

Lección 2. Propiedades Físicas

Juan Antonio Polanco Madrazo Soraya Diego Cavia Carlos Thomas García

DPTO. DE CIENCIA E INGENIERÍA
DEL TERRENO Y DE LOS MATERIALES

Este tema se publica bajo Licencia: Creative Commons BY-NC-ND 4.0

Lección 2. Propiedades Físicas

Índice:

- Densidad
- Determinación de densidad real
- Determinación de densidad relativa y absoluta
- Determinación de conjunto
- Porosidades
- Absorción y humedad
- Permeabilidad
- Propiedades térmicas
- Propiedades ópticas
- Propiedades acústicas
- Propiedades eléctricas

Lección 2. Propiedades Físicas

 PROPIEDADES FÍSICAS: propiedades relacionadas con fenómenos y medidas de naturaleza física

Densidad: relación entre la masa y el volumen de cualquier cuerpo material

$$D = \frac{m}{V} \left[\frac{kg}{m^3} \right]$$

Peso específico: relación entre el peso y el volumen de cualquier cuerpo material

$$P_{e} = \frac{P}{V} \left[\frac{kp}{m^{3}} \right]$$

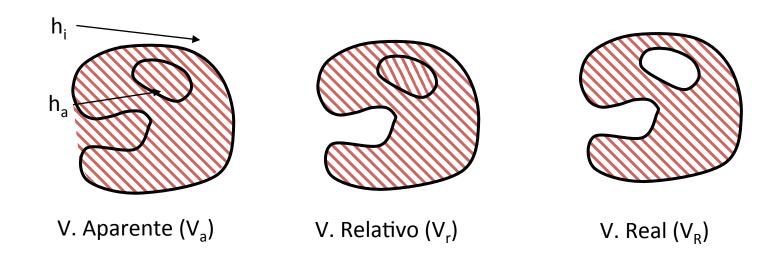
Peso/Masa

Volumen ??

Lección 2. Propiedades Físicas

MEDIDA DEL VOLUMEN

☐ No oc una targa concilla


ч	NO es una tarea sencina
	En los líquidos y los gases es sencillo (recipiente que los contiene)
	Los cuerpos sólidos, generalmente no son cuerpos simples, sino que podrán estar formados por tres fases:
	Una sólida formada por las partículas que constituyen la masa del cuerpo
	Y otras dos, gaseosa y/o líquidas ocupando espacios libres
	Por tanto el volumen ocupado por un cuerpo en el espacio y definido por sus superficies envolventes no está formado totalmente por partículas solidas → En su interior pueden existir POROS

Lección 2. Propiedades Físicas

El VOLUMEN se define por medio de sus dimensiones y morfología

VOLUMEN REAL: parte sólida del cuerpo (V_R)

VOLUMEN RELATIVO: parte sólida del cuerpo más los poros inaccesibles (V_r)

VOLUMEN APARENTE: volumen del cuerpo definido por sus superficies envolventes (V_a)

Lección 2. Propiedades Físicas

POROS ACCESIBLES: aquéllos que se llenan de agua después de mantener sumergido el cuerpo durante 24 horas (h_a)

POROS INACCESIBLES: los que no se llenan de agua después de mantener sumergido el cuerpo durante 24 horas (h_i)

POROS TOTALES: suma de los poros accesibles y los inaccesibles $(h_t = h_a + h_i)$

En función del tipo de volumen considerado se tendrá:

$$D_a = \frac{P}{V_a}$$

$$D_r = \frac{P}{V_r} = \frac{P}{V_a - h_a}$$

$$D_{R} = \frac{P}{V_{R}} = \frac{P}{V_{r} - h_{i}} = \frac{P}{V_{a} - h_{a} - h_{i}} = \frac{P}{V_{a} - h_{t}}$$

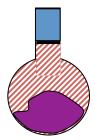
De forma que $D_R \ge D_r \ge D_a$

Lección 2. Propiedades Físicas

DETERMINACIÓN DE LAS DENSIDADES

Medida de la densidad real (D_R)

