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3.1 Memory Virtualization
-Address Space



} No memory abstraction.
} OS as a set of routines (standard library).
◦ At address 0 in the example.

} One running program uses the rest of the memory.

} Physical memory à

Early Days

Operating System 
(code, data, etc.)

Current Program (code, 
data, etc.)

0KB

64KB

max



} CPU Virtualization was the illusion of having a private 
CPU per process.

} Memory Virtualization is the illusion of having a private 
memory per process.

} CPU: Multiple processes at a time. 
◦ OS switches between them saving the state of the CPU (Time 

sharing).
} Memory: Allow a program to use all memory and save 

it on disk when switching.
◦ Too slow.

} Leave processes in memory and switch between them. 

Multiprogramming



} Each process has a portion of 
physical memory.

} Multiple programs reside 
concurrently in memory.

} Processes need Protection

Operating System 
(code, data, etc.)

Process C
(code, data, etc.)

0KB

64KB
(Free)

Process B
(code, data, etc.)

(Free)

Process A
(code, data, etc.)

(Free)

(Free)

128KB

192KB

256KB

320KB

384KB

448KB

512KB

How does a process know 
where it is in the memory?

Multiprogramming



} Easy to use abstraction of physical memory.
◦ Illusion of private memory.
◦ Virtual Address.
◦ Extend LDE (Limited Direct Execution).

} Contains memory state of a program:
◦ Code (instructions, static data).
◦ Heap (data, dynamically-allocated memory).
◦ Stack (local variables and routines parameters).

Address Space

In OSTEP



Program Code

Heap

(free)

Stack

0KB

1KB

2KB

63KB

64KB

Code segment: Instructions

Static (doesn’t grow). Easy to place

Heap: dynamic data structures

(i.e. malloc, new…) grows downward

Stack segment: local variables, arguments to 

routines, return values… grows upward

This is just a convention. It could be 

arranged another way.

(i.e. In a multithread process, each 

thread has its own stack)

Address Space



Program Code

Heap

(free)

Stack

Data Segment

Memory-mapped file

Shared Memory

Dynamic Library

(free)

Thread 1 stack

int x=25;

int main(int argc, char *argv[]) {
int y;
int *z = malloc(sizeof(int)));
...

}

x

main

y

z

Segments Arrangement may vary.

pointer (address) on the stack
int on the heap

Address Space



Program Code

Heap

(free)

Stack

0KB

1KB

2KB

63KB

64KB

} Abstraction provided by the OS.
◦ Program is not in physical addresses 0 through 

64KB.
◦ Loaded in an arbitrary physical address by the OS 

(In previous example, Process A is in address 
320KB).

Address Space



} Abstraction provided by the OS.
◦ Program is not in physical addresses 0 through 

64KB.
◦ Loaded in an arbitrary physical address by the OS 

(In previous example, Process A is in address 
320KB).
◦ When a process performs an access to an address 

from its address space (i.e. 1KB, virtual address) à
OS with hardware support should load correct 
physical address (i.e. 321KB for process A).

} This is the key to virtualization of memory.

How does a process know where it is?

Processes don’t know where they actually are

Operating System 
(code, data, etc.)

Process C
(code, data, etc.)

0KB

64KB
(Free)

Process B
(code, data, etc.)

(Free)

Process A
(code, data, etc.)

(Free)

(Free)

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Address Space



} Transparency: invisible to the running programs. 
◦ Programs do not realize memory is virtualized.

} Efficiency:
◦ Time efficient à programs do not run much more slowly.
◦ Space efficient à not too much memory is used for supporting virtualization.

} Protection: to protect processes from one another and the OS itself 
from processes.
◦ A process should not be able to access memory outside its address space.
◦ Isolation among processes à one can fail without affecting others. Prevents 

harm.
� Some modern Operating Systems isolate pieces of the OS from other pieces of the OS 

providing great reliability.

Address Space: Goals



3.2 Memory Virtualization
-Address Translation



} Virtualization of the CPU uses Limited Direct Execution:
◦ Allow the program run directly on hardware.
◦ Make the OS control critical points.

} Two main goals: Efficiency + Control.

} How can we efficiently and flexibly virtualize memory while 
ensuring protection (control)?
◦ Hardware support à address translation.
� Transform each virtual address used by program instructions to physical 

address where information is actually located.
◦ OS manage memory, keeping track of which locations are used/free.

Address Translation



} Starting Assumptions:
◦ User’s address space is placed contiguously in physical 

memory.
◦ Size of address space is less than the size of physical memory.
◦ Each address space is exactly the same size.

} As with virtualized CPU, unrealistic, but we will relax 
these assumptions gradually.

Address Translation



} Example #1:

void func() {
int x;
x = x + 3; // line of code we are interested in

---------------------------------------------

128: movl 0x0(%ebx), %eax ; load 0+ebx into eax
132: addl $0x03, %eax ; add 3 to eax register value
136: movl %eax, 0x0(%ebx)         ; store eax back to mem

} Presuming address of x is in the register ebx.
◦ Let’s assume 0x3C00 (15KB, in the stack near the bottom on a 16KB 

address space).

Address Translation



} Instructions work with addresses from the 
program address space (virtual).
◦ Addresses are “hardcoded” into program 

binaries.

} Physical memory looks like:

Operating System

(not in use)

0KB

(not in use)

16KB

32KB

48KB

64KB

Code
Heap

Stack

(allocated but not in use)Process

Address Translation



} Example #1
◦ Fetch instruction at addr 0x8128
◦ Exec load from addr 0xBC00

◦ Fetch instruction at addr 0x8132
◦ Exec, no load

◦ Fetch instruction at addr 0x8136
◦ Exec store to addr 0xBC00

Dynamic Relocation

Program Code

Heap

(free)

Stack

0KB

2KB

14KB

16KB

15KB

4KB

3KB

1KB

Base Size

Process 32KB (0x8000) 16KB
0x136: movl %eax, 0x3C00

Operating System

(not in use)

0KB

(not in use)

16KB

32KB

48KB

64KB

Code
Heap

Stack

(allocated but not in use)Process

0x128: movl 0x3C00, %eax
0x132: addl 0x3, %eax



} Also referred to as base and bounds (two hardware registers):
◦ Base register
◦ Bounds/limit register

} As a process starts running, the OS decides where to load the 
address space in the physical memory à stores the value in 
base register.

