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1.1. INTRODUCTION

ELASTICITY:

* It is the ability of a material to recover its original geometric shape after
experimenting a mechanical action.

* It is not an absolute property: it depends on the material and on the
range of loads and stresses applied to it.
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION
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« EXTENSION: Uniaxial load acting on a linear element:

A, Ag
F . \ £:> F . F
: 3 ) :’ >E
-— |_0 S |_O
(TENSION) (COMPRESSION)

* |t is assumed that the loads applied on the cross section are uniform and
normal to that surface.

» Under equilibrium conditions, each and every part of a body (either real or
imaginary) must be in equilibrium too.

AL AL
F
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION

UNIVERSIDAD
DE CANTABRIA

* Note: when stress is defined this way AL
(using the original geometry of the cross F
section) it is called engineering stress. - A_
0
 The difference between engineering and = |::>

true variables (stress and strain) will be
explained in Lesson 2.

A\

SAINT VENANT’S PRINCIPLE:
« Empirical principle (Check: Oliver and Agelet, UPC, 2000).

« Beam under the action of a punctual force F. It is extremely complicated to
solve this elastic problem analytically (usually, numerical solution).

F — 71\\\ F
< % . — >
ZLona con respuesta ZLona con misma ZLona con respuesta
diferenciada respuesta para diferenciada
antbos sistemas
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION
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SAINT VENANT’S PRINCIPLE:

Zona con respuesia ZLona con misma Zona con respuesia
diferenciada respuesta para diferenciada
ambos sistenas
/&
F O =—
A
Zona perturbada Zona no perturbada Zona perturbada

* Force F is replaced by a statically equivalent system of uniformly distributed
stresses in the extreme section. The elastic analysis of this new problem is
straightforward.

 Saint Venant’s Principle allows to approximate the stress state of (1) by (lI)
provided the point to be analyzed is far enough to the punctual load (one or
two times the width of the beam).
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION

MORE ABOUT NORMAL STRESS. EXAMPLES:

F - Bending moment on a beam: internal
stresses must balance the external
moments and forces (equilibrium
condition).

» There is a non-uniform distribution of
X normal (and shear) stresses through
N the cross section. According to

Strength of Materials:
F/2 F/2

F/2
M=FL/4 @

F/2
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION
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SHEAR STRESS: y
7 2 s
o . : .
Sl % ] ‘@
z . Ve T

e —
© L72 T
>
2

* In isostatic structures, stresses (normal, shear) can be directly obtained
from axial, bending and torsional forces in the cross section.

» For hyperstatic structures, compatibility equations are necessary too.

 This assumption is no longer valid with “general” structures (continuum
media). In fact, in such case it makes no sense to talk about axial forces,
bending moments and so on.
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION
AL
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> Strain definition (longitudinal):

— o= AL
NN nNak o

* This definition is valid as long as L~cte, that is, when AL<<L (small strain

theory).
* Otherwise, Cauchy’s incremental strain definition should 7o~ — dL
be applied: L

* Note: when studying elastic behavior, we will always assume small strain
conditions. Nevertheless, this is no longer valid in situations where large
strains occur (for instance, in many cases where plasticity is playing a role).
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1.1. INTRODUCTION STRESS STATE: INTRODUCTION

-  Along with longitudinal deformations, we

AX A —

— - can also find distortions, vy.

Y * The figure (left) shows the distortion (y)
underwent by a small part subjected to a
tangential / shear force.

» Deformations must be compatible with the location of the material points
of the continuum media.

_ — 0
/ - D i . 3
'-" diSe .-""—_"'u.,__ll
‘ 2
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1.1. INTRODUCTION

Boundary
conditions (forces
and displacements)

<

Stress distribution
in every material
point.

« 1822: Cauchy’s (1789-1857) stress principle.

* The stress vector depends on the orientation
of the plane and on the point:

- AF dF
F(P.77)=1i _
(P.71) 1&1301 AS  dS
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1.1. INTRODUCTION

» Stress tensor contains all the information about the stress state of every
point of a continuous body.

t(P.n)=n-o(P)

* The stress tensor (o) can be obtained
from the coordinates of three stress
vectors in three coordinate planes,
containing point P:

£
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1.1. INTRODUCTION
SCIENTIFIC NOTATION FOR THE STRESS TENSOR (MATRIX):

Gll 612 G13

o indica el plano de actuacion
indice i —

G=|0, G, Oy (plano perpendicular al eje Xi)

O3 O3 O3

v indica la direccion de la tension
x.A 1 1 P — . ., .
: ) } indice (direccion del eje x .)
; A0 J
’ A 031»/ A o
. L . B L €2 —> Chl 25 >
? — X, C, / G, o, X,

< oA
ENGINEERING NOTATION FOR THE STRESS TENSOR (MATRIX):

- A
AC: - -
- T Gx Txy sz
T - —
Z A o, 6=(1, O, T,
T8 >
' > T T )
D Txy Ty y | zX vz z
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1.1. INTRODUCTION
SIGN CRITERIA:

» Given a point P and a plane
containing the point, the
stress vector can be split
into its normal (o) and
shear (1) components.

