
2. Virtualizing CPU

Operating Systems

Pablo Prieto Torralbo
DEPARTMENT OF COMPUTER ENGINEERING

AND ELECTRONICS

This material is published under:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc-nd/4.0/

2.1 Virtualizing the CPU
-Process

} A running program.
◦ Program: Static code and static data sitting on the disk.
◦ Process: Dynamic instance of a program.
◦ You can have multiple instances (processes) of the same

program (or none).
◦ Users usually run more than one program at a time.
� Web browser, mail program, music player, a game…

} The process is the OS’s abstraction for execution
◦ often called a job, task...
◦ Is the unit of scheduling

What is a process?

} A program consists of:
◦ Code: machine instructions.
◦ Data: variables stored and manipulated in memory.
� Initialized variables (global)
� Dynamically allocated (malloc, new)
� Stack variables (function arguments, C automatic variables)

} What is added to a program to become a process?
◦ DLLs: Libraries not compiled or linked with the program

(probably shared with other programs).
◦ OS resources: open files…

Program

} Preparing a program:

Program

Process

Editor

Task

Source Code
A

Compiler/Assembler

Object Code
A

Other
Objects

Executable
File

Linker

Dynamic
Libraries

Loader

Source Code
B

Object Code
B

Executable
in Memory

Program

Process Creation

Disk

Code
Static Data

Program

CPU Memory

Loading:
OS Reads on disk program
and places it into the
address space of the process

Code
Static Data
OS res/DLLs

Heap

Stack

Process
Address space

Eagerly/Lazily

} Each process has an execution state, which indicates what it is

currently doing

ps -l, top

◦ Running (R): executing on the CPU

� Is the process that currently controls the CPU

� How many processes can be running simultaneously?

◦ Ready/Runnable (R): Ready to run and waiting to be assigned by the OS

� Could run, but another process has the CPU

� Same state (TASK_RUNNING) in Linux.

◦ Blocked/Sleeping (D/S): Waiting for an event.

� Has performed some operation (e.g. I/O) and cannot make progress until an

event happens (e.g. request fulfilled).

Process State

T(Stopped) & Z(Zombie)

} As a process executes, it moves from state to state

How to transition? à mechanism
Which/When to transition? à policy

Ready

Blocked/Sl
eeping

Running

New

Terminated

create

kill/exit

I/O done

I/O initiate

descheduled scheduled

Process State

} Example1: Two processes – CPU Only
Time Process0 Process1 Notes

1
2
3
4
5
6
7
8
9

10

Running

Running

Running Ready
Ready

Process0 done

Process1 done

Running Ready
Running Ready
Running Ready

Running
Running
Running
Running

Process State

} Example2: Two processes – CPU and I/O
Time Process0 Process1 Notes

1
2
3
4
5
6
7
8
9

10

Running
Running
Running

Running
Running
Running
Running
Running

Running
Running

Blocked

Ready

Blocked

Ready
Ready Process0 initiates I/O

Process0 is Blocked

Blocked Process0 I/O done

Process1 done

Process0 done

Ready
Ready

Process State

} Process machine state (or context) is the system pieces it
accesses or affects and consists of (at least):
◦ Address space (/proc/<PID>/maps)

� The code
� Data (Heap)
� Stack and stack pointer (SP)
◦ Program Counter indicating the next instruction
◦ A set of general-purpose registers (stack pointer...)
◦ A set of OS resources

� File descriptors (/proc/<PID>/fdinfo/*)
� network connections
� sound channels…

} The process is named by the OS with a process ID (PID).
◦ ps, top...

Process State

} OS is a program and has its own data structures.

} At any time there are many processes, each in its own
state.
◦ How does the OS represent a process in the kernel?

} The OS data structure that represents each process is called
Process Control Block (PCB)

} The OS maintains a list (queue) of PCBs for each execution
state
◦ E.g. Ready queue, Job queue, blocked/waiting queue/s.

Process data structures

} Process State Queues. Example:

Head

tail

Head

tail

Head

tail

Head

tail

Process State
registers

.

.

.

PCB5

Ready
queue

Disk
Unit 0

Disk
Unit 1

Terminal
Unit 0

Process State
registers

.

.

.

PCB2

Process State
registers

.

.

.

PCB12

Process State
registers

.

.

.

PCB7

Process State
registers

.

.

.

PCB10

Process State
registers

.

.

.

PCB8

Process data structures

} A PCB contains info about the process:
◦ Hardware state
� PC
� SP
� Registers
� Mem address
� Mem size
◦ OS information
� PID
� Open Files
� Other (Parent process, killed, final, cwd, owner…)

} In linux:
� task_struct (sched.h)
� thread_struct (architecture dependent processor.h)
� Hundreds of fields.

