
5. Persistence

Operating Systems

Pablo Prieto Torralbo
DEPARTMENT OF COMPUTER ENGINEERING

AND ELECTRONICS

This material is published under:
Creative Commons BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.es_ES
https://creativecommons.org/licenses/by-nc-nd/4.0/

5.1 Persistence:
I/O Devices

Motivation

} How good is a computer without any I/O devices?
◦ keyboard, display, disks

} We want:
◦ H/W that will let us plug in different devices
◦ OS that can interact with different combinations

CPU MEM

Graphics

Memory Bus
General I/O Bus
(e.g., PCIe)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Hierarchical buses

Hardware support for I/O

Canonical Device

while (STATUS == BUSY)
; // spin

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)
; // spin

Device Registers:

OS reads/writes to these

Hidden Internals:

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Let’s write a Protocol

Example: Write Protocol

CPU:

Disk:

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

CPU:

Disk:

A

C

A wants to do I/O

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

Example: Write Protocol

CPU:

Disk:

1

A

C

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

A wants to do I/O

Example: Write Protocol

CPU:

Disk:

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

1 2

A

AC

3

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

A wants to do I/O

Example: Write Protocol

CPU:

Disk:

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

1 2 4

3

A

C A

A wants to do I/O

Example: Write Protocol

CPU:

Disk:

while (STATUS == BUSY) //1
; // spin

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4
; // spin

1 2 4

3

C A

A B

How can we avoid spinning?

A wants to do I/O
Wasting CPU

Example: Write Protocol

CPU:

Disk: C A How can we avoid spinning?

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;

INTERRUPTS!

A BB B AA

1
2

3,4

Example: Write Protocol

Are interrupts ever worse than polling?

} Fast device: Better to spin than take interrupt overhead
◦ Device time unknown? Hybrid approach (spin then use

interrupts)

} Flood of interrupts arrive
◦ Can lead to livelock (always handling interrupts)
◦ Better to ignore interrupts while make some progress handling

them

Interrupts vs. Polling

} Status checks: polling vs. interrupts

} Data: PIO vs. DMA

} Control: special instructions vs. memory-mapped I/O

Protocol Variants

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

ß How can we optimize data transfer?

} PIO (Programmed I/O):
◦ CPU directly tells device what the data is.
◦ CPU usage.

} DMA (Direct Memory Access):
◦ CPU leaves data in memory.
◦ Specific device transfers data directly between memory and

the I/O device.

Programmed I/O vs.
Direct Memory Access

Example: Write Protocol

CPU:

Disk: C A

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;

2
3,4

A BB B AA

1

CPU:

Disk: C A

while (STATUS == BUSY) //1
wait for interrupt;

Write data to DATA register //2
Write command to COMMAND register //3
while (STATUS == BUSY) //4

wait for interrupt;

A B B A

3,41

Example: Write Protocol

} Status checks: polling vs. interrupts

} Data: PIO vs. DMA

} Control: special instructions vs. memory-mapped I/O

Protocol Variants

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

how does OS read and write registers?

} Special instructions
◦ Explicit privileged instructions.
◦ x86: in/out instructions to communicate with devices.
◦ Each device has a specific port to name it.

} Memory-Mapped I/O
◦ H/W maps device registers into address space.
◦ loads/stores sent to these addresses à hardware translates them to

particular device registers.
◦ No new instructions needed.

} Doesn’t matter much (both are used)

Special Instructions vs.
Mem-Mapped I/O

} Status checks: polling vs. interrupts

} Data: PIO vs. DMA

} Control: special instructions vs. memory-mapped I/O

Protocol Variants

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

} Problem:
◦ many, many devices
◦ each has its own protocol

} How can we avoid writing a slightly different OS for each
H/W combination?

} Abstraction: Write device driver for each device.

} A large percentage of OS source code are drivers (~70% on
Linux).

