

Topografía Aplicada a la Ingeniería

Prueba Extraordinaria de septiembre

Julio Manuel de Luis Ruiz Raúl Pereda Gracía

Departamento de Ingeniería Geográfica y Técnicas de Expresión Gráfica

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0

UNIVERSIDAD DE CANTABRIA

UNIVERSIDAD DE CANTABRIA

ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGÍA

TOPOGRAFÍA APLICADA A LA INGENIERÍA	PRUEBA EXTRAORDINARIA
NOMBRE:	4 de Septiembre de 2017

EVALUACIÓN DE LOS CONOCIMIENTOS TEÓRICOS DE LA ASIGNATURA (60/100)

- 1.- Responder a las siguientes preguntas teniendo en cuenta los siguientes criterios de evaluación: Pregunta Bien 3 puntos, Pregunta Mal -1 punto, Sin Contestar 0 puntos, Solamente se revisarán las respuestas indicadas en la tabla final. (30/60):
- 1.- Los Modelos Digitales del Terreno se caracterizan por representar una variable que se caracteriza por ser:
 - A.- Cualitativa y distribución continua.
 - B.- Cualitativa y distribución discontinua.
 - C.- Cuantitativa y distribución continua.
 - D.- Cuantitativa y distribución discontinua.
- 2.- Las efemérides emitidas por los satélites contienen al margen de las coordenadas de los propios satélites la siguiente información:
 - A.- El error del oscilador.
 - B.- La hora GPS.
 - C.- La corrección diferencial.
 - D.- Los parámetros de trasformación.
- 3.- Cual de los siguientes componentes de un sistema Lidar es prescindible:
 - A.- Láser escáner aerotransportado.
 - B.- GPS diferencial.
 - C.- Cámara de video digital.
 - D.- Sistema inercial de navegación.
- 4.- En el proceso de interpolación mediante la estimación de superficies, se define la ecuación general de la superficie, normalmente ajustada por mínimos cuadrados, el orden de la ecuación se recomienda que sea:
 - A.- Grado 3.
 - B.- Grado 5.
 - C.- Grado 7.
 - D.- Grado 9.
- 5.- En el proceso de interpolación mediante el modelo de Kriging, el tercer componente representa:
 - A.- Un valor medio constante.
 - B.- Una variable aleatoria de la superficie de tendencia.
 - C.- El coeficiente de correlación espacial.
 - D.- Un valor residual de error aleatorio.
- 6.- El algoritmo de Fortune se emplea en la determinación:
 - A.- Cálculos del Diagrama de Voronoi.
 - B.- Triangulación de Delaunay.
 - C.- Triangulación de Delaunay constreñida.
 - D.- Interpolación de cotas en un MDT.

UC UNIVERSIDAD DE CANTABRIA

UNIVERSIDAD DE CANTABRIA

ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGÍA

- 7.- En el talud de una carretera con 45° de inclinación que tipo de auscultación se debe plantear:
 - A.- Planimétrica angular.
 - B.- Planimétrica distanciométrica.
 - C.- Planimétrica y altimétrica.
 - D.- Altimétrica.
- 8.- En la ecuación de ajuste por mínimos cuadrados de una red de pilares $P \cdot V = P \cdot A \cdot X P \cdot T$ realizada mediante observaciones angulares la variable V es:
 - A.- Matriz de residuos.
 - B.- Matriz de coeficientes.
 - C.- Matriz de incógnitas.
 - D.- Matriz de pesos.
- 9.- En la resolución de una auscultación planimétrica por el método de variación de coordenadas, la matriz de varianzas-covarianzas representa:
 - A.- Desplazamiento del pilar.
 - B.- Desplazamiento de la diana.
 - C.- Dimensiones de la elipse de error.
 - D.- Ubicación de la elipse respecto los ejes XY.
- 10.- La certificación de obra en la que se tienen en cuenta posibles revisiones de precios se denomina:
 - A.- Ordinaria.
 - B.- Anticipada.
 - C.- Complementaria.
 - D.- Liquidatoria.