Process data structures

} When a process is running, its hardware state is inside the
CPU
◦ PC, SP, Registers…

} When the OS stops a running process, it saves the register
values in the corresponding PCB
◦ When the OS puts a process in the running state, it loads the

hardware registers from that process PCB.

} The act of switching the CPU from one process to another
is called a context switch
◦ Takes a few microseconds on today’s hardware

Context Switch

2.2 Virtualizing the CPU
-Limited Direct Execution

Virtualizing the CPU

} Different processes will share the CPU
◦ Processes should not know that they are sharing

} How can you give the illusion of multiple CPUs?
◦ Giving each process the impression that it is using the CPU alone
◦ Time Sharing (Context Switch)

� Running one process à stopping it à running another …

} Goals:
◦ Efficiency:

� How to implement virtualization without OS adding excessive overhead?
◦ Control:

� How to run processes efficiently while restraining control over the System?
� OS decides which/when processes run.

} Direct execution
◦ Just run the program directly on the CPU

} Direct Execution is fast
◦ Running on the hardware CPU natively

Direct Execution

OS Program

Create entry for process list
Allocate memory for program
Load program into memory
Set up stack with argc/argv
Clear registers
Execute call main

Process A runs main
…

Execute return from main

Free memory of process
Remove process from list

} How can the OS make sure that the program doesn’t

do anything it shouldn’t...
◦ ... While still running the program efficiently?

} Let the application do what it wants:
◦ Protection would be lost

◦ File system compromised

� Read or write anywhere on the disk

◦ No privacy

◦ Memory manipulation (OS, other processes…)

Problem #1: Restricted Operations

} Hardware assists the OS by providing modes of
execution
◦ User mode: applications do not have full access to hardware

resources.
� Cannot issue I/O requests à raise an exception à OS would likely

kill the offending process
◦ Kernel mode: the OS has full access to the resources of the

machine.
� Including privilege operations, I/O requests…

} What if a process wants to read from disk?
◦ System call.

Limited Direct Execution

} System calls allow the kernel to expose key functionalities
to user programs.

} To execute a system call a special instruction (trap) is
provided.
◦ This instruction raises privilege level to kernel mode.
◦ Simultaneously jumps into the kernel and executes what is needed.

} When finished, the OS calls another special instruction
(return-from-trap)
◦ This instruction returns to the calling user program
◦ Simultaneously reduces the privilege level back to user mode.

Limited Direct Execution

} How does the trap know which code to run inside the OS?
◦ Calling process cannot specify the address to jump to or any code could

be executed in kernel mode.
◦ Instead, the calling process must specify a system-call number.

} Kernel sets up a trap table at boot time.
◦ When the machine boots up, kernel (in privileged mode) sets up the

table.
◦ The table tells the hardware what code to run when certain events

occur (e.g. hard-disk interrupt)
� Traps, exceptions and interrupts are handled similarly.
� Trap number n, must look at the n entry of the table.
◦ OS informs hardware about the location of these trap handlers with a

special instruction.
� Saves the memory address of the trap table.
� This is a privileged operation (only in kernel mode).

Limited Direct Execution

OS boot
(kernel mode)

Hardware Program
(user mode)

Initialize trap table

Remember address of:
Trap handler

Initialize process table

Limited Direct Execution

OS run
(kernel mode)

Hardware Program
(user mode)

To start process A:
allocate entry in process table
allocate memory for process
load program into memory
setup user stack (argc/argv)
setup kernel stack with reg/PC
return-from-trap (into A)

Restore registers of A from kernel stack
Move to user mode
Jump to A initial PC (main)

Process A runs main()
…
Call system call
trap into OS

Save regs to kernel stack
Move to kernel mode
Jump to trap handler

Handle trap
Do work of syscall
return-from-trap

Restore registers of A from kernel stack
Move to user mode
Jump to A to PC after trap

… (keep execution)
Return from main
trap (via exit)

Free memory of process
Remove from process list

} When running a process, how does the operative system
stop it and switch to another process?
◦ If a process is running on the CPU, OS is not running

} How can the OS regain control of the CPU to switch
between processes?
◦ Early versions of Macintosh à Cooperative Approach
� OS trusts processes to behave reasonably.
� Most long processes transfer control to the OS due to frequently making

system calls.
� OS includes an explicit system call (yield) that does nothing but transfer

control to OS à Utopia?
} What if a process (malicious or full of bugs) enters an

infinite loop?
◦ Reboot?

Problem #2: Switching Processes

} Non-cooperative approach: OS takes control
◦ Without hardware help, it cannot.

} Hardware help: Timer interrupt
◦ Timer device to raise an interrupt every so many milliseconds (100 –

1000 switches per second).
◦ Current process is halted and a preconfigured interrupt handler runs

in the OS (kernel mode).
� Similar process as with trap handler.
� OS gets control over the CPU and can make decisions (e.g. switch to

another process). à scheduler
◦ OS must inform hardware of the code to run when the timer

interrupt occurs.
� Privileged operation at boot time. Also start the timer.

Problem #2: Switching Processes

OS run
(kernel mode)

Hardware Program
(user mode)

Process A running...

Timer interrupt
Save regs to kernel stack (A)
Move to kernel mode
Jump to interrupt handler

Handle timer interrupt
Call switch() routine

save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to kernel-stack(B)
return-from-trap (into B)

Restore regs (B) from kernel-stack (B)
Move to user mode
Jump to B’s PC

Process B running…

LDE with Timer Interrupt

Context
Switch

OS boot
(kernel mode)

Hardware Program
(user mode)

Initialize trap table Remember address of:
System call handler

Initialize process table
Start interrupt timer

Start timer
Interrupt CPU in X ms.

2.3 Virtualizing the CPU
-Scheduling

} We understand the basic mechanisms of running
processes
◦ Context switching
◦ Timer interrupt
◦ Limited direct execution
� Execution modes
� Syscalls, Traps

} OS needs to decide when to use them
◦ Scheduling policies

Introduction

} Example2: Two processes – CPU and I/O

Remember…

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running Process0 is blocked
5 Blocked Running
6 Blocked Running I/O done
7 Ready Running
8 Ready Running Process1 done
9 Running -

10 Running - Process0 done

OS Decides to Run Process1

OS Decides not to Switch back to 0

} Some assumptions about the processes running in the
system (workload)
◦ Each job runs for the same amount of time
◦ All jobs started at the same time
◦ Once started, each job runs until completion
◦ All jobs only use the CPU (e.g. no I/O)
◦ The run-time of each job is known

Unrealistic but good to start with…

Workload Assumptions

} We need metrics to compare different scheduling policies
à a scheduling metric
◦ Turnaround time:
� Performance metric
� Tturnaround = Tcompletion – Tarrival

◦ Fairness
� Jain’s Fairness Index (variability of throughput)
� Max-min
◦ Response time
� Interactive performance
� Tresponse = Tfirst_run – Tarrival

} Usually there is a trade-off between metrics
◦ Let’s focus on turnaround time.

Scheduling Metrics

} The most basic algorithm is First In, First Out (FIFO) or First
Come, First Served (FCFS).
◦ Simple
◦ Easy to implement
◦ Works well with our assumptions
� Three Jobs (A,B,C) arriving at 0 running for 10 seconds

� Average turnaround time
(10+20+30)/3=20seconds

First In, First Out

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

120100806040200
Time

A B C

} Relax assumption #1: Each job runs for the same

amount of time

◦ How does FIFO perform now?

� Three jobs (A,B,C): A runs for 100 seconds and B and C 10 each.

� Average turnaround time

(100+110+120)/3=110seconds

First In, First Out

•Each job runs for the same amount of time

•All jobs started at the same time

•Once started, each job runs until completion

•All jobs only use the CPU (e.g. no I/O)

•The run-time of each job is known

120100806040200

Time

A B C

} A new scheduling discipline solves the problem:
Shortest Job First (SJF).
◦ Runs the shortest job, then the next shortest…
◦ Same example as before:

◦ Average Turnaround time
(10+20+120)/3=50seconds

Shortest Job First

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

120100806040200
Time

AB C

} Let’s relax assumption #2: Jobs can arrive at any time.
◦ A arrives at t=0 running for 100 seconds and B and C arrive at t=10

running for 10 seconds each.
◦ How does SJF perform now?

◦ Average Turnaround time
(100+(110-10)+(120-10))/3=103.33seconds

Shortest Job First

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

120100806040200 Time

A B C

B & C arrive

} To address this concern we need to relax assumption
#3.

} Scheduler needs to make some decisions:
◦ Using timer interrupts and context switching, preempt job A

and run another job.
◦ Previous scheduling algorithms were non-preemptive

(cooperative).

Shortest Time-to-Completion First

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

} Scheduler that adds preemption to SJF: Shortest Time-to-Completion
First (STCF) or Preemptive Shortest Job First (PSJF)
◦ Let’s run previous example: A arrives at t=0 and runs for 100 seconds, B and C

arrive at t=10 and run for 10 seconds each

◦ Average Turnaround time
(120+(20-10)+(30-10))/3=50seconds

Shortest Time-to-Completion First

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

120100806040200
Time

A B C

B & C arrive

A

} Considering just turnaround time, STCF is a great
policy.
◦ For early batch computing systems à made sense
◦ When users demand interaction à not so much

} New metric: Response Time
◦ Tresponse = Tfirst_run – Tarrival

Response Time

} Imagine first example: A, B and C arriving at t=0 and
running for 10 seconds each.
◦ All previous policies behave equally

◦ Response Time in seconds for A: 0 , B: 10 and C:20
� Average: 10 seconds

Response Time

120100806040200
Time

A B C

} How can we build a scheduler sensitive to response
time?

} Round-Robin scheduling (RR)
◦ OS Instead of running jobs to completion, runs each job for a

time slice (scheduling quantum) and switches to the next job
in the run queue.
◦ Round-Robin is sometimes called time-slicing.
◦ Length of the time slice must be multiple of timer-interrupt

period.
� E.g. If the timer interrupts every 10 milliseconds, a time slice

could be 10, 20 or any multiple of 10 ms.

Round Robin

} Let’s look at an example:
◦ A, B, and C arrive at the same time (t=0) and each one runs for 20

seconds.
◦ RR time slice = 5 second

SJF:
Average Response Time:
(0+20+40)/3=20 seconds

RR:
Average Response Time:
(0+5+10)/3=5 seconds

120100806040200
Time

A B C

120100806040200
Time

A B C A B C A B C A B C

Round Robin

} Length of the time slice is critical for RR.

◦ Shorter = better for interactive performance (response time)

◦ Context switching could dominate overall performance

� Remember: current hardware about 5 microseconds.

� Context switching also flushes the program’s HW state (caches,

TLB, branch predictors…).

◦ Trade-off:

� Long enough to amortize the cost of switching.

� Short enough so that the system is still responsive.

Round Robin

} What about turnaround metric?

} RR is one of the worst policies in performance (turnaround time)
◦ Generally, a fair policy will behave poorly in performance metrics.

SJF:
Average Turnaround Time:
(5+10+15)/3=10 seconds

RR:
Average Turnaround Time:
(13+14+15)/3=14 seconds

120100806040200
Time

A B C

120100806040200
Time

A B C A B C A B C A B C

Round Robin

} We will relax assumption #4: Programs do perform I/O.

} When a job initiates an I/O request, OS has a decision to make.
◦ Currently running process won’t be using the CPU.
◦ It will be blocked waiting for I/O completion.
◦ Usually I/O operations take a long time.

� E.g. Hard disk drive might block the process for a few milliseconds or longer.
} There is also a decision to make when the I/O completes.
◦ The requesting job returns to ready state à should the OS run the job

at that point?

Incorporating I/O

•Each job runs for the same amount of time
•All jobs started at the same time
•Once started, each job runs until completion
•All jobs only use the CPU (e.g. no I/O)
•The run-time of each job is known

} Let’s see an example:
◦ Two jobs A and B arriving at t=0.
◦ Both need 50ms of CPU time.
◦ A issues an I/O request every 10ms.

} Just running one job after the other without
considering I/O makes little sense.

Incorporating I/O

Tturnaround=(90+140)/2=110 ms
Tresponse=(0+90)/2=45 ms

A A A A A B

120100806040200
Time

140

CPU

Disk

-> STCF runs A

} A common approach à treat each 10ms A sub-job as an
independent job. à apply STCF
◦ Doing so allows overlapping another job with the I/O

Incorporating I/O

Tturnaround=(90+100)/2=95 ms
Tresponse=(0+10)/2=5 ms

A A A A A

120100806040200
Time

140

CPU

Disk

B B B B B

} Some assumptions about the processes running in the
system (workload)
◦ Each job runs for the same amount of time
◦ All jobs started at the same time
◦ Once started, each job runs until completion
◦ All jobs only use the CPU (e.g. no I/O)
◦ The run-time of each job is known

} No more Oracle.
◦ The OS knows little about the length of each job.
◦ How to behave like SJF/STCF without a priori knowledge?
◦ How can we incorporate RR scheduler ideas to improve response

time?
} OS still needs to decide which job to run at any given

moment?

Workload Assumptions

2.4 Virtualizing the CPU
Multi-level Feedback Queue

} How to schedule without perfect knowledge?
◦ Priority Scheduling.

} One of the most well-known approaches to scheduling
à Multi-level Feedback Queue (MLFQ)
◦ First described by Corbato et. al. in 1962.
◦ Subsequently been refined through the years.
◦ Many different implementations in some modern systems.
◦ We will cover the basic algorithms.

} MLFQ learns from the past to predict the future.

Multi-Level Feedback Queue

} MLFQ has a number of distinct queues, each assigned a different
priority level.

} At any given time, a job that is ready to run is on a single queue.

} MLFQ uses priorities to decide which process to run at a given
time:
◦ A job with higher priority is chosen to run.

} More than one job could be in a given queue:
◦ Same priority à e.g. Round Robin.

Rule #1: If Priority(A) > Priority(B) à A runs (B doesn’t).
Rule #2: If Priority(A) = Priority(B) à A & B run in RR.

Multi-Level Feedback Queue

} How to assign priorities?
◦ Not fixed à Observed behavior.
� E.g. A job continuously requesting Keyboard input keeps its

priority high (interactive process)
� E.g. A CPU demanding job reduces its priority
◦ Use history to predict future behavior.