> () traccion

< 0 compresion

_ _ positivas (+)=> traccion
stress tensor matrix. In the basic

parallelepiped we can distinguish
between exposed faces (or posi- positivas (+)= sentido del eje b
tive ones) and hidden faces (or " |negativas (—) = sentido contrario al eje b

negative ones).

» This criteria can be used for the
G, 0 csa{

negativas (—) = compresion
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1.1. INTRODUCTION
SIGN CRITERIA:

z A 7 A
AC:
»sz 4 G\
= i .T»"'x T-\'J’ v
yz (5}, _i/’ <—Tl'——
> 6\4___,4 VT\Z
> T \ B >
T vy y )/‘Z// { T_ y
. - ——| 72X
/’sz/ :
|
\/
X 0

positivas (+)= traccion

positivas (+)= sentido del eje b
6,00, . ., ab
' negativas (—) = compresion

negativas (—)= sentido contrario al eje b
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1.1. INTRODUCTION
STRESS TENSOR MATRIX SYMMETRY:
ﬂ Oyy

Suggested exercises:

y T
1) Demonstrate the symmetry of the Stress —
Tensor (Law of the conjugated shear
stresses). X ||| dy HT O
Xy
» Tip: without loss of generality, apply dx
equilibrium conditions on a 2D system. 0O <—— X
T
yX
 Equilibrium conditions:
ﬂ OW

Y M, =0

Ty (dy.l)-dx— T (dx-l)-a’y =0 = r =7

yx

(QED)
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1.1. INTRODUCTION

PRINCIPAL STRESSES AND DIRECTIONS:

 Tensor algebra guarantees that any second order tensor diagonalizes in
an orthonormal base and that its eigenvalues are real numbers.

—

’ . .. G’C Txy TXZ
* Let’s consider the stress tensor matrix in an .
: . . ] 6= Txy Gy Tyz
arbitrary Cartesian basis (x, y, z):
T T, O
| Tz vz z | (X.0.2)
* In the Cartesian coordinate system (x’, y’, Z’) 6, 0 0]
in which o diagonalizes, the matrix will be: =0 o, O
0 0 oy (.2

DEFINITIONS: -
* Principal directions (of stresses): directions related to the axes (x’, y’, Z’)
in which the stress tensor matrix is diagonal.

* Principal stresses: components of the stress tensor (o,, 0,, 05) when the
basis is changed to a new Cartesian system (X', y’, Z’) so that the shear
stress components become zero. Criterion: o, 2 0, 2 0;.
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1.1. INTRODUCTION

Simple example:

1) Obtain the stress tensor matrix for a pure 2D shear stress situation.
Calculate the principal stresses by diagonalization of the matrix.
Analyze its symmetry.

y T 0 7
——> Stress tensor: (G):(r O]
T T
ﬂ ﬂT |a—)Ll|=O = =0 = A==z1
T -A
O <7T:1 X

N
0, =T: R (e 0 = a=5b
ool =)\ b 0 . ‘7(1)=L1

Normalization condition: a’*+b* =1
J
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1.1. INTRODUCTION

Simple example:
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1.1. INTRODUCTION

Simple example:

2) Obtain the stress tensor and the principal stresses in this situation: a thin
wall pipe with axial stress and a torque moment.

Dat i T
ata:
\ — s
R=100 mm; t=2 mm. Oy i
P = ~| > oy — P
P =20 kN; M, =1 kN-m; =
F i 7
Mr
Solution: y

159155 7.9577 o, =19.2117 MPa
O =
79577 0 o, =—3.2962 MPa

o [(09239)  _, (-0.3827
vy = VY =
0.3827 0.9239
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1.2. STRESS AND STRAIN

The strain state in each point of the material of a continuous medium is
described by a mathematical object: (small) Strain Tensor.

* Interpretation of the components of the Strain Tensor:

* Principal diagonal components: unitary elongation.

» Other components: distortions.

{Deformation &= ATI}

1 |
11 2712 2713 | [8xx &y &xz
i | |
8(X9y>z)a[8ij]: 271 %x» 2723 yz

1 1
§Y31 §y32 833 €7x 82y €77

Il
™
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1.2. STRESS AND STRAIN
STRAIN ENERGY DENSITY:
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PP 0 v Principle of energy conservation:

dU =W =FdL =(0"A)(de'L)=(AL)(ode)

2
du:d—U:o'-dg — u:_[c)'-dg
AL 1

ju
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1.3. STRESS-STRAIN RELATIONSHIP
RECALLING: STATIC AND KINEMATIC VARIABLES. EQUILIBRIUM

EQUATIONS, CONSTITUTIVE EQUATIONS AND COMPATIBILITY

» Static variables: forces, moments, stresses...

» Kinematic variables: displacements, deflections, rotations, strains,
distortions...

* An equilibrium equation is a relationship between static variables.

AL

AN

..
open
course
ware




Mechanical Properties of Materials, Processing and Design open
course
Topic 1. Elastic behaviour ware

1.3. STRESS-STRAIN RELATIONSHIP

RECALLING: STATIC AND KINEMATIC VARIABLES. EQUILIBRIUM
EQUATIONS, CONSTITUTIVE EQUATIONS AND COMPATIBILITY

* An equilibrium equation is a relationship between static variables.

F/2 F/2 F/2

F
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1.3. STRESS-STRAIN RELATIONSHIP

RECALLING: STATIC AND KINEMATIC VARIABLES. EQUILIBRIUM
EQUATIONS, CONSTITUTIVE EQUATIONS AND COMPATIBILITY

* A compatibility equation is a relationship between kinematic variables.

NN nag I

ALcable = f;/iga, CL

..
open
course
ware
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1.3. STRESS-STRAIN RELATIONSHIP

RECALLING: STATIC AND KINEMATIC VARIABLES. EQUILIBRIUM
EQUATIONS, CONSTITUTIVE EQUATIONS AND COMPATIBILITY
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A constitutive equation is a relationship between static and kinematic
variables.

» Ejemple: uniaxial force on a bar. AL

AN Nk

o MATERIAL > £
pAL
i

= AL-=

F
Hooke'slaw: o =FEe [ Z

0
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1.3. STRESS-STRAIN RELATIONSHIP

Isotropic medium: is completely defined by two elastic constants.

* There is some freedom in the selection of these two constants. In structural
mechanics, E and v are normally used.

E Elastic/Young's modulus.
V Poisson’s ratio.

* Tensile test allows both parameters to be obtained.

» Primary variables of this test: force (F)
and elongation (AL).

* Derived variables: stress and strain.

* In the linear elastic regime:
o=FL¢

£, = —VE
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Tensile test: AL
» Drawback: two bars made out F=K-AL F

, . —>
of the same material but with Q
different geometric dimensions. §\\§\ &\\\&\

(A1s A2! L1’ L2)

&

 This relationship only depends
on the material (and not on the
dimensions of the component).
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1.3. STRESS-STRAIN RELATIONSHIP

Generalized Hooke’s law (triaxial stress, isotropic medium)

g; =é[0'l- —V(O'j +0'k)] i,j,k:1.3,i#j#k

Suggested exercise:

1) Demonstrate Hooke’s generalized law (2D) by applying the Superposition
Principle on an arbitrary biaxial state. Then, generalize it for a 3D problem.
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1.3. STRESS-STRAIN RELATIONSHIP
* Another alternatives: G and K
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G Shear modulus; T = G')/

K Bulk modulus:

A
%=Q+?+%=K7¥

 Provided the behavior of a continuous and isotropic medium is perfectly
defined with two elastic constants, it must be possible to express G and
Kin terms of E and v:

E E

0= 20+ K=3(1—2v)
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1.3. STRESS-STRAIN RELATIONSHIP

Suggested exercises:
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1) Demonstrate the relationship between K, E and v (Tip: Analyze the volume
change in a parallelepiped (element) under the action of a triaxial stress
state).
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Suggested exercises:
2) Demonstrate the relationship between G, E and v. To do that, analyze the

pure shear stress state described in Figure 1 (stress and strain states),
establishing the equilibrium equations in the element 1234 (Figure 2) and

the compatibility equations in line MN (Figure 3).

T B L _----- -,C’
e B p===="" C ,l C B C
i : N
T T L :' ,' T T 1 3
v/2 1 1
! M
: —-p--"7T7C 1D’ 4
Figura 2 Figura 3

L
Figura 1
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1.3. STRESS-STRAIN RELATIONSHIP

* Linear medium definition (Einstein — Grossman’s compact notation:
repeated indexes represent summatories): E: Stiffness tensor

o, =kE, & 1,7,k[1:1.3

l

* Question: how many elastic constants are necessary to describe the most
general linear medium?