 \Box Solo material granular ($h_i = 0$)


Método del picnómetro

P: P seco (triturado)

 P_1 : picnómetro + líquido hasta enrase (ρ_L)

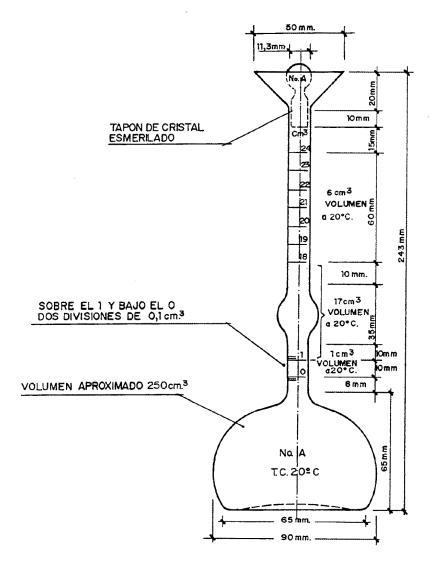
P₂: picnómetro + muestra + líquido hasta enrase

$$P + P_1 =$$

$$P + P_1 = Peso del líquido que ocupa V_R$$

$$P + P_1 = P_2 + V_R \cdot \rho_L$$

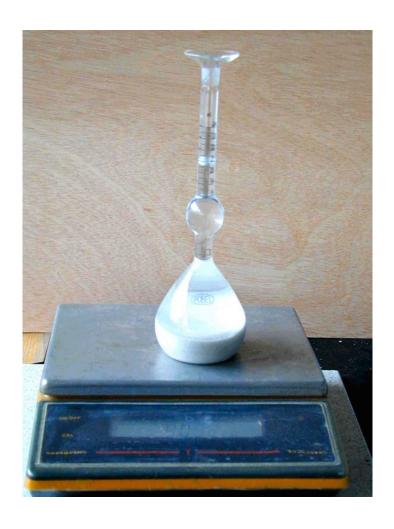
$$V_{R} = \frac{P + P_1 - P_2}{\rho_1}$$


$$D_R = \frac{P}{V_R}$$

Lección 2. Propiedades Físicas

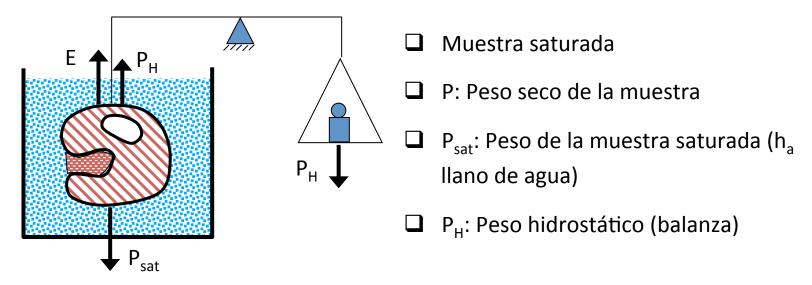
Método del volumenómetro de Le Chatelier

- UNE 80-103-86: Determinación de la densidad real mediante el volumenómetro de Le Chatelier
- Líquido que no reaccione con la muestra (agua)
- \Box V₀ entre 0 y 1 cm³
- P₀: peso inicial del recipiente más la muestra
- □ V_f: Se añade muestra hasta que se supera el valor de 18 cm³
- P_f: Se pesa el recipiente con el resto de muestra


$$D_{R} = \frac{P_{o} - P_{f}}{V_{f} - V_{o}} \longrightarrow D_{R} = \frac{P}{V_{R}}$$

Lección 2. Propiedades Físicas

Determinación del volumen real mediante el **picnómetro**

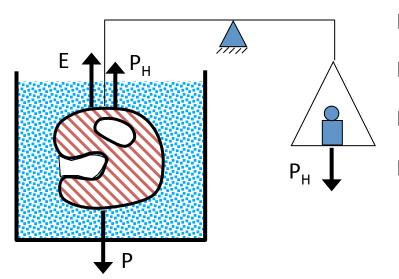


Lección 2. Propiedades Físicas

Medida de la densidad relativa (D_r) y aparente (D_a)

Método de la balanza hidróstática

 \square Empuje: Peso del volumen de líquido desalojado: $E = V_a \cdot \rho_L$


$$V_r = V_a - h_a = \frac{P_{sat} - P_H}{\rho_L} - \frac{P_{sat} - P}{\rho_L} = \frac{P - P_H}{\rho_L} \implies D_r = \frac{P}{V_r}$$

Método de la balanza hidrostática con líquido que no moja, o medida instantánea de forma que no se llenan los poros accesibles

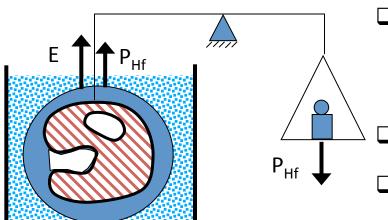
- Muestra seca
 - P: Peso seco de la muestra
- P_H: Peso hidrostático (balanza)
- No es un recomendable ya que los poros pueden coger algo de agua durante la medida
- Empuje: Peso del volumen de líquido desalojado: $E = V_a \cdot \rho_L$

$$V_{a} = \frac{P - P_{H}}{\rho_{L}} \implies D_{a} = \frac{P}{V_{a}}$$

$$\text{urar} : h_{a} \cdot \rho_{L} = P_{\text{sat}} - P \qquad \implies h_{a} = \frac{P_{\text{sat}} - P}{\rho_{L}}$$

Para V_a es necesario saturar : $h_a \cdot \rho_L = P_{sat} - P$

$$\Rightarrow h_a = \frac{P_{sat} - P}{\rho_L}$$

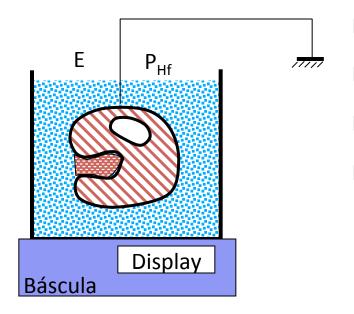

$$V_r = V_a - h_a = \frac{P_{sat} - P_H}{\rho_L} - \frac{P_{sat} - P}{\rho_L} = \frac{P - P_H}{\rho_L} \implies D_r = \frac{P}{V_r}$$

Lección 2. Propiedades Físicas

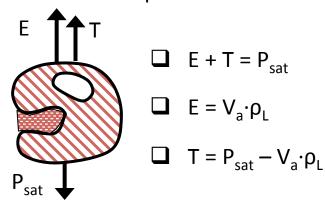
Método de la balanza hidrostática con parafina

- Muestra seca
- Se recubre la muestra con parafina, de forma que los poros accesibles pasan a ser inaccesibles
- P: Peso seco de la muestra
- P_f: Peso de la muestra parafinada
- \square P_H: P_H de la muestra parafinada
- Peso de la parafina: $P_{par} = P_f P$; Vol. Parafina: $V_{par} = P_{par} / \rho_{par}$

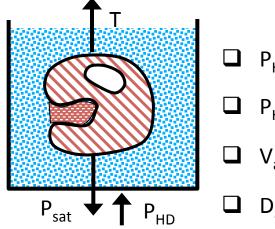
 P_{f}


- E: Peso del liq. desalojado por el V_a del conjunto: E = $(V_a + V_{par}) \cdot \rho_L$

