

Materials

Topic 8. Creep and relaxation

José Antonio Casado del Prado Borja Arroyo Martínez Diego Ferreño Blanco

Department of Science And Engineering of Land and Materials

This work is published under a License:

Creative Commons BY-NC-SA 4.0

8.1. INTRODUCTION

- The mechanical behavior dependent on time is analyzed according to 2 aspects:
 - Creep: variation of the deformation over time to constant load.
 - Relaxation: loss of stress over time to constant deformation.

8.2. CREEP

- Strain depends on temperatura (T). The temperature at which materials start to creep depends on their melting point. As a general rule, it is found that creep starts when:
 - T > 0.3 to 0.4 T_M for metals.
 - T > 0.4 to 0.5 T_M for ceramics.

At Room Temperature = 300 K

- Tungsten, W (T_M = 3500 K) dosen't creep.
- Lead, Pb (T_M = 600 K) creeps.
- Ice (T_M = 273 K, 0°C) melts.

Melting or softening^(S) temperature

Material	T(K)	Material	T(K)	
Diamond, graphite	4000	Gold	1336	
Tungsten alloys	3500-3683	Silver	1234	
Tantalum alloys	2950-3269	Silica glass	1 100 ^(S)	
Silicon carbide, SiC	3110	Aluminum alloys	750-933	
Magnesia, MgO	3073	Magnesium alloys	730-923	
Molybdenum alloys	2750-2890	Soda glass	700-900 ^{(S}	
Niobium alloys	2650-2741	Zinc alloys	620-692	
Beryllia, BeO	2700	Polyimides	580-630 ^{(S}	
Iridium	2682-2684	Lead alloys	450-601	
Alumina, Al ₂ O ₃	2323	Tin alloys	400-504	
Silicon nitride, Si ₃ N ₄	2173	Melamines	400-480 ^{(S}	
Chromium	2148	Polyesters	450-480 ^{(S}	
Zirconium alloys	2050-2125	Polycarbonates	400 ^(S)	
Platinum	2042	Polyethylene, high-density	300 ^(S)	
Titanium alloys	1770-1935	Polyethylene, low-density	360 ^(S)	
Iron	1809	Foamed plastics, rigid	300-380 ^{(S}	
Carbon steels	1570-1800	Epoxy, general purpose	340-380 ^{(S}	
Cobalt alloys	1650-1768	Polystyrenes	370-380 ^{(S}	
Nickel alloys	1550-1726	Nylons	340-380 ^{(S}	
Cermets	1700	Polyurethane	365 ^(S)	
Stainless steels	1660-1690	Acrylic	350 ^(S)	
Silicon	1683	GFRP	340 ^(S)	
Alkali halides	800-1600	CFRP	340 ^(S)	
Beryllium alloys	1540-1551	Polypropylene	330 ^(S)	
Uranium	1405	Ice	273	
Copper alloys	1120-1356	Mercury	235	

Melting or softening temperature

- Most common polymers are not crystalline, and have no well-defined melting point. For them, the important temperature is the glass transition temperature, T_G, at which the Van der Waals bonds solidify:
 - T > T_G Polymer is in a leathery or rubbery state, and creeps rapidly under load. (Molecular chains slide).
 - T < T_G Polymer becomes hard (sometimes brittle) and there isn't creep. (Strengthening secondary bonds of chains).

Polymer	PE	NR	PP	PA 6	PET	PVC	PS	РММА
Т _с (°С)	-115	-73	-20	53	69	81	100	105
Т _м (°С)	137	128	176	265	212	240		

Topic 8. Creep and relaxation

8.3. CREEP TESTS

 Creep tests require careful temperature control. A specimen is loaded in tension or compression, at constant load, inside a furnace at a constant temperature, T. The extension, ε, is measured and represented as a function of time, t –creep curve–.

- Strict control of temperature.
- Adequate extensometry (strain gauges...).
- Insulation (environmental chamber).
- Coupling to machine tests.

Topic 8. Creep and relaxation

(n = 1/4 - 2/3)

$$m = 20$$
 $E E^{1}$

8.4. INFLUENCE OF STRESS AND TEMPERATURE

Empirical relationships:

T: constant

Combining both expresions:

$$\dot{\varepsilon}_{ss} = A \cdot \sigma^n \cdot e^{-(Q/RT)}$$

Weertman's equation

R: Universal Gas Constant (8.31 J/mol · K).Q: Activation Energy for Creep (J/mol).A, n: constants of the material.

Topic 8. Creep and relaxation

8.5. DATA EXTRAPOLATION METHODS

 Sometimes engineering creep data are impractical to collect from normal laboratory tests (on the order of years). One solution is performing creep tests at temperatures in excess of those required, for shorter time periods, and at a comparable stress level, and then making an extrapolation to the in-service condition. A commonly used extrapolation procedure employs the Larson–Miller parameter, defined as:

8.6. RELAXATION

- Loss of stress of the material under constant strain.
- In relaxation, mechanisms analogous to those exhibited for creep are presented in the material, all responding to the same basic equations.
- Relaxation time, arbitrarily defined as the time taken for the stress to relax to half its original value.

