

Mechanical Properties of Materials, Processing and Design

Topic 3. Creep behaviour

Diego Ferreño Blanco Borja Arroyo Martínez José Antonio Casado del Prado

Department of Terrain and Materials Science and Engineering

Este tema se publica bajo Licencia: <u>Creative Commons BY-NC-SA 4.0</u>

- 3.1. INTRODUCTION.
- 3.2. CONCEPT OF VISCOSITY.
- 3.3. NEWTONIAN AND NON-NEWTONIAN BEHAVIOR.
- 3.4. CREEP AND RELAXATION.
- 3.5. EVOLUTION OF STRAIN DURING CREEP.
- 3.6. DESIGN FOR CREEP.
- 3.7 ANALYSIS OF RELAXATION.
- **3.8. CREEP MICROMECHANISMS.**

3.1. INTRODUCTION

- Elastic-plastic behavior: $\varepsilon = f(\sigma)$.
- This behavior is typical of 'low' temperatures.
- At 'high' temperatures, the variables 't' and 'T' play a role: $\epsilon = f(\sigma, t, T)$.
- This behavior can take place, for example, in structural components of energy conversion facilities (nuclear and thermal power stations, etc.), which operate at high temperatures.

3.1. INTRODUCTION

• From a structural point of view, we can distinguish two situations:

- Creep and relaxation are the 'two sides of the same coin'.
- Both phenomena are strongly affected by **temperature**.

3.1. INTRODUCTION

- What does 'high' and 'low' temperature mean?
- The temperature at which materials begin to creep depends on the melting temperature (<u>absolute scale</u>), T_M.

 $T > 0.3 T_M - 0.4 T_M$ for metals.

 $T > 0.4 T_M - 0.5 T_M$ for ceramic materials.

 In polymers, the phenomenon is controlled by the glass transition temperature (T_G). Most polymers flow at room temperature (> T_G). Below this glass transition temperature, polymers become hard and brittle in some occasions, and the phenomenon disappears.

3.1. INTRODUCTION

SOME VISCOUS BEHAVIOR EXAMPLES:

- At room temperature, concrete shows a viscous behavior that entails prestressing losses.
- The lamp filaments, made out of tungsten, break due to creep phenomenon (temperature of about 2000 °C).
- Lead pipes undergo creep at room temperature.
- Displacement in glaciers is caused by a flow process.

3.1. INTRODUCTION

3.1. INTRODUCTION IMPORTANCE OF VISCOUS BEHAVIOR:

- a) Displacement limit (service limit state, SLS).
- **b)** Fracture (ultimate limit state, ULS).
- c) Relaxation limits (SLS or ULS).
- d) Buckling (ULS).

3.1. INTRODUCTION IMPORTANCE OF VISCOUS BEHAVIOR:

EXAMPLE: two components susceptible to undergo creep under in-service conditions.

3.2. VISCOSITY

- Isaac Newton (1642-1727) was the first to propose a viscous behavior model (*Philosophiae Naturalis Principia Mathematica*).
- The experiment consisted of a small plate floating on water the plate being subjected to a constant horizontal force.

3.2. VISCOSITY

REPRESENTATIVE VALUES OF VISCOSITY:

- Both gases and liquids are viscous fluids; as discussed later on, even solids are viscous fluids.
- In general, gas viscosity is lower that that of liquids.
- Gas viscosity increases with temperature; theoretically:

$$\eta \propto \sqrt{T}$$

• Liquid viscosity decreases with temperature.

Gas	T (ºC)	η (Pa⋅s)
N ₂	25	1.78·10 ⁻⁵
H ₂ O	100	1.26·10 ⁻⁵
H ₂ O	200	1.64·10 ⁻⁵
Aire	25	1.12·10 ⁻⁵

Líquido	T (ºC)	η (Pa⋅s)
Vidrio	500	1.10 ¹²
Betún	100	1.10 ⁸
Polímero	200	1.10 ³
Jarabe	25	1.10 ²
Miel	25	1.10 ¹
Glicerol	25	1·10 ⁻¹
Aceitre de oliva	25	1·10 ⁻²
H ₂ O	25	1.5·10 ⁻³
H ₂ O	100	3.10-4