Lección 2. Propiedades Físicas



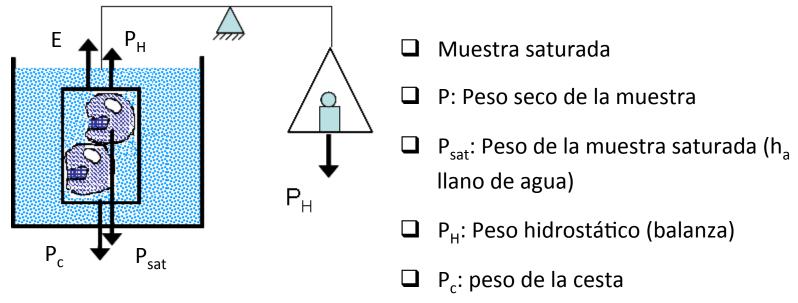
Método de la balanza hidrostática directa



- Se tara el recipiente lleno de líquido
- P: Peso seco de la muestra
- \square P_{sat}: Peso saturado
- \square P_{HD}: P_H directo

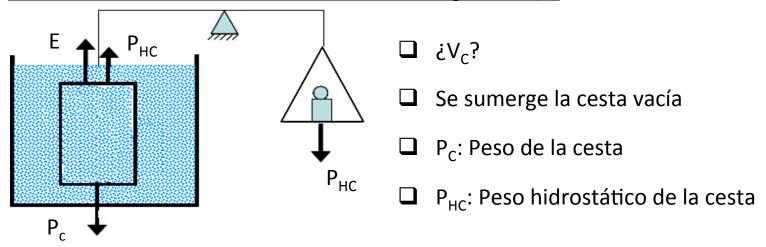
Aislando el cuerpo

Aislando recipiente + liq + cuerpo


- \Box $V_a = P_{HD}/\rho_L$
- \Box $D_a = P/V_a$

Lección 2. Propiedades Físicas

Método de la balanza hidróstática. Material ganular (I)


- □ Empuje: Peso del V de líquido desalojado: $E = V_L \cdot \rho_L = (V_a + V_C) \cdot \rho_L$

Lección 2. Propiedades Físicas

Método de la balanza hidróstática. Material ganular (II)

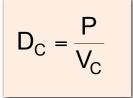
 \Box Empuje: Peso del V de líquido desalojado: E = $V_C \cdot \rho_L$

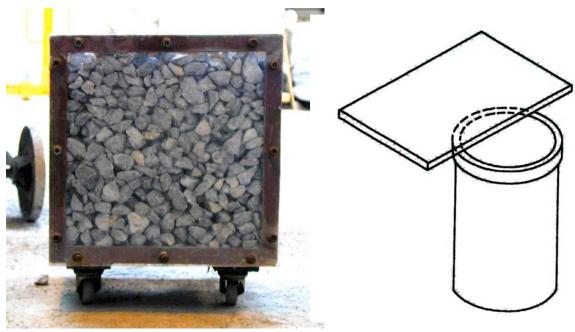
$$\nabla_{a} = \frac{P_{C} + P_{sat} - P_{H}}{\rho_{L}} - \frac{P_{C} - P_{HC}}{\rho_{L}} = \frac{P_{sat} - P_{H} + P_{HC}}{\rho_{L}} \implies D_{a} = \frac{P}{V_{a}}$$

Líquido que llena los poros accesibles: $h_a \cdot \rho_L = P_{sat} - P$

Lección 2. Propiedades Físicas

Determinación del volumen relativo y del volumen aparente mediante la **balanza hidrostática directa**





Lección 2. Propiedades Físicas

DENSIDAD DE CONJUNTO: en materiales granulares o molidos, formados por particulas separadas entre sí por huecos, es la relación entre el peso del conjunto de partículas y el volumen que ocupa dicho conjunto, incluidos los huecos existentes entre las partículas

- Su valor tiene expresiones muy diferentes según el recipiente que se use para medir el volumen y la forma de llenarlo
- \Box De forma que $D_R \ge D_r \ge D_a \ge D_C$