} Bounds (limit) register has the size of the address space. à
Protection.

} Address translation:
Physical address = virtual address + base
◦ Memory reference should be within bounds. 

Dynamic Relocation



} Example #2: A process with an address space of 16KB 
loaded at physical address 32KB.
◦ Base register: 32KB (32768)
◦ Bounds register: 16KB (16384)

Virtual Address Physical Address
0
1KB
6000
17100

32KB

33KB
38768
Fault (out of bounds)

Dynamic Relocation



} The part of the processor that helps with address 
translation is called the Memory Management Unit 
(MMU)
◦ Base/bounds registers.
◦ Ability to translate virtual address and check if within bounds.
◦ Privileged instructions to update base/bounds.
◦ Privileged instructions to register exception handlers (“out of 

bounds” and “illegal instruction”).
◦ Ability to raise exceptions.

Dynamic Relocation



} OS management:
◦ Find space at process creation. Easy with our assumptions. Free list.
◦ Reclaim all the process memory when it terminates. Back to the free 

list.
◦ Save and restore base/bounds registers when a context switch 

occurs (PCB).
◦ Provide exception handlers.

} It is possible for the OS to move an address space from one 
location in memory to another (when the process is not 
running).
◦ memcpy

Dynamic Relocation



OS boot
(kernel mode)

Hardware Program
(user mode)

Initialize trap table Remember address of:
System call handler, Timer handler, Illegal 
mem access handler, Illegal instruction
handler...

Start interrupt timer

Start timer. Interrupt after X ms.

Initialize process table
Initialize free list



OS run 
(kernel mode)

Hardware Program
(user mode)

To start process A:
allocate entry in process table
allocate memory for process
set base/bounds registers
return from trap (into A)

Restore registers of A
Move to user mode
Jump to A (initial) PC

Process A runs
Fetch instruction

Translate virtual address and perform fetch

Execute instruction

If explicit load/store:
Ensure address is in-bounds,
Translate virtual address and 
perform load/store

... ... ...

Timer interrupt:
move to kernel mode
Jump to interrupt handler

Handle the trap:
Call switch routine:

save regs(A) to proc-struct(A)
(including base/bounds)(
restore regs(B) from proc-struct(B)
(including base/bounds)

return from trap (into B)

Restore registers of B
Move to user mode
Jump to B’s PC

Process B runs



} Pros:
◦ Fast and Simple.
◦ Offers protection.
◦ Little overhead (2 registers per process)

} Cons:
◦ Not flexible.
◦ Wastes memory for large address spaces

� Internal Fragmentation.

Program Code

Heap

(free)

Stack

Wasted Space à Internal Fragmentation

Dynamic Relocation



3.3 Memory Virtualization
-Segmentation



} Segmentation: instead of one base/bound register in 
MMU, one pair per logical segment of address space.
◦ Avoid internal fragmentation.
◦ Allow running programs with address spaces that don’t fit 

entirely into memory.

} A segment is a contiguous portion of the address 
space. In our simple address space:
◦ Code segment
◦ Heap segment
◦ Stack segment

Segmentation



} Example #3: dynamic relocation
Program Code

Heap

(free)

Stack

0KB

2KB

4KB

14KB

16KB

0KB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(not in use)

Code
Heap

Stack

(allocated but not in use)
Wasted

Base Bound

32KB 16KB

Segmentation



} Example #3: segmentation 
Program Code

Heap

(free)

Stack

0KB

2KB

4KB

14KB

16KB

0KB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(not in use)

Code
Heap

Stack

Segment Base Size
(bounds)

Code 32KB 2KB

Heap 34KB 2KB

Stack 28KB 2KB

(not in use)

Segmentation



} Which segment does an address refer to?

◦ Implicit approach:

� The hardware determines the segment by noticing how the 

address was formed.

� i.e. from the program counter (fetch) à code segment

from the stack pointer à stack segment.

◦ Explicit approach:

� Top few bits of virtual address (used in VAX/VMS)

� i.e. In our example, three segments, we need 2 bits of the 14 bits 

address. So address 0x1068

Heap

Segment Number

Code+data 0

Heap 1

Stack 2

Segmentation



} What about the stack? (grows backwards)

} Example : Access to address 15KB (virtual):
◦ Stack access (negative growth)
11 1100 0000 0000 (hex 0x3C00)

} The offset is negative (Ca2). VA offset (3KB) minus max. 
segment size (4KB) equals real offset (-1KB).
◦ In the example, physical address 27KB.

Segment Base Size Grows +?

Code 32KB 2KB 1

Heap 34KB 2KB 1

Stack 28KB 2KB 0

Stack

Offset: 3KB à in Ca2 -1KB

Segmentation



} Example #4 with Segmentation
◦ Fetch instruction at addr 0x8128
◦ Exec load from addr 0x6C00

◦ Fetch instruction at addr 0x8132
◦ Exec, no load

◦ Fetch instruction at addr 0x8136
◦ Exec store to addr 0x6C00

Address Translation

Program Code

Heap

(free)

Stack

0KB

2KB

14KB

16KB

15KB

4KB

3KB

1KB

Segment Base Size Grows +?

Code 32KB (0x8000) 2KB 1

Heap 34KB (0x8800) 2KB 1

Stack 28KB (0x7000) 2KB 0
0KB

16KB

32KB

48KB

64KB

Operating 
System

(not in use)

(not in use)

Code
Heap

Stack
(not in use)

0x136: movl %eax, 0x3C00

0x128: movl 0x3C00, %eax
0x132: addl 0x3, %eax



} Support for sharing à protection bits

} Fine-grained vs. Coarse-grained Segmentation.
◦ Large vs. small number of segments.
◦ Flexibility vs. Cost.

Segmentation

Segment Base Size Grows +? Protection

Code 32KB 2KB 1 Read-Execute

Heap 34KB 2KB 1 Read-Write

Stack 28KB 2KB 0 Read-Write

Code sharing



(not in use)

(not in use)

Segmentation - Fragmentation

} System with 4 processes running
0KB

16KB

32KB

48KB

64KB

Operating System

(not in use)

(not in use)

Code

Heap

Stack
(not in use)

Code

Heap

Stack

Code

Stack

Heap

Heap

Stack

Code

Code ?

