

Laboreo I

Bloque III. Rotura y Cálculo de voladuras 3.1 Voladuras en Banco EJERCICIO 2

Rubén Pérez Álvarez Noemí Barral Ramón

DEPARTAMENTO DE TRANSPORTES Y TECNOLOGÍA DE PROYECTOS Y PROCESOS

Este material se publica con licencia:

Creative Commons BY-NC-SA 4.0

EJEMPLO RESUELTO SIGUIENDO ESTA SISTEMÁTICA

En una cantera se extrae roca con una resistencia roca con resistencia a compresión simple de 150 MPa, en bancos de 10 m de altura. Se perfora a rotopercusión con un diámetro de barreno de 89 mm. Se selecciona como explosivo de fondo hidrogel encartuchado de 75 mm de diámetro, y ANFO a granel con densidades respectivas de 1,2 y 0,8 g/cm³. Se considera una inclinación de barrenos respecto a la vertical de 20°.

Geometría de la voladura	Resistencia a la compresión simple				
	Blanda <70 Mpa	Media 70-120	Dura 120-180	Muy dura >180	
Piedra V(m)	39D	37D	35D	33D	
Espaciamiento E(m)	51D	47D	43D	38D	
Retacado T(m)	35D	34D	32D	30D	
Sobreperforación Sp(m)	10D	11D	12D	12D	
Longitud de la carga de fondo Lf(m)	30D	35D	40D	46D	

RESOLUCIÓN

PIEDRA: 35 · D = 35 · 89 mm = 3115 mm = 3,1 m ESPACIADO: 43·D = 43 · 89 mm = 3827 mm = 3,8 m RETACADO: 32·D= 32·89 mm = 2848 mm = 2,8 m SOBREPERFORACIÓN: 12·89 mm = 1068 mm = 1,1 m

Longitud de barreno L(m)	L=H/cos β +(1-β/100)·Sp	L=10/cos20+(1-20/100)·1.1=11.52 m	
Volumen arrancado Vr (m _{banco} ³)	V _R =V·E·H/cos β	V _R =3.8·3.1·10/cos 20=125.40 m ³	
Rendimiento de la perforación (m/m _{banco} ³)	R _P =V _R /L	R _P =125.40/11.52=10.90 m _{banco} ³ /m	

EJEMPLO RESUELTO SIGUIENDO ESTA SISTEMÁTICA

En una cantera se extrae roca con una resistencia roca con resistencia a compresión simple de 150 MPa, en bancos de 10 m de altura. Se perfora a rotopercusión con un diámetro de barreno de 89 mm. Se selecciona como explosivo de fondo hidrogel encartuchado de 75 mm de diámetro, y ANFO a granel con densidades respectivas de 1,2 y 0,8 g/cm³. Se considera una inclinación de barrenos respecto a la vertical de 20°.

Geometría de la	Resistencia a la compresión simple				
voladura	Blanda <70 Mpa	Media 70-120	Dura 120-180	Muy dura >180	
Piedra V(m)	39D	37D	35D	33D	
Espaciamiento E(m)	51D	47D	43D	38D	
Retacado T(m)	35D	34D	32D	30D	
Sobreperforación Sp(m)	10D	11D	12D	12D	
Longitud de la carga de fondo Lf(m)	30D	35D	40D	46D	

RESOLUCIÓN

LONGITUD DE LA CARGA EN FONDO = Lf=40 D= 40·39 mm = 3560 mm = 3,60 m.

Concentración lineal de la carga encartuchada de fondo (Kg/m)

$$q_f = \pi \cdot (D_f \cdot 1.1)^2 \cdot \rho_f \cdot 2.5 \cdot 10^{-4}$$

En esta fórmula D_f va en mm

$$q_f\left(\frac{kg}{m}\right) = \left(\frac{1,1\cdot (D_{cartucho}(cm))}{2}\right)^2 \cdot \pi \cdot \rho_{carga\,fondo}\left(\frac{g}{cm^3}\right) \cdot 100\, \left(\frac{cm}{m}\right) \cdot \left(\frac{kg}{1000g}\right)$$

Se considera que debido al impacto y al peso de la columna, el diámetro medio del cartucho pasa a ser un 10% mayor.

