Chemical Process Design / Diseño de Procesos Químicos

Topic 5.5. Compressors and turbines

Javier R. Viguri Fuente
Eva Cifrian Bemposta

Department of Chemistry and Process & Resource Engineering
GER Green Engineering and Resources Research Group

This work is published under a License:
Creative Commons BY-NC-SA 4.0
Shortcut for Compressor (or Turbine) Sizing

• GAS:
 - A Compressor is always necessary if you need to Increase \(P \) \(\rightarrow \) High energy consumption \((W)\)
 - An alternative to a Gas Turbine for decreasing \(P \) (especially for small decreases in \(P \)) is a VALVE \(\rightarrow \) Isoenthalpic expansion.
 - If you have liquid phase, it is not possible to use a gas turbine.

• Centrifugal compressors are the most common compressors (High capacities, low compression ratios \(r \)) vs. Positive-displacement compressors (Reciprocating and Rotary compressor) (Low capacities, high \(r \)).

• Assumptions: ideal behavior, isentropic and adiabatic.

\[
T_2 = T_1 \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} \quad \text{For ideal gas.}
\]

\[
\gamma = \frac{C_p}{C_v} = 1.4
\]

Theoretical power (ideal gas).

\[
W = \mu R T_1 \left(\frac{\gamma}{\gamma - 1} \right) \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1
\]

\[
\gamma = \frac{C_p}{C_v} = 1.4
\]

For ideal gas. Theoretical power (ideal gas).

\[M = \text{gmol/s}; \ R = 8.314 \text{ J/gmol·K} \]

\[W = \mu R T_1 \left(\frac{\gamma}{\gamma - 1} \right) \left(\frac{P_2}{P_1} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \]

\[\gamma = \frac{C_p}{C_v} = 1.4 \]

• Drivers:

1) Electric motors driving compressor; \(h_M = 0.9; \ h_C = 0.8 \) (compressor).

 Brake horsepower \(W_b = W / \eta_M \eta_C = 1.39 \text{ W} \).

2) Turbine driving compressor (e.g. IGCC where need to decrease \(P \)); \(\eta_T = 0.8; \ W_b = 1.562 \text{ W} \).

 Max. Horsepower compressor = 10.000 \(\text{hp} = 7.5 \text{ MW} \).

 Max Compression ratio \(r = \frac{P_2}{P_1} < 5 \).
Shortcut for Compressor (or Turbine) Sizing

Compressor

\[W = \int_{V_A}^{V_B} P dV \]

\[W = \frac{nRT}{V} \]

\[W_{A-B} \]

\[P_2 > P_1 \]

\[T_2 > T_1 \]

Staged compressors → To decrease work using intercoolers in \(N \) stages:

\[\frac{P_1}{P_0} = \frac{P_2}{P_1} = \ldots = \frac{P_N}{P_{N-1}} = (\frac{P_N}{P_0})^{1/N} \]

Work is minimized when compression ratios are the same:

\[W = \mu N RT_0 \left(\frac{\gamma}{\gamma-1} \right) \left[\left(\frac{P_N}{P_0} \right)^{\frac{\gamma-1}{N \gamma}} - 1 \right] \]

Rule of thumb → \((P_N / P_0)^{1/N} = 2.5 \) → \(N \).
Guthrie Material and Pressure Factors for Compressors

Compressors

Guthrie MPF for Compressors

\[MPF = F_d \]

<table>
<thead>
<tr>
<th>Design Type</th>
<th>(F_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifugal/motor</td>
<td>1.00</td>
</tr>
<tr>
<td>Reciprocating/steam</td>
<td>1.07</td>
</tr>
<tr>
<td>Centrifugal/turbine</td>
<td>1.15</td>
</tr>
<tr>
<td>Reciprocating/motor</td>
<td>1.29</td>
</tr>
<tr>
<td>Reciprocating/gas engine</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Compressors

Materials and Pressure correction Factor: \(MPF = F_d \)

Update Factor \(UF = \) Present Cost Index \((CI_{\text{actual}}) / \) Base Cost Index \((CI_{\text{base}}) \)

Updated bare (simple) module cost: \(BMC = UF(BC) (MPF + MF - 1) \)

Equipment Type

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>(C_0 (\times 10^3))</th>
<th>(S_0)</th>
<th>Range (S)</th>
<th>(a)</th>
<th>(MF2 / MF4 / MF6 / MF8 / MF10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressors</td>
<td>23</td>
<td>100</td>
<td>30 - 10^4</td>
<td>0.77</td>
<td>3.11 / 3.01 / 2.97 / 2.96 / 2.93</td>
</tr>
</tbody>
</table>

\(S = \) Brake horsepower

\(C = BC = C_0 \left(\frac{S}{S_0} \right)^\alpha \)

MF (Module Factor)

\(MF 2: \) If \(C < 200,000 \) $
\(MF 4: \) If \(C = 200,000 - 400,000 \) $
\(MF 6: \) If \(C = 400,000 - 600,000 \) $
\(MF 8: \) If \(C = 600,000 - 800,000 \) $
\(MF 10: \) If \(C = 800,000 - 1,000,000 \) $

\(S = Wb, \) Brake horsepower
Steam Turbine

60 Mw Steam turbine.

Gas Turbine

SGT-8000H gas turbine.

Multistage Centrifugal Compressor

AtlasCopco ZH4000-10000 Serie H.

Reciprocating Compressor

Process Gas Compressor Stationary Reciprocating Oil Injected.
