




# Termodinámica y Termotecnia

Tema 08. Combustión



# Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez

DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 3.0



# TERMODINÁMICA Y TERMOTECNIA (GIE y GIEA)



#### **T 08.- Conceptos Fundamentales**

#### **Objetivos:**

El objetivo de este tema es realizar un análisis general de la combustión y de los combustibles, así como la aplicación de balances de materia y energía a sistemas reactivos.





- 1.- Introducción
- 2.- Propiedades de la combustión
- 3.- Combustibles
- 4.- Termodinámica de la combustión
- 1.- Introducción (I)
- ·La combustión es una oxidación rápida

Combustible (C e H<sub>2</sub>)

+

Comburente (O<sub>2</sub>)

Calor

+

Productos de la Combustión (PdC) (cenizas y humos)





#### 1.- Introducción (II)

Se debe realizar a un nivel térmico aprovechable

El *quemador* es el encargado de realizar la mezcla (combustible-oxígeno del aire)

#### Los **elementos básicos** que reaccionan son:

- El oxígeno del aire como comburente (aprox. 1m³ por kWh)
- El carbono y el hidrógeno del combustible
- Otros elementos (azufre), e inertes (cenizas)

#### Reacciones del Carbono:

$$>$$
 C + O<sub>2</sub> = CO<sub>2</sub> + 32.780 MJ/kg

$$>$$
 C + 1/2 O<sub>2</sub> = CO + 9.188 MJ/kg

$$\triangleright$$
 CO + 1/2 O<sub>2</sub> = CO<sub>2</sub> + 10.111 MJ/kg

#### La reacción del *Hidrógeno* es:

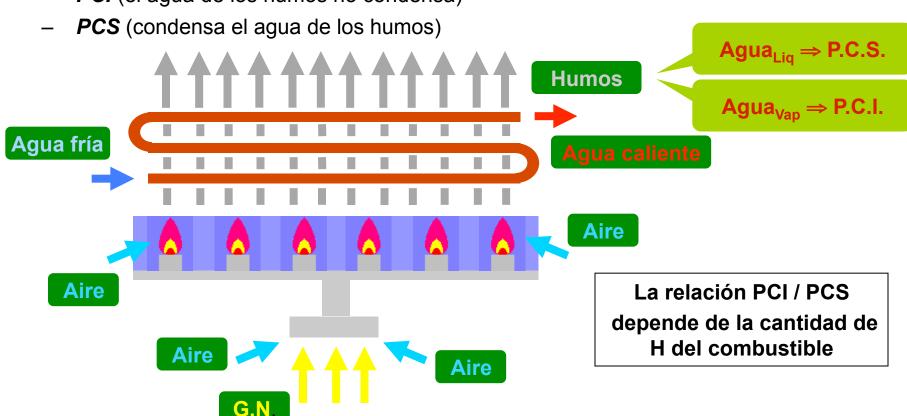
$$> H_2 + 1/2 O_2 = H_2O(v) + 118.680 \text{ MJ/kg}$$

Si el agua se condensa:

$$>H_2 + 1/2 O_2 = H_2O(I) + 142.107 \text{ MJ/kg}$$

#### La reacción de Azufre es:

$$>$$
 S + O<sub>2</sub> = SO<sub>2</sub> + 2.957 MJ/kg






#### 2.- Propiedades de la Combustión (I)

La cantidad de calor por unidad de masa (o volumen) que desprende un combustible al quemarse es el *Poder Calorífico* (kJ/kg, kJ/Nm³)

PCI (el agua de los humos no condensa)







#### 2.- Propiedades de la Combustión (II)

**Combustión estequiométrica** es una combustión con las proporciones justas de combustible y oxígeno para que todo el C del combustible se oxide a CO<sub>2</sub> (sin producir CO, ni emplear exceso de aire)

La composición del combustible marca el O2 necesario

**Teórica** 

• 
$$C + O_2 = CO_2$$

• 
$$H_2$$
 + 1/2  $O_2$  =  $H_2O$ 

• 
$$S + O_2 = SO_2$$

Poder Comburívoro: aire necesario para la combustión estequiométrica de 1 m³ de gas