Lección 2. Propiedades Físicas

- POROSIDAD: relación entre el volumen de poros del cuerpo y el volumen aparente del mismo
 - ☐ Porosidad absoluta:

$$P_a = \frac{h_a + h_i}{V_a}$$

☐ Porosidad **relativa**:

$$P_r = \frac{h_a}{V_a}$$

COMPACIDAD: complemento a la unidad de la porosidad

☐ Compacidad absoluta:

$$C_a = 1 - P_a = 1 - \frac{h_a + h_i}{V_a} = \frac{V_a - h_a - h_i}{V_a} = \frac{V_R}{V_a} = \frac{\frac{P}{D_R}}{\frac{P}{D_a}} = \frac{D_a}{D_R}$$

☐ Compacidad **relativa**:

$$C_r = 1 - P_r = 1 - \frac{h_a}{V_a} = \frac{V_a - h_a}{V_a} = \frac{V_r}{V_a} = \frac{\frac{P}{D_r}}{\frac{P}{D_a}} = \frac{D_a}{D_r}$$

Lección 2. Propiedades Físicas

- Muestra unitaria:
 - Índice de poros: relación entre el volumen total de poros y la parte sólida de la muestra

- Material granular
 - Oquedad: relación entre el volumen de huecos (H) y el volumen de conjunto

$$O = \frac{H}{V_{C}} = \frac{V_{C} - V_{r}}{V_{C}} = 1 - \frac{V_{r}}{V_{C}} = 1 - \frac{\frac{P}{D_{r}}}{\frac{P}{D_{C}}} = \frac{1 - \frac{D_{C}}{D_{r}}}{\frac{P}{D_{C}}}$$

Compacidad: complemento a la unidad de la oquedad

$$C = 1 - O = \frac{D_C}{D_r}$$

Lección 2. Propiedades Físicas

ABSORCIÓN: porcentaje del peso de agua tomada por el cuerpo hasta saturación, respecto del peso del mismo totalmente seco

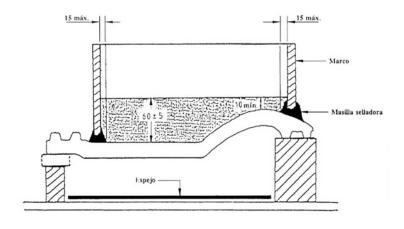
$$A(\%) = \frac{P_s - P_c}{P_c} 100$$

HUMEDAD: porcentaje del peso de agua que contiene el cuerpo, respecto del peso del mismo totalmente seco

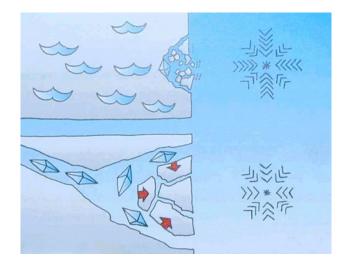
$$H (\%) = \frac{P_H - P_c}{P_c} 100$$

CONTRACCIÓN O RETRACCIÓN: reducción de las dimensiones del material al ser extraído el líquido que contiene

HINCHAMIENTO: aumento de las dimensiones de un material al absorber una cierta cantidad de líquido



Lección 2. Propiedades Físicas



PERMEABILIDAD: resistencia que opone un sólido poroso a que un fluido bajo presión le atraviese

RESISTENCIA A LA HELADA: capacidad de soportar ciclos de hielo-deshielo un sólido, sin deteriorarse

Lección 2. Propiedades Físicas

PROPIEDADES TÉRMICAS:

CONDUCTIVIDAD TÉRMICA: capacidad del material para transmitir el calor de un punto a otro de su masa