« Symmetry: (O‘l.. = O'jl.)/\(gl.j = gjl.) = LEy=Lu=Ek,;=E,

J

« Symmetry in stress tensors and small strain tensors helps to simplify the
problem (without loss of generality). In matrix notation (stiffness matrix):

O-ll Ellll E1112 E1113 E1122 E1123 E1133 811
0-12 E1211 E1212 E1213 E1222 E1223 E1233 812
0-13 — E1311 E1312 E1313 E1322 E1323 E1333 813
O-22 E2211 E2212 E2213 E2222 E2223 E2233 822
0-23 E2311 E2312 E2313 E2322 E2323 E2333 823
0-33 E3311 E3312 E3313 E3322 E3323 E3333 833

* It is enough with ‘only’ 36 elastic constants.
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1.3. STRESS-STRAIN RELATIONSHIP

* It can be demonstrated that such a general relationship implies that energy
is not conserved through the process (internal dissipative processes).

* To avoid this drawback, it is necessary to impose symmetry conditions on
the stiffness matrix (Green’s hyperelastic medium).

oW (¢.. 2 2 00 ..

B i
dE; d€,;0€,, 0€,0E, g, 0,

i

» These kind of materials are called linear hyperelastic and they need 21
elastic constants. Stiffness matrix is symmetric.

O-ll Ellll E1112 E1113 E1122 E1123 E1133 811
0-12 E1211 E1212 E1213 E1222 E1223 E1233 812
0-13 — E1311 E1312 E1313 E1322 E1323 E1333 813
0-22 E2211 E2212 E2213 E2222 E2223 E2233 822
0-23 E23 11 E2312 E23 13 E2322 E2323 E2333 823
0-33 E3311 E3312 E3313 E3322 E3323 E3333 833
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1.3. STRESS-STRAIN RELATIONSHIP

» Materials in nature are rarely that ‘sofisticated’. Example: orthotropic behavior.

 The elastic behavior of an orthotropic material is defined by nine
independent constants: 3 longitudinal elasticity modulus (E,, E,, E,),
3 shear modulus (G,,, G,,, G,,) y 3 Poisson’s ratios (v,,, V,, V,)-

xy? =yz)
, Grown g Ancat
* The best example of an orthotropic , S
material is wood that, due to its T e : -
structure, has a different longitudinal i a1 |

elasticity modulus (Young’'s modulus)
along the fiber, tangentially to the
growth rings and perpendicularly to
the growth rings.
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1.4. LINEAR AND NONLINEAR ELASTICITY

* In metallic materials, elasticity (recoverable strain) and linearity (Hooke’s
law) usually occur simultaneously.

* However this is not true for other materials, where a nonlinear elastic
response can take place.

Hooke’s law: o = Eg
Tangential and secant elastic modulus:

Secant

A .
c Linear K E ( ) d O
Tangential 18 &)= de
E=8i
Etg (ei)

ST Ry ' Nonlinear O
]
E sec (gi)_ T
gi

5 -

€ €
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1.5. VALUES OF THE ELASTIC MODULUS
Polymers Composites

10°

10?

10

f‘
§ 1
107"
This figure suggests that there is a
relationship between the nature of
102 the material and the values of

Young's modulus.
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1.5. VALUES OF THE ELASTIC MODULUS

Young's modulus

Engineering alloys (GPa) Poisson’s ratio

Aluminum 6572 0.33-0.34

Copper 100120 0.34 0.35

Magnesium 45 0.2 0.35

Nickel 200-220 0.31

Steels 200-215 0.27-0.29

Titanium 110120 0.36

Zinc 105 0.35

Engineering ceramics and Young's modulus

glasses (GPa) Poisson’s ratio

Titanium diboride, TiB, 540 0.11

Silicon carbide, SiC 400 0.19

Titanium carbide, TiC 440 0.19

Tungsten carbide, WC 670-710 0.24

Silicon nitride, Si,N, 110-325 0.22-0.27

Alumina, Al,O, 345-414 0.21-0.27

Beryllium oxide, BeO 300-317 0.26-0.34

Zirconia, ZrO, 97-207 .32-0.34

Fused silica 71 0.17

Soda-lime glass 69 0.24

Aluminosilicate glass 88 0.25

Borosilicate glass 63 0.20

High-lead glass 51 0.22
Young's modulus

Polymers (GPa) Poisson’s ratio

Acrylics 24-3.1 0.33-0.39

Epoxys 2.6-3.1 0.33-0.37

Polystyrenes 3.1 0.33

Low-density polyethylene 0.1-0.3 0.45

High-density polyethylene 04-14 0.34

Polypropylene 0.5-1.9 0.36-0.40

PTFE 0.4-1.6 0.40-0.40

Polyurethanes 0.006-0.4 0.49
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1.6. DETERMINATION OF THE ELASTIC MODULUS

« Mechanical tests: === In order to obtain the Young's
modulus accurately, high precision

experimental devices must be used.