#### Aire y 79% N<sub>2</sub> + 21% O<sub>2</sub>

#### Se necesita un 4,76 más de aire que de O<sub>2</sub>

|             | Aire teórico | PCI      | m³ aire / kWh |                  |
|-------------|--------------|----------|---------------|------------------|
|             | m³/Nm³       | kCal/Nm³ | kWh/Nm³       | ili alie / kvvii |
| Gas natural | 9,3          | 9.228    | 10,73         | 0,87             |
| Butano      | 31           | 26.253   | 30,5          | 1,016            |
| Propano     | 23,9         | 20.484   | 23,8          | 1                |





#### 2.- Propiedades de la Combustión (III)

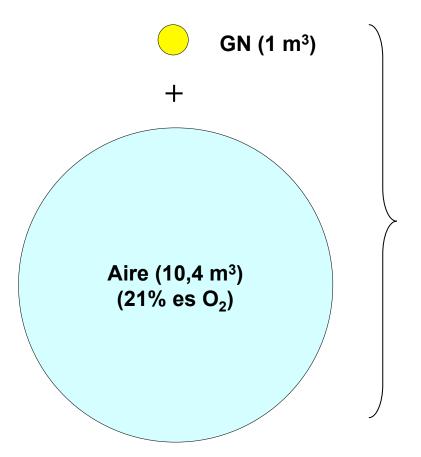
En la *combustión completa* todo el carbono se oxida en CO<sub>2</sub> (para que se produzca en condiciones reales necesita exceso de aire)

La *combustión incompleta* se produce si existe combustible inquemado o CO en los humos

(se puede producir por falta de  $O_2$ , o por mala mezcla aire-combustible)

El **exceso de aire** necesitado para producir combustiones completas depende de la homogeneidad de la mezcla aire-combustible que se consiga en el quemador

Contribuye a disminuir la T<sup>a</sup> final y el nivel energético de los humos se necesita para combustión completa, pero no es deseable con combustibles gaseosos aprox. el 10% del estequiométrico (y1m³/kWh)


El *Indice de aireación* es la relación entre el aire aportado a una combustión y el preciso para una combustión estequiométrica





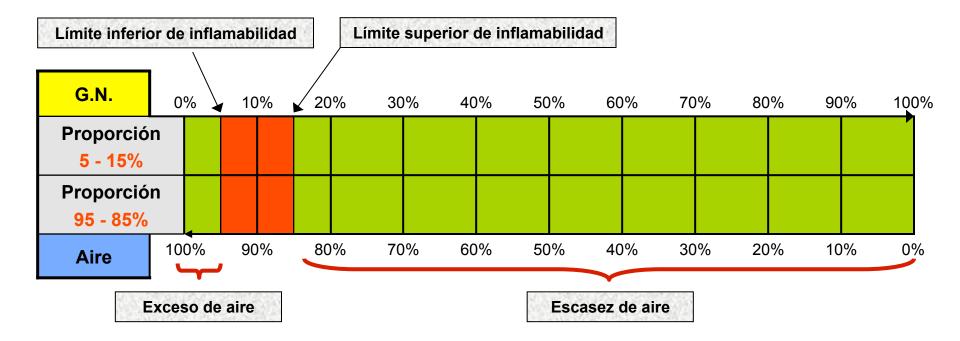
#### 2.- Propiedades de la Combustión (IV)

**Poder Fumígeno**: gases de combustión producidos por la combustión estequiométrica de 1 m³ de gas



 $CO_2 + N_2 (9,5 \text{ m}^3)$ Vol  $(CO_2+N_2)$ **Poder Fumígeno Seco** Vapor agua (2 m<sup>3</sup>)

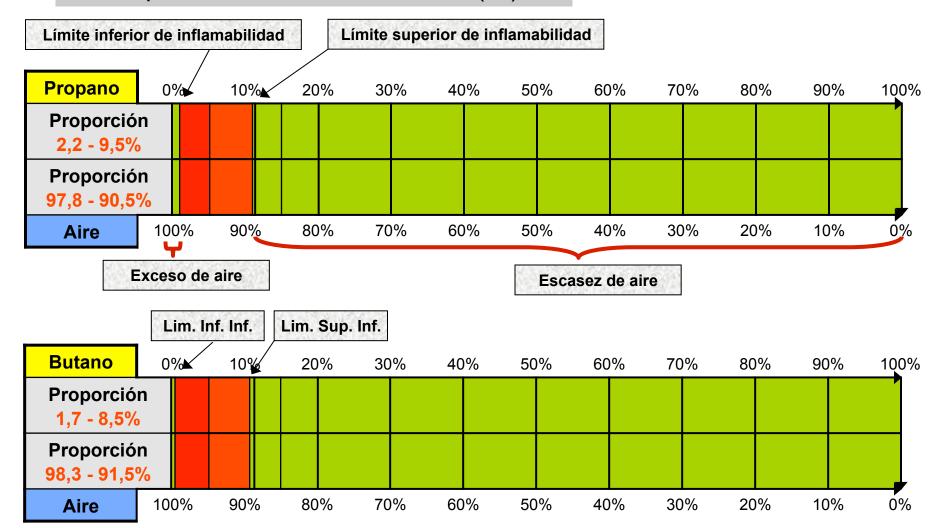
Vol (CO<sub>2</sub>+N<sub>2</sub>+Vapor agua) Poder Fumígeno Húmedo






#### 2.- Propiedades de la Combustión (V)

**Inflamabilidad:** medida de la facilidad que presenta un combustible para encenderse y de la rapidez con que, una vez encendido, se diseminarán sus llamas


Necesita que la proporción de O<sub>2</sub> esté en un rango (ni defecto de O<sub>2</sub> ni de combustible)







#### 2.- Propiedades de la Combustión (VI)







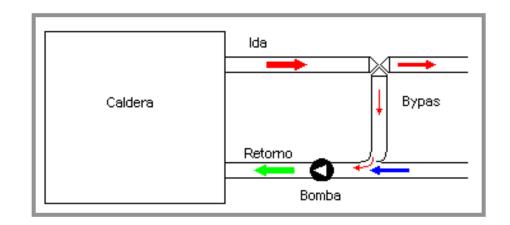
#### 2.- Propiedades de la Combustión (VII)

#### Punto de rocío húmedo y ácido ⇒ limitan la temperatura de los humos

Gas Natural 155 gr.agua/kWh ⇒ (T humos mayor)

El exceso de aire disminuye la T<sub>rocío</sub>

Gasóleo C 87 gr.agua/kWh


 $-SO_3 + H_2O = SO_4H_2$  T > 130°C

$$T_{\text{superficies}} > T_{\text{rocío}}$$

Si  $T_{sup} = T_{rocío}$  empieza la condensación (no implica la condensación de todo el vapor

| T <sub>rocío</sub> GN         | 53°C |
|-------------------------------|------|
| T <sub>rocío</sub><br>gasóleo | 47°C |

- Tubos de la caldera de doble pared (aumento del A intercambio)
- Mantener la temperatura de retorno a la caldera alta con un bypass
- Calderas de condensación (materiales resistentes)







#### 2.- Propiedades de la Combustión (VIII)

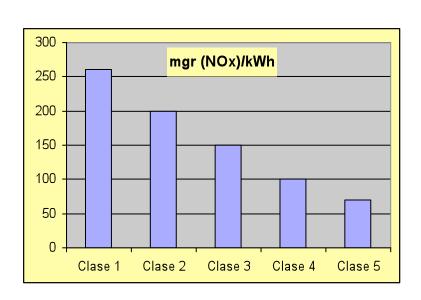
*T<sup>a</sup>* de *Inflamación*: valor mínimo de T<sup>a</sup> al cual debe ser llevada una mezcla (en proporciones de ser inflamable) para que la combustión pueda comenzar y propagarse

|                      | Gas Natural | Propano | Butano |
|----------------------|-------------|---------|--------|
| Tra inflamación (°C) | 580         | 493     | 482    |

*T<sup>a</sup> adiabática de combustión:* es la T<sup>a</sup> que se obtendría en una combustión estequiométrica; aumenta con la potencia calorífica del combustible

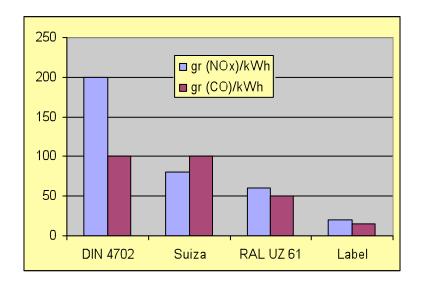
|                     | Gas Natural | Propano | Butano |
|---------------------|-------------|---------|--------|
| Tra adiabática (°C) | 1.940       | 1.998   | 1.900  |

Ta real de llama: es entre 200 y 300°C inferior a la adiabática






#### 2.- Propiedades de la Combustión (IX)


#### El N<sub>2</sub> se oxida si la T de la llama es elevada produciendo NOx

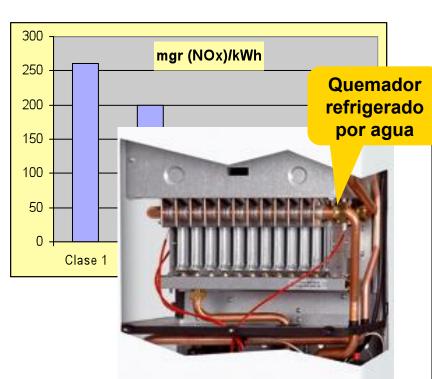
La *Ilama Azul* no produce emisiones de NOx





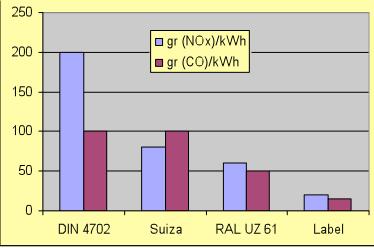









# 2.- Propiedades de la Combustión (IX)

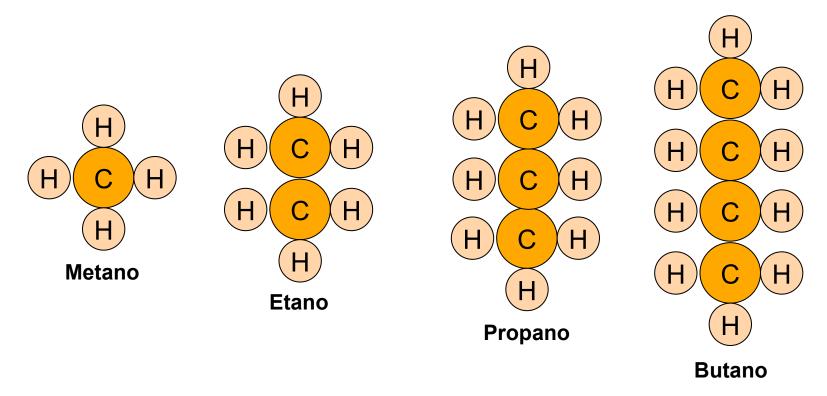

#### El N<sub>2</sub> se oxida si la T de la llama es elevada produciendo NOx

La *Ilama Azul* no produce emisiones de NOx







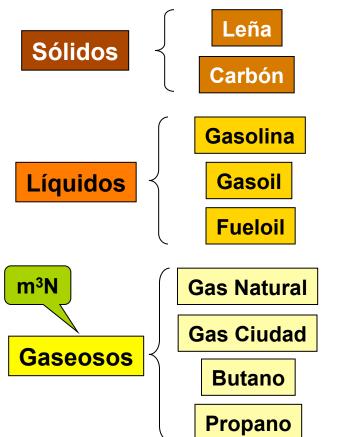







# 3.- Combustibles (I)

Son compuestos de CARBONO e HIDROGENO (Hidrocarburos)








# 3.- Combustibles (II)

Los combustibles **se clasifican en**: sólidos, líquidos y gases.





m³ medido en condiciones normales (1 bar y 0°C)

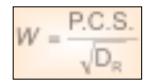




#### 3.- Combustibles (III)

#### **Propiedades** de los combustibles (I):

- Potencia o poder calorífico; el superior y el inferior
- Poder comburívoro
- Indice de aireación
- Poder Fumígeno; el seco y el húmedo
- Inflamabilidad; límites inferior y superior
- Punto de rocío; húmedo y ácido
- Ta de Inflamación
- T<sup>a</sup> de Llama
- Velocidad de propagación de la llama: en un frente gaseoso






#### 3.- Combustibles (IV)

#### **Propiedades** de los combustibles (II)

Indice Wobbe; (combustibles gaseosos), es el cociente entre el PCS
 y la raíz cuadrada de la densidad relativa respecto del aire (MJ/m³)



#### Familia A:

Gases manufacturados

Gases obtenidos de naftas, coquería y aires metanados

W entre 5.300 y 7.500 kcal/Nm<sup>3</sup>

PCS alrededor de 4.200 kcal/Nm<sup>3</sup>

Ligero

#### Familia B:

Gas Natural (Metano)

Gases obtenidos directamente de pozos de extracción

W entre 9.800 y 13.800 kcal/Nm<sup>3</sup>

Ligero

PCS entre 8.500 y 11.500 kcal/Nm<sup>3</sup>.

Familia C:

G.L.P. (Propano y Butano)

Fracciones ligeras del petróleo

W entre 19.800 y 21.900 kcal/Nm<sup>3</sup>

PCS entre 25.200 y 31.200 kcal/Nm<sup>3</sup>

**Pesados** 





# 3.- Combustibles (V)

Odorizantes

g CO<sub>2</sub>/kWh

La composición y propiedades de los *combustibles gaseosos son*:

THT

174,3

| (%)                        | Gas Natural                   | Propano | Butano    |  |
|----------------------------|-------------------------------|---------|-----------|--|
| Metano (%)                 | 89                            | 0       | 0         |  |
| Etano (%)                  | 5                             | 0,5     | 0,5       |  |
| Propano (%)                | 2,5                           | 87,5    | 9         |  |
| Butano (%)                 | 1                             | 5,5     | 59,5      |  |
| Isobutano (%)              | 0 6,5                         |         | 31        |  |
| PCS (kWh/Nm <sup>3</sup> ) | ~12                           | ~25,6   | ~32,9     |  |
| Densidad relativa          | Ligero ~0,62 Pesado ~1,5      |         | Pesado ~2 |  |
| Licuefacción               | Seco                          |         |           |  |
| Toxicidad                  | No tóxico, inodoro e incoloro |         |           |  |

Mercaptanos

239

233,2





#### 3.- Combustibles (VI)

Los **combustibles sólidos**, importan el carbono fijo, la humedad, las cenizas y las materias volátiles; mala mezcla con el aire, ensucian superficies

#### Los *combustibles líquidos*, fueloleo (↑ S<sub>2</sub>), y gasóleo C

Distribución en camiones cisterna y almacenamiento en un depósito central, alcanzando la caldera por una red de tuberías

#### Los *combustibles gaseosos*, butano, propano, gas natural

Composición variable, y el suministro puede ser por medio de canalizaciones a alta baja o media presión, con depósitos fijos o con depósitos móviles (bombonas); necesitan vaporización

|           |        | PCS kW h/kg     | Propano | Butano | GN    | Gas-oil C | Gas-oil C |
|-----------|--------|-----------------|---------|--------|-------|-----------|-----------|
|           | Unidad | rca kwiiikg     | kg      | kg     | Nm³   | litro     | kg        |
| Propano   | kg     | 13,837 kWh / kg | 1       | 1,008  | 1,17  | 1,295     | 1,126     |
| Butano    | kg     | 13,72 kWh / kg  | 0,99    | 1      | 1,16  | 1,28      | 1,14      |
| GN        | Nm³    | 11,8 KWh / Nm³  | 0,85    | 0,86   | 1     | 1,1       | 0,98      |
| Gas-oil C | Litro  | 10,68 kWh / kg  | 0,77    | 0,778  | 0,905 | 1         | 0,887     |
| Gas-oil C | kg     | 12,03 kWh / kg  | 0,869   | 0,876  | 1,01  | 1,126     | 1         |





#### 4.- Termodinámica de la Combustión (I)

P.C.I. = P.C.S. 
$$-2500 \text{ m}_{\text{H}_2\text{O}}$$

#### Sólidos y Líquidos

$$PCI = 34.040 \text{ m}_{\text{C}} + 101.700 \text{ m}_{\text{H}} + 6.280 \text{ m}_{\text{N}} + 19.090 \text{ m}_{\text{S}} - 9.840 \text{ m}_{\text{O}} - 2.510 \text{ m}_{\text{H}_2\text{O}} \left[ \text{kJ/kg} \right]$$

 $m \Rightarrow tanto por 1 en masa$ 

#### Gases

$$PCI = 12.640 r_{CO} + 10.760 r_{H} + 35.800 r_{CH_{4}} + 64.350 r_{C_{2}H_{6}} [kJ/m^{3}N]$$

r ⇒ fracción molar





#### 4.- Termodinámica de la Combustión (II)

#### Reacción Estequiométrica o Teórica



$$Z_{S} = \frac{kg_{aire}}{kg_{combustible}}$$

Combustible + (
$$O_2$$
+ 3,76  $N_2$ )  $\Rightarrow$   $CO_2$  +  $H_2$ O +  $N_2$ 

$$Z = \frac{kg_{aire}}{kg_{combustible}}$$

$$\lambda = \frac{Z}{Z_s} \begin{cases} \lambda > 1 \Rightarrow \text{ exceso de aire} \\ \lambda < 1 \Rightarrow \text{ defecto de aire} \end{cases}$$

>\(\lambda\) > 1 | Combustible + 
$$(O_2 + 3.76 N_2) \Rightarrow CO_2 + H_2O + N_2 + O_2$$

$$\lambda$$
 <1 Combustible + (O<sub>2</sub> + 3,76 N<sub>2</sub>)  $\Rightarrow$  CO<sub>2</sub> + H<sub>2</sub>O + N<sub>2</sub> + CO

Si el combustible contiene azufre en los PdC hay SO<sub>2</sub>





#### 4.- Termodinámica de la Combustión (III)

# Para un HidroCarburo $(C_xH_y)$

#### Reacción Estequiométrica

$$Z_{S} = \frac{4,76\left(x + \frac{y}{4}\right)28,96}{12 x + y}$$

$$C_xH_y + (x + \frac{y}{4})(O_2 + 3,76 N_2) = xCO_2 + \frac{y}{2}H_2O + 3,76(x + \frac{y}{4})N_2$$

**Reacción Real** 
$$Z = \frac{4,76 \quad \lambda \left(x + \frac{y}{4}\right) 28,96}{12 x + y}$$

#### $>\lambda >1$

$$C_x H_y + \lambda \left( x + \frac{y}{4} \right) \left( O_2 + 3,76 \, N_2 \right) = x C O_2 + \frac{y}{2} H_2 O + 3,76 \, \lambda \left( x + \frac{y}{4} \right) N_2 + (\lambda - 1) \left( x + \frac{y}{4} \right) O_2$$

$$\lambda$$
 <1  $a + b = x$ 

$$C_x H_y + \lambda \left(x + \frac{y}{4}\right) \left(O_2 + 3,76 N_2\right) = a C O_2 + b C O_2 + \frac{y}{2} H_2 O_2 + 3,76 \lambda \left(x + \frac{y}{4}\right) N_2$$

$$a = x(2\lambda - 1) + \frac{y}{2}(\lambda - 1)$$

$$b = 3x + \frac{y}{2} - \lambda \left(2x + \frac{y}{2}\right)$$

$$a = x(2\lambda - 1) + \frac{y}{2}(\lambda - 1)$$
$$b = 3x + \frac{y}{2} - \lambda \left(2x + \frac{y}{2}\right)$$





#### 4.- Termodinámica de la Combustión (IV)

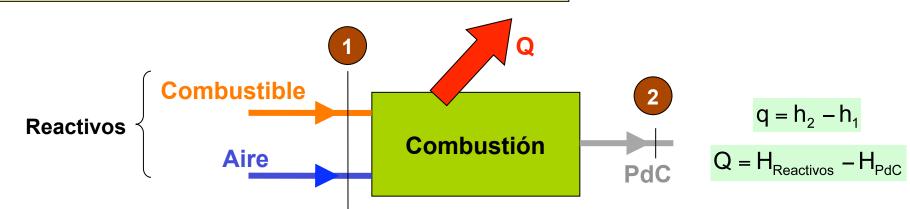
#### Influencia de la Humedad del Aire

#### Combustión completa

$$C_{x}H_{y} + \left(x + \frac{y}{4}\right)\left(O_{2} + 3,76 \text{ N}_{2}\right) + \left(4,76 \frac{N_{v}}{N_{as}}H_{2}O\right) = xCO_{2} + \frac{y}{2}H_{2}O + \left(4,76\left(x + \frac{y}{4}\right)\frac{N_{v}}{N_{as}}H_{2}O\right) + 3,76\left(x + \frac{y}{4}\right)N_{2}$$

$$\frac{N_{v}}{N_{as}} = \frac{m_{v}}{m_{a}} \frac{M_{as}}{M_{v}} = \left| \omega = \frac{m_{v}}{m_{a}} \frac{kg}{kg \text{ a.s.}} \right| = \omega \frac{M_{as}}{M_{v}} = \omega \frac{28,96 \text{ moles}}{18 \text{ moles a.s.}}$$

