ÁLGEBRA Y GEOMETRÍA

GRADO EN INGENIERÍA EN ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA Universidad de Cantabria

Examen-Test B

12 de marzo del 2015

Nombre y apellidos:

1. Se consideran los siguientes vectores del \mathbb{R} -espacio vectorial \mathbb{R}^4 :

$$v_1 = (-2, -2, 2, 0), v_2 = (-1, -2, 0, -1), v_3 = (1, 0, 1, 2)$$

a) Escribir tres combinaciones lineales distintas de los vectores v_1, v_2, v_3 (que denotaremos por $u_1, u_2 \neq u_3$). SOLUCIÓN:

 $u_1 =$

 $u_2 =$

 $u_3 =$

b) ¿Es verdadera o falsa la siguiente afirmación?: "Si $v=(x,y,z,t)\in\mathbb{R}^4$ es combinación lineal de u_1, u_2 y u_3 , entonces v es combinación lineal de v_1, v_2 y v_3 .

- 2. Se considera el \mathbb{R} -espacio vectorial \mathbb{R}^4 . Determina en cada caso los valores de x y de y, si es posible, para que:
 - a) $(3,2,x,y) \in \langle \{(1,4,-5,2),(1,2,3,1)\} \rangle$. SOLUCIÓN:
 - b) $(x, x + 1, y, y + 1) \in \langle \{(1, 3, 0, 2)\} \rangle$. SOLUCIÓN:
 - c) $(x, x-1, y, y+1) \in \langle \{(1, 3, 0, 2)\} \rangle$. SOLUCIÓN:
- 3. Dada la matriz $\begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ el elemento a_{22} de A^{-1} vale:

a)0 b)1 c)-1 d) ninguna de ellas

4. Sea G el siguiente conjunto de vectores del ${\rm I\!R}$ -espacio vectorial ${\rm I\!R}^{\,3}$:

$$G = \{v_1 = (-2, 0, 2), v_2 = (1, -3, 2), v_3 = (1, -3, 0)\}$$

- a) Comprobar que G es una familia ligada. SOLUCIÓN:
- b) Eliminar de G el menor número de vectores posible para llegar a una familia libre L. SOLUCIÓN:
- c) ¿Es cierto que $\langle G \rangle = \langle L \rangle$?

	Se considera el conjunto $W = \{(x, y, z) \in \mathbb{R}^3 : bx + y + z = 0, 2x - y = a\}$. Indicar si las siguientes afirmaciones son verdades o falsas sobre el conjunto W .
	a) para todo $a, b \in \mathbb{R}$ es un subespacio vectorial de \mathbb{R}^3 .
	b) para $a = b = 0$ es un subespacio vectorial de \mathbb{R}^3
	c) para $b=3$ no es un subespacio vectorial de \mathbb{R}^3
	d) para $b=0$ y para todo $a\in\mathbb{R}$ es un subespacio vectorial de \mathbb{R}^3 .
6.	La matriz $\begin{pmatrix} -1 & 2 & 1 \\ 1 & a & a \\ -3 & 6 & 3 \end{pmatrix}$ tiene rango:
	a) 3 para todo a b) 2 para todo a c) 3 para $a \neq 0$ d) 2 para $a \neq 0$
	Sean u_1, u_2, u_3 y $u_4 = 2u_1 - u_3$ vectores no nulos de \mathbb{R}^3 y distintos entre sí. Indicar si las siguientes afirmaciones son verdades o falsas.
	a) $\{u_1, u_2, u_3, u_4\}$ son linealmente dependientes.
	b) $\{u_1, u_3, u_4\}$ son linealmente dependientes.
	c) $\{u_1, u_2, u_3, u_4\}$ son linealmente independientes.
	d) $\{u_1, u_2, u_3\}$ son linealmente independientes.
8.	La matriz $A = \begin{pmatrix} 7 & 6 \\ -8 & -7 \end{pmatrix}$ es:
	a) Nilpotente b) Involutiva c) Idempotente d) Ortogonal
9.	Se considera el siguiente código de SAGE.
	A=matrix(QQ, 3, [1,2,3,4,5,6])
	Indicar si las siguientes afirmaciones son ciertas o falsas:
	a) A es una matriz de 3 filas por 3 columnas con coeficientes en los números reales
	b) A esuna matriz de 3 filas por 2 columnas con coeficientes en los números reales.
	c) A es una matriz de 3 filas por 2 columnas con coeficientes en los números racionales
	d) A es una matriz de 3 filas con coeficientes en los números racionales.
	En los distintos casos que se presentan a continuación, y sabiendo que se trabaja en el \mathbb{Z}_3 -espacio vectorial \mathbb{Z}_3^6 , sustituir los \cdots por los valores que permiten obtener las igualdades señaladas.
	a) $2(\cdots,\cdots,\cdots,\cdots,\cdots,\cdots,\cdots) = (0,0,0,0,0,0).$
	$b) \ \ (-1,2,2,0,0,1) + 2(1,0,0,-2,-1,1) + (-1)(0,0,0,1,0,0) =$
	$(\cdots,\cdots,\cdots,\cdots,\cdots,\cdots,\cdots)$
	c) $\cdots (-1, 1, 2, 0, 0, 0) + 2(1, 0, 0, \cdots, 2, 1) = (0, \cdots, 1, \cdots, 1, \cdots)$
	$d) \ (x, y, z, t, r, s) + (\cdots, \cdots, \cdots, \cdots, \cdots, \cdots) = 1(x, y, z, t, r, s)$
11.	Sea $A \in M_3(\mathbb{R})$ definida por $a_{ij} = i - j$, entonces el $ A $ vale
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

d)Añade a Lcuantos vectores sean necesarios para llegar a una familia libre Ftal que $\mathbbm{R}^3=\left\langle F\right\rangle$

SOLUCIÓN: