if a collection is empty using the operations isEmpty or notEmpty. The
following expression ensures that the school has at least one course offering:

 context School
 inv: self.Course->notEmpty()