Variety is a Challenge

Application

File System

Generic Block Layer

Device Driver

Hard Drive H
W

Storage Stack

Specific Block Interface (protocol-specific read/write)

Generic Block Interface (block read/write)

API (open, read, write, close, etc.)

ke
rn

el
 m

od
e

us
er

5.2 Persistence:
Hard Disk Drives

} Disk has a sector-addressable address space
◦ Appears as an array of sectors

} Sectors are typically 512 bytes or 4096 bytes

} Main operations: reads + writes to sectors

} Mechanical (slow) nature makes management
“interesting”

HDD Basic Interface

} Platter (covered with a magnetic film)

Disk Internals

Spindle

Surface

Surface

Disk Internals

} Each surface is divided into rings called tracks.
} A stack of tracks (across platters) is called a cylinder.

Disk Internals

} The tracks are divided into numbered sectors.
} Heads on a moving arm can read from each surface.

0
1

2
34

5

6
7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23

Head

Arm

Rotation

Disk Internals

Spindle

Platter

Arm Assembly

Arm

Read-write
head

Rotation

Many platters may be bound to the spindle.

Track

Surfaces

Cylinder

Disk Internals

} Seek Time
◦ There are multiple tracks per surface (many million).
◦ Move the disk arm to the correct track.

� Acceleration + Coasting + Deceleration.
� Settling (quite significant 0.5-2ms) à Be sure it is in the right track.

◦ During the seek, the platter keeps rotating.
◦ Entire seeks often take several milliseconds (4 - 10 ms).
◦ Approximate average seek distance = 1/3 max seek distance.

} Rotational Delay
◦ Wait for the desired sector to rotate under the disk head.
◦ Depends on rotations per minute (RPM).
◦ Average Rotational Delay = 1/2 rotation.
◦ At 7200RPM à 8.3ms/rotation. Average = 4.15ms.

} Transfer Time
◦ When the sector passes under the disk head, the data is either read from or written to the surface (transfer).
◦ Pretty fast (>100 MB/s).
◦ 512Bytes à ~5us.

} TI/O=Tseek + Trotation + Ttransfer

I/O Time

Slow!

Slow!

Fast!

} Let’s Read 12!

0
1

2
34

5

6
7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23

Head

Arm

Rotation

I/O Time

} Let’s Read 12!
} Seek to right Track.

0 1
2

3
45

6

7

8
9

10

11
12

13

14

15

16

17

18

19

20
21

22

23

I/O Time

} Let’s Read 12!
} Seek to right Track.

0 1
2

3
45

6
7

8 9

10
11

1213

14
15

16 17

18
19

2021

22
23

I/O Time

} Let’s Read 12!
} Seek to right Track.

0

1 2
3

4
56

7
8

9

10

11
12

13

14

15
16

17

18

19
20

21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0
1 2

3
4

56
7

8

9 10

11
12

1314

15

16

17

18

19
20

21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0
1

2 3
4

5
67

8
9

10

11

12
13

14

15

16
17

18

19

20
21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0

1
2 3

4

5
678

9

10
11

12

13

14
1516

17

18
19

20

21

22
23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0
1

2
3 4

5

6
7

8

9

10

11 12

13

14

15
16

17

18

19 20

21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0
1

2

3 4
5

6

7

8
9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

01
2

3
4 5

6

7

89

10

11

12 13

14

15

1617

18

19

20 21

22

23

I/O Time

} Let’s Read 12!
} Wait for Rotation.

0

12
3

4

5 6
7

8

9

10
11

12

13

14
15

16

17

18

19

20

21

22

23

I/O Time

} Let’s Read 12!
} Transfer Data!

0
12

3
4

5 6
7

8

910

11
12

13 14

15

16

1718

19
20

21 22

23

I/O Time

} Let’s Read 12!
} Transfer Data!

0
1

2

3
4

5
6 7

8
9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

I/O Time

} Let’s Read 12!
} Done!

0

1
23

4

5
6 7 8

9

1011

12

13

14 15
16

17

1819

20

21

22 23

I/O Time

https://www.youtube.com/watch?v=L0nbo1VOF4M

Hard Drive Demo

https://www.youtube.com/watch?v=L0nbo1VOF4M

} Many phases:
◦ Acceleration
◦ Coasting
◦ Deceleration
◦ Settling

} Often takes several milliseconds.
◦ Setting alone can take 0.5 – 2 ms.
◦ Entire seek often takes 4 – 10 ms.

} Seeks are slow!

I/O Time - Seek

} Depends on rotations per minute (RPM)
◦ 7200 RPM is common, 15000 is high end.

} 1/7200 RPM =
1 minute /7200 rotations =
1 second / 120 rotations =
~8.3 ms / rotation
Average ~4.2 ms.

} Rotations are slow!

I/O Time - Rotate

} Pretty fast
◦ depends on RPM and sector density.

} >100 MB/s is common.
◦ 1s/100MB =

10 ms. /MB
Typically 4.9µs/sector (512 bytes sector)

} Transfers are fast!

I/O Time - Transfer

} So…
◦ Seeks are slow
◦ Rotations are slow
◦ Transfers are fast

} What kind of workload is fastest for disks?
◦ Sequential: access sectors in order (transfer dominated)
◦ Random: access sectors arbitrarily (seek+rotation dominated)

Workload Performance

Cheetah Barracuda

Capacity 300 GB 1 TB

RPM 15,000 7,200

Avg Seek 4 ms 9 ms

Max Transfer 125 MB/s 105 MB/s

Platters 4 4

Cache 16 MB 32 MB

Random Workload: Assume 16KB reads

Seek + rotation + transfer.

Barracuda: 9ms + 4.2ms + 149µs ≈ 13.3ms.

Throughput: 1.2 MB/s.

Cheetah: 4ms + 2ms + 125µs ≈ 6.1 ms.

Throughput: 2.5 MB/s.

à Per access!

Workload Performance

Cheetah Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Cheetah Barracuda
Sequential 125 MB/s 105 MB/s
Random 2.5 MB/s 1.2 MB/s

Workload Performance

} Track Skew

} Zones

} Cache

Improvements

} When reading 16 after 15, the head won’t settle quick enough, so
we need to do a rotation.

Track Skew

0
1

2
34

5

6
7

8

9

10

1112

13

14

15

16

17

18

1920

21

22

23
Rotation

} Enough time to settle now

2
3

4
56

7

0
1

8

9

10

1112

13

14

15

16

1718

19

20

21 22

23

Rotation

Track Skew

} Not every sector has the same “size”.

Zones

} Not every sector has the same “size”.
} Outer zones have more sectors than inner zones.

Zones

Drive Cache
} Drives may cache both reads and writes.
◦ a.k.a. Track buffer.
◦ Usually around 8-16MB.

} While reading
◦ The drive might decide to read all the sectors on that track and cache it.

� Allowing quick response to any subsequent request to the same track.
} While Writing
◦ Acknowledge the write as the data is in cache.

� Faster, but can lead to ordering problems.
� Write can be delayed.

� Avoid writing a file that soon is destroyed
� Could imply data loss à fsync().

◦ Acknowledge the write when it is actually written to disk.
� Slower.

} Tagged command queuing
◦ Have multiple outstanding requests to the disk
◦ Disk can reorder (schedule) requests for better performance

Schedulers

OS

Disk
Scheduler

Where should the
scheduler go?

Scheduler

} FCFS (First Come First Served)

} SSF (Shortest Seek First)
◦ Serves first requests closest to the current track.
◦ Does not consider rotation time
◦ How is this implemented in the OS?

� Drive geometry not available at OS.
� Use Nearest-Block-First (NBF)

◦ Requests can starve.

} SPTF (Shortest Positioning Time First)
◦ Chooses request that requires least positioning time (time for seeking and

rotating)
◦ Greedy algorithm (just looks for best NEXT decision)
◦ Usually implemented inside the drive
◦ Easy for far away requests to starve.

How can starvation be avoided?

Schedulers

} SCAN:
◦ Sweeps back and forth, from one end of disk to the other,

serving requests as it passes that cylinder
◦ Sorts by cylinder number; ignores rotation delays
◦ Pros/Cons?
� Optimal à requests with uniform distribution
� Don’t take rotation into consideration

} C-SCAN (circular scan)
◦ Only sweeps in one direction (outer-to-inner).
◦ More fair (SCAN favors middle tracks).

Elevator Algorithms

} Work conserving schedulers always try to do work if
there’s work to be done

} Sometimes, it’s better to wait instead if system
anticipates another (“better”) request will arrive

} Such non-work-conserving schedulers are called
anticipatory schedulers
◦ CFQ (Completely Fair Queuing) à linux default

Work Conservation

} Completely Fair Queuing.

} Queue for each process.

} Do weighted round-robin between queues, with slice time
proportional to priority.

} Optimize order within queue.

} Yield slice only if idle for a given time (kind of anticipation).

CFQ

} Nonvolatile memory used like a hard drive.

} Many technology variations.

} Holds charge in cells. No moving parts!

} Inherently parallel.
◦ HDD usually has only one head.

} No seeks!
◦ HDD requires mechanical seek and rotate.
◦ Better random I/O.

Solid State Disk

} Can be more reliable than HDDs.

} Much faster.
◦ Throughput: HDD ~125MB/s vs. SDD ~200MB/s.
◦ Latency: HDD ~10ms. vs. SDD 10µs – 2ms. (read-erase).

} More expensive per MB.

} May have shorter life span.
◦ flash cells wear out after being overwritten too many times. (10k – 100k times).
◦ Usage Strategy: Wear leveling.

} No direct HDD replacement.
◦ Needs a complex layer for emulating hard disk API.

Solid State Disk

5.3 Persistence:
File System

} The file system is pure software.
◦ Refers to a collection of files.
◦ Also refers to part of the OS that manages those files.

} What is a file?
◦ An array of persistent bytes that can be read or written.

} File system consists of many files.

} Files need names so programs can choose the right
one.

File System Abstraction

} Three types of file names:
◦ File Descriptor
� An integer, private per process, used to access files.

◦ inode
� Low level name.
� Each file has exactly one inode number.
� Unique within file system.
� Records meta-data about file: file size, permissions, etc.

◦ Path
� User friendly name. Inside a directory tree.
� Stores path-to-inode mappings for each directory.
� “root” file typically inode 2.

File Names

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D D D D D D

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

inode table

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

} Each inode is typically 256 bytes (depends on the FS, maybe 128 bytes)

} 4KB disk block
◦ 16 inodes per inode block.

} What is max file size?
◦ Assume 256-byte inodes

(all can be used for pointers)

◦ Assume 4-byte block addrs

One Inode Block

type (file or dir?)
uid (owner)

rwx (permissions)
size (in bytes)

Blocks
time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

(256/4)*4K=256KB

How can larger files be obtained?

inode

data data data data

inode

indirectdata data data

Direct pointer

Direct pointers
Indirect pointer

} Multilevel Index
◦ Inode can have one pointer devoted to indirect block.

� A data block full of direct pointers à with 4byte addresses, 1024 pointers in the data block.
◦ For bigger files, the inode can have a double indirect pointer.

� A pointer to a data block that contains pointers to indirect blocks.
◦ Triple indirect pointer... Multi-level index.
◦ e.g. 12 direct pointers, 1 single indirect, 1 double à over 4GB in size.

Why direct pointers?
Most files are small!

} Indexed
◦ Allocate fixed-sized blocks for each file.
◦ No external fragmentation.
◦ Files can be easily grown up to max file size.
◦ Supports random access but wastes space for

unneeded pointers.
} Multi-level Indexed
◦ Dynamically allocate hierarchy of pointers to blocks

as needed.
◦ Meta-data: Small number of pointers allocated

statically.
◦ Linux ext2, ext3, original UNIX file system.

} Extent-based
◦ Similar to segments in memory virtualization.
◦ Extent instead of block pointers: disk pointer +

length in blocks.
◦ Helps fragmentation.
◦ Can grow (until run out of extents).
◦ Still good performance and little overhead.

} Flexible # of Extents
◦ Dynamic multiple contiguous regions (extents) per

file.
◦ Organize extents into multi-level tree structure.
◦ Linux ext4.

} Linked
◦ Each block contains a pointer to next block.
◦ No external fragmentation.
◦ Can easily grow.
◦ Relatively poor performance and some overhead

(pointer per block).
} File-allocation Tables (FAT)
◦ Keep linked-list information for all files in on-disk

FAT table.
◦ Allow random access with better performance than

linked.
◦ Read from two disk locations for every data read.
◦ Not exactly inodes.

Inode approaches

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 40?

Example

inode
32

inode
33

inode
34

inode
35

Inode
36

inode
37

inode
38

inode
39

Inode
40

inode
41

inode
42

Inode
43

inode
44

inode
45

inode
46

inode
47

} Each inode is typically 256 bytes
(depends on the FS, maybe 128 bytes)

} 4KB disk block
◦ 16 inodes per inode block.

} Inodes start at 12KB (superblock at
0KB, i-bitmap at 4KB, d-bitmap at 8KB
and inode at 12KB).

} Inode 40 à 12KB+40*sizeof(inode) =
12KB+40*256 = 22KB
(third inode block)

} Disk is sector addressable (i.e.
512bytes)
◦ Inode 40 (22KB)
◦ Sector = 22*1024/512 = 44

Example

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D I I I I Ii d

Inode
bitmap

Data
bitmap

32k inodes, 32k datablocks. More than enough in this FS

Bitmaps

} Contains information about the file system:
◦ How many inodes and data blocks.
◦ Where the inode table begins.
◦ Magic number to identify the file system type.

Superblock

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

I I I I Ii dS

} Common design:
Store directory entries in data blocks
◦ Large directories just use multiple data block
◦ Use bits in the inode to distinguish directories from files
◦ For each file or directory in the directory, there is a directory entry with the name

and the inode of the element.
} Example:

} In the example: each entry has an inode number, record length, string
length, and the name of the entry.

Directory Organization

inum rclen strlen name
5 4 2 .
2 4 3 ..

12 4 4 foo
13 4 4 bar
24 8 7 foobar

Example

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 0reads: 1reads: 2reads: 3reads: 4reads: 5reads: 6
Reads for getting final inode called “traversal”

root

Data blocks

data inode root foo bar
bitmap bitmap inode inode inode

read
read

read
read

read
write

read
write

write

write

} 1. read root inode and get its data location.
} 2. read data location and look for “foo” inode.
} 3. read “foo” inode and get its data location.
} 4. read “foo” data and look for “bar” inode (verify doesn’t exist).
} 5. read inode bitmap and locate a free inode.
} 6. mark the bit of the corresponding inode as used.
} 7. write “bar”-inode (recently acquired) entryin the “foo” directory.
} 8. read “bar” inode.
} 9. Initialize “bar” inode (write).
} 10. Update directory inode.

create /foo/bar
root foo
data data

bar
data

data inode root foo bar
bitmap bitmap inode inode inode

read
read

read
read

read

} 1. read root inode and get its data location.
} 2. read root data and look for “foo” inode.
} 3. read “foo” inode and get its data location.
} 4. read “foo” data and look for “bar” inode.
} 5. load “bar” inode in memory (FS checks permission, assign file descriptor...).

open /foo/bar (assume file exist)
root foo
data data

bar
data

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read
read
write

write
write

} 1. read “bar” inode (already open, but with no data assigned).
} 2. read data bitmap and locate a free data block.
} 3. mark the bit of the corresponding data block as used.
} 4. write data into “bar” data block (4K).
} 5. Update “bar” inode.

write /foo/bar (assume file is open)
bar

data

read
read
write

write
write

data inode root foo bar
bitmap bitmap inode inode inode

read
read

write

} 1. read “bar” inode and get its data location.
} 2. read “bar” data.
} 3. update “bar” inode.

read /foo/bar (assume file is open)
root foo
data data

bar
data

read
read

write

data inode root foo bar
bitmap bitmap inode inode inode

close /foo/bar
root foo
data data

bar
data

nothing to do on disk!

} File system is appending to a file and must update:
◦ - inode
◦ - data bitmap
◦ - data block

} What happens if crash happens after only updating some
blocks?
◦ a) bitmap:
◦ b) data:
◦ c) inode:
◦ d) bitmap and data:
◦ e) bitmap and inode:
◦ f) data and inode:

Crash Consistency

lost block (space leak)
nothing bad (as if write never occurred)
point to garbage / another file may use it

lost block
point to garbage
another file may use it

} FSCK = file system checker
◦ After crash, scan whole disk for contradictions and “fix” if needed.
◦ Keep file system off-line until FSCK completes.
◦ Some states look consistent but they are not
� like inode pointing to garbage data.

} Journaling
◦ Don’t move file system to just any consistent state, get correct state
à Atomicity.
◦ Write-ahead logging.
◦ Never delete ANY old data, until, ALL new data is safely on disk
◦ Add work during updates to reduce work during recovery.
◦ Extra blocks are called a “journal”.
◦ Most modern file systems use journals (ext3, ext4, NTFS...).

Solutions

5.4 Persistence:
Multiple Disks - RAID

Solution 1: JBOD

FS FS FS FS

Application

Application is smart, stores different
files on different file systems.

JBOD: Just a Bunch Of Disks

Solution 2: RAID

FS

Application

Build logical disk from many physical disks.

Fake Logical Disk

RAID: Redundant Array of Inexpensive Disks

RAID is:

- transparent

- deployable

Logical disk gives

- capacity

- performance

- reliability

} Capacity: how much space can apps use?
} Reliability: how many disks can we safely lose?

(assume fail stop!)
} Performance: how long does each workload take?
} Normalize each to characteristics of one disk

Metrics

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

} Optimize for capacity. No redundancy

RAID-0: Striping

0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3

Logical Blocks:

Disk 0 Disk 1
Disk 0

0
2
4
6

Disk 1
1
3
5
7

} Capacity?
} How many disks can fail?
} Latency
} Throughput (sequential, random)?

RAID-0: Analysis

Buying more disks improves throughput, but not latency!

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

N * C
0

N*S , N*R
D

RAID-1: Mirroring

0 1 2 3

0 1 2 3 0 1 2 3

Logical Blocks:

Disk 0 Disk 1

Keep two copies of all data.

Redundancy improves reliability
but decreases space efficiency

Raid-1 Layout

Disk 0
0
1
2
3

Disk 1
0
1
2
3

Disk 0
0
2
4
6

Disk 1
0
2
4
6

Disk 2
1
3
5
7

Disk 4
1
3
5
7

2 disks

4 disks

} Capacity?
} How many disks can fail?
} Latency (read, write)?
} What is steady-state throughput for
◦ random reads?
◦ random writes?
◦ sequential writes?
◦ sequential reads?

RAID-1: Analysis

N/2 * C
1 (or maybe N / 2)
D (slightly higher on writes)

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

N * R
N/2 * R
N/2 * S

Book: N/2 * S (other models: N * S)

} Reduce redundancy à Use parity disk
} In algebra, if an equation has N variables, and N-1 are known, you can often

solve for the unknown.
} Treat sectors across disks in a stripe as an equation.
} Data on bad disk is like an unknown in the equation.

Raid-4 Strategy

5 X 0 1 9Stripe:

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

5 3 0 1 9Stripe:

Disk0 Disk1 Disk2 Disk3 Disk4

(parity)

} Capacity?
} How many disks can fail?
} Latency (read, write)?
} What is steady-state throughput for
◦ random reads?
◦ random writes?
◦ sequential writes?
◦ sequential reads?

RAID-4: Analysis

(N-1) * C
1

D, 2*D (read and write parity disk)

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

(N-1) * R
R/2 (read and write parity disk)
(N-1) * S
(N-1) * S

Pnew=(Cold⊕Cnew)⊕Pold

All at once

RAID-5

- - - - P

Disk0 Disk1 Disk2 Disk3 Disk4

- - - P -

- - P - -

…

Rotate parity across different disks

} Capacity?
} How many disks can fail?
} Latency (read, write)?
} What is steady-state throughput for
◦ random reads?
◦ random writes?
◦ sequential writes?
◦ sequential reads?

RAID-5: Analysis

(N-1) * C
1

D, 2*D (read and write parity disk)

N := number of disks
C := capacity of 1 disk
S := sequential throughput of 1 disk
R := random throughput of 1 disk
D := latency of one small I/O operation

N * R
N* R/4 (each write needs 4 ops)

(N-1) * S
(N-1) * S

RAID-6

- - - Q

Disk0 Disk1 Disk2 Disk3 Disk4

- - -

- - -

…

Double parity check

P

QP

QP

} RAID-5 is strictly better than RAID-4 other than a large write
} RAID-0 is always fastest and has best capacity (but at cost of reliability)
} RAID-5 is better than RAID-1 for sequential workloads
} RAID-1 is better than RAID-5 for random workloads (although with less

capacity)
} RAID-6 can handle double-disk failure
} RAID 10: 0+1
} RAID 50: 0+5

RAID Level Comparisons

Reliability Capacity Read Latency Write
Latency Seq Read Seq Write Rand Read Rand Write

RAID-0 0 C*N D D N * S N * S N * R N * R

RAID-1 1 C*N/2 D D N/2 * S N/2 * S N * R N/2 * R

RAID-4 1 (N-1) * C D 2D (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 1 (N-1) * C D 2D (N-1)*S (N-1)*S N * R N/4 * R

5.5 Persistence:
Fast File System

Policy: Choose Inode, Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I

Assuming all free, which should be chosen?

Bad File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0

123

inode

Better File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Best File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Can’t do this for all files L

Data Blockssuper
block inodes

0 N

Placement Technique: Groups

bitmaps

before: whole disk

fast

How can we keep the inode close to data?

Data Blockssuper
block inodes

0 N

bitmaps

before: whole disk

slow

How can we keep the inode close to data?

Placement Technique: Groups

Data Blockssuper
block inodes

0 N

bitmaps

before: whole disk

slower

How can we keep the inode close to data?

Placement Technique: Groups

Data Blockssuper
block inodes

0 N

bitmaps

before: whole disk

slowest

How can we keep the inode close to data?

Placement Technique: Groups

Technique: Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Answer: Use groups across disks;
Try to place inode and data in the same

group

fast fast fast

How can we keep the inode close to data?

} In FFS (Fast File System), groups were ranges of cylinders
◦ called cylinder group
◦ Large files are spread across multiple groups.

} In ext2-4, groups are ranges of blocks
◦ called block group

Groups

} Most files are very small, even today!
◦ Lots of Waste due to internal fragmentation in

most of blocks.

} Time vs. Space tradeoffs...

Technique: Larger Blocks
} Observation: Doubling block size for old FS over doubled performance

- Logically adjacent blocks not physically adjacent
- Only half as many seeks+rotations now required

} Why more than double the performance?
- Smaller blocks require more indirect blocks

Why not make blocks huge?

} Hybrid – combine best of large blocks and best of small
blocks

} Use large block when file is large enough
} Introduce “fragment” for files that use parts of blocks
◦ Only tail of file uses fragments

Fragments

} Block size = 4096
} Fragment size = 1024

Fragment Example

bits: 0000 0000 1111 0010
blk1 blk2 blk3 blk4

Whether addr refers to block or fragment is inferred by file offset

What about when files grow?

Must copy fragments to new block if no room to grow

AAAA

file, size 5KB file, size 2KB

B A B

Fragment Example

AAAA

file, size 6KB file, size 2KB

B A B A

append A to first file

Fragment Example

AAAA

file, size 7KB file, size 2KB

B A B A

append A to first file
Not allowed to use fragments across multiple blocks!

What can be done instead?

