

Máquina Eléctricas I – G862

Práctica de laboratorio del Tema 4 «Máquinas Síncronas»

Miguel Ángel Rodríguez Pozueta

Departamento de Ingeniería Eléctrica y Energética

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA

Práctica de Laboratorio: MÁQUINAS SÍNCRONAS

Nombre del alumno _	
Asignatura	
Fecha de realización d	e la práctica Grupo de prácticas:
*******	**************************
Datos de la placa de	características de la máquina síncrona
Referencia	Frecuencia asignada f (Hz)
Tensión asignada V _{NL} (V)	Intensidad asignada I _{NL} (A)
Velocidad asignada $n_1 = n_N \text{ (rpm)}$	Intensidad de excitación asignada I _{eN} (mA)

Características de los aparatos de medida empleados:

Tipo de aparato	Magnitud que mide	Referencia	Sistema indicador	Clase de precisión	Alcances	№ de divisiones de la escala	Ctes. de medida

(Recuerde que la magnitudes en negrita se obtienen durante el ensayo y las sin negrita se obtienen por cálculo a partir de los resultados de las medidas).

M.A.R. Pozueta -H.1-

Resistencia del inducido

Coeficiente de corrección por temperatura = K_{θ} = _____

$$R_R = \underline{\hspace{1cm}} \Omega$$

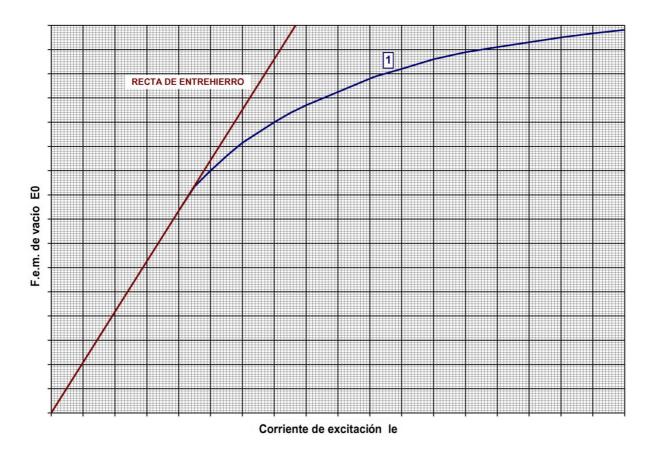
$$R_S = \underline{\hspace{1cm}} \Omega$$

$$R_S = \underline{\hspace{1cm}} \Omega \hspace{1cm} R_T = \underline{\hspace{1cm}} \Omega$$

$$R = K_{\theta} \frac{R_R + R_S + R_T}{3} = \underline{\qquad} \Omega$$

Ensayo de vacío

Tipo de conexión: _____


Velocidad = ____ rpm

 $V_{NL} = \underline{\hspace{1cm}} V$

$$E_{0L} = \frac{E_{0L} \uparrow + E_{0L} \downarrow}{2}$$

(E₀ se obtiene de E_{0L} teniendo en cuenta la forma de conexión del inducido durante el ensayo).

I _e	EOL ↑	E ₀ L ↓	E ₀
(mA)	(v)	(V)	(V)

Ejemplo de característica de vacío (1) y de recta de entrehierro de un alternador síncrono.

Ensayo de cortocircuito

Tipo de conexión: _____ rpm $I_e = \underline{\hspace{1cm}} mA \hspace{1cm} I_{cortoL} = \underline{\hspace{1cm}} A \hspace{1cm} I_{corto} = \underline{\hspace{1cm}} A$

Ensavo de carga reactiva o de factor de potencia nulo

Tipo de conexión: _____ rpm

 $I_e = \underline{\hspace{1cm}} MA$ $I_L = \underline{\hspace{1cm}} A$ $V_L = \underline{\hspace{1cm}} V$

M.A.R. Pozueta -H.3-

Reacción de inducido

$$I_e = \underline{\hspace{1cm}} mA$$

	Vacío	Carga resistiva	Carga inductiva	Carga capacitiva
I _L (A)	0			
V _L (V)				

Triángulo de Potier

Para $I = \underline{\hspace{1cm}} A$ se obtiene que:

$$F_d = \underline{\hspace{1cm}} mA$$

$$X_{\sigma} I = \underline{\hspace{1cm}} V$$

$$X_{\sigma} I = \underline{\hspace{1cm}} V \qquad X_{\sigma} = \underline{\hspace{1cm}} Ohms$$

(F_d es la fuerza magnetomotriz (f.m.m.) del inducido según el eje longitudinal (eje d) cuando la corriente según el eje d en cada fase del inducido tiene un valor eficaz igual a I).

Reactancias síncronas longitudinales

Para $I_{e0} = \underline{\hspace{1cm}}$ mA se tiene que:

$$E_{0c} = _{V}$$

$$I_{corto} = A$$

(Relación entre las intensidades de cortocircuito (Icorto e I'corto) correspondientes a dos valores distintos de la corriente de excitación I_e (I_e e I'_e): $I'_{corto} = I_{corto} \frac{I'_e}{I}$)

$$Z_{\rm d}$$
(no sat) = $\frac{E_{0\rm c}}{I_{\rm corto}}$ = _____ Ω

$$Z_d(sat) = \frac{E_0}{I_{corto}} = \underline{\qquad} \Omega$$

$$X_d$$
 (no sat) = $\sqrt{Z_d^2$ (no sat) - R^2 = ______ Ω

$$X_d(sat) = \sqrt{Z_d^2(sat) - R^2} = \underline{\qquad} \Omega$$

Observaciones: