
 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) i

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002

Document JVT-D157
File: JVT-D157.doc
Generated: 2002-08-10

Title: Joint Final Committee Draft (JFCD) of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC
14496-10 AVC)

Status: Approved

Contact: Thomas Wiegand
Heinrich Hertz Institute (HHI), Einsteinufer 37, D-10587 Berlin, Germany
Tel: +49 - 30 - 31002 617, Fax: +49 - 030 - 392 72 00, wiegand@hhi.de

Purpose: Report

Title page to be provided by ITU-T | ISO/IEC

DRAFT INTERNATIONAL STANDARD
DRAFT ISO/IEC 14496-10 : 2002 (E)
DRAFT ITU-T Rec. H.264 (2002 E)
DRAFT ITU-T RECOMMENDATION

TABLE OF CONTENTS
Foreword ... xii
0 Introduction .. xii

0.0 Prolog ... xii
0.1 Purpose ... xii
0.2 Application.. xii
0.3 Profiles and levels.. xiii
0.4 Overview of the syntax ... xiii

0.4.1 Temporal processing .. xiii
0.4.2 Coding interlaced video ... xiv
0.4.3 Macroblocks and motion segmentations .. xiv
0.4.4 Spatial redundancy reduction ... xiv

1 Scope .. 1
2 Normative references ... 1
3 Definitions ... 1
4 Abbreviations .. 5
5 Conventions ... 6

5.1 Arithmetic operators ... 6
5.2 Logical operators ... 6
5.3 Relational operators ... 7
5.4 Bit-wise operators ... 7
5.5 Assignment .. 7
5.6 Functions .. 7

6 Source coder .. 7
6.1 Picture formats ... 7
6.2 Spatial subdivision of a picture into macroblocks .. 9
6.3 Calculation of the macroblock address .. 9
6.4 Assignment of symbols within a macroblock .. 11

7 Syntax and semantics ... 12
7.1 Method of describing the syntax in tabular form .. 12
7.2 Definitions of functions and descriptors ... 14
7.3 Syntax in tabular form .. 15

7.3.1 NAL unit syntax ... 15

mailto:wiegand@hhi.de

DRAFT ISO/IEC 14496-10 : 2002 (E)

ii DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax .. 15
7.3.2.1 Sequence parameter set RBSP syntax ... 15
7.3.2.2 Picture parameter set RBSP syntax ... 16
7.3.2.3 Supplemental enhancement information RBSP syntax ... 17

7.3.2.3.1 Supplemental enhancement information message syntax .. 17
7.3.2.4 Picture delimiter RBSP syntax.. 17
7.3.2.5 Filler data RBSP syntax .. 17
7.3.2.6 Slice layer RBSP syntax ... 18
7.3.2.7 Data partition RBSP syntax .. 18

7.3.2.7.1 Data partition A RBSP syntax.. 18
7.3.2.7.2 Data partition B RBSP syntax .. 18
7.3.2.7.3 Data partition C RBSP syntax .. 18

7.3.2.8 RBSP trailing bits syntax .. 18
7.3.2.9 RBSP slice trailing bits syntax .. 19

7.3.3 Slice header syntax ... 20
7.3.3.1 Reference index reordering syntax ... 21
7.3.3.2 Prediction weight table syntax .. 22
7.3.3.3 Reference picture buffer management syntax ... 23

7.3.4 Slice data syntax ... 24
7.3.5 Macroblock layer syntax ... 25

7.3.5.1 Macroblock prediction syntax... 26
7.3.5.2 Sub macroblock prediction syntax .. 27
7.3.5.3 Residual data syntax ... 28

7.3.5.3.1 Residual 4x4 block CAVLC syntax ... 29
7.3.5.3.2 Residual 4x4 block CABAC syntax ... 29

7.4 Semantics .. 30
7.4.1 NAL unit semantics .. 30
7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics ... 32

7.4.2.1 Sequence parameter set RBSP semantics ... 32
7.4.2.2 Picture parameter set RBSP semantics ... 33
7.4.2.3 Supplemental enhancement information RBSP semantics ... 35