Multi-Level Feedback Queue

Will they ever run?

High Priority Queue Q7 A B

Q6

Q5

Q4

Q3

Q2

Q1

Q0

C

DLow Priority Queue

Rule #1: If Priority(A) > Priority(B) à A runs (B doesn’t).
Rule #2: If Priority(A) = Priority(B) à A & B runs in RR.

Multi-Level Feedback Queue

} Priority Should Change over time

◦ We must decide how MLFQ changes the priority level of a job

(which queue it is on) over its lifetime.

◦ Keep in mind our workload:

� Interactive jobs à short-running (may release CPU frequently)

� CPU-bound jobs à long-running (response time not important)

◦ First attempt:

Rule #3: When a job enters the system à assign highest priority
Rule #4a: If a job uses the CPU an entire time slice à reduce priority
Rule #4b: If a job gives up the CPU before time slice is up à keep priority

Multi-Level Feedback Queue

} Example #1: Single Long-Running Job

Q2

Q1

Q0

0 50 100 150 200

Multi-Level Feedback Queue

} Example #2: Along Came a Short Job

Q2

Q1

Q0

Second job ends

LIKE SJF

200 250 300 350 400

Multi-Level Feedback Queue

} Example #3: What About I/O
Rule #4b: If a job gives up the CPU before time slice is up à keep priority

Q2

Q1

Q0

0 50 100 150 200

I/O

Interactive Job is
handled quickly

Multi-Level Feedback Queue

} What happens if there are “too many” interactive jobs in
the system?
◦ Starvation: They will combine and never give up the CPU to long-

running jobs.

} Smart users could rewrite their programs to game the
scheduler à Trick the scheduler to give them more
resources than the fair share.
◦ E.g. Run 99% of the time slice and give up the CPU.

} A program may change its behavior over time
◦ E.g. a long running program becomes interactive

Multi-Level Feedback Queue

} Example #4a:

Q2

Q1

Q0

Two interactive
Jobs execute

0 50 100 150 200

Multi-Level Feedback Queue

} Attempt #2: Priority Boost
◦ Periodically give a boost to all the jobs. E.g.:

} Solves two problems at once:
◦ Processes do not starve.
◦ If a job changes behavior, scheduler treats it properly.

Rule #5: After some time period Sà move all jobs to topmost queue

Multi-Level Feedback Queue

} Example #4b: With Priority Boost

Q2

Q1

Q0

Boost Boost Boost Boost

0 50 100 150 200

Multi-Level Feedback Queue

} Attempt #3: Better Accounting

◦ How to prevent gaming of our scheduler?

� Rules 4a and 4b let a job retain its priority even using the CPU

99% of the time slice.

◦ Solution: Perform a better accounting of CPU time:

� Scheduler does not forget how much of the time slice a process

used à keeps track

� Once a process used its allotment, it is demoted

◦ CPU usage accumulated, regardless of how many times it

gives up the CPU.

◦ Each Queue can have its own time quanta

Rule #4: Once a job uses its time allotment at a given level à reduce priority

Multi-Level Feedback Queue

} Example #5: Without (Left) and With (Right) Gaming
Tolerance

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Multi-Level Feedback Queue

} MLFQ Parameterization
◦ How many queues?
◦ How big the time-slice of each queue?
◦ How often should we boost priority?

} Most MLFQ allow varying time-slice length across
queues:
◦ High-priority queues à short time slices
� interaction à fast switching
◦ Low-priority queues à longer time slices
� CPU-bound jobs

Multi-Level Feedback Queue

} Example #6: Lower Priority, Longer Quanta

Q2

Q1

Q0

0 50 100 150 200

Multi-Level Feedback Queue

} Rules set summary:

} Multi-Level Feedback Queue:
◦ Does not need a priori knowledge, but uses history.
◦ Can deliver excellent overall performance (similar to SJF/STCF)
◦ Is fair and all jobs make progress.

Rule #1: If Priority(A) > Priority(B), A runs, B doesn’t
Rule #2: If Priority(A) = Priority(B), A & B run in RR.
Rule #3: When a job enters the system, it gets highest priority.
Rule #4: Once a job uses its time allotment at a given level à reduce priority.
Rule #5: After some period S, all jobs move to highest priority queue.

Multi-Level Feedback Queue

} Solaris MLFQ provides a set of tables with the rules explained, modifiable by
administrator.
◦ Default: 60 queues, 20 ms time-slice high priority, 100s ms low priority, priority

boost every second…
} FreeBSD MLFQ scheduler uses a mathematical formula to calculate the priority of

a job.
} Windows uses a priority-based preemptive scheduling
◦ Higher priority threads preempt lower running threads.
◦ Increases priority of the job selected on the screen (foreground process) from

others (background processes).
◦ Windows 7 allows user-mode scheduling (UMS): Applications manage thread

scheduling without involving kernel.
} Many schedulers offer other features:
◦ Highest priority devoted to system (no user)
◦ User advice to set priority (nice)

MLFQ Examples

2.5 Virtualizing the CPU
-Other Scheduling

} Instead of Turnaround or response time à
Proportional use of CPU.