Grow?

External Fragmentation!

} A 5th process arrives



} Pros:
◦ Easy and Fast.
◦ Supports sparse address space (no internal fragmentation).
◦ Allows sharing and fine-grained protection.
◦ Little overhead (few registers per process)

} Cons:
◦ External Fragmentation.
� Free-list Management reduces it, but it still exists.
◦ Complex Free Space Management.
◦ Segment growing could mean memcpy.

Segmentation - Summary



3.4 Memory Virtualization
-Free Space Management



} Minimize external fragmentation (without 
compacting).

} Management of the free-list to keep track of free 
space.

} Basic mechanism: Splitting and Coalescing

Free Space Management

- OS with segmentation
- User-level memory-allocation library à heap



} Assume a 30-byte heap:

} Free list:

Splitting and Coalescing

free used free
0 10 20 30

head addr: 0
len: 10

addr: 20
len: 10

NULL



free} Assume a 30-byte heap:

} Free list:

} Ask for 1 byte (splitting):

free used free
0 10 20 30

head addr: 0
len: 10

addr: 20
len: 10

NULL

head addr: 0
len: 10

addr: 20
len: 1

NULLaddr: 21
len: 9

f

Splitting and Coalescing



} Assume a 30-byte heap:

} Free list:

} Ask for 1 byte (splitting):

free used free
0 10 20 30

head addr: 0
len: 10

addr: 20
len: 10

NULL

head addr: 0
len: 10

NULLaddr: 21
len: 9

freeu

Splitting and Coalescing



} Assume a 30-byte heap:

} Free list:

} Ask for 1 byte (splitting):

} Free:

free used free
0 10 20 30

head addr: 0
len: 10

addr: 20
len: 10

NULL

head addr: 0
len: 10

NULLaddr: 21
len: 9

head addr: 10
len: 10

addr: 0
len: 10

NULLaddr: 21
len: 9

freeufree

Splitting and Coalescing



} Assume a 30-byte heap:

} Free list:

} Ask for 1 byte (splitting):

} Free:

} Coalescing:

free used free
0 10 20 30

head addr: 0
len: 10

addr: 20
len: 10

NULL

head addr: 0
len: 10

NULLaddr: 21
len: 9

head addr: 10
len: 10

addr: 0
len: 10

NULLaddr: 21
len: 9

head addr: 0
len: 20

addr: 21
len: 9

NULL

freeufreefree

Splitting and Coalescing



} Basic Strategies
◦ Ask for 15

◦ Best Fit

◦ Worst Fit

◦ First Fit

◦ Next Fit

Free Space Management

head Len 10 Len 30 NULLLen 20

head Len 10 Len 30 NULLLen 5

head Len 10 Len 15 NULLLen 20

head Len 10 Len 15 NULLLen 20

No search needed à Faster
Order becomes an issue.Similar to First Fit

No search. Spread allocates.



64KB

32KB 32KB

16KB 16KB

8KB 8KB

} Binary buddy allocator:
◦ Free memory as a space of size 2N.
◦ i.e. request for a 7KB block.

Free Space Management

Internal 
Fragmentation

Recursive coalescing
Easy to obtain buddy from address



3.5 Memory Virtualization
-Paging



} Segmentation involves chopping up memory space into 
variable-sized pieces. 
◦ Is too coarse grained. Complex free space management.

} Paging chops up memory space into fixed-sized pieces.
◦ We divide the address space into fixed-sized units called 

pages.
◦ Correspondingly, the physical memory is viewed as an array of 

fixed-sized slots called page frames.
◦ Each virtual page is independently mapped to a physical page.
◦ More flexible and easier free-space management.

Introduction



} What techniques do we need?
} How much space and overhead does it need?
} What is the correct page size?

Physical Memory

Address Space

Page Frame 0

Page 0
0

16

32

48

64

Reserved for OS

Page 3 of AS

0

16
(Free)

Page 0 of AS

(Free)

Page 2 of AS

(Free)

Page 1 of AS

32

48

64

80

96

112

128

Page 3

Page 2

Page 1

Page Frame 1

Page Frame 2

Page Frame 3

Page Frame 4

Page Frame 5

Page Frame 6

Page Frame 7

Introduction



} For segmentation: 
◦ high bits à segment.
◦ low bits à offset.

} For paging:
◦ high bits à page.
◦ low bits à offset.

How many bits?

Address Translation

VA6 VA5 VA4 VA3 VA2 VA1 VA0

VPN Offset



Virtual Address 
Bits
10
20
32
16
32

Virtual PagesHigh Bits (VPN)Low Bits 
(offset)

Page Size

16 bytes
1KB
1MB
512bytes
4KB

Virtual Pages

64
1K
4K
32
1MB

High Bits (VPN)

6
10
12
5
20

Low Bits 
(offset)
4
10
20
9
12

0 1 0 1 1 0 1

VPN Offset

Address Translator

1 1 1 0 1 1 0 1

Where do we store the translations?
OffsetPFN

Address Translation



Virtual Page Physical Frame
0
1
2
3

Physical Memory

Address Space

Page Frame 0

Page 0
0

16

32

48

64

Reserved for OS

Page 3 of AS

0

16
(Free)

Page 0 of AS

(Free)

Page 2 of AS

(Free)

Page 1 of AS

32

48

64

80

96

112

128

Page 3

Page 2

Page 1

Page Frame 1

Page Frame 2

Page Frame 3

Page Frame 4

Page Frame 5

Page Frame 6

Page Frame 7

3
7
5
2

Page Table

Address Translation



} Page table per process to record where each virtual page is placed in 
physical memory.

} Page table stores address translation for each virtual page of the address 
space.

} We need to know the 
virtual page number (VPN)
to get the Physical Frame
Number (PFN). 

Virtual Page Physical Frame
0 3
1 7
2 5
3 2

Virtual Address

Physical Address

Address Translation



} Real address space: 32 bits (4GB) or 64 bits…
} Page tables can be terribly large.
◦ i.e. 32-bits address space with 4KB pages:
� 20-bit VPN à 220 translations (~1 million per process).
� 12-bit offset (4KB page size).
� Assuming 4 bytes per page table entry (PTE) 
à 4MB of memory for each page table à per Process!

