Chemical Process Design / Diseño de Procesos Químicos

Design Project. Specific information for the Design Project

Javier R. Viguri Fuente
Eva Cifrian Bemposta

Department of Chemistry and Process and Resource Engineering
GER Green Engineering and Resources Research Group

Este tema se publica bajo Licencia:
Creative Commons BY-NC-SA 4.0
Memo 1

1. **Raw Material**: To choose:
 - Size of ethanol plant: 200 ML per year of bioethanol.
 - Plant service factor: 0.956.

2. **Ethanol specifications** (Grade Fuel):
 - Ethanol content 99.85% by weight min.
 - Water content 0.1% by weight max.
 - Other impurities 0.05% by weight max.
Memo 2

1. **Raw Material**: Lignocelullosic material:
 - Size of ethanol plant: 200 ML per year of bioethanol (Plant: Biocarburantes Castilla y León, located in Salamanca).
 - Plant service factor: 0.956.

2. **Ethanol specifications** (Grade Fuel):
 - Ethanol content: 99.85% by weight min.
 - Water content: 0.1% by weight max.
 - Other impurities: 0.05% by weight max.
 - Steam, 600 Psig ($T = 525 \text{ K}$).
 - Steam, 150 Psig ($T = 455 \text{ K}$).
 - Cooling water temperature ($302.6 \text{ K} \rightarrow 320 \text{ K}$).
Valuable Information for the Design Project

Memo 3

1. Economic data (Jan. 2010) (UPDATE !!!)
 Raw material: 0.149 €/Kg (barley) (dry basis)
 CO₂ tax: 15.60 €/ton CO₂
 Sequestered CO₂: zero cost

2. Operating Data
 Wage rate (fringe benefits included): 33.93 €/hr.
 Supervision salary rate (fringe benefits included): 67.86 €/Hr.
 Utilities
 - Steam, 600 Psig: 0.023 €/kg
 - Steam, 150 Psig: 0.015 €/kg
 - Exhaust Steam: 0.006 €/kg
 - Electricity: 0.07 €/kWh
 - Cooling Water (302.6 K): 0.031 €/m³; Process Water: 0.1958 €/m³
 Wastewater treatment: 0.577 €/m³
 Payroll Charges (Benefits): 20% of Wages
 Repairs, Onsite 4%/yr. of Onsite Investment
 Offsite 2%/yr. of Offsite Investment
 Supplies & Material: 2%/yr. of Onsite Investment
 Taxes, Insurance, etc.: 3%/yr. of Investment
 Straight line depreciation over 10 years
 Offsite, Utility Investment: 40% Onsite Investment
 Royalties for catalyst: 1.5% Sales
 Transport costs biomass to plant: 0.000112 €/Ton·Km
 Collection radius (miles) = 13.996 (Raw material consumption (Kg/s))^{0.4828}
 Ethanol transport Truck: 0.000068 €/(km·m³)
 Inventory cost barley and spent liquor in plant: 30 days at 5.11 €/year/dry ton
 Inventory cost bioethanol in Chicago and Pittsburgh: 2 weeks at 5.95 €/m³/month
 Net Present Value, for 20 Yrs. life of project, 8% interest rate, 40% tax rate.
 Also report cost of bioethanol in €/L, energy use as kW/l, and water consumption as l water/l ethanol.
3. **Pervaporation**

The equipment contains the inlet pump, the vacuum pump that removes the vapors of permeate, the warm up heat exchangers and tubes and fittings and assembly units.

Cost pervaporation (€2010) = 61600 Area$^{0.37}$

The units of the pervaporation equipment can be divided into two major parts. The membrane unit itself, that costs 10–30% of the whole instrument and ages over 2–4 years, and the stainless steel acid proof parts, the amortization of which is 10 years.

4. **Fermenters:**

\[
\text{Cost reactors (\$2010) } = 62148 \sqrt{\text{Volume}} \\
\text{Volume (m}^3\text{) } = \tau \cdot \text{Flow rate}
\]

5. **Storage tank.**

Cost tanks(\$2010) = 5723.3 Volume$^{0.65}$

Volume is in m3. This cost is already updated.

6. **Lignin:** The energy that can be obtained is 26100 kJ/kg (lignin). Translated as economic income from steam generation, its value is 0.196 $\frac{\epsilon}{kg}$ of lignin.

Assume that the given cost correlations are for January 2010. They do include the MPF factors, but not the module factor MF for installation and shipping.

7. **Molecular Sieves**

- The mass flow of water that would be adsorbed in the Molecular Sieve (MS) in [Kg/s] = m_{ads}
- Search for the typical residence time for water in an adsorption column (for methane is $t = 9.8$ min). So the mass of adsorbed gas in the adsorption column is: $m_{ads} \times t = M_{ads}$ [kg]
- The gases will be adsorbed by molecular sieves with a bulk density of (i.e. 45 lb/ft3)

- Given that the ratio of mass of gas adsorbed per kg of molecular sieve is 0.1 (i.e mass of adsorbed gas/mass of bed = 0.1), the mass of the molecular sieves is: $M_{ms} = m_{ads}/0.1$ (kg)
- So the volume of the bed can be determined by:

\[
V [m^3] = 1.1 \frac{M_{ms}}{\text{density}} \]

Be careful with units !!!!
- The adsorption column is a cylindrical vessel with a length to diameter ratio of 4 --> You can obtain L [m].
7.- Molecular Sieves (Continued)
For the cost estimation: vessel
You can obtain the thickness \(e \) this allows us to calculate the weigh \(W \) of the vessel made of steel (DENSITY steel = 7850 kg/m\(^3\)) →
Based on the weight of the adsorption column and the cost of the molecular sieve being $1000/ton (Cost of adsorbent = $1000/ton x Mms), the cost for two adsorption columns is \(C \)
The molecular sieves are cost estimated using the price of the absorbent and vertical vessels. Two beds are needed to ensure continuous operation. Please use an over-design factor of 10%.

Molecular sieves data: 1000S/ton (Adsorption 0.1kg of gas per kg of bed)
The molecular sieves are assumed to be a combination of two vertical vessels and the cost will be estimated as:

\[
C_{MS} = 2 \cdot (\text{cost of adsorbent} + 209 \cdot \text{Weight}^{0.72})
\]

(1)

Weight of the vessel is in kg for the steel is given by eq. (2). We assume L/D=4 (Wallas, 1990) and the volume of the cylinder of the vessel must contain the volume of the bed of adsorbent material.

\[
\text{Weight} = \rho_{\text{steel}} \left(\pi \left[\left(\frac{D_c}{2} + e \right)^2 - \left(\frac{D_c}{2} \right)^2 \right] L + \frac{4}{3} \pi \left[\left(\frac{D_c}{2} + e \right)^3 - \left(\frac{D_c}{2} \right)^3 \right] \right)
\]

(2)

Where the thickness \(e \) (m) is taken to be:

\[
e = 0.0023 + 0.003 \cdot D_c \quad \text{(Sinnott, 1999)}
\]

(3)

The volume of the bed is given by:

\[
\text{Volume of bed} = \frac{\text{Bed size}}{\text{Bulk density}} = \frac{1.1 \cdot \text{Mass (1kg per 0.1kg of gas)}}{\rho \, \text{lb} \, \text{ft}^3 \cdot 0.454 \, \text{kg} \, \text{lb} \left(\frac{1 \, \text{ft}}{0.3048 \, \text{m}} \right)^3}
\]

(4)

Molecular sieves with a bulk density \((\rho) \) of 45 lb/ft\(^3\)