} Proportional-share scheduling (Lottery scheduling)
◦ Hold a “lottery” to determine the running process.
◦ Tickets à a share of the resource.
◦ Random choice
� Probability leads to proportionality (no guarantee).
� Avoid corner-case behavior.
� Random could be fast.

Proportional Share Scheduling

} Example #7: Lottery Scheduler
◦ Two processes A and B. A has 75 tickets, B only 25.
◦ Lottery from 0 to 99. A wins from 0 to 74

◦ B gets to run 2 out of 10 time slices (20%), which is a bit far
from the 25% we expect.
◦ The longer the processes run, the more likely they match the

percentages.

Lottery result
A
B

63 85 70 39 76 17 29 41 36 39
X X X X X X X

X X
X

Proportional Share Scheduling

} Why do it randomly?
◦ Deterministic Proportional-share Scheduling.

} Divide a large number by the number of tickets à
stride.
◦ Whenever a process executes, an execution counter (pass) is

incremented by the stride.

Stride Scheduling

} Example #8: Three processes A, B and C with 100, 50 and 250
tickets respectively.
◦ Divide 1000 by tickets à Strides: 10, 20 and 4.

Stride Scheduling

Pass (A)
(stride=10)

Pass (B)
(stride=20)

Pass (C)
(stride=4)

Who runs?

0 0 0 A

10 0 0 B

10 20 0 C

10 20 4 C

10 20 8 C

10 20 12 A

20 20 12 C

20 20 16 C

20 20 20 -

} Lottery Scheduler gets proportion probabilistically over
time.

} Stride Scheduler achieves proportion (exactly) just at the
end of each scheduling cycle.

} Why use lottery scheduling at all?
◦ There is no global state.
◦ What if a process arrives in the middle of a scheduling cycle of the

stride scheduler?
� If it gets pass value = 0, it will monopolize the CPU for a while.
◦ It is easier.

} Both cases: How to assign tickets?

Lottery vs. Stride

} Event-driven system
◦ E.g. Car collision detector.
◦ Response time is critical (predictable)à event latency.
◦ Hard vs Soft real-time systems.

} Interrupt latency
◦ Arrival of interrupt to start of service routine.
◦ Critical on hard real-time systems.

} Dispatch Latency
◦ Amount of time it takes to stop a process and start another one.
◦ Preemptive kernel.
◦ Preemption of processes running.
◦ Release of resources needed by priority process.

} Keep the number of running processes low.

Real-Time Scheduling

2.5 Virtualizing the CPU
-Multiprocessor Scheduling

} Cache Hierarchy

} Data Coherence
◦ Moving processes to different CPUs, what happens to the data?

} Processor Affinity
◦ Cache affinity
◦ TLB affinity

Mutliprocessor Issues

Memory
Disk

CPU

Cache

CPU

Cache
registers registers

Single-Queue Scheduling

A B C D ESched. queue NULL

CPU 0 A E D C B ...
CPU 1 B A E D C ...
CPU 2 C B A E D ...
CPU 3 D C B A E ...

CPU Affinity!

A B C D ESched. queue NULL

CPU 0 A E A A A ...
CPU 1 B B E B B ...
CPU 2 C C C E C ...
CPU 3 D D D D E ...

Affinity fairness...?
SQ shared -> concurrency

Single-Queue Scheduling

Multi-Queue Scheduling

A C EQueue 0 NULL

CPU 0 A A C C E E A A C C E ...
CPU 1 B B D D B B D D B B D ...

B DQueue 1 NULL

Load Imbalance
There is not much to do

A C EQueue 0 NULL

CPU 0 A A C C E E A A C C E ...
CPU 1 B B B B B B B B B B B ...

BQueue 1 NULL

Even Worse!

Multi-Queue Scheduling

A C EQueue 0 NULL

CPU 0 A A C C E E A A C C E ...
CPU 1 ...

Queue 1 NULL

Multi-Queue Scheduling

A CQueue 0 NULL

CPU 0 A A C C A A A A C C A ...
CPU 1 E E E E C C E E E E C ...

Queue 1 NULL

Job Migration / Work Stealing

E

Multi-Queue Scheduling

} Asymmetric vs Symmetric à mostly SMP.

} Single-Queue Scheduling (SQMS)
◦ Simplicity.
◦ Lack of Scalability.
◦ Concurrency à locks in SQMS accesses.
◦ Migration àß Processor Affinity (cache).