 Natural frequency of vibration:

| —— l .1 prEd’ }1/2 o _16nMEf?
i é — i;_-.._:'r"...l e 1413M 3d4
le : o
]

1/2

E

» Speed of sound propagation;: ) v, — (_j
P
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1.6. DETERMINATION OF THE ELASTIC MODULUS

Suggested exercises:

1) Demonstrate the expression to obtain the relation between the Young’s
modulus and the natural frequency of vibration. It is suggested to obtain
the expression of the natural frequency of vibration of a spring with a
constant K, with a hanging mass M (harmonic oscillator) and, then, iden-
tify the constant K in the flexural stress beam system.
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1.7. PHYSICAL BASIS OF THE ELASTIC MODULUS

KEY POINT: microstructural nature justifies macroscopic properties.

» Consequence: in crystalline materials, the nature of the chemical bond
(ionic, covalent o metallic) justifies the Young’s modulus as well as the
linear behavior (in a restricted regime).

Unit area, crossed by
-t 1

— bonds
w
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1.7. PHYSICAL BASIS OF THE ELASTIC MODULUS
PARTICULAR CASE: ionic bonding, electrostatic attraction.

Coulomb’s law:

dre, 1 4 v’
Force-potential energy relationship:
_. - dU —e
F=-VU=-—" = U=
dr dre, r

A repulsive potential is needed. Phenomenological approach:

2
€ B B, m: constants that depend

U=- +
m on the bond’s nature.
de,r ¥




uc Mechanical Properties of Materials, Processing and Design open
course
Topic 1. Elastic behaviour ware

1.7. PHYSICAL BASIS OF THE ELASTIC MODULUS
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EQUILIBRIUM CONDITION:

F=- (d—Uj =0
dl" r=r,

APPLICATION OF FORCES: . |
m l | duisa maximum (at point of
s N " dr inflection in U/r curve)
1
F— — F Atraction | /\/ du-
"\ 3 0 f | g
+e I T -e Pocion /|| &,
i - L
, . o
' l rl
. . JU Drssocaron ragus
F=-F=22
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1.7. PHYSICAL BASIS OF THE ELASTIC MODULUS

Near the equilibrium position:

Fm=S0(r_rb)
Stress and strain:
If r
| _Fm 8=r_’/b
| | du is a maximum (at point of O = P
F B . o  inflection in U/r curve) 7 I’b
(-3) W — 0 _/
0 1 I o« O
boAN, F s (r-r S r—r, S
peusion | %-0 o= 0(20)_0 0 _ 20
: : ¥ 7"0 rO }/b l/b ’/E)J
~
| |
Dmoenam;:m S
E==
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1.7. PHYSICAL BASIS OF THE ELASTIC MODULUS

Bond energy and elastic behavior:

| Espacio de equilibrio
entre atomos

> Espaciamiento despucs de que ¢l F
Enlace fuerte

| calentamiento incrementa la energia en AE
+—{ Espaciamiento después de que el

| | calentamierto incrementa la energia en AL
| | (a mayor separacion se tiene mayor

| expansion térmica)

> Distancia

Separacion

Enecrgia
Fuerza

Enlace débil

RELATIONSHIP BETWEEN PROPERTIES AND BOND TYPES I

Bond type
Property
Metallic Ionic Covalent Secundary
Bond energy High (3) Really high(1) Really high(2) [ Really small
Melting point High (3) High (1,2) High (1,2) Really low (4)
Elastic modulus High (2) High (1) High (1) Really small
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1.8. ELASTIC BEHAVIOUR LIMITS
Elastic behavior limit: DEFECTS

o) ~E/10

ultimate

But, before that:

L\

Brittle Plastic
fracture deformation
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1.8. ELASTIC BEHAVIOUR LIMITS

Elastic behavior limit

Actually: o., <<E/10

I: Brittle fracture Il: Plastic behavior b
Due to discontinuities Some materials flow from i
in the material. a certain tensional state ®

(Yield stress, s,) leading to
permanent deformations
even before the material
breaks (ductile behavior).

Inherent in the material
(brittle behavior).





