
GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 45
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2. Periodic Tasks
2.1 Basic concepts
2.2 Principles of fixed priority analysis
2.3 Rate monotonic priorities
2.4 Utilization test
2.5 Response time analysis

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 46
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

In this section, we will discuss the basic principles of Rate Monotonic Analysis. We will present methods to
analyze the schedulability of a set of periodic independent tasks. This kind of task set is very unrealistic, but
the techniques show in this chapter are easily extended to support all the issues that appear in practical real-
time systems.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 47
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2.1 Basic Concepts:
A Sample Problem - Periodics

Periodics Aperiodics

τ1: control

τ2: sensing

τ3: planning

C=20 ms

C=40 ms

C=100 ms

Shared

T = 100 ms

T = 150 ms

T = 350 ms

20 ms

Sensor Data
2 ms

10 ms

Commands
10 ms

C=5 ms

Emergency
Minimum Interarrival

Deadline = 6 msec
after arrival

C=2 ms

I/O-processing
Average Interarrival

Desired Average
Response Time = 20 ms

Deadline 100 ms

Deadline 150 ms

Deadline 350 ms

Time = 50 msec

Time = 40 msec

Resources

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 48
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

This sample task set is simple and yet embodies many different types of real-time requirements. This task
set is completely analyzable using the methods outlined in this presentation. For now we will concentrate on
the periodic requirements and ignore any pre-period deadlines:

• Periodic task τ1: execution time = 20 msec; period = 100 msec; deadline is at the end of each period.

(we consider the actual deadline of τ1 later)

• Periodic task τ2: execution time = 40 msec; period = 150 msec; deadline is at the end of each period .

• Periodic task τ3: execution time = 100 msec; period = 350 msec; deadline is at the end of each period.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 49
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Concepts and Definitions - Periodics
Periodic task

- initiated at fixed intervals
- must finish before start of next cycle

Task’s CPU utilization:
- Ci = compute time (execution time) for task τi
- Ti = period of task τi
- Pi = priority of task τi
- Di = deadline of task τi
- φi = phase of task τi
- Ri = response time of task τi

CPU utilization for a set of tasks:

Ui Ci Ti⁄=

U U1 U2 … Un+ + +=

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 50
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

A periodic task becomes ready to execute at fixed intervals. The time between task initiations is called the
period of the task. The deadline of a task is the maximum time at which the execution of the task must have
been completed, counting from the instant of task initiation. For the moment, we will consider task deadlines
to coincide with the start of the next period.

Ci and Ti represent the worst-case execution time and period, respectively, for task τi. A task’s utilization of
the CPU is Ci/Ti. Total CPU utilization is the sum of the utilizations of all the tasks. The deadline of task τi is
Di. The priority of task τi is Di. The initial phase of task τi is φi; the phase is the time at which the task is first
activated. Since phases may drift, we will always assume the worst-case phase in the analysis.

The worst-case response time of task τi is Ri. This is the maximum difference between the activation time
(i.e., the beginning of the task’s period) and the response time.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 51
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2.2 Principles of Fixed Priority
Analysis
Two concepts help building the worst-case condition under fixed
priorities:
• Critical instant. The worst-case response time for all tasks in the

task set is obtained when all tasks are activated at the same time
• Checking only the deadlines in the worst-case busy period.

- for task: interval during which the processor is busy executing τi or
higher priority tasks

Based on these concepts, several results arise:
• Optimality of rate monotonic priorities
• Utilization bound test
• Exact test

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 52
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The analysis problem that we have to solve is determining if a set of periodic independent tasks with
deadlines coincident with the end of their periods is schedulable under a fixed-priority preemptive scheduler.
To determine schedulability, one must determine that the deadlines will be met under all possible
circumstances.

The basic RMA results for solving this problem are based on two very simple concepts, that help to build the
worst-case condition for that set of tasks:

• Critical instant. The worst-case response time for any task in the task set is obtained when all tasks
are activated at the same time, i.e., when the phase of each task is zero.

• Checking the first deadline. When all tasks are activated at the same time, if a task meets its first
deadline, it will always meet all of its deadlines

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 53
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Example of a Critical Instant

τ3

0 20 100 120 200 220 300 320

150 300190

100 120 190 200 220 240 350 time

20 60

60

0

0 150

τ2

τ1

τ3 busy period

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 54
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The figure above shows how to interpret the critical instant results. It shows the execution sequence for the
set of three tasks from our example. Task τ1has been assigned the highest priority, and preempts any other
activity running in the system. Its response time is equal to its worst-case execution time (assuming no
context switch overhead). Task τ2 can sometimes be preempted by τ1 and thus its worst-case response time
is 60 time units, which is the response time to the first activation. Task τ3 can be preempted both by τ1 and
τ2. The figure shows that it is preempted multiple times before it completes its response to the first activation,
at t=240 time units; this represents its worst-case response time.