O lo que es lo mismo:

$$\left(\frac{1.1\cdot(7.5(cm))}{2}\right)^2 \cdot \pi \cdot 1.2 \left(\frac{g}{cm^3}\right) \cdot 100 \left(\frac{cm}{m}\right) \cdot \left(\frac{kg}{1000g}\right) = 6.4 \text{ kg explosivo fondo}/\text{m}_{\text{lineal fondo}}$$

EJEMPLO RESUELTO SIGUIENDO ESTA SISTEMÁTICA

En una cantera se extrae roca con una resistencia roca con resistencia a compresión simple de 150 MPa, en bancos de 10 m de altura. Se perfora a rotopercusión con un diámetro de barreno de 89 mm. Se selecciona como explosivo de fondo hidrogel encartuchado de 75 mm de diámetro, y ANFO a granel con densidades respectivas de 1,2 y 0,8 g/cm³. Se considera una inclinación de barrenos respecto a la vertical de 20°.

Carga de fondo (Kg)

$$Q_f = q_f L_f$$

RESOLUCIÓN

CARGA DE FONDO= Q_f·L_f = 6,4 kg/m· 3,6 m=23,04 kg de Hidrogel

Concentración lineal de la carga a granel de columna (Kg/m) $q_c = \pi \cdot (D_c)^2 \cdot \rho_c \cdot 2.5 \cdot 10^{-4}$

En esta fórmula Dc va en mm

O lo que es lo mismo:

$$q_c\left(\frac{kg}{m}\right) = \left(\frac{D_{barrsno}(cm)}{2}\right)^2 \cdot \pi \cdot \rho_{carga\ columna}\left(\frac{g}{cm^3}\right) \cdot 100 \ \left(\frac{cm}{m}\right) \cdot \left(\frac{kg}{1000g}\right)$$

Explosivo a granel, llena el hueco del barreno

$$q_c\left(\frac{kg}{m}\right) = \left(\frac{8,9(cm)}{2}\right)^2 \cdot \pi \cdot 0.8 \cdot \left(\frac{g}{cm^3}\right) \cdot 100 \, \left(\frac{cm}{m}\right) \cdot \left(\frac{kg}{1000g}\right) = 5.0 \, kg \, \, ANFO/m_{lineal \, columna}$$

EJEMPLO RESUELTO SIGUIENDO ESTA SISTEMÁTICA

En una cantera se extrae roca con una resistencia roca con resistencia a compresión simple de 150 MPa, en bancos de 10 m de altura. Se perfora a rotopercusión con un diámetro de barreno de 89 mm. Se selecciona como explosivo de fondo hidrogel encartuchado de 75 mm de diámetro, y ANFO a granel con densidades respectivas de 1,2 y 0,8 g/cm³. Se considera una inclinación de barrenos respecto a la vertical de 20°.

RESOLUCIÓN

Longitud de la carga de columna L_c(m)

$$L_c = L - L_f - Taco$$

Longitud carga columna = Longitud barreno - Longitud fondo - Longitud retacado= 11,20-3,60-2,80= 5,12 m

Carga columna (Kg)

$$Q_c = q_c L_c$$

Carga columna = Concentración carga columna · Longitud carga columna = 5,00 (Kg ANFO/m) · 5,12 m= 25,50 Kg ANFO

Carga barreno (Kg)

$$Q_b = Q_f + Q_c$$

Carga barreno = Carga fondo + carga columna = 23,00 Kg hidrogel + 25,50 kg ANFO = 48,50 Kg

Consumo específico (Kg/m_{banco}³)

$$CE = Q_b/V_R$$

Consumo específico = Carga barreno / Volumen arrancado por barreno: 0,39 kg explosivo / m³ volado.