SOLUCIÓN TEST

	A	В	С	D
1				
2				
3				
4				
5				

	A	В	С	D
6				
7				
8				
9				
10				

2.- Desarrollar los siguientes temas:(30/60)

- A.- Describir pormenorizadamente las técnicas LIDAR como herramienta para la captura de información que permite la generación de Modelos Digitales de Elevaciones.
- B.- Deducir razonadamente las expresiones que permiten determinar la Tangente Corta, la Tangente Larga y el Retranqueo de una Clotoide.

UNIVERSIDAD DE CANTABRIA

TOPOGRAFÍA APLICADA A LA INGENIERÍA	PRUEBA EXTRAORDINARIA		
NOMBRE:	4 de Septiembre de 2017		
EVALUACIÓN DE LOS CONOCIMIENTOS PRÁCTION	COS DE LA ASIGNATURA (20/100)		

EJERCICIO Número 1.-

El trazado de una hipotética carretera que da acceso a un parque eólico se define por el siguiente estado de alineaciones:

TRAZADO PLANIMÉTRICO:

- Tramo AB: Alineación Circular
 - Acimut de salida 227,6750 g
 - Punto A: Pk0+000, coordenadas: [423.246,19/4.793.346,87]
 - Desarrollo 300 metros
 - Radio 325 metros
 - Giro hacia la derecha en el sentido de avance de los Pk.
- Tramo BC: Alineación Clotoide
 - Longitud 200m.
- Tramo CD: Alineación Recta
 - Longitud 100m.

TRAZADO ALTIMÉTRICO

El trazado altimétrico se caracteriza porque la rasante en A tiene cota 585,24 metros, lugar donde se inicia una alineación recta con pendiente descendente del 5%, hasta un acuerdo vertical cóncavo (Kv = 2000) y en D la cota es 581,22 metros y la rasante se caracteriza por tener una inclinación constante y ascendente del 4%.

Determinar:

- 1.- Coordenadas de una hipotética arqueta ubicada en el Pk 0+350, margen derecho del eje de la calzada y a una distancia de 4,5 metros del eje. (10/20)
- 2.- Sabiendo que la cota del terreno en la arqueta son 571,22 metros y que en el proyecto la cota de la arqueta está 1,24 metros por debajo del eje de la calzada en su PK, calcular la cota roja de la arqueta. (10/20)

UNIVERSIDAD DE CANTABRIA

ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGÍA

TOPOGRAFÍA APLICADA A LA INGENIERÍA	PRUEBA EXTRAORDINARIA			
NOMBRE:	4 de Septiembre de 2017			
EVALUACIÓN DE LOS CONOCIMIENTOS PRÁCTA	ICOS DE LA ASIGNATURA (20/100)			

EJERCICIO Número 2.-

Para hacer una auscultación geodésica con observable angular, se empieza llevando a cabo las observaciones necesarias para determinar la estabilidad del pilar. Dadas las coordenadas y las observaciones promediadas en segundos centesimales de las dos campañas, determinar:

- Hipotético desplazamiento del Pilar. (10/20)
- Elipse de error en la determinación de dicho desplazamiento. (10/20)

	PILAR III	A	В	C	D	E	F	G	Н
X	1033,480	992,533	1006,259	1022,303	1008,631	1066,829	1116,335	1112,528	1122,105
Y	1014,112	1031,509	1052,993	1042,354	1109,395	1200,231	1115,372	1050,613	1004,638

Obs.	PROMEDIOS 76	PROMEDIOS 77		
P	2208,90	2232,84		
A	3246448,33	3246463,10		
В	3601815,40	3601823,10		
C	3750763,40	3750772,63		
D	3828234,67	3828241,53		
E	103564,33	103572,23		
F	427282,80	427290,57		
G	715302,17	715311,67		
H		1058502,23		
P	2207,40	2225,77		