PA_1. Clasificación de los crudos de petróleo. Ejemplos de distribución de productos de refinería en función del tipo de crudo.

1- Clasificación de los crudos de petróleo

Por tipo de hidrocarburos

Parafínicos: Elevados rendimientos en naftas, reducido contenido en azufre y elevados puntos de congelación.

Nafténicos: Elevados rendimientos de destilados medios, bajo contenido en azufre y bajo punto de congelación.

Asfálticos: Elevado rendimiento en residuo, alto contenido en azufre y metales y alta viscosidad.

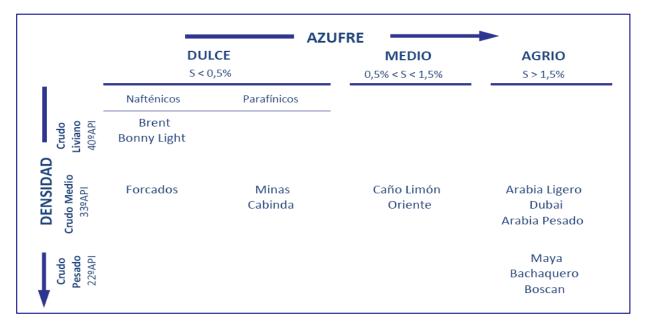
Petróleos livianos (parafínicos)	Petróleos pesados (alfálticos)
Muy fluidos	Viscosos
Menos pesados que el agua	Espesos
Fáciles de evaporar	Fáciles de solidificar
Incoloros	Dejan como residuos asfalto

Por rendimientos

Se entiende por rendimientos primarios los obtenidos por destilación del crudo a determinados puntos de ebullición. Curvas TBP.

Por densidad y azufre

La gravedad API, de sus siglas en inglés *American Petroleum Institute*, es una medida de densidad que describe cuán pesado o liviano es el <u>petróleo</u> comparándolo con el agua. Si los grados API son mayores a 10, es más liviano que el agua, y por lo tanto flotaría en ésta.


Mayor valor de gravedad API \rightarrow mayor valor comercial (facilidad (operacional y económica)) de producir destilados

$$Grados \, API = \frac{141,5}{Peso \, específico \, 15/15^o} - 131,5$$

- Crudo liviano: grados API mayores a 31,1 °API.
- **Crudo mediano**: grados API entre 22,3 y 31,1 °API.
- Crudo pesado: grados API entre 10 y 22,3 °API.
- Crudo extrapesado: grados API menores a 10 ° API.

Ejemplos de tipos de crudos según la densidad API y el contenido de azufre:

Brent (Mar Norte), Bonny Light (Nigeria), Minas Cabinda (Angola), Caño Limón (Colombia-Venezuela), Bachaquero y Boscan (Venezuela)

Otros Ejemplos de crudos típicos, "dulces" y "agrios"

(R. Dubois, Introducción a la refinación del petróleo, Eudeba)

BRENT (Mar del Norte), WTI (Texas), ANS (Alaska), BCF-17 (Venezuela)

Nombre del crudo	BRENT	WTI	ANS	BCF-17
°API	38,0	36,2	26,5	17,0
Azufre %	0,3	0,6	1,1	2,4
Rer	ndimientos (v	olumen %)	L	
Propano y gas	0,7	0,5	0,4	0,3
Butanos	2,0	1,2	0,6	0,7
Nafta liviana	4,5	4,4	2,5	1,7
Nafta total	22,9	20,9	12,5	5,8
Querosén	14,1	13,9	10,4	7,6
Destilados (gasoil)	13,2	12,1	13,0	8,8
Gasoil pesadoatmosférico	5,1	4,8	4,9	5,3
Residuo atmosférico	37,5	42,2	55,7	69,8
VGO liviano	13,5	16,8	22,8	17,8
VGO pesado	1,9	5,1	13,0	18,9
Residuo de vacío	8,1	10,3	19,9	38,1

2- <u>Ejemplos de distribución de productos de refinería en función del tipo de crudo, cálculos para dos tipos de crudos</u>

(R. Dubois, Introducción a la refinación del petróleo, Eudeba)

- <u>Medanito</u> (Neuquén, Argentina) de densidad API= 32 (p.e. = 0,861) que puede ser considerado todavía <u>mediano</u>
- <u>Santa Cruz Sur</u> (Santa Cruz, Argentina) de densidad API=46 (p.e. =0,717) Que puede ser considerado <u>muy liviano</u>

Para hacer estos cálculos se dispone de los esquemas orientativos de las refinerías en las que se procesan estos crudos, y se conocen los valores de flujos de las corrientes de entrada y salida de las diferentes unidades de planta, en volumen (m³/d). Ver las siguientes figuras.