MATERIALES	T/m3	Kcal/hm °C	W/m °C
ROCAS	1,7/3,0	2,00/3,00	2,33/3,50
MATERIALES SUELTOS:			
Arena con humedad natural	1,7	1,20	1.40
Arena seca	1,5	0,50	0,58
Grava rodada o de machaqueo	1,7	0,70	0,81
Escoria de carbón	1,2	0,16	0,19
REVESTIMIENTOS			
Mortero de cal y bastardos	1,6	0,75	0.87
Mortero de cemento	2,0	1,20	1,40
Enlucido de yeso	0,8	0,26	0.30
id. id. con perlita	0,57	0,16	0,18
HORMIGONES			
Hormigón ordinario	2,0/2,4	1,00/1,40	1,16/1,63
Hormigones ligeros	0,5/1,4	0,10/0,47	0,12/0,55
Hormigones celulares	0,3/1,4	0,08/0,94	0,09/1,09
VIDRIO PLANO:	2,5	0,82	0.96
MADERAS	0,6/0,8	0,12/0,18	0,14/0,21
METALES Y ALEACIONES		HOLE (000001-1570070)	
Fundición y aceros	7,85	50,00	58,00
Cobre	8,9	330,00	384.00
Bronce	8,5	55,00	64.00
Aluminio	2,7	175,00	204,00
MATERIALES BITUMINOSOS	1,05/2,1	0,15/0,60	0,17/0,70
LINÓLEO	1,2	0,16	0,19
MOQUETAS, ALFOMBRAS	1,0	0,04	0,05
MATERIALES AISLANTES			100 t 100 t
Arcilla expandida	0,3/0,45	0,07/0,1	0,08/0,11
Corcho aglomerado	0,11	0,034	0,03
Espuma elastomérica	0,06	0,028	0.03
Fibras de vidrio	0,01/0,09	0,028/0,031	0,03/0,04
Perlita expandida	0,13	0,04	0,047
Poliestirenos	0,01/0,033	0,028/0,049	0,033/0,05
Poliuretanos	0,032/0,080	0,02/0,034	0,029/0,04
Vermiculita expandida	0,12	0,03	0,035

COEFICIENTES DE CONDUCTIVIDAD TÉRMICA À

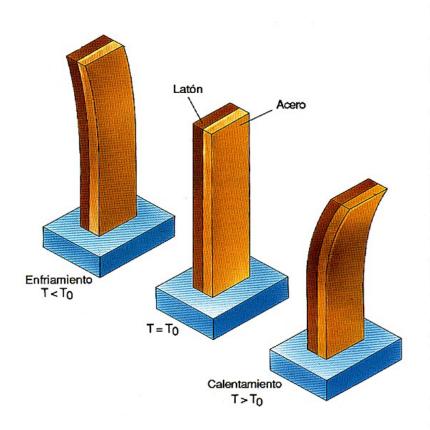
Lección 2. Propiedades Físicas

PROPIEDADES TÉRMICAS:

CALOR ESPECÍFICO:

cantidad de calor que absorbe o cede una unidad de masa, peso o volumen del material para aumentar o disminuir su temperatura un grado centígrado

Material	Calor específico (cal/gºK)
Agua Aire Vapor de agua Hielo Acero Hormigón armado Fibra de vidrio Aluminio Cobre Níquel Alúmina Diamante Sílice Polietileno alta densidad Polietileno baja densidad	1,00 0,24 0,42 0,50 0,12 0,26 0,20 0,22 0,10 0,11 0,20 0,12 0,27 0,44 0,55
Poliamida (nylon 6.6) Poliestireno	0,40 0,28

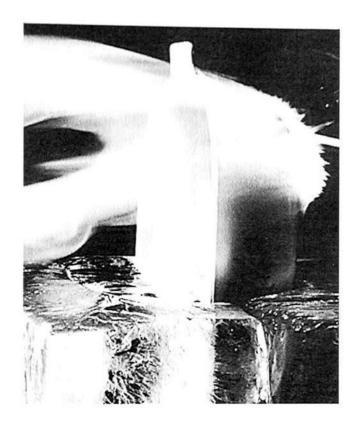


Lección 2. Propiedades Físicas

PROPIEDADES TÉRMICAS:

COEFICIENTE DE DILATACIÓN TÉRMICA: incremento específico experimentado por el material al tomar o ceder calor, por cada grado de temperatura

