

Materials

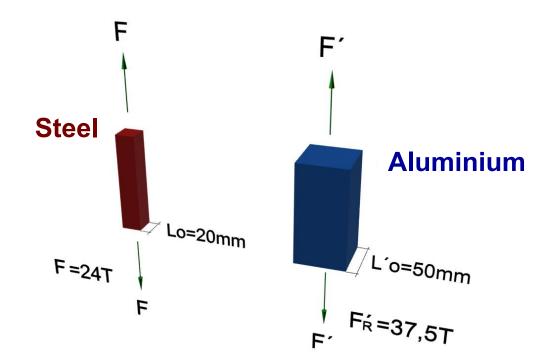
Topic 2. Hooke's Law

José Antonio Casado del Prado Borja Arroyo Martínez Diego Ferreño Blanco

Department of Science And Engineering of Land and Materials

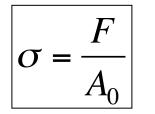
This work is published under a License:

Creative Commons BY-NC-SA 4.0



2.1. TENSION

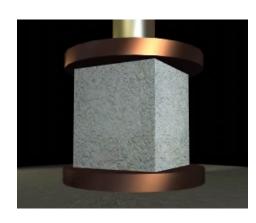
Comparison of the tensile strength of two different materials:

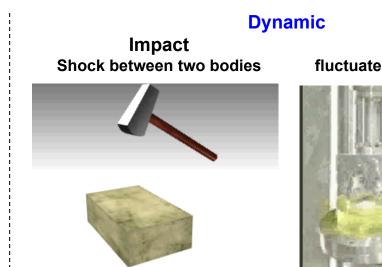


Which of the two materials is more resistant?

• Engineering stress (s): relationship between acting force and the surface of the initial section on which it acts.

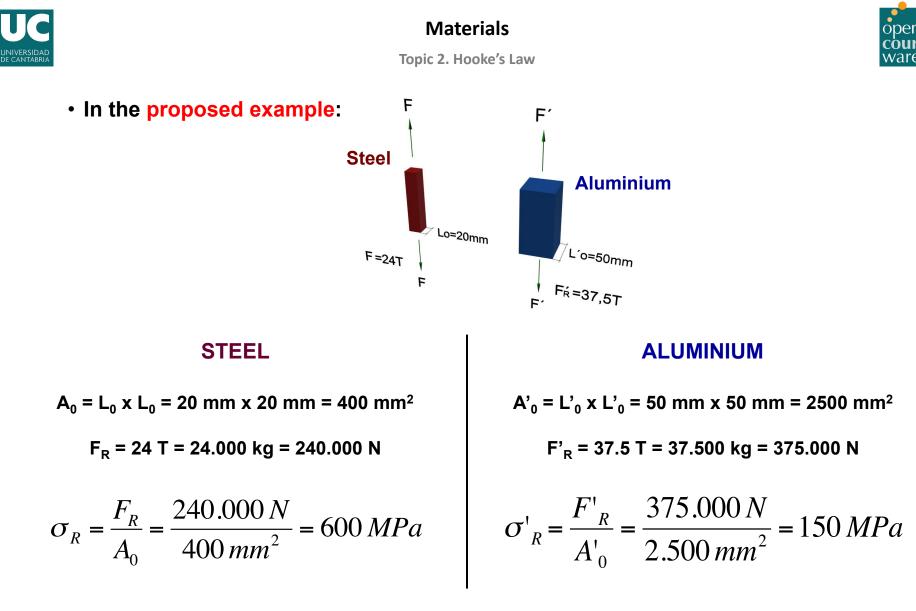
F: represents the load applied (N).


 A_0 : represents the initial cross section (m²).