} Multi-Queue Scheduling (MQMS)
◦ Flexible: Each queue can have its own algorithm.
◦ More scalable.
◦ Load imbalance à work stealing (migration).
◦ More complex.

Multiprocessor Scheduling

} Linux Multiprocessor Schedulers:
◦ O(1)
� Priority based (similar to MLFQ).
� Focus on interactivity/performance à good response time.
� MQMS with load balancing.
◦ Completely Fair Scheduler (CFS)
� Deterministic Proportional-share (uses nice).
� Accumulates virtual run time (decay based on priority)
� MQMS.
◦ BF* Scheduler (BFS)
� Single-Queue approach.
� Proportional-share à Earliest Eligible Virtual Deadline First

Multiprocessor Scheduling

2.7 Virtualizing the CPU
-Process API

} Application Program Interface (API) is what programs use
to access OS system calls.
◦ Most common APIs are:
� Win32 for Windows;

� POSIX for POSIX-based systems (almost all UNIX, Linux and Mac OS X);

� JAVA API for the Java virtual Machine (JVM);
� Graphic APIs like: DirectX, OpenGL…

◦ Usually come in the form of libraries.

} Why should we use APIs rather than system calls?
◦ The caller doesn’t need to know anything about how the system call

is implemented.
� Just needs to obey the API and understand what the OS will do as a

result.

� Most details of the OS are hidden to the programmer by the API.

Application Programming Interface

Windows Unix

Process Control
CreateProcess()
ExitProcess()
WaitForSingleObject()

fork()
exit()
wait()

File Manipulation

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

open()
read()
write()
close()

Device
Manipulation

SetConsoleMode()
ReadConsole()
WriteConsole()

ioctl()
read()
write()

Information
Maintenance

GetCurrentProcessID()
SetTimer()
Sleep()

getpid()
alarm()
sleep()

Communication
CreatePipe()
CreateFileMapping()
MapViewOfFile()

pipe()
shmget()
mmap()

Protection
SetFileSecurity()
InitializeSecurityDescriptor()
SetSecurityDescriptorGroup()

chmod()
umask()
chown()

Application Programming Interface

} We will discuss the UNIX POSIX API for process creation
and control.
◦ fork system call: creates a new process.
◦ exec system call: replaces the process’ memory space with a

new program.
◦ wait system call: waits for a process to finish.

Process API

} The fork() system call is used to create a new process.

} The new process is almost an exact copy of the calling process
(parent).

} The created process (child) doesn’t start running at main(), instead it
starts running as if it had called the fork() itself.

} To the OS, now there are two copies of the same process that both
return from the fork() system call.

} Each process has its own copy of the address space, its own registers
and different PIDs.
◦ The return value of the fork() is different for each process: the child is

simply returned a 0, while the parent receives the PID of the newly-created
process.
� pid_t getpid(void) returns the PID of the calling process.
� pid_t getppid(void) returns the PID of the parent of the calling process.

The fork() System Call

#include <stdio.h>
pid_t fork(void);

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])
{

printf(“Hello world (pid:%d)\n”, (int)getpid());
int proc_id = fork(); // process cloning
if (proc_id < 0) //error at process creation
{

fprintf(stderr, “fork failed\n”);
exit(1);

} else if (proc_id == 0) //the child (new process)
{

printf(“hello, I am the child (pid:%d)\n), (int)getpid());
} else //the parent goes this path
{

printf(“hello, I am the parent of %d (pid:%d)\n), proc_id, (int)getpid());
}
return 0;

}

The fork() System Call

} The wait() system call waits for termination of a child of the calling
process:

◦ In case of child termination, wait allows OS to release the resources associated
(otherwise it becomes a “zombie”).
� If the parent terminates, they become adopted by init(1), which performs a wait.

◦ If the child has already changed state, the call returns immediately. Otherwise,
the calling process suspends execution until one of its process terminates.

} Other system calls (waitpid() and waitid()) allow tracking of
state changes in child processes: child terminated, stopped or
resumed.

} waitpid() system call allows specifying the pid of the child you
want to wait for.

The wait() System Call

#include <sys/wait.h>
pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[])
{

printf(“Hello world (pid:%d)\n”, (int)getpid());
int proc_id = fork(); // process cloning
if (proc_id < 0) //error at process creation
{

fprintf(stderr, “fork failed\n”);
exit(1);

} else if (proc_id == 0) //the child (new process)
{

printf(“hello, I am the child (pid:%d)\n), (int)getpid());
} else //the parent goes this path
{

int wc = wait(NULL);
printf(“hello, I am the parent of %d (wc:%d) (pid:%d)\n),

proc_id, wc, (int)getpid());
}
return 0;

}

The wait() System Call

} The exec() system call is useful when you want to run a program different
from the calling program.

