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3.1. INTRODUCTION 
•   Elastic-plastic behavior: ε = f(σ). 

•   This behavior is typical of ‘low’ temperatures. 

•   At ‘high’ temperatures, the variables ‘t’ and ‘T’ play a role: ε = f(σ, t, T). 

•   This behavior can take place, for example, in structural components of 
energy conversion facilities (nuclear and thermal power stations, etc.), 
which operate at high temperatures. 

PHENOMENOLOGY OF CREEP: 
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3.1. INTRODUCTION 
•   From a structural point of view, we can distinguish two situations: 

CREEP: σ = cte, ε = ε(t) RELAXATION: ε = cte, σ = σ(T)  

•   Creep and relaxation are the ‘two sides of the same coin’. 

•   Both phenomena are strongly affected by temperature. 
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3.1. INTRODUCTION 
•   What does ‘high’ and ‘low’ temperature mean? 

•   The temperature at which materials begin to creep depends on the melting 
temperature (absolute scale), TM. 
    
   T > 0.3 TM – 0.4 TM   for metals. 

   T > 0.4 TM – 0.5 TM   for ceramic materials. 

•   In polymers, the phenomenon is controlled by the glass transition tempera-
ture (TG). Most polymers flow at room temperature (> TG). Below this glass 
transition temperature, polymers become hard and brittle in some occa-
sions, and the phenomenon disappears. 
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3.1. INTRODUCTION 
SOME VISCOUS BEHAVIOR EXAMPLES: 

•   At room temperature, concrete shows a viscous behavior that entails pres-
tressing losses. 

•   The lamp filaments, made out of tungsten, break due to creep phenomenon 
(temperature of about 2000 ºC). 

•   Lead pipes undergo creep at room temperature. 

•   Displacement in glaciers is caused by a flow process. 
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3.1. INTRODUCTION 

TM (W) = 3500 ºK 

TM (Pb) = 600 ºK 

TM (Ice) = 273 ºK 
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a)  Displacement limit (service limit state, SLS). 

b)  Fracture (ultimate limit state, ULS). 

c)  Relaxation limits (SLS or ULS). 

d)  Buckling (ULS). 

IMPORTANCE OF VISCOUS BEHAVIOR: 
3.1. INTRODUCTION 
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3.1. INTRODUCTION 
IMPORTANCE OF VISCOUS BEHAVIOR: 

EXAMPLE: two components susceptible to undergo creep under in-service 
conditions. 
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η: coefficient of viscosity, dynamic viscosity (1 Pa·s = 10 Poise). 

3.2. VISCOSITY 
•   Isaac Newton (1642-1727) was the first to propose a viscous behavior 

model (Philosophiae Naturalis Principia Mathematica). 

F 

h 

•   NEWTONIAN MATERIALS: 

h 
u 

•   The experiment consisted of a small plate floating on water the plate 
being subjected to a constant horizontal force. 
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3.2. VISCOSITY 

•   Both gases and liquids are 
viscous fluids; as discussed 
later on, even solids are 
viscous fluids. 

•   In general, gas viscosity is 
lower that that of liquids. 

•   Gas viscosity increases with 
temperature; theoretically: 

REPRESENTATIVE VALUES OF VISCOSITY: 

•   Liquid viscosity decreases 
with temperature.  
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3.3. NEWTONIAN AND NON-NEWTONIAN BEHAVIOR 
•   Fluids clasification by viscous behavior: 

Newtonian: 

Dilatant: Pseudoplastic: 

Newtonian plastic: Plastic: 

Plastic 

Newtonian or 
Bingham’s  plastic  

Pseudoplastic 
Newtonian 

Dilatant 

Threshold 
stress 

Dilatant 

Newtonian 

Pseudoplastic 
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Suggested exercises: 

1) The following table provides the data obtained in a test performed on a 
clay. Model its behavior as a Bingham body, determining its apparent 
viscosity and critical shear. Compare with the real behavior and with that 
of a pseudoplastic model.  

3.3. NEWTONIAN AND NON-NEWTONIAN BEHAVIOR 
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Creep 

3.4. CREEP AND RELAXATION 

Relaxation 
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Experimental difficulties: 
•   Rigorous control of T. 
•   Appropriate extensometry.  
•   Insulation (environmental chamber).  
•   Connection to the testing machine.  

CREEP TEST: consists on a specimen subjected to constant load and 
constant  (high) temperature inside an oven. Throughout the test, strain 
is recorded and graphically plotted as a function of time. 
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3.5. EVOLUTION OF STRAIN DURING CREEP 
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Characteristic design parameters: 

(Strain velocity at steady state). 