The critical-instant and checking-the-first-deadline concepts show a very simple way to construct the worst
case that can ever happen for a given task. It corresponds to the first activation, when all the other tasks are
activated at the same time. If the task set meets its deadlines for the worst case, then it will always meet all
deadlines. Based upon the proofs of these concepts, several analytical results have been developed that
help in analyzing a system composed of periodic tasks; these results are discussed in the following slides.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 55
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2.3 Rate Monotonic Priorities
For a set of tasks with the following characteristics:

- periodic,
- independent,
- deadlines = periods,
- fixed-priority preemptive scheduling,

the optimum priority assignment is called rate monotonic:
- tasks with smaller periods get higher priorities

Optimum means that if the task set is schedulable with a given
fixed-priority assignment it is also schedulable with rate
monotonic priorities

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 56
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

Rate Monotonic Scheduling is the name of a fixed-priority preemptive scheduling policy in which priorities
are assigned ordered according to the task’s rate: tasks with smaller periods get higher priorities.

Rate Monotonic priorities are optimum for sets of periodic independent tasks, when deadlines coincide with
the end of the periods. Optimality means that if the task set is schedulable under any fixed priority
arrangement, so it is under rate monotonic scheduling.

Notice that under the restrictions mentioned above it is not appropriate to assign priorities based upon
semantic importance, but it is better to use the optimum priority assignment.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 57
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Example of Priority Assignment

0 10 20 30
IP:

0 25
VIP:

0 10 20 30
IP:

Semantic-Based Priority Assignment

Policy-Based Priority Assignment

0 25
VIP:

misses deadline

IP: UIP =

VIP: UVIP =

1
10
11
25

= 0.10

= 0.44

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 58
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

This example provides some motivation for using the rate monotonic scheduling algorithm. In the example
we have 2 tasks, named IP and VIP, with the following descriptions:

Task IP (Important Task): CIP = 1; TIP = 10; UIP = 0.10

Task VIP (Very Important Task): CVIP = 11; TVIP = 25; UVIP = 0.44

Total utilization: 54%

If we assign higher priority to task VIP, then task IP will miss its deadline, even though the total utilization is
only 54%. But if priorities are assigned according to the rate monotonic algorithm, then both tasks will meet
their deadlines. Notice that, as VIP’s period increases, total utilization decreases to 10%, since UVIP
approaches zero for large TVIP; yet deadlines are still missed.

As an aside, note that many other scheduling policies (such as earliest deadline first, or least laxity first)
result in the same priority assignment and the same schedule. The point of this example is that there a
potential drawbacks to assigning priorities on the basis of semantic importance (degree of application
criticality).

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 59
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2.4 Utilization Bound Test
Utilization Bound Test: A set of n independent periodic tasks, with
deadlines at the end of the periods, scheduled by the rate
monotonic algorithm will always meet its deadlines, for all task
phasings, if

U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
U(3) = 0.779 U(6) = 0.734 U(∞) = 0.693

For harmonic task sets, the utilization bound is U(n)=1.00 for all n.

C1

T1
------ ...

Cn

Tn
------ U n()≤+ + n 21 n/ 1–()=

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 60
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

We say a set of tasks is schedulable if the task set is guaranteed to meet all its deadlines. The utilization
bound test says that a task set is schedulable if its total utilization is less than a certain bound. The utilization
bound test provides the basic formula underlying the theory. More complex formulas provide better bounds.
This test is the application of a theorem, which was proved by Liu and Layland in “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”, JACM, 1973.

The utilization bound test assumes that:
1. The processor always executes the highest priority ready task (fixed-priority preemptive).
2. Task priorities are assigned according to rate monotonic policy.
3. Tasks do not synchronize with each other.
4. Each task’s deadline is at the end of its period.
5. Tasks do not suspend themselves in the middle of computations.

The test takes into account the preemption time and execution time for each task under a worst-case
combination of periods and execution times. As the number of tasks goes to infinity, the bound approaches
ln(2) = 0.693; in other words, any number of independent periodic tasks will meet their deadlines if the total
system utilization is under 69%.

For a harmonic task set (in which the period of each task is a multiple of all higher-frequency tasks), the
utilization bound is 1.0 for all task sets.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 61
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Sample Problem: Applying UB Test

Total utilization is .200 + .267 + .286 = .753 < U(3) = .779

The periodic tasks in the sample problem are schedulable
according to the UB test.

