

Materials

Exercises Topic 8. Creep

José Antonio Casado del Prado Borja Arroyo Martínez Diego Ferreño Blanco

Department of Science And Engineering of Land and Materials

This work is published under a License: <u>Creative Commons BY-NC-SA 4.0</u>

- CREEP
- 1. It is intended to install a stainless steel pipe in a chemical facility. The passage of liquid inside the pipe develops an internal preassure (P), in such a way that the stress (σ) in the pipe material is related to that pressure by the "thin tube formula":

$$\sigma = \frac{P\emptyset}{2e}$$

$$\sigma = \frac{1}{2e}$$
 Ø= 40 mm is the diameter of the pipe and e = 2 mm el espesor

In anticipation of the existence of creep phenomena, lab tests had been carried out in order to determine the deformation rate by steady state creep at 200°C; the results obtained are the following ones:

The activation energy for this pehnomena, Q, is 140 KJ/mol and the creep law of the material is: $(d\varepsilon/dt)_{ss} = A \sigma^n e^{-(Q/RI)}$ A and n constants of the material and R = 8,3 J/mol·K Universal Gases constant.

In these conditions, determine the life of the pipe if it works at 250°C and 4.8 MPa, being the maximum permissible deformation 6%.

2. Estimate the allowable in-service stress for an structural element manufactured from an S590 alloy at a temperature of 1100°C, if the lifetime of the structure must be at least tf = 10 hours.

If it is intended to fix the inservice stress in 500 MPa and prevent the failure of the component before 10.000 hours, determine the maximum working temperature that is permissible.

Calculate the lifetime if the applied stress were of 250 MPa and the working temperature of 870°C.

3. It is suspected that a cooper plate of high conductivity can suffer an important overheating during its use in service. In order to figure out its creep behavior a cylindrical specimen of $\emptyset = 5$ mm diameter was prepared; it was tested at a fixed temperature of 327°C. The initial length between the pins of the extensioneter employed for this test were of 5Ø, and the specimen was subjected to a constant load of 152 Kg which produced an instantaneous elastic deformation ε_0 . In the following table the registered data of the extensioneter along the time are presented:

t (s)	0	60	180	300	420	540	660	780	900	1020
<i>l</i> (mm)	25.201	25.258	25.305	25.335	25.360	25.381	25.400	25.419	25.435	25.452

t (s)	1260	1500	1740	1980	2220	2460	2700	2940	3180	3420
<i>l</i> (mm)	25.482	25.512	25.541	25.569	25.598	25.628	25.658	25.690	25.723	25.759

t (s)	3660	3900	4020	4140	4260	4380	4500	4620	4740	4800
<i>l</i> (mm)	25.797	25.840	25.863	25.888	25.916	25.947	25.983	26.028	26.097	26.166

a) Determine the creep stress (σ) employed during the test.

- b) Calculate the instantaneous initial deformation (ε_0).
- c) Represent the graph "percentual deformation due exclusively to creep ($\& \epsilon_F$)" vs "the time (t)", ergo ($\& \epsilon_F$)-(t)", using for this the attached graph.

t (s)

- d) From the previous representation, determine the minimum deformation rate. What is the name given to the creep stage where this phenomena occurs?
- e) It is known that the constant for Weertman equation for this material is A = 0.0420 when the deformation is expressed in %, the stress in MPa and the time in seconds, and that the Activation Energy for the creep phenomena in this material is Q = 130 kJ/mol. Estimate the potential index (n) of the stress in the aforementioned equation.
- f) Calculate the lifetime in service of the cooper plate if the final operating conditions will be 250°C at a stress of 50 MPa, and the maximum admissible deformation caused by creep must be of 2%.

Tip:

1 kg = 9.81 N ; Ideal gas	ses constant: R = 8.31 J/mol·K ;	; Weertman eq.: $\dot{\epsilon}_{ss} = A\sigma^n e^{-Q/t}$	RT
---------------------------	----------------------------------	--	----

t (s)	<i>l</i> (mm)	$\Delta \ell (\mathrm{mm})$	$\epsilon_{\text{TOTAL}}(\%)$	$\epsilon_{ m FLUENCIA}(\%)$
0	25.201			
60	25.258			
180	25.305			

Subject: MATERIALS	
Degree: GRADO en INGENIERÍA MECÁNICA. 2 nd Grade	

300	25.335		
420	25.360		
540	25.381		
660	25.400		
780	25.419		
900	25.435		
1020	25.452		
1260	25.482		
1500	25.512		
1740	25.541		
1980	25.569		
2220	25.598		
2460	25.628		
2700	25.658		
2940	25.690		
3180	25.723		
3420	25.759		
3660	25.797		
3900	25.840		
4020	25.863		
4140	25.888		
4260	25.916		
4380	25.947		
4500	25.983		
4620	26.028		
4740	26.097		
4800	26.166		