} Not in MMU, but in memory (kernel space).

Page Table

x86 Page Table Entry

PFN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9   8   7   6   5   4   3   2   1   0

G PA
T D A PC
D

PW
T

U/
S

R/
W P

Info bits: valid, protection, 
present, reference, dirty...



} Example #5 with Paging
◦ Load (PT) from addr 0x02000
◦ Fetch instruction at addr 0x0C128
◦ Load (PT) from addr 0x0200C
◦ Exec load from addr 0x0BC00

◦ Load (PT) from addr 0x02000
◦ Fetch instruction at addr 0x0C132
◦ Exec, no load

◦ Load (PT) from addr 0x02000
◦ Fetch instruction at addr 0x0C136
◦ Load (PT) from addr 0x0200C
◦ Exec store to addr 0x0BC00

Program Code

Heap

(free)

Stack

0KB

8KB

48KB

64KB

56KB

32KB

16KB

0KB

32KB

64KB

96KB

128KB

Operating 
System

(not in use)

(not in use)

VP3

(not in use)

0x128: movl 0xFC00, %eax
0x132: addl 0x3, %eax
0x136: movl %eax, 0xFC00

Virtual Page Physical Frame
0 3
1 7
2 5
3 2

Page Table at addr 0x2000 

VP0

VP2

VP1

16KB

48KB

80KB

112KB

P0

P1

P2

P3
Too Slow!

Valid bit

(not in use)

Address Translation



} Being in memory, accessing a page table is slow.
◦ Page-table base register (PTBR) points to the page table.
◦ Page-table length register (PTLR) indicates the size of the page table.

} Every data/instruction access requires two memory accesses. One for the 
page table, one for the data/instruction.

movl 21, %eax

Implies:

VPN = (VirtualAddress & VPN_MASK) >> offset_bits
PTEAddr = PTBR + (VPN*sizeof(PTE))

First memory access to PTEAddr to get PFN

Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (PFN << offset_bits) | offset

Second memory access to get data in PhysAddr (and store it in %eax)

Page Table



} Pros:
◦ Very Flexible.
◦ No external Fragmentation.
◦ No need to move memory blocks.
◦ Easy Free Space Management.
� Simple free list (valid bit).
� Don’t need to find contiguous memory.
� No need to coalesce (fixed size pages).

} Cons:
◦ Expensive translation (too slow).
◦ Huge Overhead.

Paging



3.6 Memory Virtualization
-Paging Improvements



Mechanism Fragmentation Flexibility Overhead Speed Free Space
AS bigger than 

PMem

Base & bounds Internal (big) Small Small Fast Simple No

Segmentation External (variable) Medium Small Fast Complex Yes

Paging Internal (small) High Big Slow Simple Yes

Remember...

Reduce the impact of these



} Too Slow à Translation Steps

} For each mem reference:
◦ extract VPN (virt page num) from VA (virt addr)
◦ calculate addr of PTE (page table entry)
◦ fetch PTE
◦ extract PFN (page frame num)
◦ build PA (phys addr)
◦ fetch PA to register

} Which steps are expensive?
} Which expensive step can we avoid?

Paging too slow

expensive

expensive

cheap

cheap

cheap

cheap



Virtual Physical

0x3000 Load 0x100C (PT)
Load 0x7000

0x3004 Load 0x100C (PT)
Load 0x7004

0x3008 Load 0x100C (PT)
Load 0x7008

0x300C Load 0x100C (PT)
Load 0x700C

0x3010 Load 0x100C (PT)
Load 0x7010

... ...

int sum = 0;
for (i=0; i<N; i++) {
sum += a[i];

}

Asume:
- 4KB pages (12 bits offset)
- array a in addr 0x3000
- Page Table in addr 0x1000

Then, translation of VA 3 
at entry in addr 0x100C

-Translation: VA 3 à PA 7
- Just data array accesses

} Take advantage of repetition/locality
Common translation:

0x3000 à 0x7000

} Use some kind of CPU cache for 
translations.

Paging too slow



} The two memory access problem can be solved by the 
use of a special fast-lookup hardware cache called 
associative registers or translation look-aside buffers 
(TLBs).

} A TLB is part of the memory-management unit (MMU).

} It is an address-translation cache that stores popular 
virtual-to-physical address translations.

TLB



} Upon a virtual memory reference:
◦ MMU first checks the TLB to see if the translation is stored therein.
◦ TLB Hit (quick)

à Extract PFN and get physical address (PA).
◦ TLB Miss (slow)

à access page table to find the translation. 
à update TLB with the translation. 
à extract the PFN and get the physical address (PA).

TLB



} Effective Address Time (EAT)

◦ Associative lookup = ɛ nanoseconds.

◦ Memory cycle time is β nanoseconds.

◦ Hit ratio = α (percentage of times TLB hits).

EAT = (β + ɛ)α + (2β + ɛ)(1 – α) =

= 2β + ɛ - αβ

EAT β + ɛ 

EAT 2β + ɛ 

α à 1

α à 0

β >> ɛ

TLB



} Example #6: Accessing an array
◦ First entry (a[0]) at VPN=03.
◦ 4KB pages.
◦ PT at addr 0x1000

int sum = 0;
for (i=0; i<4096; i++)
{

sum += a[i];
}

} Just consider data array accesses (ignore instructions and 
sum, and i variables).
◦ How many TLB lookups per page?

4096/sizeof(int)=1024

◦ How many TLB misses?
if a%4096 (4K) is 0 then 4, else 5.

◦ Miss rate?
4/4096 ≈ 0.1%  or  5/4096 ≈ 0.12%

Virtual Physical

5 3 - 7 6 4 ...

Page Table

VPN PFN

3 7

4 6

0x3000 Load 0x100C (PT)
Load 0x7000

0x3004 TLB hit
Load 0x7004

0x3008 TLB hit
Load 0x7008

0x300C TLB hit
Load 0x700C

0x3010 TLB hit
Load 0x7010

... ...

0x4000 Load 0x1010 (PT)
Load 0x6000

... ...

TLB

TLB



} TLB improves performance due to: 
◦ spatial locality  à Elements of the array are packed into 

pages.
◦ temporal locality à Quick re-referencing of memory items in 

time.