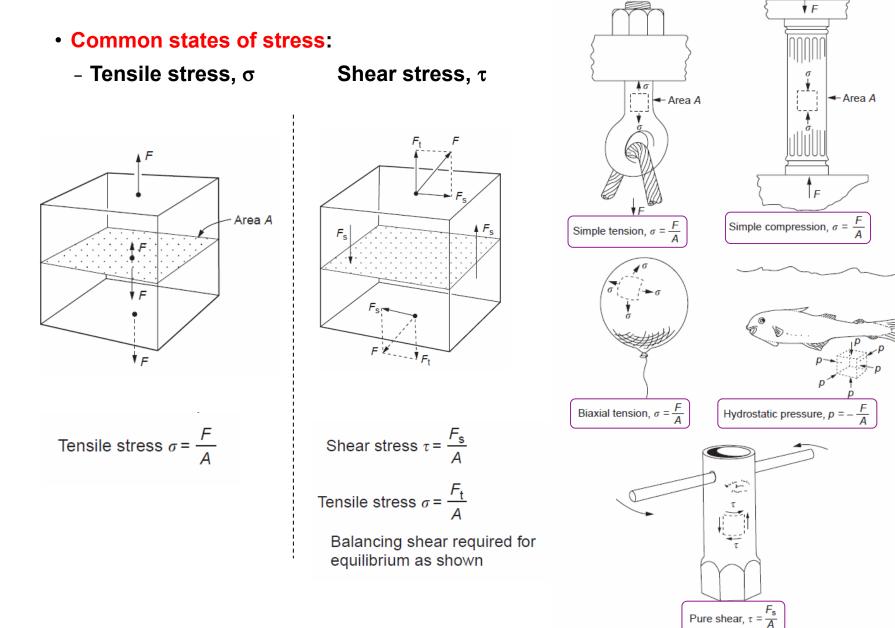

Dimensional stress formula: $F L^{-2}$ International, or Metric, System of measurements $N/m^2 = Pa$

(usual multiple: $1 \text{ MPa} = 10^6 \text{ Pa} = 1 \text{ N/mm}^2$).

• Type of effort:


Static Constant or slowly changes

Cyclic fluctuates between two limits



 $\sigma_R > \sigma'_R$

2.2. STRAIN

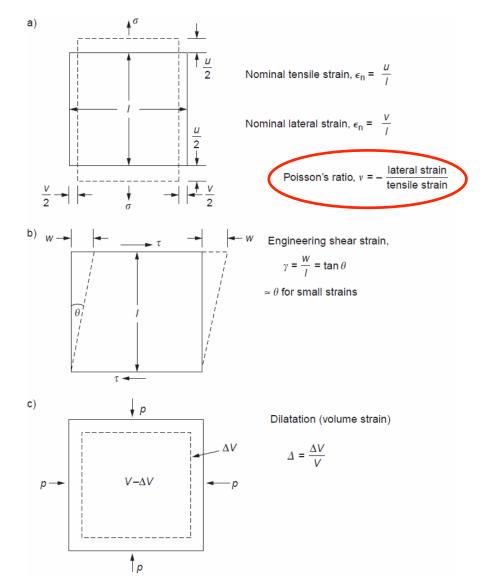
Change of shape or dimensions produced by the action of efforts.

Engineering strain (ε): is defined as:

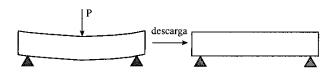
$$\varepsilon = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0} \quad \text{(dimensionless)}$$

Where l is the reference length corresponding to a given load and l_0 is the initial reference length (gauge) corresponding to a zero stress value.

The reference length under a given load is:


$$l = l_0 + \Delta l$$

Where Δl represents the elongation corresponding to that load.


• Tensile strain \in , shear strain (γ) and dilatation (Δ).

Elastic strain

It is a non-permanent deformation, which recovers completely when removing the load.

Elasticity is the property that solid bodies present to recover shape and dimensions when efforts are eliminated.

Plastic strain

It is a permanent deformation, which is not recovered by removing the load. However it is possible recover a small component of elastic deformation.

2.3. RELATIONSHIP BETWEEN STRESS AND STRAIN: HOOKE's LAW

• For small elastic deformations (~ 0.1%), there is a direct proportionality between the applied stress and the strain produced.

$$\sigma = \boldsymbol{E} \cdot \boldsymbol{\varepsilon}$$
 HOOKE's Law

• *E* represents the YOUNG's modulus, parameter that measures the resistance of a material to elastic deformation.

International, or Metric, System of measurements: $N/m^2 = Pa$, (usual multiple: 1 GPa = 10³ MPa = 10⁹ Pa).

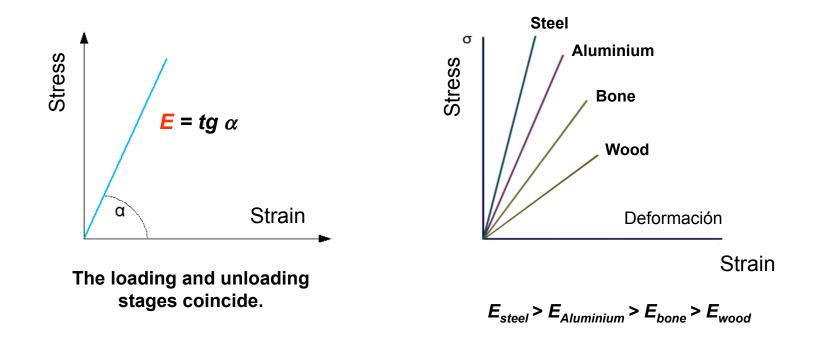
For other stress states:

