
1. Introduction

Operating Systems

Pablo Prieto Torralbo
DEPARTMENT OF COMPUTER ENGINEERING

AND ELECTRONICS

This material is published under:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc-nd/4.0/

Remember…

Memory
Disk

CPU
Cache

CPU
Cache

registers registers

Remember…

Registers

Caches

Main Memory

Disk

Fast and expensive

Slow and cheap

Remember…

Level 1 2 3 4
Name Register Cache Main Memory Disk Storage

Size <1KB From 32KB to
> 16MB Tens of GB Hundreds of GB to TB

Technology Custom memory
multiple ports (CMOS) On-chip CMOS SRAM CMOS DRAM Electrical, Magnetic or

Optical disk

Access time (ns) 0.25 – 0.5 0.5 – 25 80 – 250 5000000

Managed by Compiler Hardware Operating System Operating System

} A running program does one very simple thing:
it executes instructions (many million every second):
◦ The processor fetches an instruction from memory.
◦ Decodes the instruction (figures out which instruction it is).
◦ Executes it (does what it is supposed to do).

} After an instruction is done, the processor moves on to the
next one, and so on, and so on until the program completes.

} These are the basics of the Von Neumann model:
◦ Modern processors are quite a lot more complicated:

� Multiple instructions at a time.
� Out of Order execution…
� … Not the topic of this course.

Remember…

} A program that acts as an intermediary between a user of a
computer, the software and the computer hardware.

} A software layer to abstract away and manage details of
hardware resources.

} A piece of software that makes the system easy to use.

What is an Operating System?

Hardware

Operating System

User

Applications

} Execute user programs and make solving user problems easier.

} Make the computer system convenient to use.

} Use the computer hardware in an efficient manner.

} Control access to shared resources.

Operating System Goals

} Resource Management:
◦ Share resources correctly.

} An OS mediates programs’ access to hardware resources:
◦ Computation (CPU).
◦ Volatile storage (memory) and persistent storage (disk, etc.).
◦ Network communications (TCP/IP stacks, Ethernet cards, etc.).
◦ Input/output devices (keyboard, display, sound card, etc.).

} Advantages of OS providing resource management?:
◦ Protect applications from one another.
◦ Provide efficient use/access to resources:

� Cost, time, energy…
◦ Provide fair access to resources.

} Challenges:
◦ What are the correct mechanisms?
◦ What are the correct policies?

How does the OS provide this?

} Abstraction:
◦ The OS takes hardware resources and transforms them into logical versions and

provides well-defined interfaces for those resources (system calls).

} What is a resource?:
◦ Anything valuable (e.g. CPU, memory, disk…).

} What abstraction does modern OS typically provide for each
resource?:
◦ CPU: process and/or threads.
◦ Memory: address space.
◦ Disk: files.
◦ Network: sockets.

} Advantages of OS providing abstraction?:
◦ Allow applications to reuse common facilities.
◦ Make different devices look the same.
◦ Provide higher-level or more useful functionality.

How does the OS provide this?

} Application benefits:
◦ Programming simplicity:

� See high-level abstractions (files) instead of low-level hardware details (device
registers).

� Abstractions are reusable across many programs.

◦ Portability (across machine configurations or architectures):
� Device independence (3Com card or Intel card).

} User benefits:
◦ Safety:

� Program “sees” its own machine (virtualization).
� OS protects programs from each other.
� OS fairly distributes resources across programs.

◦ Efficiency (cost and speed):
� Share one computer across many users.
� Concurrent execution of multiple programs.

} Behavior of the OS impacts the entire machine.

Why bother with an OS?

} How to cover all the topics relevant to operating systems? - Three pieces:
◦ Virtualization:

� Make each application believe it has computer resources to itself.
� Take physical hardware and make a software version that is sharable and easier to use.
� Example:

� CPU: multiple programs can run “at the same time”.
� Memory: programs see a linear range of addresses.

◦ Concurrency:
� Events are occurring simultaneously and may interact with one another.
� OS must be able to handle concurrent events, maintaining correctness.
� Easy case: Concurrency from independent processes.
� Tricky case: Concurrency from interacting processes.

◦ Persistence:
� Keep data safe from crashes/reboots.

Three Pieces

We will follow:
Remzi H. Arpaci-Dusseau & Andrea C. Arpaci-Dusseau:
«Operating Systems: Three Easy Pieces».
http://www.ostep.org

} Let’s run some programs:
◦ cpu.c.