(Life span at creep). 

Primary / transient: 

Secondary / steady: 

Tertiary: 
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Time 

Instantaneous deformation 

Tertiary 

Secondary 

Primary 

3.5. EVOLUTION OF STRAIN DURING CREEP 
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EXAMPLE: creep behavior of the austenitic steel AISI 316L. 

3.5. EVOLUTION OF STRAIN DURING CREEP 



Topic	
  3.	
  Creep	
  behaviour	
  

Mechanical	
  Proper5es	
  of	
  Materials,	
  Processing	
  and	
  Design	
  

INFLUENCE OF STRESS AND TEMPERATURE: 

By increasing the stress or the temperature: 

•   Instantaneous initial strain increases. 

•   Strain velocity rate increases in the steady state regime.  

•   Life span decreases 
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3.5. EVOLUTION OF STRAIN DURING CREEP 
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T = cte σ = cte 

INFLUENCE OF STRESS AND TEMPERATURE: 

Power-law 
creep 

Slope 

Low σ 

3.5. EVOLUTION OF STRAIN DURING CREEP 
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3.5. EVOLUTION OF STRAIN DURING CREEP 
EXAMPLE: experimental results for the AISI 316 L steel. 
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3.5. EVOLUTION OF STRAIN DURING CREEP 
ATOMIC LEVEL JUSTIFICATION: 

•   Steady state creep: 

•   Influence of T: Arrhenius law: it is a very common type of law, which 
works very well to explain diverse phenomena: 
•   Rate of oxidation-corrosion / diffusion rate / multiplication of bacteria in a Petri 

plate, etc.  

•   The law states that the rate of the process increases exponentially with 
temperature. 

•   Arrhenius law in creep is due to the diffusion processes taking place 
in the material as a consequence of the stress applied and the 
temperature. 
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3.5. EVOLUTION OF STRAIN DURING CREEP 
LOW TEMPERATURE CREEP: 

EXAMPLE: 

EHE-2008 STANDARD OF STRUCTURAL CONCRETE 
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3.6. DESIGN FOR CREEP 

•   Structural components may fail 
due to SLS (Service Limit State) 
or ULS (Ultimate Limit State). 

•   SLS analysis can be addressed 
using previously seen strain rate 
models. 

•   Traditionally, ULS analysis is 
based on experimental data from 
which charts, tables or graphs are 
developed. 

Nickel alloys comparison: 
(A) TD-Nickel, (B) MA 6000, 

(C) directionally-solidified Mar-M200 
and (D) single-crystal PWA 454. 
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3.6. DESIGN FOR CREEP 

•   In a creep problem we can find three different variables: T, tr, σ. 

•   By fixing two of them (e.g., σ and T) it is possible to determine the third one. 
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Time to fracture 
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3.6. DESIGN FOR CREEP 

•   The engineering goal is to predict the long-term behavior from ‘short-term’ 
tests.  

•   The usual way to make life predictions when creep might happen is to use 
data obtained from short duration tests, but at temperatures higher 
than the in-service temperature. 

•   Two important rules: 
•   Testing time must exceed, at least, 10% of life span of the component.  

•   It is necessary to ensure that the same deformation mechanism acts in both the 
test and service.  

•   In the scientific literature, several methods of analysis are presented; the 
most important ones are the following: 
I.  Monkman-Grant method. 

II.  Larson-Miller method. 

III.  Sherby-Dorn method. 
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3.6. DESIGN FOR CREEP 

(Feltham and Meakin, 1959). 

(Cu) 

•   This type of relationship is based on the observation that the strain is the 
macroscopic manifestation of the accumulated damage due to creep. 

•   Therefore, fail will occur when the accumulated damage in the material 
(in the form of voids and fissures of creep) reaches a certain critical 
value. 

•   Monkman-Grant equation: 

MONKMAN-GRANT METHOD: 
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3.6. DESIGN FOR CREEP 

€ 

˙ ε SS = A σ( )e
−Q
RT ⇒ ε ≈ A σ( ) t e

−Q
RT

€ 

log t = log ε
A σ( )

 

 
 

 

 
 +
Q loge
R

1
T

•   Assume that a series of creep tests with σ = constant and T = variable, 
are performed, recording the time to failure tr (or to a certain strain). 

•   Therefore, for tests with σ = constant a 
linear relationship is obtained in the 
representation (log t) Vs. (1/T).  