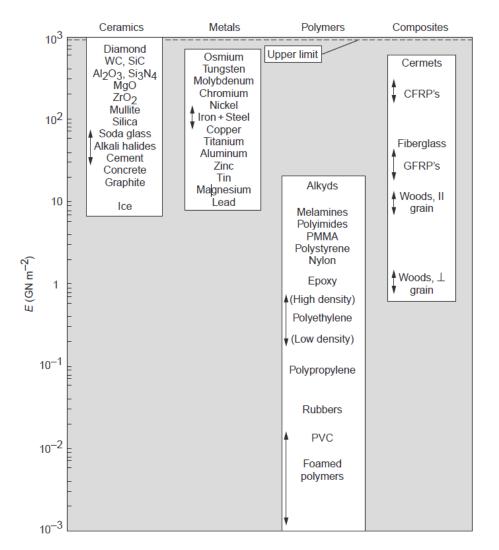
$$\tau = \mathbf{G} \cdot \boldsymbol{\gamma}$$
 G (Shear modulus).

$$p = -K \cdot \Delta$$
 K (Bulk modulus).

Low modulus of elasticity

High modulus of elasticity




 HOOKE's Law represents the equation of a line of slope E that passes through the origin of coordinates.

• The parameter yield strength σ_{γ} of a material represents the maximum stress it supports without suffering permanent (plastic) deformations.

2.4. DATA FOR YOUNG'S MODULUS, E

Bar chart of data for Young's modulus, E.

2.4. DATA FOR YOUNG'S MODULUS, E

Material	E (GN m ⁻²)
Diamond	1000
Tungsten carbide, WC	450-650
Osmium	551
Cobalt/tungsten carbide cermets	400-530
Borides of Ti, Zr, Hf	450-500
Silicon carbide, SiC	430-445
Boron	441
Tungsten and alloys	380-411
Alumina, Al ₂ O ₃	385-392
Beryllia, BeO	375-385
Titanium carbide, TiC	370-380
Tantalum carbide, TaC	360-375
Molybdenum and alloys	320-365
Niobium carbide, NbC	320-340
Silicon nitride, Si ₃ N ₄	280-310
Beryllium and alloys	290-318
Chromium	285-290
Magnesia, MgO	240-275
Cobalt and alloys	200-248
Zirconia, ZrO ₂	160-241
Nickel	214
Nickel alloys	130-234
CFRP	70-200
Iron	196
Iron-based super-alloys	193-214
Ferritic steels, low-alloy steels	196-207
Stainless austenitic steels	190-200
Mild steel	200
Cast irons	170-190
Tantalum and alloys	150-186
Platinum	172
Uranium	172
Boron/epoxy composites	80-160
Copper	124
Copper alloys	120-150
Mullite	145
Vanadium	130
Titanium	116
Titanium alloys	80-130
Palladium	124
Brasses and bronzes	103-124
Niobium and alloys	80-110
Silicon	107
Zirconium and alloys	96

(Continued)

Material	$E (GN m^{-2})$
Silica glass, SiO2 (quartz)	94
Zinc and alloys	43-96
Gold	82
Calcite (marble, limestone)	70-82
Aluminum	69
Aluminum and alloys	69-79
Silver	76
Soda glass	69
Alkali halides (NaCl, LiF, etc.)	15-68
Granite (Westerly granite)	62
Tin and alloys	41-53
Concrete, cement	30–50
Fiberglass (glass-fiber/epoxy)	35-45
Magnesium and alloys	41-45
GFRP	7-45
Calcite (marble, limestone)	31
Graphite	27
Shale (oil shale)	18
Common woods, to grain	9–16
Lead and alloys	16-18
Alkyds	14-17
Ice, H ₂ O	9.1
Melamines	6–7
Polyimides	3–5
Polyesters	1.8-3.5
Acrylics	1.6-3.4
Nylon	2-4
PMMA	3.4
Polystyrene	3-3.4
Epoxies	2.6-3
Polycarbonate	2.6
Common woods, \perp to grain	0.6-1.0
Polypropylene	0.9
PVC	0.2-0.8
Polyethylene, high density	0.7
Polyethylene, low density	0.2
Rubbers	0.01-0.1
Cork	0.01-0.03
Foamed polymers	0.001-0.01

Materials

Topic 2. Hooke's Law

Values expressed in GPa (1 GPa = 10⁹ Pa)

<u>HIGH</u>			MEDIUM		LOW			
Diamond	100	00	Chromium	290	Gold	80		
Tungsten carbide,	WC 5	50	Niquel	215	Siver	75		
Silicon carbide, Si	C 48	50	Iron, steels	200	Aluminium	70		
Alumina, Al ₂ O ₃	39	90	Cast irons	180	Granite	60		
					Concrete	50		
					Wood fiber	15		
Very LOW					Wood ⊥ fiber	1		
Nylon	3							
Polyethylene HD	0.7	Ma	Materials of practical application in engineering					
Polyethylene LD	0.2		Materials of practical application in engineering:					
Rubber	0.05		<i>E:</i> 10³ – 10⁻³ GPa					
Foams	0.005							