ÁLGEBRA Y GEOMETRÍA

Grado en ingeniería en Electrónica Industrial y Automática Grado en ingeniería Eléctrica Universidad de Cantabria

Examen Final9 de junio del 2018

Nombre y apellidos: Grado:

Sea $f \in \text{End}(\mathbbm{R}^3)$ cuya matriz asociada, en la base canónica de \mathbbm{R}^3 , es $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & 2 \\ 2 & 2 & -2 \end{pmatrix}$.

Sean $\mathcal{B}_1 = \{(1,0,0), (1,1,0), (1,1,1)\}$ y $\mathcal{B}_2 = \{(1,1,1), (0,1,1), (1,0,1)\}$ subconjuntos de \mathbb{R}^3 . Se pide:

- 1. Justifica si \mathcal{B}_1 y \mathcal{B}_2 son bases de \mathbb{R}^3 . (0,3 puntos)
- 2. Encuentra matrices regulares P y Q tales que B = P A Q siendo B la matriz asociada a f en las bases \mathcal{B}_1 y \mathcal{B}_2 . (0,7 puntos)
- 3. Razona si f es un endomorfismo diagonalizable. En caso afirmativo calcula sus valores propios.

(0.5 puntos)

4. Encuentra una matriz P tal que $D = P^{-1}$ A P siendo D una matriz diagonal asociada a f.

(0.5 puntos)

5. Demuestra que $\mathcal{B} = \{(2,0,1), (0,2,1), (1,1,-2)\}$ es una base de vectores propios de f.

(0.2 puntos)

6. A partir de la base anterior, aplicando el método de Gram-Schmidt, calcula una base ortonormal.

(0.5 puntos)

7. Encuentra una matriz P tal que $D = P^t A$ P siendo D una matriz diagonal asociada a f.

(0,3 puntos)