} It loads code (and static data) from the executable and overwrites the current
code segment (and current static data).
◦ The heap, stack and other parts of the memory space are re-initialized.

} Then the OS runs the program passing the corresponding arguments.
◦ It does not create a new process, it transforms the current process into a different

running program.
◦ A successful call to exec() never returns.

} There is a family of exec() functions:

The exec() System Call

#include <unistd.h>

int execl(const char *path, const char *arg, …);
int execlp(const char *file, const char *arg, …);
int execle(const char *path, const char *arg, …, char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <string.h>

int main(int argc, char *argv[])
{
printf(“Hello world (pid:%d)\n”, (int)getpid());
int proc_id = fork(); // process cloning
if (proc_id < 0) //error at process creation
{
fprintf(stderr, “fork failed\n”);
exit(1);

} else if (proc_id == 0) //the child (new process)
{
printf(“hello, I am the child (pid:%d)\n), (int)getpid());
char *myargs[3];
myargs[0] = strdup(“wc”); //program: wc (word count)
myargs[1] = strdup(“exec_call.c”); // argument: file
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); //runs word count
printf(“this should not print out”);

} else //the parent goes this path
{
int wc = wait(NULL);
printf(“hello, I am the parent of %d (wc:%d) (pid:%d)\n),

proc_id, wc, (int)getpid());
}
return 0;

}

The exec() System Call

} The shell is just a user program. It shows a prompt and
waits for a command from the user.

} In most cases:
◦ The shell figures out where the command is in the file system;
◦ Calls fork() to create a new child process to run the command;
◦ Calls some variant of exec() to run the command;
◦ Then waits for the command to complete by calling wait() and

prints out the prompt again.

} The separation of fork() and exec() allows the shell to
do work in between.

Process API and the Shell

2 Virtualizing the CPU
-Exercises

Exercise #1

Three jobs with the following characteristics are running in a system:

Job Start time CPU time I/O frequency Duration of I/O

A 0ms 60ms every 20ms of CPU 10ms

B 5ms 50ms no I/O -

C 15ms 40ms every 10ms of CPU 5ms

a) Draw the behavior of the scheduling algorithm for First-In First-Out (FIFO), Sortest Time to

Completion First (STCF) and Round Robin (RR) with 10 ms of time slice. Bear in mind that STCF is

preemptive and that each time a process comes into ready state, the algorithm is reevaluated.

b) What is the turnaround time of each job for the different algorithms? What is the average

turnaround time of each algorithm?

c) What is the response time of each job for the different algorithms? What is the average

response time of each algorithm?

There is an Operating System with an MLFQ (Multi-Level Feedback Queue) Scheduler with
three priority queues (Q1, Q2 and Q3). The time slice for each queue is 4ms in Q1, 8ms in Q2
and 12ms in Q3 respectively. Every 60ms there is a priority boost. The three jobs are using the
same I/O device that can only be used by one job at a time. Assume that the context switch
time is zero for this exercise. If there are three jobs running (A, B and C) with the following
characteristics, draw the execution trace and obtain the turnaround time and the response
time of each job.

A:
Starts at t=0ms.
Requires 20 ms of CPU.
I/O every 4ms of CPU and each I/O
operation lasts for 12ms.

B:
Starts at t=2ms.
Requires 40ms of CPU.
I/O every 12ms of CPU and each I/O
operation lasts for 12ms.

 C:
Starts at t=6ms.
Requires 60ms of CPU.
No I/O.

Exercise #2

Three jobs with the following characteristics are running in an operating system with a

Deterministic Proportional-share Scheduler (Stride Scheduler):

Job A runs for 60 seconds with priority 20

Job B runs for 80 seconds with priority 15

Job C runs for 90 seconds with priority 40

The scheduler runs a job for a time slice of 10 seconds before starting the next job. Draw the

execution trace and keep track of the execution time accumulated (pass) for each process. Explain

how the scheduler works and the steps you take.

Exercise #3

There is an Operating System with an MLFQ (Multi-Level Feedback Queue) Scheduler. Unfortunately,
all of its parameters have been lost. To obtain the most important ones, we execute two processes
simultaneously, which only make use of the CPU (no I/O). Here is the execution trace of the two
processes (A and B) running:

The graph shows the CPU usage of A and B over time (there is just one CPU in the system). Time
scale (horizontal) is in milliseconds, and we can see how every 500 milliseconds the behaviour repeats
indefinitely (until the jobs are finished). To help you further, a close-up of the first part of the graph is
shown here in detail:

Exercise #4

a) How many queues do you think there are in this MLFQ scheduler?

b) How long is the time slice of the top-most (high priority) queue?

 c) How long is the time slice of the bottom-most (lower priority) queue?

 d) How often do processes get moved back to the top-most queue (priority boost)?

e) What is the point of the priority boost in the MLFQ scheduler?

Exercise #4 (cont.)