σ = cte 

1 / T 

log t 

€ 

log ε
A σ( )

 

 
 

 

 
 ≡ −C 1 

LARSON-MILLER AND SHERBY-DORN METHODS: 
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3.6. DESIGN FOR CREEP 

•   Two extreme cases can be considered: 
a)  Q = Q (σ), C ≠ C (σ): LARSON – MILLER. 

b) Q ≠ Q (σ), C = C (σ): SHERBY – DORN. 

(a) (b) 

LARSON-MILLER AND SHERBY-DORN METHODS: 
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3.6. DESIGN FOR CREEP 

€ 

ε
A σ( )

≈ cte

€ 

log t = −C +
Q loge
R

1
T

⇒ PLM ≡
Q σ( ) loge

R
=T C + log t( )

€ 

PLM σ( ) =T C + log tr( )

•   Two tests at the same stress and different temperature show the same 
value of PLM.  

•   The relationship PLM (σ) is obtained experimentally. 

•   Typically, C ~ 20-22 for metals. 

•   The usefulness of PLM is that it allows accelerated creep tests (same 
stress and higher temperature) to be performed. 

LARSON-MILLER AND SHERBY-DORN METHODS: 
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3.6. DESIGN FOR CREEP 
EXAMPLE: PLM dependence for a wide variety of Nickel alloys.  
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Suggested exercises: 

1) Using the attached graph, 
determine the maximum 
working stress at a 
temperature of 1100 ºC to 
avoid fracture for 10h.  

2) What would be the 
maximum stress for 
T=500ºC and a life span 
of 10000h?  

3) Obtain the life span for a 
stress of 250 MPa and a 
temperature of 870 ºC. 

. 

3.6. DESIGN FOR CREEP 
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3.7. ANALYSIS OF RELAXATION 
•   At a constant stress, strain increases over time: CREEP.  

•   At a constant strain, stress decreases over time: RELAXATION. 

•   Creep and relaxation phenomena are two sides of the same coin. 

•   The material responds with the same constitutive law for two different 
structural problems: in the creep problem, static boundary conditions 
are imposed whereas in relaxation kinematic conditions are applied.  
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σ 

Δt 2Δt 

σ0 

•   To understand the phenome-
non, we discretize the time 
into small intervals Δt. 

•   It is considered that changes 
occur in between those 
intervals.  

€ 

t = 0
σ t = 0( ) =σ 0

˙ ε t = 0( ) =Cσ 0
n

 

 
 

 
 

 

 
 

 
 

€ 

t = Δt
ΔεV = ˙ ε t = 0( )Δt =Cσ 0

n Δt
ΔεE = −ΔεV
Δσ = −ECσ 0

n Δt
σ t = Δt( ) ≡σ1 =σ 0 −ECσ 0

n Δt <σ 0

˙ ε t = Δt( ) =Cσ1
n < ˙ ε t = 0( )

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

€ 

t = 2Δt
ΔεV = ˙ ε t = Δt( )Δt =Cσ1

n Δt
ΔεE = −ΔεV
Δσ1 = −ECσ1

n Δt
σ t = Δt( ) ≡σ 2 =σ1 −ECσ1

n Δt <σ1

˙ ε t = Δt( ) =Cσ 2
n < ˙ ε t = Δt( )

 

 
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  
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3.7. ANALYSIS OF RELAXATION 
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3.7. ANALYSIS OF RELAXATION 

σ 

Δt 2Δt 

€ 

σ i+1 =σ i −ECσ i
n Δt•   It can be written: 

€ 

σ i+1 −σ i

Δt
= −ECσ i

n ⇒
σ i =σ t( )
σ i+1 =σ t +Δt( )

 
 
 

  

 
 
 

  
⇒

σ t +Δt( )−σ t( )
Δt

= −ECσ n t( )

€ 

n ≠1: σ t( ) = σ 0
1−n − 1− n( )EC t[ ]

1
1−n

n =1: σ t( ) =σ 0 e
−EC t

 

 
 

  



Topic	
  3.	
  Creep	
  behaviour	
  

Mechanical	
  Proper5es	
  of	
  Materials,	
  Processing	
  and	
  Design	
  

Suggested exercises: 

1) Obtain the evolution of the tightening stress in a bolt initially prestressed 
to a stress σi. The objective of the bolt is to keep two plates together. 
The plates are supposed to be non-deformable. 

SOLUTION: 

3.7. ANALYSIS OF RELAXATION 
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Metal and ceramic materials: 

•   Two creep mechanisms can be distinguished: dislocation (power law in 
stresses) and diffusion (linear law in stress). 

•   As both mechanisms depend on diffusive phenomena, dependence on 
temperature is given in both cases by the Arrhenius equation.  

