Software Maintenance Costs
(C) Jussi Koskinen
School of Computing, University of Eastern Finland, Joensuu, Finland
https://wiki.uef.fi/display/tktWiki/Jussi+Koskinen
April 30, 2015

Abstract

Software maintenance and evolution is a considerably understudied area while
taking into account its cost effects. This document lists some interesting figures on
proportional and absolute maintenance costs, proportions of the main task types,
and amount and nature of the existing legacy code. These figures are based on
empirical data. Although there has not been much empirical research on this
particular area, the magnitude of the maintenance cost effects is clearly
identifiable.

1. Proportional software maintenance costs

The relative cost for maintaining software and managing its evolution now
represents more than 90% of its total cost. This is refered to as /egacy crisis by
Seacord et al. (2003). Various studies on this subject are described in Table 1.

Year Proportion Definition Reference
of software
maintenance
costs

2000 >90% Software cost devoted to system Erlikh (2000)
maintenance & evolution / total
software costs

1993 75% Software maintenance / information | Eastwood (1993)
system budget
(in Fortune 1000 companies)

1990 >90% Software cost devoted to system Moad (1990)
maintenance & evolution / total
software costs

1990 60-70% Software maintenance / total Huff (1990)
management information systems
(MIS) operating budgets

1988 60-70% Software maintenance / total Port (1988)
management information systems
(MIS) operating budgets

1984 | 65-75% Effort spent on software McKee (1984)
maintenance / total available
software engineering effort.

1981 >50% Staff time spent on maintenance / Lientz & Swanson
total time (in 487 organizations) (1981)

1979 67% Maintenance costs / total software Zelkowitz et al.
costs (1979)

Table 1. Proportional software maintenance costs for its supplier.

2. Absolute software maintenance costs
o Annual software maintenance cost in USA has been estimated to be more
than $70 billion (Sutherland, 1995; Edelstein, 1993).

o E.g.in USA, the federal government alone spent about $8.38 billion during
a 5-year period to the Y2K-bug corrections.
o At company-level, e.g. Nokia Inc. used about $90 million for preventive

Y2K-bug corrections.

http://fi.linkedin.com/pub/jussi-koskinen/1/249/708
https://wiki.uef.fi/display/tktWiki/Jussi+Koskinen

3. Maintenance task types

o

o

About 65% of maintenance was found to be perfective by Lientz & Swanson
(1981).

About 75% of maintenance costs are spent for providing enhancements (in
the form of adaptive and perfective maintenance) (Martin, 1983; Nosek &
Palvia, 1990; van Vliet, 2000).

Studies of software maintainers have shown that approximately 50% of
their time is spent in the process of understanding the code that they are to
maintain (Fjeldstad & Hamlen, 1983; Standish, 1984).

4. Legacy code amount

o In 1990 there were an estimated 120 billion lines of source code being
maintained (Ulrich, 1990).

o In 2000 there are already about 250 billion lines of source code being
maintained, and that number is increasing (Sommerville, 2000).

o An average Fortune 100 company maintains 35 million lines of code
(Mlller et al., 1994).

o These companies add in average 10% each year only in enhancements
(Mdller et al., 1994).

o As a result, the amount of code maintained doubles in size every 7 years
(Muller et al., 1994).

o Older languages are not dead. E.g. 70% or more of the still active business

applications are written in COBOL (Giga Information Group).

o There are at least 200 billion lines of COBOL-code still existing in

mainframe computers alone (Gartner Group).
References

1) Eastwood, A. (1993). "Firm fires shots at legacy systems". Computing
Canada 19 (2), p. 17.

2) Edelstein, D. (1993). "Report on the IEEE STD 1219 - 1993 - Standard
for Software Maintenance". ACM SIGSOFT Software Engineering Notes 18
(4), p. 94.

3) Erlikh, L. (2000). "Leveraging legacy system dollars for E-business".
(IEEE) IT Pro, May/June 2000, 17-23.

4) Fjeldstad, R. & Hamlen, W. (1983). "Application program maintenance-
report to to our respondents". Tutorial on Software Maintenance, 13-27.
Parikh, G. & Zvegintzov, N. (Eds.). IEEE Computer Soc. Press.

5) Huff, S. (1990). "Information systems maintenance". The Business
Quarterly 55, 30-32.

6) Lientz, B.P. & Swanson, E. (1980). "Software Maintenance Management:
A Study of the Maintenance of Computer Application Software in 487 Data
Processing Organizations". Addison-Wesley: Reading, MA, 214 p.

7) Lientz, B.P. & Swanson, E. (1981). "Problems in application software
maintenance". Communications of the ACM 24 (11), 763-7609.

8) Martin, J. (1983). "Software Maintenance: The Problem and Its Solution".
Prentice Hall, 472 p.

9) McKee, J. (1984). "Maintenance as a function of design". Proceedings of

the AFIPS National Computer Conference, 187-193.

10) Moad, J. (1990). "Maintaining the competitive edge". Datamation 61-62,

64, 66.

11) Midller, H., Wong, K. & Tilley, S. (1994). "Understanding software systems

using reverse engineering technology". The 62nd Congress of
L’Association Canadienne Francaise pour [’Avancement des Sciences
Proceedings (ACFAS), 26 (4), 41-48.

12) Nosek, J. & Palvia, P. (1990). "Software maintenance management:

changes in the last decade". Journal of Software Maintenance: Research
and Practice 2 (3), 157-174.

13)

14)

15)
16)
17)
18)
19)

20)

Port, O. (1988). "The software trap - automate or else". Business Week
3051 (9), 142-154.

Seacord, R., Plakosh, D. & Lewis, G. (2003). "Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business
Practices" (SEI Series in Software Engineering). Addison-Wesley.
Sommerville, I. (2000). "Software Engineering (6th Edition)". Addison-
Wesley.

Standish, T. (1984). "An essay on software reuse". IEEE Transactions on
Software Engineering SE-10 (5), 494-497.

Sutherland, J. (1995). "Business objects in corporate information
systems". ACM Computing Surveys 27 (2), 274-276.

Ulrich, W. (1990). "The evolutionary growth of software engineering and
the decade ahead". American Programmer 3 (10), 12-20.

van Vliet, H. (2000). "Software Engineering: Principles and Practice".
Wiley.

Zelkowitz, M., Shaw, A. & Gannon, J. (1979). "Principles of Software
Engineering and Design". Prentice-Hall.

Updated: April 30, 2015 by Jussi Koskinen.

http://fi.linkedin.com/pub/jussi-koskinen/1/249/708