3.3. NEWTONIAN AND NON-NEWTONIAN BEHAVIOR

• Fluids clasification by viscous behavior:

Newtonian: $\tau = \eta \dot{\gamma}$ Dilatant: $\tau = K(\dot{\gamma})^n$ n > 1

Newtonian plastic: $\tau = \tau_y + \eta \dot{\gamma}$

Pseudoplastic: $\tau = K(\dot{\gamma})^n$ n < 1Plastic: $\tau = \tau_v + K\dot{\gamma}^n$

3.3. NEWTONIAN AND NON-NEWTONIAN BEHAVIOR

Suggested exercises:

1) The following table provides the data obtained in a test performed on a clay. Model its behavior as a Bingham body, determining its apparent viscosity and critical shear. Compare with the real behavior and with that of a pseudoplastic model.

$ au \left(N{\cdot}m^{-2} ight)$	$d\gamma/dt \left(s^{-1} ight)$
20	4
25	10
32	20
36	30
40	50

3.4. CREEP AND RELAXATION

Creep

ε $\varepsilon_0^e = \sigma_0 / E$ ε, $\varepsilon_v = f(t)$ def. remanente ε_0 $(\varepsilon_0^p + \varepsilon_{vp})$ $\varepsilon_0^e + \varepsilon_0^p$ t σ σ_0 = cte. σ_0 descarga t

Relaxation

open course ware

Topic 3. Creep behaviour

3.5. EVOLUTION OF STRAIN DURING CREEP

<u>CREEP TEST</u>: consists on a specimen subjected to constant load and constant (high) temperature inside an oven. Throughout the test, strain is recorded and graphically plotted as a function of time.

Experimental difficulties:

- Rigorous control of T.
- Appropriate extensometry.
- Insulation (environmental chamber).
- Connection to the testing machine.

3.5. EVOLUTION OF STRAIN DURING CREEP

Characteristic design parameters:

 t_{f} (Life span at creep). $\dot{\mathcal{E}}_{ss}$ (Strain velocity at steady state).

Primary / transient: $d\dot{\varepsilon}/dt < 0$ Secondary / steady: $\dot{\varepsilon} = cte. = \dot{\varepsilon}_{ss}$

Tertiary: $d\dot{\varepsilon}/dt > 0$

open course ware

Topic 3. Creep behaviour

3.5. EVOLUTION OF STRAIN DURING CREEP

EXAMPLE: creep behavior of the austenitic steel AISI 316L.

3.5. EVOLUTION OF STRAIN DURING CREEP INFLUENCE OF STRESS AND TEMPERATURE:

Time

By increasing the stress or the temperature:

- Instantaneous initial strain increases.
- Strain velocity rate increases in the steady state regime.
- Life span decreases

open course ware

3.5. EVOLUTION OF STRAIN DURING CREEP INFLUENCE OF STRESS AND TEMPERATURE:

3.5. EVOLUTION OF STRAIN DURING CREEP

EXAMPLE: experimental results for the AISI 316 L steel.

3.5. EVOLUTION OF STRAIN DURING CREEP ATOMIC LEVEL JUSTIFICATION:

• Steady state creep:
$$\dot{\varepsilon}_{ss} = A\sigma^n e^{-(Q/RT)}$$

- Influence of T: Arrhenius law: it is a very common type of law, which works very well to explain diverse phenomena:
 - Rate of oxidation-corrosion / diffusion rate / multiplication of bacteria in a Petri plate, etc.
- The law states that the rate of the process increases exponentially with temperature.
- Arrhenius law in creep is due to the diffusion processes taking place in the material as a consequence of the stress applied and the temperature.

3.5. EVOLUTION OF STRAIN DURING CREEP LOW TEMPERATURE CREEP:

EXAMPLE:

EHE-2008 STANDARD OF STRUCTURAL CONCRETE

38.9 Relajación del acero para armaduras activas

La relajación ρ del acero a longitud constante, para una tensión inicial $\sigma_{pi} = \alpha f_{max}$ estando la fracción α comprendida entre 0,5 y 0,8 y para un tiempo *t*, puede estimarse con la siguiente expresión:

$$\log \rho = \log \frac{\Delta \sigma_p}{\sigma_{pi}} = K_1 + K_2 \log t$$

donde:

Pérdida de tensión por relajación a longitud constante al cabo del tiempo *t*, en horas Coeficientes que dependen del tipo de acero y de la tensión inicial (figura 38.9) El fabricante del acero suministrará los valores de la relajación a 120 h y a 1.000 h, para tensiones iniciales de 0,6, 0,7 y 0,8 de $f_{máx}$ a temperatura de 20±1°C y garantizará el valor a 1.000 h para α = 0,7. Con estos valores de relajación pueden obtenerse los coeficientes K_1 y K_2 para α = 0,6, 0,7 y 0,8.

3.6. DESIGN FOR CREEP

- Structural components may fail due to SLS (Service Limit State) or ULS (Ultimate Limit State).
- SLS analysis can be addressed using previously seen strain rate models.
- Traditionally, ULS analysis is based on experimental data from which charts, tables or graphs are developed.

Nickel alloys comparison: (A) TD-Nickel, (B) MA 6000, (C) directionally-solidified Mar-M200 and (D) single-crystal PWA 454.

3.6. DESIGN FOR CREEP

- In a creep problem we can find three different variables: T, t_r , σ .
- By fixing two of them (e.g., σ and T) it is possible to determine the third one.

3.6. DESIGN FOR CREEP

- The engineering goal is to predict the long-term behavior from 'short-term' <u>tests</u>.
- The usual way to make life predictions when creep might happen is to use data obtained from short duration tests, but at temperatures higher than the in-service temperature.

<u>Two important rules</u>:

- Testing time must exceed, at least, 10% of life span of the component.
- It is necessary to ensure that the **same deformation mechanism** acts in both the test and service.
- In the scientific literature, <u>several methods of analysis</u> are presented; the most important ones are the following:
 - I. Monkman-Grant method.
 - II. Larson-Miller method.
 - III. Sherby-Dorn method.

3.6. DESIGN FOR CREEP

MONKMAN-GRANT METHOD:

- This type of relationship is based on the observation that the strain is the macroscopic manifestation of the accumulated damage due to creep.
- Therefore, fail will occur when the accumulated damage in the material (in the form of voids and fissures of creep) reaches a certain critical value.
- Monkman-Grant equation:

$$\dot{\varepsilon}_{ss} t_f = C \approx \varepsilon_f$$

(Feltham and Meakin, 1959).

3.6. DESIGN FOR CREEP

LARSON-MILLER AND SHERBY-DORN METHODS:

 Assume that a series of creep tests with σ = constant and T = variable, are performed, recording the time to failure t_r (or to a certain strain).

$$\dot{\varepsilon}_{SS} = A(\sigma)e^{\frac{-Q}{RT}} \implies \varepsilon \approx A(\sigma)t e^{\frac{-Q}{RT}} \implies \log t = \log\left[\frac{\varepsilon}{A(\sigma)}\right] + \frac{Q\log e}{R}\frac{1}{T}$$
• Therefore, for tests with σ = constant a linear relationship is obtained in the representation (log t) Vs. (1/T).

3.6. DESIGN FOR CREEP

LARSON-MILLER AND SHERBY-DORN METHODS:

- Two extreme cases can be considered:
 - **a)** Q = Q (σ), C \neq C (σ): LARSON MILLER.
 - **b)** $Q \neq Q(\sigma)$, $C = C(\sigma)$: SHERBY DORN.

3.6. DESIGN FOR CREEP

LARSON-MILLER AND SHERBY-DORN METHODS:

- Two tests at the same stress and different temperature show the same value of $\mathsf{P}_{\mathsf{LM}}.$
- The relationship $P_{LM}(\sigma)$ is obtained experimentally.
- Typically, C ~ 20-22 for metals.
- The usefulness of P_{LM} is that it allows <u>accelerated creep tests</u> (same stress and higher temperature) to be performed.

3.6. DESIGN FOR CREEP

EXAMPLE: P_{LM} dependence for a wide variety of Nickel alloys.

3.6. DESIGN FOR CREEP

Suggested exercises:

- Using the attached graph, determine the maximum working stress at a temperature of 1100 °C to avoid fracture for 10h.
- 2) What would be the maximum stress for T=500°C and a life span of 10000h?
- Obtain the life span for a stress of 250 MPa and a temperature of 870 °C.