C T U
Task τ1: 20 100 0.200
Task τ2: 40 150 0.267
Task τ3: 100 350 0.286

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 62
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

Since we are interested in worst-case behavior, tasks utilizations are always rounded up. For example, U2
= 40/150 = .2666... becomes .267 and U3 = 100/350 = .2857143... becomes .286.

In this example, since the total utilization is under the bound for three tasks, all tasks are guaranteed to meet
their deadlines, even under worst-case conditions. An additional 24.7% CPU capacity is available for lower-
priority tasks that have no deadlines.

Remember that there are several assumptions associated with the utilization bound test:
• Zero context switch overhead.
• Deadlines are at end of period.
• No interrupts are used.
• Priorities are assigned in rate monotonic order.
• Tasks do not interact with one another.
• Tasks do not suspend themselves.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 63
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

2.5 Response Time Analysis
Toward a More Precise Test
UB test has three possible outcomes.

UB test is conservative.

A more precise test can be applied.

0 U U n() Success⇒≤ ≤

U n() U 1,00 Inconclusive⇒< <

1,00 U Overload⇒<

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 64
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The results of applying the UB test can be:

When the UB test is inconclusive, a more precise test can be applied.

The previous schedulability test (utilization bound test) is very conservative. Schedulable system utilization
can often exceed 90%. In fact, for tasks with harmonic periods, where each period is evenly divisible into all
longer periods (e.g. 100 ms, 200 ms, 800 ms, 1600 ms), the utilization bound is 100%.

0 < U ≤ U(n) success! task set is schedulable
U(n) < U < 1.0 inconclusive, task set may or may not be

schedulable
1.0 < U overload, task set exceeds capacity

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 65
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Timeline for Sample Problem

τ3

0 20 100 120 200 220 300 320

150 300190

100 120 190 200 220 240 350 time

20 60

60

0

0 150

τ2

τ1

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 66
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

This is the timeline for the periodic tasks of the sample problem (shown on the previous page), in which tasks
are lined up in worst-case phasing (i.e. all task are ready to execute at time t=0).

Timelines show one possible execution schedule and provide a graphical view of schedule analysis. We will
draw timelines according to the following conventions:

• Tasks are arranged and numbered in rate monotonic order, highest frequency at the top.
• We assume Liu and Layland “worst-case” phasing, where all tasks start at time t=0.
• Execution time for τ1 is plotted on its line.

• Execution time for τ2 is then plotted on its line, accommodating preemption from τ1’s execution; then
this process is repeated for remaining tasks.

• If any task is preempted, its execution time block is divided with a hole in the middle representing the
preemption.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 67
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Response time analysis (Harter, 1984;
Joseph and Pandya, 1986)
For a set of n periodic independent tasks, with any fixed priority
assignment we can apply the Response Time Analysis (RTA):
• Number the tasks according to priority (highest priority=τ1,

lowest priority=τn)
• Under a critical instant condition, the amount of work Wi(t) of

priority Pi or higher started before t is:

Wi t() t
T1
----- C1 … t

Ti 1–
----------- Ci 1– Ci+ + +=

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 68
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The critical-instant and check-the-first-deadline principles allow us to make an exact calculation of the worst-
case response time of any given task in a periodic independent task set, independently of the priority
assignment used.

To perform this calculation, we first provide an equation that allows us to obtain, at any given time t, the
amount of work of priority Pi or higher that has been initiated in the system. Time t=0 corresponds to the
start or the critical instant. The amount of work initiated, Wi(t), is calculated by multiplying the number of
activations of each applicable task, by the respective execution times.

The number of activations is obtained using a ceiling function , which means rounding x to the next
integer.

The important issue about this equation is that task τi will complete its execution when there is no pending
work of priority Pi or higher, which is the same as finding the first instant t at which Wi(t) = t, i.e., all work has
been completed. This instant can be found by using the iterative method shown in the next slide.

x

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 69
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Response time analysis (Harter, 1984;
Joseph and Pandya, 1986)
Iterative test (pseudopolynomial time):

Finish when two consecutive results are the same

a0 C1 C2 … Ci+ + +=

ak 1+ Wi ak() ak

T1
----- C1 … ak

Ti 1–
----------- Ci 1– Ci Bi+ + + += =

preemption execution

blocking

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 70
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Response time analysis (cont’d)
• The iteration stops when

• Task τi is schedulable if:

For randomly generated task sets, the exact average utilization
bound is 88%

ak 1+ ak Ri= =

Ri Di≤

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 71
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The response time Ri of task τi can be obtained by using the iterative equation that appears above. Each
iteration consists of calculating the amount of work Wi(t) activated at the time of the previous iteration. The
iteration stops when two successive steps yield the same result, which means that the amount of work
initiated until that time is already complete. If the utilization is less than 100%, the iteration is guaranteed to
be finite.

The method is called the response time analysis (RTA), or the exact test, because it allows obtaining the
exact worst-case response time of a given task. It can be applied by hand for small task sets, but can also
be easily implemented in a computer. Besides, it works for any fixed-priority assignment, not only rate
monotonic priorities, like the utilization bounds test. The iterative formula for task response time was
introduced by Harter in 1984, and later by Joseph and Pandya, “Finding Response Times in a Real-Time
System,” BCS Computing Journal, October 1986 (vol 29 no 5) pp 390-395.

The paper The Rate Monotonic Scheduling Algorithm -- Exact Characterization and Average Case
Behavior, by Lehoczky, Sha, and Ding, Technical Report, Department of Statistics, Carnegie Mellon
University, 1987 presents the fact that for randomly generated task sets, the actual utilization bound is 88%
rather than the worst-case bound of 69% presented in the UB test.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 72
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Example: Applying RTA-1
Taking the sample problem, we increase the compute time of τ1
from 20 to 40; is the task set still schedulable?

Utilization of first two tasks: 0.667 < U(2) = 0.828
• first two tasks are schedulable by utilization bound test

Utilization of all three tasks: 0.953 > U(3) = 0.779
• utilization bound test is inconclusive
• need to apply response time test

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 73
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

The following data is the same as the sample problem. However, we have changed C1 from 20 to 40 to
illustrate the use of the RTA test.

Task τ1: C1 = 40; T1 = 100; U1 = 0.4

Task τ2: C2 = 40; T2 = 150; U2 = 0.267

Task τ3: C3 = 100; T3 = 350; U3 = 0.286

Utilization of first two tasks: .4 + .267 = .667 < U(2) = .828
Total utilization: .4 + .267 + .286 = .953 > U(3) = .779

When we change C1 from 20 to 40, CPU utilization changes. Since the utilization of the first two tasks is
under the utilization bound of the UB test, these tasks will always meet their deadlines. When the third task
is considered, the total utilization is above the general bound, so we must look further to see if the third task
can nonetheless meet its deadline.

We will now apply the response time test to task τ3.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 74
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Example: Applying RTA-2
Use RTA test to determine if τ3 meets its first deadline

a0 Cj
j 3≤
∑ C1 C2 C+ + 3 180= = =

a1
180
Tj

--------- Cj C3+
j 3<
∑=

??? 180
100
--------- 40() 180

150
--------- 40() 100+ + 260= =

? a2
260
100
--------- 40() 260

150
--------- 40() 100+ + 300= =

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 75
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

To apply the RTA test, we do two steps
1. Use the iterative formula to compute the response time R3 of τ3.
2. Compare R3 to the first deadline for τ3, namely T3.

If R3 < T3, then τ3 is schedulable according to the RTA test.

We start with an initial guess a0 = C1+C2+C3. This is labeled as the “zero-th” iteration. To compute the first
iteration, a1, we use the iteration formula:

So the first iteration is
a1 = 180.

Next we apply the formula to compute, a2. Since each successive iteration is different, the computation has
not yet converged and we must continue.

a1
a0
Tj
----- Cj C3+

j 3<
∑=

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 76
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Example: Applying RTA-3

Task τ3 is schedulable using the RTA test.

a2 300=

a3
300
100
--------- 40() 300

150
--------- 40() 100+ + 300 Done!⇒= =

R3 300 T3< 350= =

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 77
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Notes:

We continue by applying the iteration formula for the next steps

Finally, the computed value for a3 is the same as a2 (300). The iteration has converged, and the worst-case
response time for τ3 is

R3 = 300.

This must be compared to the first deadline for τ3.

We have R3 < T3 since 300 < 350.

So τ3 is schedulable using the response time test.

Notice that the result is the same obtained when we sketched the timeline for the three tasks. In practice,
the response time test is a numerical way to perform the graphical check represented by the timeline.

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 78
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Elements that influence the response
time

τ3

time

τ2

τ1

Preemption

Execution

B
lo

ck
in

g

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 79
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

Summary
Utilization bound test is simple but conservative.

Response time test is more exact but also more complicated.

To this point, UB & RTA tests share the same limitations:
- all tasks run on a single processor
- all tasks periodic and non interacting
- deadlines always at the end of the period
- no interrupts
- zero context switch overhead
- tasks do not suspend themselves

In addition, the UB test has the following limitation:
- rate monotonic priorities assigned

GRUPO DE COMPUTADORES Y TIEMPO REAL REAL-TIME SYSTEMS 80
FACULTAD DE CIENCIAS © José Carlos Palencia, Héctor Pérez Tijero 13/Feb/12

UNIVERSIDAD
DE CANTABRIA