El objetivo de estos cálculos es obtener la distribución de los principales productos de la refinería, en % vol. respecto a la entrada, para observar y sacar conclusiones de cómo afecta el tipo de crudo a los rendimientos que se pueden obtener de gasolinas (naftas), gasoil, y fueloil.

Como ejemplo de cómo expresar los cálculos se puede hacer:

Balance un	idad de	e destilación atmosfé	erica (o <i>Topping</i>) en	Medanito:
Entradas (m³/d)	\rightarrow	Salidas (m³/d)		Cálculo %vol.
Crudo <u>10000</u>		Nafta		
		Querosen		
		Gasoil		
		Crudo reducido		
\				/


Balance un	idad de	e destilación atmosfé	érica (o <i>Topping</i>) en	Santa Cruz:
Entradas (m³/d)	\rightarrow	Salidas (m³/d)		Cálculo %vol.
Crudo <u>10000</u>		Nafta		
		Querosen		
		Gasoil		
		Crudo reducido		

Balance glo	bal de	la refinería en Med	anito:	
Entradas (m³/d)	\rightarrow	Salidas (m³/d)		Cálculo %vol.
Crudo <u>10000</u>		Querosen		
		Gasoil		
		Nafta		
\		Fueloil		———— <i>)</i>

Balance glo	bal de	la refinería en Sant	ta Cruz:	
Entradas (m³/d)	\rightarrow	Salidas (m³/d)		Cálculo %vol.
Crudo <u>10000</u>		Querosen		
		Gasoil		
		Nafta		
		Fueloil		

(R. Dubois, Introducción a la refinación del petróleo, Ed. Eudeba)

Ejemplos de los esquemas de refinería para el procesado de dos tipos de crudos

3- Caracterización de los crudos: propiedades fisicoquímicas

La caracterización del crudo, y de los productos obtenidos en refinería, se hace siguiendo procedimientos normalizados para la determinación de las propiedades físico-químicas: son las normas ASTM que se resumen en la siguiente tabla:

	TBP (°F)	AŠTM distillation (D86/D1160)	True boiling point (D2892))	Simulate distillation (D5307)	API/SG (D1298)	Total sulphur (D4294)	Mercaptants (D3227)	H ₂ S (D325)	Total nitrogen D4629	Viscosity (2 Temp) D445 (D446)	Pour point (D97)	Organic chlorides (D4929)	Acid number (D664)	Carbon residue (D189)	Metals (D5708)	Cetane index (D4737)	Aniline point (D611)	Smoke point (D1322)	Octane number (D2700)	Vapour pressure (D323)	Wax and asphaltene	Sediment and water (D473)	Salt content (D6470)	Refractive index (D1218)
Crude		×	×	×	×	×	×	×	×	×	×	×	×	×	×					×	X	×	×	×
LPG		×	×	×	×																			
LSR	90-180	×	×	×	×	×	×	×				×							×					
HSR	180-380	×	×	×	×	×	×	×				×					×		×					X
Kero	380-520	×	×		×	×	×	×	×	×		×	×			×	×	×						×
LGO	520-610	×	×		×	×			×	×	×		×			X	×	×						×
HGO	610-800	×	×		×	×			×	×	×			×	×						×			
VGO	800-1050				×	×			×	×	×			×		×	×				×			×
VR	1050 ⁺				×	×			×	×				X	×						×			

ASTM testing grid for crude oil and petroleum fractions (Strum and Shay, 2000, Comprehensive Report of API Crude oil Characterization Measurements, Technical Report 997, American Petroleum Institute)