Chemical Process Design / Diseño de Procesos Químicos

Topic 4.5. Splitter

Javier R. Viguri Fuente
Eva Cifrian Bemposta

Department of Chemistry and Process & Resource Engineering
GER Green Engineering and Resources Research Group

This work is published under a License:
Creative Commons BY-NC-SA 4.0
4.- Development of Linear Mass Balance (LMB) models

4.2. Splitter / Divisor

\[\mu_{ij}^k = \mu_i^k = \mu_{IN}^k \to S \]

\[\xi_1 \to \mu_{s1}^k \]

\[\xi_2 \to \mu_{s2}^k \]

\[j = 1, \ldots, NS. \]

\[\mu_{S,j}^k = \xi_j \mu_i^k \]

\[\mu_{S,NS}^k = (1 - \sum_{j=1}^{NS-1} \xi_j) \mu_i^k \]

Need to specify the fraction of each splitter →

1 degree of freedom (d.f.).

\(\xi \) (xi), Split fraction.

Fraction of input stream tearing output stream.

For all k.

If NS = 2

\[\mu_{S,1}^k = \xi_1 \mu_i^k \]

\[\mu_{S,2}^k = (1 - \xi_1) \mu_i^k = \xi_2 \mu_i^k \]

For all k.

- This could be a vessel or part of a pipe, i.e.

- The split fraction may have a high impact in the recycle stream to the reactor.