Dislocation creep: 

•   Plastic strain is a consequence of the displacement of dislocations. 
This movement must overcome: a) Intrinsic strength of the crystal net, 
b) The obstacles that prevent them to move forward (solute atoms, 
precipitates, other dislocations). 

•   The diffusion of atoms (assisted by the stress state and the temperature) 
can unlock the dislocations, thereby allowing the increment of 
deformations. 

3.8. CREEP MICROMECHANISMS 
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Dislocation creep: 

•   Consider a dislocation blocked in an obstacle.  

•   Unless dislocation is blocked in the middle plane, it experiences a 
lifting/climb force. This reaction tends to displace the dislocation 
out its slip plane.  

•   The dislocation will be able to overcome the obstacle if the atoms 
in the bottom of the dislocation can diffuse through the network.  

3.8. CREEP MICROMECHANISMS 
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Dislocation creep: 

•   This process is called climbing of the dislocation. Since it requires atomic 
diffusion, it is developed for temperatures above 0.3TM:  
•   T = (0.3 - 0.5) TM, core diffusion. 

•   T = (0.5 - 0.99) TM, bulk diffusion. 

T/TM = 0.3-0.5: Core difussion T/TM = 0.5-0.99: Bulk difussion 

3.8. CREEP MICROMECHANISMS 
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Dislocation creep: 

•   When a dislocation is unlocked by the climbing mechanism, it can move 
forward (due to its stress state) until it gets stuck again. 

•   The process is repeated again in this new obstacle. This explains the 
progressive and continue nature of creep.  

•   This explains, as well, the expression of strain rate by an Arrhenius law.  

3.8. CREEP MICROMECHANISMS 
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Dislocation creep: 

Influence of T: 

•   The dislocation creep is assisted by diffusion processes; the temperature 
dependence of the diffusion coefficient determines the influence of the 
temperature on the strain rate.  

Influence of σ: 

•   It is a consequence of the climbing force: As stress increases, the 
climbing force increases, more dislocations are unlocked and the 
strain rate increases.   

3.8. CREEP MICROMECHANISMS 
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Diffusion creep: 

•   Under low stresses (unable to unlock the movement of dislocations) an 
alternative mechanisms can occur. 

•   Elongation of the grains by diffusion (in matrix or grain boundary). 

•   There is no movement of dislocations. 

3.8. CREEP MICROMECHANISMS 
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Influence of T: 

•   Strain rate is proportional to the diffusion 
coefficient, D. 

Influence of σ: 

•   Stress acts as a ‘driving force’ of the 
diffusion process (plays the same role as 
the concentration gradient of Fick’s law). 

Diffusion creep: 

•   Reduced T/TM : atomic diffusion predominant in grain boundary (fast 
difussion path): COBLE CREEP. 

•   High T/TM : atomic diffusion through the matrix (the crystal lattice ‘relaxes’ 
thanks to the thermal agitation): NABARRO-HERRING CREEP. 

3.8. CREEP MICROMECHANISMS 



Topic	
  3.	
  Creep	
  behaviour	
  

Mechanical	
  Proper5es	
  of	
  Materials,	
  Processing	
  and	
  Design	
  

T = cte σ = cte 

INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS: 

Slope 

Power-law 
creep 

Low σ  

3.8. CREEP MICROMECHANISMS 
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(a) Ni-Al2O3 

Log (dε/dt) vs. 1/T for: (a) Ni–Al2O3 ,(b) Ni–67Co–Al2O3 ,  
Showing the variation of activation energy below and 

above 0.5 TM (Hancock, Dillamore and Smallman, 1972). 

(b) Ni-67Co-Al2O3 

3.8. CREEP MICROMECHANISMS 
INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS: 
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Log (dε/dt) vs. logσ for: (a) Ni–Al2O3 ,(b) Ni–67Co–Al2O3,  
(Hancock, Dillamore and Smallman, 1972). 

3.8. CREEP MICROMECHANISMS 
INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS: 
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SUMMARY: 
3.8. CREEP MICROMECHANISMS 
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Behavior maps: 

•   Competition between mechanisms depending on the conditions (σ and T).  

•   Diagrams available for metals and ceramic materials: they facilitate the task 
of selecting materials for high temperature applications. 
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3.8. CREEP MICROMECHANISMS 
Behavior maps: 
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Final instability: 

Some microvoids appear in 
the grain boundaries 

Creep damage 
starts 

Damage 
accumulates 

Final 
fracture 

3.8. CREEP MICROMECHANISMS 