Virtualizing the CPU

During the course, all
programming is in C.

} Even though we have only one processor, somehow all four of
these programs seems to be running at the same time.

} The Operating System (with some help from hardware) provides
the illusion that the system has a large number of virtual CPUs
(at least one for each process).

} This is what we call virtualizing the CPU.

} If two or more programs want to run at a particular time, which
one should run?:
◦ Policy (what/when will be done).
◦ Mechanisms (how to do it).

Virtualizing the CPU

} Physical memory is very simple:
◦ Memory is just an array of bytes.
◦ One must specify an address to be able to access the data stored there.
◦ To write (update) memory, one must specify also the data to be written.

} Memory is accessed all the time while a program runs:
◦ A program keeps all of its data structures and instructions in memory.

} Let’s run some programs:
◦ mem.c.

Virtualizing Memory

} Running multiple instances (disabling Address Space Randomization):
◦ Seems each running program has allocated memory at the same address.
◦ Each seems to be updating the value independently.
◦ Seems each program has its own private memory, instead of sharing the physical memory.

} OS is virtualizing memory:
◦ Each process accesses its own private virtual address space, which the OS maps onto physical

memory.
◦ Each running program is mapped separately.
◦ One running program does not affect the address space of other running programs (or the OS

itself).
◦ This is what we call Virtual Memory.

Virtualizing Memory

} Processes are devoted their own
resources:
◦ Program Counter.

◦ Processor Registers.

◦ Address Space :
� Code.
� Heap (data).
� Stack (Stack Pointer).

◦ User ID and state flags.

◦ OS Resources (files, network connections…).

Concurrency

} What if a program (e.g.: web server) wants to use multiple
processors (e.g.: handle multiple requests concurrently).

} There is a “light” kind of process: Thread:
◦ Threads share:

� Address Space:
� Code.
� Heap (data).

� Privileges.
� OS resources.

◦ Each thread has its own:
� Program Counter.
� Processor Registers.
� Stack Pointer.

Concurrency

} Sharing resources opens new problems.

} Let’s run some programs:
◦ threads.v0.c.

Concurrency

} With higher values for loops, final value differs from the
expected one:
◦ Also different values on different runs.

} Instructions are executed one at a time:
◦ The key part of the program (counter increment) takes three instructions:

� Load from memory to register.
� Increment register value.
� Store back into memory.

◦ What if the other thread executes in between?

Concurrency

} Information lifetime is longer than lifetime of one process.

} Machine may be rebooted, lose power or crash unexpectedly.

} We need hardware and software to store data persistently:
◦ Hardware: I/O device (hard drive, solid-state drives).
◦ Software (OS): File system.

} OS does not create a private-virtualized disk for each application.
Rather, information is usually shared between processes/users in
files.

} Example:
◦ You use an editor to write a C program à Then you compile the source code into an

executable à Then you run the executable (maybe another user does one of these steps).

Persistence

} Provide Abstractions to make the system easy to use:
◦ OS as a standard library. System calls.

} High Performance:
◦ Minimize the overhead of the OS (extra time, extra space…).
◦ Trade-off: Virtualization/easy to use vs. Performance. Perfection is not always attainable.

} Ensure some Fairness:
◦ Avoid starvation. New trade-off.

} Provide Protection between applications as well as the OS:
◦ Many programs running at the same time, but not harming others.
◦ Isolation is the key.

} Reliability:
◦ If the OS fails, all applications running on the system fail as well.

} Other more specific goals:
◦ Energy efficiency (green world).
◦ Security (interconnected world).
◦ Mobility (small devices...).

} Each system considers some goals more important than others.

Design Goals

} Operating Systems were born and evolve out of need.

} In the 1950s there are scarcely tens of computers in the world:
◦ “I think there is a world market for maybe five computers”:

� Even though it is probably a fallacy attributed to T.J Watson (IBM 1943), it reflects the
computer situation.

} Computers were quite expensive, and machine time was more
valuable than person time...:
◦ IBM 7090: $2.9 million.

◦ Resource Management and efficiency were important.

History

History - Mainframes

NSA: IBM 7950 HARVEST NASA: IBM 7090

} Early days: OS just as a Library:
◦ Instead of having each programmer write low-level I/O handling code, the OS

provides such APIs (Application Program Interface).

◦ Usually, on a mainframe, only one program at a time controlled by a human operator:
� Human OS (e.g. scheduler) à Be nice with the operator.

◦ Computer cannot be interactive:
� Too expensive having a user sit in front of a computer, most of the time idle.

History

} Automatic mechanisms need Protection:
◦ OS code is special à control of common devices:

� File system à privacy.

◦ System call (Atlas computing systems) instead of libraries:
� Privilege instructions executed by the OS (kernel).
� Requires hardware privilege levels: kernel mode as opposed to user mode.
� E.g.: a program wants to initiate an I/O request to the disk:

� 1. The program issues a system call.
� 2. Hardware special instruction (trap) transfers the control to a pre-specified trap

handler and raises privilege level to kernel mode.
� 3. OS now has full access to hardware and does the required service.
� 4. OS passes control back to the user via special return-from-trap instruction

while lowering the privilege level to user mode.

History

History – mini computers

DEC PDP-8

IBM System34

Nokkia Mikko 3

} Multiprogramming Era:
◦ Computers more affordable (minicomputer):

à More people working on computer systems.
à New ideas (multiprogramming).

◦ Make better use of machine resources:
� Instead of one job at a time, the OS loads a number of jobs into memory and

switches between them.
� Particularly important due to I/O being slow.

◦ Memory protection became important.

◦ Concurrency issues.

} UNIX operating system (Ken Thompson and Dennis
Ritchie) at Bell Labs:
◦ Take ideas from Multics (mainly), TENEX and Berkeley Time-Sharing System but

made them simpler.

History

History – Microcomputers

Amstrad PC 1512

Macbook Air

Asus Zenfone 6

Google glass

} Modern Era:
◦ Cheaper and faster machine: Personal Computer (PC):

� Led by Apple early machines and the IBM PC.
� One machine per desktop.

◦ OS at first leap backwards:
� DOS (Disk Operative System from MS) didn’t support memory protection.
� First versions of Mac OS could make processes get stuck in an infinite loop.

◦ Nowadays OS include features expected in a mature system:
� Mac OS X (with UNIX at its core).
� Windows, starting in particular with windows NT.

◦ Even cell phones run operating systems (such as Linux).

◦ Nowadays Operating Systems continue to develop, providing more
features and making modern systems better and easier for users and
applications.

History

} Cloud Computing:
◦ Amazon EC2.
◦ Microsoft Azure.
◦ Google Compute Engine.

History

Hardware

Operating System

Applications

Hardware

Virtual Machine Manager
(Hypervisor)

Virtual Machine 1 Virtual Machine 2

Operating System Operating System

Applications Applications

} Originally Unics (Uniplexed Information and Computing System)
influenced by the mainframe OS Multics from MIT.

} Developed at Bell Labs by Ken Thompson (and Dennis Ritchie)
on a PDP-7 computer.

} Main ideas:
◦ Multiple jobs at a time (concept of process).

◦ Multiple users. The shell (command-line interpreter).

◦ File system. Used as inter-process communication.

◦ Small powerful programs that could be connected to form larger workflows:
� The shell includes primitives such as pipes to enable meta-level programming.

History - UNIX

} The UNIX environment was friendly to programmers and
developers:
◦ Provides a compiler for the new C programming language.
◦ Also provides a text editor.

} Originally written in Assembler, kernel was re-written in C in
1972.

} The authors gave out copies of the OS to anyone who asked
(including Universities, Companies and Government):
◦ An early form of open-source software.

} The accessibility and readability of the code leads others to play
with the kernel and add new features:
◦ Berkeley System Distribution (BSD) by a group led by Bill Joy (who later founded Sun

Microsystems):
� Advanced virtual memory, file system and network subsystem.

History - UNIX

} Many companies have their own variants:
◦ SunOS from Sun Microsystems.
◦ AIX from IBM.
◦ HPUX from HP.
◦ IRIX from SGI.
◦ OS X from Apple…

} UNIX almost disappears:
◦ AT&T/Bell expensive license.
◦ Companies try to make profit from it.
◦ Windows was introduced.

History - UNIX

} A young Finnish student named Linus Torvalds writes his own
version of UNIX:
◦ Improvement of Minix (Tanenbaum academic OS).
◦ Borrows heavily the ideas and principles of UNIX.
◦ But not the code, completely rewritten.

} The code became public and many others around the world
helped à GNU/Linux was born:
◦ As well as the modern open-source software movement.

} In the internet era, most companies (Google, Amazon,
Facebook…) chose Linux as it is free and easily modified to suit
their needs.

} Linux also gets into smart phones via Android.

History - Linux