A

Fragment Example

AAAAAAA

file, size 7KB file, size 2KB

B B

Copy fragments to a new block

Fragment Example

} Boot block
◦ can boot the system by loading from this block

} Superblock
◦ specifies boundaries of next 3 areas, and contains head of
freelists of inodes and file blocks

} i-node area
◦ contains descriptors (i-nodes) for each file on the disk; all inodes are

the same size; head of freelist is in the superblock
} File contents area
◦ fixed-size blocks; head of freelist is in the superblock

} Swap area
◦ holds processes that have been swapped out of memory

NOTE: Unix disks can be divided into
five parts

5. Persistence
Exercises

Exercise #1

} There is a 4GB disk with a simple file system like the
one seen in class. Each inode in this file system has 12
direct pointers and 1 indirect pointer. Assuming that
the block size is 4KB and an address (pointer) to a block
in the disk is 32 bits, what is the maximum file size in
this file system? Explain your answer.

} There is a simple file system like the one seen in class. It is implemented on a disk with
16-byte blocks and 20 blocks in total (it is pretty small!).
◦ The first block is the superblock. The next 9 have one inode each, and the last 10 are data blocks.
◦ The root inode in this file system is the inode 2 (block 3 in the diagram).
◦ Assume there aren’t any blocks loaded in memory and there is no need to read the superblock.

} Each inode has the following format (each parameter is 4 bytes in size):
type: 0 means regular file, 1 means directory
size: number of blocks in file (can be 0, 1, or 2)
direct pointer: pointer to first block of file (if there is one)
direct pointer: pointer to second block of file (if there is one)

} A directory has the following format (each parameter is 4 bytes in size):
name of file
inode number of file
name of next file
inode number of next file

Exercise #2 (part I)

Exercise #2 (part II)

Super

Block

Root

Inode

0 1 1 1 0 0 0 0 0 1

1 1 1 1 1 2 1 1 1 2

2 10 18 14 11 12 3 15 19 0

3 0 0 0 17 13 0 0 0 8
Block0 Block1 Block2 Block3 Block4 Block5 Block6 Block7 Block8 Block9

foo 3 7 hi a 10 11 i cs 0

3 4 8 10 0 goo bar luv 6 0

bar 5 9 you b 11 oof cs 537 0

4 6 10 12 1 goo da 537 7 0
Block10 Block11 Block12 Block13 Block14 Block15 Block16 Block17 Block18 Block19

} To read the contents of the root directory, which blocks do you
need to read?

} Which files and directories are in the root directory? List the
names of each file/directory as well as their type (e.g., file or
directory).

} How many files are in the system (that can be reached starting
at the root)?

} What is the biggest file in the file system?

} What blocks are free in this file system? (that is, which
inodes/data blocks are not in use?)

Exercise #2 (part III)

Exercise #3

} Assume that you have a RAID-4 with 4 disks + one parity disk (5 in total), and the following block

structure:

...and so on...

} Obtain the accesses that must be done to the RAID blocks. Put in parentheses the accesses that can

be done in parallel.

◦ i.e.: (r4, r8), w0, (w3, w8) means that we first read in parallel blocks 4 and 8, and then write in parallel blocks 3

and 8.

(a) Assuming that we want to read blocks 0, 5, 10 and 15, what are the accesses to the RAID blocks?

b) If we want to read blocks 0, 4, 8 and 12, what are the accesses to the RAID blocks in this case?

c) What are the accesses to the RAID blocks if we want to write blocks 5 and 10?

0 1 2 3 P0

4 5 6 7 P1

8 9 10 11 P2

12 13 14 15 P3

} We have a disk with FIFO scheduling and just one track. The rotational
delay of the disk is R (one full round), there is no seek time (just one
track) and the transfer time is so quick, that we consider it irrelevant.

◦ a) How long does it take (approximately) to fulfill three requests to three different
blocks in the worst case?

◦ b) If the disk uses Shortest-Access-Time-First (SATF) scheduling, how long does it
take to fulfill the three requests in the worst case?

◦ c) If the disk now has three tracks, and seek time S to access contiguous tracks
(and 2S to go from the innermost track to the outermost one), with FIFO
scheduling what is the worst-case access time for accessing three different blocks?

◦ d) What happens in the previous question if we have SATF scheduling?

Exercise #4

