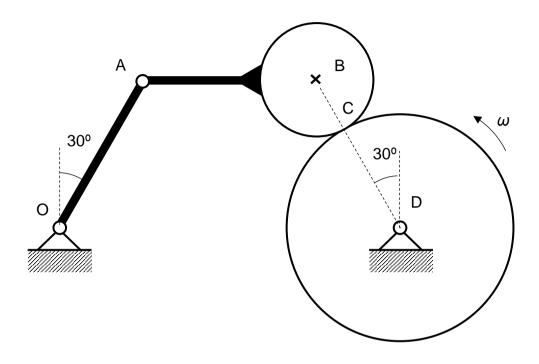
PROBLEMA:


Tiempo PROBLEMA: 50 minutos

En el mecanismo de la figura (situada en el reverso de este enunciado), la barra \mathbf{OA} esta articulada en el punto \mathbf{A} con una barra horizontal (\mathbf{AB}) que en su extremo \mathbf{B} esta unida solidariamente a un disco de radio R. Dicho disco se encuentra en contacto en el punto \mathbf{C} con otro disco de radio 2R que a su vez posee un par de rotación con el bastidor en el punto \mathbf{D} . En el instante considerado la barra \mathbf{OA} y la línea que une los puntos \mathbf{D} , \mathbf{C} y \mathbf{B} forman un ángulo de 30° con la vertical. El disco de radio 2R esta accionado por un motor que hace que gire con con velocidad angular constante (ω) en sentido antihorario.

Dimensiones:

OA=3R; **AB**=3R; **BC**=R; **DC**=2R; **OD**=6R

- 1. Determine los grados de libertad del mecanismo. Identifique si el movimiento entre los discos en contacto tiene lugar con o sin deslizamiento. Razone la respuesta. (1 pto)
- **2.** Identifique los polos del movimiento. Señale cuales son primarios y describa el procedimiento de obtención. (1 pto)
- **3.** Represente el eslabonamiento asociado equivalente y obtenga la configuración cinemática o estructural. (1 pto)
- **4.** Describa el procedimiento a seguir y obtenga, de modo gráfico, empleando los polos del movimiento, las velocidades angulares de las barras \mathbf{OA} y \mathbf{AB} con respecto al sistema de referencia fijo. Exprese el resultado en función de la velocidad angular (ω) (2 pto)
- **5.** Obtenga el radio de curvatura de la trayectoria del punto \mathbf{C} del disco de radio R en su movimiento con respecto al sistema de referencia fijo. Describa el procedimiento utilizado, identificando claramente la información de partida de acuerdo con la figura. Exprese el resultado en función de R (1 pto)
- **6.** Obtenga la velocidad de cambio de polo del movimiento del disco de radio R respecto del disco de radio 2R. Describa el procedimiento utilizado, identificando claramente la información de partida de acuerdo con la figura. Exprese el resultado en función de la velocidad angular (ω) y de R (1 ptos)
- 7. Obtenga las aceleraciones angulares de las barras **OA** y **AB** con respecto al sistema de referencia fijo. Exprese el resultado en función de la velocidad angular (ω) y de R (3 ptos)