Material	Coeficiente lineal de expansión térmica (× 10 º cm/cm - °C)
Al	25.0
Cu	16.6
Fe	12.0
Ni	13.0
Pb	29.0
Si	3.0
W	4.5
Acero 1020	12.0
Aleación de aluminio 3003	23.2
Hierro gris	12.0
Invar (Fe-36% Ni)	1.54
Acero inoxidable	17.3
Latón	18.9
Compuestos epóxicos	55.0
Nylon-6,6	80.0
Nylon-6,6 —con 33% de fibras de vidrio	20.0
Polietileno	100.0
Polietileno -con 30% de fibras de vidrio	48.0
Poliestireno	70.0
Al ₂ O ₃	6.7
Sílice fundido	0.55
ZrO ₂ parcialmente estabilizado	10.6
SiC	4.3
Si ₃ N ₄	3.3
Vidrio de cal y sosa	9.0

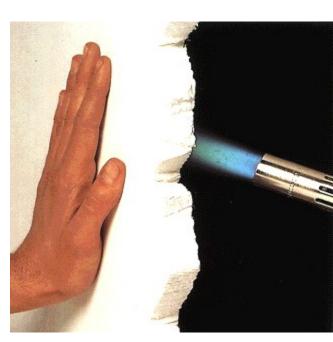


Lección 2. Propiedades Físicas

PROPIEDADES TÉRMICAS:

PODER REFRACTARIO: capacidad de soportar la acción prolongada de elevadas temperaturas, sin reblandecer ni deformarse

Lección 2. Propiedades Físicas



PROPIEDADES TÉRMICAS:

RESISTENCIA AL FUEGO: capacidad para soportar la acción del fuego durante un tiempo determinado, en caso de incendio

Lección 2. Propiedades Físicas

PROPIEDADES ÓPTICAS:

PERMEABILIDAD LUMINOSA: porcentaje de luz que deja pasar un material

REFRACCIÓN: desviación de los rayos luminosos al pasar de un medio a otro de distinta densidad

- Material transparente: material con una elevada permeabilidad luminosa
- Material opaco: material que no permite que la luz incidente le atraviese
- Material translúcido: a través de él no se pueden ver los objetos con claridad, sino más o menos distorsionados
- Material opalino: cuando la luz, además de resultar difusa, se refracta

Lección 2. Propiedades Físicas

PROPIEDADES ACÚSTICAS:

PERMEABILIDAD ACÚSTICA: porcentaje de sonido que deja pasar un cuerpo material

Lección 2. Propiedades Físicas

PROPIEDADES ACÚSTICAS:

PERMEABILIDAD ACÚSTICA: porcentaje de sonido que deja pasar un cuerpo material

AISLAMIENTO ACÚSTICO DE ALGUNOS MATERIALES

MATERIALES	Espesor (cm)	kg/m	AISLAMIENTO (dBA)
Hormigón	6,5	140	
id.	9	165	39
id.	14,0	225	44
id.	29,0	370	59
Escayola	6	60	32
Fábricas cerámicas	4	69	32
id. id.	11,5	202	43
id. id.	14,0	286	48
id. id.	24,0	444	55
Madera ligera	3,5	21	14
id. id.	4	24	15
id. densa	3,5	28	16
id. id.	4	32	17
Chapa de acero	0,12	9,5	8

Lección 2. Propiedades Físicas

PROPIEDADES ELECTRICAS

CONDUCTIVIDAD ELÉCTRICA (σ): facilidad que manifiesta un material para conducir la corriente eléctrica

• Material conductor: $\sigma > 10^4 \ \Omega^{-1} \ cm^{-1}$

• Material aislante: $\sigma < 10^{-6} \ \Omega^{-1} \ cm^{-1}$

• Material semiconductor: $10^{-6} < \sigma < 10^4 \ \Omega^{-1} \ cm^{-1}$