(like any cache)

TLB



} TLB is finite à need to replace an entry when installing 
a new one.

} Goal: Minimize miss rate (increase hit rate)

} Typical policies:
◦ Least-recently-used (LRU)
◦ Random (sometimes better than LRU!)
◦ FIFO

TLB Issue. Replacement Policy

Like most caches!
More about replacement policies later



} When does TLB perform ok?
◦ Sequential accesses can almost always hit in the TLB
◦ Fast translation!

} What kind of pattern would be slow?
◦ Highly random (no repeat accesses).
◦ Sequential accesses that load one page at a time and need 

more pages than TLB size and LRU.
� i.e. 4KB pages. 4 entries TLB

Virtual address accesses to:
0x1000 0x2000 0x3000 0x4000 0x5000 0x6000...

TLB behavior



} Hardware
◦ Needs to know the page-table location (PTBR).
◦ Hardware-managed TLB, like CISC Intel x86 multi-level page 

table.

} Operating System
◦ Software-managed TLB. RISC systems (MIPS, SPARC…)
◦ On a miss, hardware raises an exception à trap handler.
◦ Special return-from-trap (same instruction, not next).
◦ Avoid chain TLB misses from handler (TLB handler in 

unmapped physical memory à always hit TLB).
◦ Flexibility and Simplicity

Who handles the TLB miss?



} TLB contains virtual to physical translation valid for the 
current process.

} What happens if a process uses the cached TLB entries 
from another process?
◦ Flush the TLB (set all entries as invalid) à valid bit.
◦ Address space identifier  à ASID field. (kind of PID).
� Remember which entries are for each process.

� Even with ASID, other processes “pollute” the TLB

TLB Issue. Context Switches

Context Switches are expensive!



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

} Typical TLB: 32, 64 or 128 entries fully associative cache 
(search in parallel in all entries).

} TLB entry:

◦ Other bits:
� valid bit (valid translation or not) ≠ page table valid entry.

� Protection bits (read/write/execute)

� Address-space identifier

� Dirty bit…

◦ Real MIPS TLB entry (32 bits address space, 4KB pages):

TLB examples

VPN  |  PFN  |  Other bits

19 bit VPN!

Support systems up to 64GB physical memory

VPN

PFN

ASID

C D V

G



} Page tables are too big and consume too much 
memory.

} Why do we want big virtual address spaces?
◦ programming is easier
◦ applications don’t need to worry (as much) about 

fragmentation

Paging: Smaller Tables



} 32-bits address space with 4KB pages and 4-byte PTE 
means 4MB page table size.

} 32-bits address space with 16KB pages (18-bits VPN 
and 14-bits offset) and PTE 4-bytes means 1MB page 
table size.

} Bigger Pages lead to more internal fragmentation 
(waste space within each page).

Simple Solution. Bigger Pages

Why don’t we use bigger pages?

Many architectures support 
multiple page sizes (4KB, 2MB, 1GB)



Page Table – Wasted Space

code
code

heap
heap

free

free

free

free

free
free
stack
stack

… all free …

0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

0000 0110
0000 0111

1111 1100
1111 1101

1111 1110
1111 1111

page 0
page 1
page 2
page 3
page 4
page 5

page 6
page 7

page 252
page 253

page 254
page 255

VPN Address Space

...

00 0000
00 0001
00 0010
00 0011
00 0100
00 0101

00 0110
00 0111

11 1100
11 1101

11 1110
11 1111

page 0
page 1
page 2
page 3
page 4
page 5

page 6
page 7

page  60
page  61

page 62
page 63

PFN Physical Mem

Not used!

But present in the page table



} Reduce the amount of space allocated for page tables.

◦ Wasted non-valid entries.

} One page table per segment à page table of arbitrary size.

SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT
VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT
AddressOfPTE = Base[SN] + (VPN*sizeof(PTE)

Hybrid: Paging and Segmentation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN OffsetSeg

CPU
Segmentation 

Unit
Paging Unit

Physical 

Memory

Virtual 

address

Linear

address

Physical

address

Known Segmentation Problems:

- No benefits on sparse Address Spaces (big segments)

- “External Fragmentation” (page table of variable size)



} Reduce the number of invalid regions in the page table converting 
linear page table into a tree-like page table (multi-level page table).

} Chop up page table into page-sized units.
} New structure called page directory.
◦ Where the page of the page table is.
◦ Or an entire page of the page table is invalid.

Multi-level Page Tables

201

Linear Page Table
PTBR

1 rx 12
1 rx 13
0
1 rw 100
0
0
0
0
0
0
0
0
0
0
1 rw 86
1 rw 15

va
lid

pr
ot

PFN

200

Multi-level Page Table
PDBR

1 201
0
0
1 204

va
lid

PFN

Page Directory

1 rx 12
1 rx 13
0
1 rw 100

va
lid

pr
ot

PFN

0
0
1 rw 86
1 rw 15

P1 of PT not allocated

P2 of PT not allocated

PF
N

 2
01

PF
N

 2
02

PF
N

 2
03

PF
N

 2
04

PF
N

 2
01

PF
N

 2
04

PF
N

 2
03

PF
N

 2
02

PF
N

 2
00

Wasted



} Example #7: 16KB address space, 64-byte pages, 4-bytes PTE.

◦ 14-bit virtual address space.

◦ 8-bits VPN + 6-bits offset.

◦ Linear page table: 256 entries (2
8
).

code

code

heap

heap

free

free

free

free

free

free

stack

stack

… all free …

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

0000 0110

0000 0111

1111 1100

1111 1101

1111 1110

1111 1111

page 0

page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 252

page 253

page 254

page 255

VPN Address Space

Valid Prot PFN

1 rx 10

1 rx 23

0

0

1 rw 80

1 rw 59

0

0

… … …

… … …

0

0

1 rw 55

1 rw 45

Linear page table

(1KB) Valid PFN

1 100

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 101

page directory

(10’s bytes)

Valid Prot PFN

1 rx 10

1 rx 23

0

0

1 rw 80

1 rw 59

0

0

0

0

0

0

0

0

0

0

Valid Prot PFN

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 rw 55

1 rw 45

page of PT

(64bytes)

page of PT

(64bytes)

Total ~140 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index Page Table Index

Multi-level Page Tables



} What if the page directory gets too big?
◦ 48-bits address space, 16KB pages, PTE 4-bytes.
◦ 1 page, 4096 PTEs.

◦ Directory Size: 222*4 = 16MB (1K pages)

◦ More than two levels
� 4 accesses, first look at the TLB!

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offsetVPN

Page table indexPage Directory index

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offsetVPN

Page table indexPD index 1PD index 0

Multi-level Page Tables



} Page tables are just data structures, we can try anything...
} Inverted Page tables (hash-table):
◦ No multiple tables (one per process).
◦ One single table with an entry for each physical page frame of the system.

� Each entry has information of the process using the frame, and the virtual page 
mapped.

◦ Expensive linear search à complex search mechanisms.
◦ Used in PowerPC (IBM).

} Swapping Page Tables to Disk:
◦ Page table resides in kernel-reserved physical memory.
◦ Even reducing its size, it could be too big.
◦ Some systems place the page table in kernel virtual memory, so it can swap some 

page tables to disk (i.e. VAX/VMS).
◦ More about swapping next...

Page Table. Reducing space



3.7 Memory Virtualization
-Beyond Physical Memory



} We have assumed that every address space fits in physical 
memory. 
◦ Should we be aware of the physical memory available when programming?

} Indeed, we wish to support many concurrently-running large 
address spaces.
◦ Not all pages will reside in physical memory.
◦ We need a place to stash pages without great demand.
◦ Should have more capacity (slower) à usually a hard disk drive.

Mechanisms: Swapping



} OS needs to reserve some space on the disk to allow moving pages à
swap space.
◦ OS reads from and writes to swap space in page-sized units.
◦ OS needs disk address.
◦ Swap space size determines the maximum number of memory pages in the system at a 

given time.

Swap Space

Proc0 [VPN0]

Proc1 [VPN2]

Proc0 [VPN2]

Proc2 [VPN0]

Proc1 [VPN0]

Proc0 [VPN1]

Proc2 [VPN3]

Proc4 [VPN0]

Proc1 [VPN1]

Proc1 [VPN3]

Proc0 [VPN3]

Proc3 [VPN1]

Proc3 [VPN2]

Proc3 [VPN3]

Proc3 [VPN0]

Proc2 [VPN2]

Proc2 [VPN1]

Proc0 [VPN4]

Proc4 [VPN1]

Proc4 [VPN2]

Proc4 [VPN03]

Proc4 [VPN4]

Physical Memory Swap Space

Proc2 [VPN4] Proc3 [VPN4]



VPN TLB

Virtual Address

+
Hit

PFN

Offset

Physical  
Memory

Physical Address

Miss

PTBR

Page Table

+VPN

Not present!
(Present bit)

Page Fault

OS
Page Fault Handler
Load page

DISK Swap Space

PFN

Swap Space



} On a TLB miss, hardware locates the page table in memory. 
If the page is not in physical memory (present bit) à OS is 
invoked to handle it (page-fault handler).
◦ OS swaps the page into memory from disk and updates the page 

table (present bit and PFN).
◦ Next try will fail in TLB, hit in table and update TLB. Last try will hit 

TLB and request to memory.

} During a page-fault, process will be blocked (I/O).

} What if memory is full? (no place for the swapped-in page).
◦ One or more pages need to be swapped-out to disk.
◦ This is known as replacement and requires a page-replacement 

policy.

Page Fault



3.8 Memory Virtualization
-Swapping: Policies



} Physical memory is smaller than the accumulated address 
spaces of all the processes:
◦ Physical memory as a cache of the virtual memory pages.

} How long does it take to access a 4-byte int?
◦ RAM: tens ns per int (depending on TLB hit)
◦ Disk: tens ms per int

} We want to reduce the number of cache misses (fetch a page 
from disk).
◦ AMAT= (PHIT·TM) + (PMISS·TD)

} The OS decides which page to evict according to the 
replacement policy.

Which to Replace

The one evicted  
impacts hit rate Policy!



} Optimal Replacement Policy: Replace the page that will be accessed furthest in the 
future.

} Access pattern: 0,1,2,0,1,3,0,3,1,2,1

} Hit rate: 54.5% (85.7% ignoring compulsory misses)
} WARNING: Future is not generally known…
◦ But serves as a close-to-perfect comparison point.

Optimal Replacement Policy

Access Hit/Miss? Evict Cache State

1 Miss - 0,1

2 Miss - 0,1,2

0 Hit - 0,1,2

1 Hit - 0,1,2

3 Miss 2 0,1,3

0 Hit - 0,1,3

3 Hit - 0,1,3

1 Hit - 0,1,3

2 Miss 3 0,1,2

1 Hit - 0,1,2

Compulsory misses0 Miss - 0



} First-in, First-out replacement. Pages are in a queue, when a replacement 
occurs, page on the tail is evicted.

} Same access pattern: 0,1,2,0,1,3,0,3,1,2,1

} Hit rate: 36.4% (57.1% ignoring compulsory misses)
} FIFO cannot determine the relevance of blocks.

Simple Policy: FIFO

Access Hit/Miss? Evict Cache State

1 Miss - 0,1
2 Miss - 0,1,2
0 Hit - 0,1,2
1 Hit - 0,1,2
3 Miss 0 1,2,3
0 Miss 1 2,3,0
3 Hit - 2,3,0
1 Miss 2 3,0,1
2 Miss 3 0,1,2
1 Hit - 0,1,2

0 Miss - 0



} Least Recently Used (LRU):  If a page has been accessed in the near past, it is 
likely to be accessed again in the near future.

} Same access pattern: 0,1,2,0,1,3,0,3,1,2,1

} Same Hit rate as Optimal:54.5% (85.7% ignoring compulsory misses).