3.7. ANALYSIS OF RELAXATION

- At a constant stress, strain increases over time: **CREEP**.
- At a constant strain, stress decreases over time: **RELAXATION**.

- Creep and relaxation phenomena are two sides of the same coin.
- The material responds with the <u>same constitutive law for two different</u> <u>structural problems</u>: in the creep problem, static boundary conditions are imposed whereas in relaxation kinematic conditions are applied.

σ

3.7. ANALYSIS OF RELAXATION

- To understand the phenomenon, we discretize the time into small intervals Δt .
- It is considered that changes occur in between those intervals.

$$\begin{cases} t = 0 \\ \sigma(t = 0) = \sigma_0 \\ \dot{\varepsilon}(t = 0) = C \sigma_0^n \end{cases}$$
$$\begin{cases} t = \Delta t \\ \Delta \varepsilon_V = \dot{\varepsilon}(t = 0) \Delta t = C \sigma_0^n \Delta t \\ \Delta \varepsilon_E = -\Delta \varepsilon_V \\ \Delta \sigma = -E C \sigma_0^n \Delta t \\ \sigma(t = \Delta t) = \sigma_1 = \sigma_0 - E C \sigma_0^n \Delta t < \sigma_0 \\ \dot{\varepsilon}(t = \Delta t) = C \sigma_1^n < \dot{\varepsilon}(t = 0) \end{cases}$$

$$\begin{cases} t = 2 \Delta t \\ \Delta \varepsilon_{V} = \dot{\varepsilon} (t = \Delta t) \Delta t = C \sigma_{1}^{n} \Delta t \\ \Delta \varepsilon_{E} = -\Delta \varepsilon_{V} \end{cases}$$
$$\Delta \sigma_{1} = -E C \sigma_{1}^{n} \Delta t \\ \sigma (t = \Delta t) \equiv \sigma_{2} = \sigma_{1} - E C \sigma_{1}^{n} \Delta t < \sigma_{1} \\ \dot{\varepsilon} (t = \Delta t) = C \sigma_{2}^{n} < \dot{\varepsilon} (t = \Delta t) \end{cases}$$

3.7. ANALYSIS OF RELAXATION

• It can be written: $\sigma_{i+1} = \sigma_i - E C \sigma_i^n \Delta t$

$$\frac{\sigma_{i+1} - \sigma_i}{\Delta t} = -EC\sigma_i^n \implies \begin{cases} \sigma_i = \sigma(t) \\ \sigma_{i+1} = \sigma(t + \Delta t) \end{cases} \implies \frac{\sigma(t + \Delta t) - \sigma(t)}{\Delta t} = -EC\sigma^n(t)$$

$$\lim_{\Delta t \to 0} \frac{\sigma(t + \Delta t) - \sigma(t)}{\Delta t} = \frac{d\sigma}{dt} = -EC\sigma^n \quad \Rightarrow \quad \frac{d\sigma}{\sigma^n} = -ECdt \quad \Rightarrow \quad \int_{\sigma_0}^{\sigma(t)} \frac{d\sigma}{\sigma^n} = \int_{0}^{t} -ECdt$$

3.7. ANALYSIS OF RELAXATION

Suggested exercises:

1) Obtain the evolution of the tightening stress in a bolt initially prestressed to a stress σ_i . The objective of the bolt is to keep two plates together. The plates are supposed to be non-deformable.

$$\frac{1}{E}\frac{d\sigma}{dt} + C\sigma^{n} = 0 \qquad \sigma(t) = \left[\sigma_{i}\right]^{1-n} - (1-n)ECt \right]^{1/1-n}$$

3.8. CREEP MICROMECHANISMS

Metal and ceramic materials:

- Two creep mechanisms can be distinguished: <u>dislocation</u> (power law in stresses) and <u>diffusion</u> (linear law in stress).
- As both mechanisms depend on **diffusive phenomena**, dependence on temperature is given in both cases by the Arrhenius equation.

Dislocation creep:

- Plastic strain is a consequence of the displacement of dislocations. This movement must overcome: a) Intrinsic strength of the crystal net,
 b) The obstacles that prevent them to move forward (solute atoms, precipitates, other dislocations).
- The diffusion of atoms (assisted by the stress state and the temperature) can unlock the dislocations, thereby allowing the increment of deformations.

Dislocation creep:

- Consider a dislocation blocked in an obstacle.
- Unless dislocation is blocked in the middle plane, it experiences a lifting/climb force. This reaction tends to displace the dislocation out its slip plane.
- The dislocation will be able to overcome the obstacle if the atoms in the bottom of the dislocation can diffuse through the network.

- 7

3.8. CREEP MICROMECHANISMS

Dislocation creep:

- This process is called *climbing* of the dislocation. Since it requires atomic diffusion, it is developed for temperatures above 0.3T_M:
 - T = (0.3 0.5) T_M , core diffusion.
 - $T = (0.5 0.99) T_M$, bulk diffusion.

T/T_M = 0.3-0.5: Core difussion

 $T/T_{M} = 0.5-0.99$: Bulk difussion

Atoms diffuse away from the bottom of the half plane. At high T/T_M this takes place mainly by bulk diffusion through the crystal

Dislocation creep:

- When a dislocation is unlocked by the climbing mechanism, it can move forward (due to its stress state) until it gets stuck again.
- The process is repeated again in this new obstacle. This explains the progressive and continue nature of creep.
- This explains, as well, the expression of strain rate by an Arrhenius law.

Dislocation creep:

Influence of T:

• The dislocation creep is assisted by diffusion processes; the temperature dependence of the diffusion coefficient determines the influence of the temperature on the strain rate.

$$D = D_0 e^{-Q/RT} \implies \dot{\varepsilon} = A(\sigma) e^{-Q/RT}$$

Influence of σ :

• It is a consequence of the climbing force: As stress increases, the climbing force increases, more dislocations are unlocked and the strain rate increases.

$$\dot{\varepsilon} = A\sigma^n e^{-Q/RT} = C\sigma^n; \quad n = 3-8$$

Diffusion creep:

- Under low stresses (unable to unlock the movement of dislocations) an alternative mechanisms can occur.
- Elongation of the grains by diffusion (in matrix or grain boundary).
- There is no movement of dislocations.

3.8. CREEP MICROMECHANISMS

Diffusion creep:

- Reduced T/T_M: atomic diffusion predominant in grain boundary (fast difussion path): <u>COBLE CREEP</u>.
- High T/T_M: atomic diffusion through the matrix (the crystal lattice 'relaxes' thanks to the thermal agitation): <u>NABARRO-HERRING CREEP</u>.

Influence of T:

• Strain rate is proportional to the diffusion coefficient, D.

Influence of σ :

• Stress acts as a 'driving force' of the diffusion process (plays the same role as the concentration gradient of Fick's law).

$$\dot{\varepsilon} = \frac{A}{d^{2-3}} \sigma e^{-Q/RT}$$

open

ware

Topic 3. Creep behaviour

3.8. CREEP MICROMECHANISMS INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS:

3.8. CREEP MICROMECHANISMS INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS:

Log (dɛ/dt) vs. 1/T for: (a) Ni $-AI_2O_3$, (b) Ni $-67Co-AI_2O_3$, Showing the variation of activation energy below and above 0.5 T_M (Hancock, Dillamore and Smallman, 1972).

3.8. CREEP MICROMECHANISMS INFLUENCE OF σ AND T: EXPERIMENTAL RESULTS:

Log (dɛ/dt) vs. log σ for: (a) Ni $-AI_2O_3$, (b) Ni $-67Co-AI_2O_3$, (Hancock, Dillamore and Smallman, 1972).

3.8. CREEP MICROMECHANISMS SUMMARY:

Diffusion creep is dominated by two processes. At high temperatures lattice diffusion controls the rate (*Nabarro-Herring creep*). Grain boundary diffusion (*Coble creep*) takes over at lower temperatures.

Power-law creep is mainly based on diffusion controlled dislocation climb processes. Diffusion may occur along dislocation cells or through the lattice.

Behavior maps:

- Competition between mechanisms depending on the conditions (σ and T).
- Diagrams available for metals and ceramic materials: they facilitate the task of selecting materials for high temperature applications.

3.8. CREEP MICROMECHANISMS

Behavior maps:

3.8. CREEP MICROMECHANISMS

Final instability:

Some microvoids appear in the grain boundaries