Humedad por H<sub>2</sub> del combustible


Humedad Por H<sub>2</sub> del aire





#### 4.- Termodinámica de la Combustión (IV)

#### Combustión Completa en Régimen Estacionario



$$H_{\text{Reactivos}} = N_{\text{combustible}} h_{\text{combustible}} + N_{O_2} h_{O_2} + N_{N_2} h_{N_2}$$

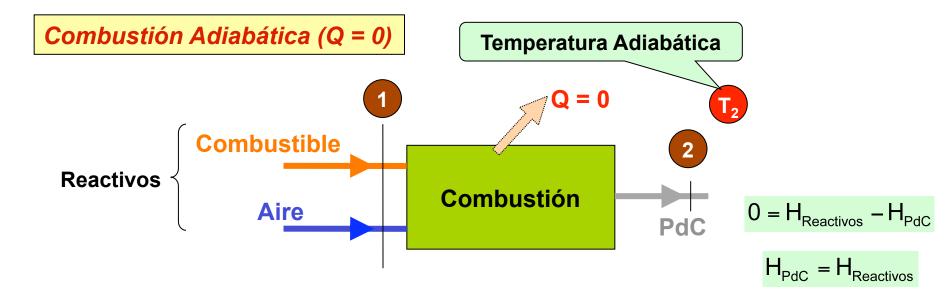
$$H_{\text{PdC}} = N_{\text{CO}_2} h_{\text{CO}_2} + N_{\text{H}_2\text{O}} h_{\text{H}_2\text{O}} + N_{N_2} h_{N_2}$$

Se resuleve por kmol de combustible (N<sub>combustible</sub> = 1 kmol)





# 4.- Termodinámica de la Combustión (V)


#### Entalpía de los Gases de Combustión

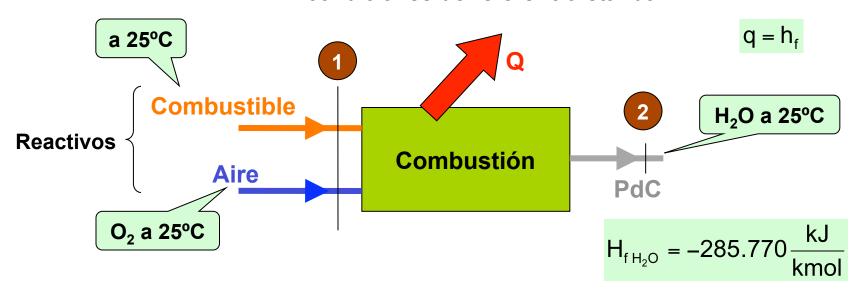
| T     | O <sub>2</sub> | $N_2$   | CO <sub>2</sub> | Vapor H <sub>2</sub> O |
|-------|----------------|---------|-----------------|------------------------|
| K     | kJ/kmol        | kJ/kmol | kJ/kmol         | kJ/kmol                |
| 298   | 0              | 0       | -393.520        | -241.820               |
| 400   | 3.028          | 2.972   | -389.513        | -238.365               |
| 600   | 9.249          | 8.895   | -380.605        | -231.316               |
| 800   | 15.838         | 15.045  | -370.707        | -223.820               |
| 1.000 | 22.701         | 21.459  | -360.118        | -215.830               |
| 1.200 | 29.758         | 28.110  | -349.041        | -207.323               |
| 1.400 | 36.956         | 34.941  | -337.617        | -198.342               |
| 1.600 | 44.269         | 41.913  | -325.947        | -188.933               |
| 1.800 | 51.679         | 48.992  | -314.084        | -179.157               |
| 2.000 | 59.189         | 56.156  | -302.078        | -169.065               |
| 2.200 | 66.792         | 63.380  | -289.951        | -158.712               |
| 2.400 | 74.484         | 70.661  | -277.737        | -148.139               |





#### 4.- Termodinámica de la Combustión (VI)








#### 4.- Termodinámica de la Combustión (VII)

#### Entalpía de Formación

Cambio de energía relacionado con la formación de un compuesto, a partir de sus elementos, en condiciones de referencia stándar





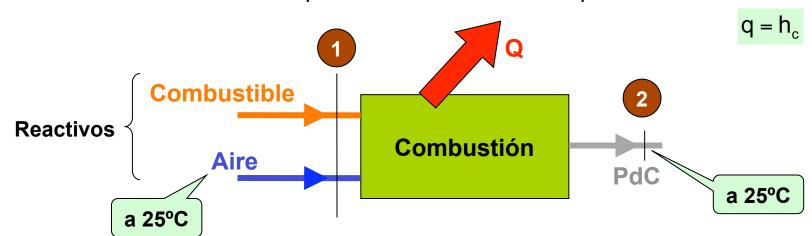


# 4.- Termodinámica de la Combustión (VII)

#### Entalpía de Formación

Cambio de energía relacionado con la formación de un compuesto, a partir de sus elementos, en condiciones de referencia stándar

| a         | 2500               |                                |         |                          | $q = h_f$  |
|-----------|--------------------|--------------------------------|---------|--------------------------|------------|
|           | Sustancia 25°C     | Formula                        | Estado  | h <sub>f</sub> (kJ/kmol) |            |
|           | Dióxido de carbono | CO <sub>2</sub>                | gas     | -393.520                 | H₂O a 25°C |
| Reactivos | Vapor de agua      | H <sub>2</sub> O               | gas     | -241.820                 | 120 0 20 0 |
| Redelives | Metano             | CH₄                            | gas     | -74.870                  |            |
|           | Etano              | C <sub>2</sub> H <sub>6</sub>  | gas     | -84.670                  |            |
|           | Propano            | $C_3H_8$                       | gas     | -103.840                 |            |
| O         | Butano             | C <sub>4</sub> H <sub>10</sub> | gas     | -126.140                 | B5.770 KJ  |
|           | Heptano            | $C_7H_{16}$                    | líquido | -224.390                 | kmol       |
|           | Octano             | C <sub>8</sub> H <sub>18</sub> | líquido | -249.950                 |            |
|           | Oxígeno            | $O_2$                          | gas     | 0                        |            |
|           | Nitrógeno          | N <sub>2</sub>                 | gas     | 0                        |            |






#### 4.- Termodinámica de la Combustión (VIII)

#### Entalpía de Combustión

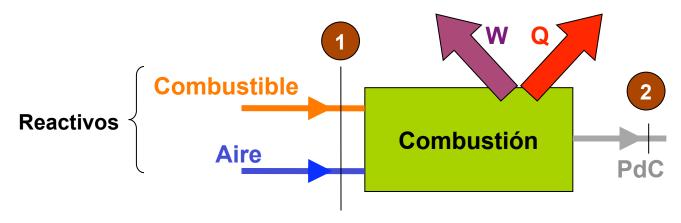
Cantidad de energía térmica liberada durante un proceso de combustión a presión constante



$$H_{\text{Reactivos}} = N_{\text{combustible}} h_{\text{combustible}} + N_{O_2} h_{f O_2} + N_{N_2} h_{f N_2}$$

$$H_{\text{PdC}} = N_{\text{CO}_2} h_{\text{f CO}_2} + N_{\text{H}_2\text{O}} h_{\text{f H}_2\text{O}} + N_{\text{N}_2} h_{\text{f N}_2}$$

Se resuleve por kmol de combustible (N<sub>combustible</sub> = 1 kmol)


$$H_c = H_{Reactivos} - H_{PdC} = N_{combustible} h_{combustible} - N_{CO_2} h_{f CO_2} - N_{H_2O} h_{f H_2O}$$





#### 4.- Termodinámica de la Combustión (IX)

#### Balance de Energía en un Motor de Combustión Interna



#### Ecuación de la Energía:

$$Q \left[kW\right] = \left( N_{comb} \left[ \frac{kmol_{comb}}{s} \right] \left( h_{Re\,activos} - h_{PdC} \right) \left[ \frac{kJ}{kmol_{comb}} \right] \right) + W \left[kW\right]$$





#### 4.- Termodinámica de la Combustión (X)

#### Eliminación de Contaminantes en la Combustión

- Introducción de vapor de agua

- Adición de NH<sub>3</sub>
  Aminorando la T<sup>a</sup> de la parte más caliente de la llama
  Reduciendo el % de oxigeno en el centro de la llama
  - Acortando el tiempo de operación del combustible

- Adición de lechada de cal
  Adición de piedra caliza

Ciclones
 Filtros de mangas
 Filtros electroestáticos