Using History: LRU

Access Hit/Miss? Evict Cache State

1 Miss - 0,1
2 Miss - 0,1,2
0 Hit - 1,2,0
1 Hit - 2,0,1
3 Miss 2 0,1,3
0 Hit - 1,3,0
3 Hit - 1,0,3
1 Hit - 0,3,1
2 Miss 0 3,1,2
1 Hit - 3,2,1

0 Miss - 0

Same as Optimal! (Just an example)



} Use history to guess the future. This family of policies are based on the 
principle of locality. 
◦ Usually programs access certain code and data frequently (loops).
◦ Temporal locality: pages accessed in the near past are likely be accessed in the 

near future.
◦ Spatial locality: if a page P is accessed, pages around it (P-1, P+1) are likely to be 

accessed (data arrays).
} Main members of the historically-based algorithms:
◦ Least-Recently-Used (LRU): based on recency, replaces the least-recently-used 

page.
◦ Least-Frequently-Used (LFU): based on access frequency, replaces the least-

frequently-used page.
} The opposites of these algorithms exist:
◦ Most-Recently-Used (MRU).
◦ Most-Frequently-Used (MFU).
◦ In most cases (not all), programs exhibit locality and these algorithms do not 

perform well.

Using History: LRU



Policy Behavior - Workloads

100 pages workload
Random references



100 pages workload
80% of the accesses 
to 20% of the pages

Policy Behavior - Workloads



100 pages workload
Loops from 0 to 49

Policy Behavior - Workloads



} To be perfect, must grab a timestamp on every memory 
reference and store it in the PTE (too expensive).

} We need an approximation. Hardware support: use bit or 
reference bit.
◦ Whenever a page is referenced à ref bit set to 1.

} Counter implementation:
◦ Keep a counter on PTE.
◦ At regular intervals for each page, do:

� if ref bit == 1, increase counter.
� if ref bit == 0, zero the counter.
� regardless, ref bit = 0.

} Clock Algorithm:

LRU Implementation



0 1 2 3 …Physical Mem:

use=1 use=1 use=0 use=1

clock hand

Clock Algorithm

Eviction!



0 1 2 3 …Physical Mem:

use=0 use=1 use=0 use=1

clock hand

Clock Algorithm



0 1 2 3 …Physical Mem:

use=0 use=0 use=0 use=1

clock hand

Clock Algorithm



0 1 2 3 …Physical Mem:

use=0 use=0 use=0 use=1

clock hand

evict page 2 because it has not been recently used

Clock Algorithm



use=1use=0

0 1 2 3 …Physical Mem:

use=0 use=0 use=1

clock hand

page 0 is accessed…

Clock Algorithm



0 1 2 3 …Physical Mem:

use=1 use=0 use=0 use=0

clock hand

New eviction

Clock Algorithm



0 1 2 3 …Physical Mem:

use=0 use=0 use=0 use=0

clock hand

Clock Algorithm



0 1 2 3 …Physical Mem:

use=0 use=0 use=0 use=0

clock hand

evict page 1 because it has not been recently used

Clock Algorithm



} Dirty Pages: Do we have to write to disk on eviction? 
(Assume page is both in RAM and Disk)
◦ Not if the page is clean à “free” eviction.
◦ Track with a dirty bit (page has been modified).
◦ Can be used in page-replacement algorithm.

} Prefetching: Instead of bringing pages “on demand”, 
the OS guesses which page is about to be used.
◦ Only when there is a reasonable chance of success (e.g. 

spatial locality).
◦ A prefetch implies an eviction.

Other Factors



} We can assume the OS waits until memory is full to replace, but 
there are many reasons not to do that.

} The OS keeps a small portion of the memory free proactively.
◦ High watermark (HW) and Low watermark (LW).
◦ When there are fewer than LW pages available, a background thread 

evicts pages until HW are available again.
◦ This background thread is sometimes called swap daemon or page 

daemon.

} This way, replacement (swapping) does not slow down most of 
the page-faults.

} Writing to the swap partition can be done in clusters (groups) of 
pages at once (more efficient).

When to Replace



} If processes do not have “enough” pages, the page-fault rate will be 
high. This leads to:
◦ low CPU utilization.
◦ operating system thinks it needs to increase the degree of multiprogramming.
◦ another process is added to the system (less memory available per process).
◦ more page-faults.

} Thrashing = processes are busy swapping pages in and out.

} Solution:
◦ admission control: reduced set of processes (less work better than no work).
◦ buy more memory…
◦ Linux out-of-memory killer! à A daemon that chooses a memory intensive 

process and kills it.

Thrashing



3.9 Memory Virtualization
-Memory API



} Stack:
◦ Implicitly allocated/deallocated by the compiler à Automatic.
◦ In C:

◦ Compiler makes sure to make space on the stack when you 
call into func().
◦ When you return from the function, the compiler deallocates

the memory.
◦ Information does not live beyond the call invocation.

Types of memory

void func()
{

int x; //declares an integer on the stack
…

}



} Heap:
◦ Longlife dynamic memory.
◦ Allocation and deallocation explicitly handled by the 

programmer (WARNING: bugs!)

◦ Stack allocation of a pointer, heap allocation at malloc(). 
Heap memory deallocation at free().
� free() does not need size argument. It must be tracked by the 

memory-allocation library.

void func()
{

int *x = (int *) malloc(sizeof(int));
…
free(x)

}

#include <stdlib.h>
void free(void* ptr);

Types of memory



} The malloc() call allocates space in memory. As much 
as its single parameter in bytes.

◦ The programmer should not type the number of bytes directly, but 
reference the type and number of elements to be allocated.

◦ The returning pointer is of type void, the programmer decides 
what to do with it (usually casting the correct pointer type).

The malloc() Call

#include <stdlib.h>
void *malloc(size_t size);

int *x = malloc(10*sizeof(int)) //allocate an array of 10 int

int *x = (int *) malloc(10*sizeof(int)) //allocate an array of 10 int



} Forgetting to Allocate Memory

} Not allocating Enough Memory

Common Errors

char *src = “hello”
char *dst;
strcpy(dst, src);

Unallocated!
Segmentation Fault

char *src = “hello”
char *dst= (char *)malloc(strlen(src));
strcpy(dst, src);

Seems to work, but will override one 
byte too far

Small, needs 
end-of-string character

int *x = (int *) malloc(10*sizeof(int));
…
int *y = (int *) malloc(sizeof(x));

Not what it seems. Will return size of 
the pointer.



} Forgetting to Initialize Allocated Memory

} Forgetting to Free Memory
◦ Memory leak à huge problem in long runs.
◦ OS will take care of leaked memory when the process ends.

} Freeing memory incorrectly
◦ Before you are done with it.
◦ Freeing repeatedly (double free).
◦ Calling free() with wrong pointer.

int *x = (int *) malloc(10*sizeof(int));
x[0] = 15;
int y = x[1] Unknown value

Common Errors



} malloc() and free() are library calls from the C 
library. The malloc library manages space within the virtual 
address space and calls the corresponding OS system calls:
◦ brk: moves the heap pointer to a position.
◦ sbrk: moves the heap pointer an increment.
◦ Depending on the heap pointer movement, it is a malloc() or a 
free().

} There are other memory management functions:
◦ mmap creates an anonymous memory region within the program, 

associated to swap space (treated as heap).
◦ calloc allocates memory and fills it with zeroes.
◦ realloc allocates memory and copies a memory region to it.
� used to increase the size of an already allocated region.

Memory API



3. Memory Virtualization
Exercises



} There is a system with base and bounds as memory 
virtualization mechanism. During the execution of a 
process, we observe the following address translations:

} What can we say about the value of the base register? 
How about the bounds register?

Exercise #1

Virtual Address Translation: Physical Address

0x0308 (decimal: 776) Valid: 0x3913 (decimal: 14611)

0x0255 (decimal: 597) Valid: 0x3860 (decimal: 14432)

0x03A1 (decimal: 929) Error: Segmentation Fault



} There is a system that uses segmentation as its memory virtualization 
mechanism. The address space uses 32 bits for address, where the two most 
significant bits are the ones that indicate the segment. The following table 
shows the segment translation and the values of the corresponding registers:

} Obtain the translation of the following memory accesses:
} Load 0x00000010
} Load 0x40000300
} Load 0x80000300
} Store 0x00000050
} Store 0xC0000010

Segment Base Bounds Protection

0 0x1000 0x100 Read

1 0x2000 0x200 Read/Write

2 0x5000 0x500 Read/Write

Exercise #2



Virtual Page
Number Valid Reference Dirty Page Frame 

Number
0 1 0 0 3
1 1 1 1 7
2 1 0 0 4
3 0 1 1 0
4 0 0 1 4
5 1 0 1 6
6 0 0 0 5
7 1 1 0 0
…

Exercise #3

} Given the previous page table, and considering a page size of 1024 bytes, 
obtain the physical address (if possible) of each of the following virtual 
addresses. (note: There is no need to manage page faults if there are any):

a) 0x0356, b) 0x0DA8, c) 0x8F3, d) 0x14C3, e)0x1F01



} There is a system that uses paging as its mechanism for memory 
virtualization. Specifically, it uses lineal page tables (one single level). 
The size of the address space of each process is 4GB (32bits) and the 
page table size is 1KB. Each Page Table Entry (PTE) has: the page frame 
number of the translation (PFN), a valid bit V, a reference bit R and a 
dirty bit D. This system allows 2GB of physical memory at most. 

PTE: 

} a) How many entries does a page table have in this system? Is this 
always the case?

} b) How many pages does a page table occupy in memory?
} c) How much memory do the page tables occupy if there are 100 

processes running in the system?

Exercise #4

PFN V R D



Virtual Page Number Present bit Reference bit Dirty bit Page Frame Number
0 1 0 0 3
1 1 1 1 2
2 1 0 0 4
3 1 0 1 7
4 0 0 1 —
5 1 0 1 6
6 0 0 0 —
7 1 1 0 0
…

Exercise #5

} Address space of 16bits, 1KB page size. There are 4 entries in the TLB  with the following contents: 

} The following addresses are accessed sequentially:
0x0356, 0x08F3, 0x14C3, 0x0DA8, 0x0180, 0x0E83

} The TLB has an LRU replacement policy. TLB hit time is 2ns, memory access time is 200ns and swapping time is 
3000ns. Obtain the Effective Access Time (EAT) for this batch of requests and the hit-rate of the TLB.

VPN PFN LRU
0 3 1
2 4 0
5 6 3
7 0 2

PAGE TABLE

TLB



Virtual page 
no. Present bit Reference

bit Dirty bit Page frame
number

0 1 0 0 6
1 1 1 0 7

…. —
5 1 1 1 0
6 0 0 0 —
7 1 0 0 3
… —
30 1 1 1 5
31 1 1 1 2

Exercise #6

} Two processes run simultaneously in a system with 16KB of physical memory and 2KB page size.  

} Obtain the contents of both TLBs if the following addresses are accessed sequentially:
P1-0x0356, P1-0x08F3, P2-0xFDA8, P1-0x346C

} Each TLB uses LRU as its replacement policy, the same as the physical memory.

VPN PFN LRU V
0 6 1 1
5 0 2 1
7 3 3 1

31 2 0 1

PAGE TABLE P1

TLB P1

Page 
frame no.

Virtual 
page Process LRU

0 5 P1 4
1 0 P2 0
2 31 P1 1
3 7 P1 5
4 31 P2 3
5 30 P1 7
6 0 P1 2
7 1 P1 6

PHYSICAL MEMORY

VPN PFN LRU V
0 1 0 1

31 4 1 1
1 3 2 0
3 7 3 0

TLB P2



} There is a system with multi-level page tables (two levels), 15 bits virtual 
address and 32 bytes page size. Each page directory entry (PDE) and each 
page table entry (PTE) have the same structure: one valid bit followed by 7 
bits that store the page frame number.

} The register that has the address of the page directory has the decimal value 
73.

} Below is a physical memory dump of three specific page frames:

} Translate the following addresses and, if the translation is valid, obtain the 
returning value of the load request (1 byte) : 
◦ A) load 0x1787
◦ B) load 0x2665

Exercise #7

Pg 6: 0A 1C 01 14 0B 1A 19 0A 0A 1A 0C 14 02 0C 1C 0C 15 04 0E 13 17 11 08 05 08 07 04 13 0F 1D 0F 1E

Pg 73: A2 D2 97 96 D9 7F 87 B4 B7 F2 F4 82 BF 7F BE 93 E8 9D 99 9E F1 7F 7F B0 D8 DA EB B1 81 C3 C2 F6

Pg 114: 7F 7F 7F 7F 82 7F 7F 7F 7F 7F 7F 7F 99 7F 7F 7F 7F 7F 7F 86 7F 7F 7F 7F 7F 7F 8F 7F 7F 7F 7F 7F