7.4.2.3.1 Supplemental enhancement information message semantics ... 35
7.4.2.4 Picture delimiter RBSP semantics .. 35
7.4.2.5 Filler data RBSP semantics ... 36
7.4.2.6 Slice layer RBSP semantics .. 36
7.4.2.7 Data partition RBSP semantics ... 36

7.4.2.7.1 Data partition A RBSP semantics .. 36
7.4.2.7.2 Data partition B RBSP semantics .. 36
7.4.2.7.3 Data partition C RBSP semantics .. 36

7.3.2.8 RBSP trailing bits semantics ... 36
7.3.2.9 RBSP slice trailing bits semantics .. 36

7.4.3 Slice header semantics .. 37
7.4.3.1 Reference index reordering semantics .. 39
7.4.3.2 Reference picture buffer management semantics ... 40
7.4.3.3 Prediction weight table semantics ... 41

7.4.4 Slice data semantics .. 42
7.4.5 Macroblock layer semantics ... 43

7.4.5.1 Macroblock prediction semantics ... 46
7.4.5.2 Sub macroblock prediction semantics... 47
7.4.5.3 Residual data semantics .. 49

7.4.5.3.1 Residual 4x4 block CAVLC semantics .. 49
7.4.5.3.2 Residual 4x4 block CABAC semantics ... 49

8 Decoding process... 49
8.1 Ordering of decoding process... 49
8.2 NAL unit decoding .. 49

8.2.1 NAL unit delivery and decoding order ... 49
8.2.2 Parameter set decoding ... 50

8.3 Slice decoding ... 50
8.3.1 Detection of coded picture boundaries.. 50
8.3.2 Picture order count .. 51

8.3.2.1 Picture order count type 0 ... 51
8.3.2.2 Picture order count type 1 ... 51

8.3.3 Decoder process for redundant slices ... 52

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) iii

8.3.4 Specification of macroblock allocation map ... 52
8.3.4.1 Allocation order for box-out ... 52
8.3.4.2 Allocation order for raster scan... 53
8.3.4.3 Allocation order for wipe .. 53
8.3.4.4 Allocation order for macroblock level adaptive frame and field coding... 53

8.3.5 Data partitioning ... 53
8.3.6 Decoder process for management and use of the reference picture buffer ... 53

8.3.6.2 Picture Numbering .. 54
8.3.6.3 Default index orders.. 54

8.3.6.3.1 General ... 54
8.3.6.3.2 Default index order for P and SP slices in frame-structured pictures .. 54

8.3.6.4 Changing the default index orders .. 56
8.3.6.4.1 General ... 56

8.3.6.5 Overview of decoder process for reference picture buffer management .. 57
8.3.6.6 Sliding window reference picture buffer management ... 57
8.3.6.7 Adaptive Memory Control reference picture buffer management .. 58

8.3.6.7.1 General ... 58
8.3.6.8 Error resilience with reference picture buffer management .. 59

8.3.6.9 Decoding process for macroblock level frame/field adaptive coding ... 60
8.4 Motion compensation.. 60

8.4.1 Prediction of vector components .. 61
8.4.1.1 Median prediction ... 61
8.4.1.2 Directional segmentation prediction ... 62
8.4.1.3 Motion vector for a skip mode macroblock .. 62
8.4.1.4 Chroma vectors ... 63

8.4.2 Fractional sample accuracy ... 63
8.4.2.1 Quarter sample luma interpolation .. 63
8.4.2.2 One eighth sample luma interpolation .. 64
8.4.2.3 Chroma interpolation .. 65

8.5 Intra Prediction .. 66
8.5.1 Intra Prediction for 4x4 luma block in Intra_4x4 macroblock type .. 66

8.5.1.1 Mode 0: vertical Prediction ... 67
8.5.1.2 Mode 1: horizontal prediction ... 67
8.5.1.3 Mode 2: DC prediction ... 67
8.5.1.4 Mode 3: diagonal down/left prediction ... 67
8.5.1.5 Mode 4: diagonal down/right prediction ... 68
8.5.1.6 Mode 5: vertical-left prediction .. 68
8.5.1.7 Mode 6: horizontal-down prediction .. 68
8.5.1.8 Mode 7: vertical-right prediction .. 68
8.5.1.9 Mode 8: horizontal-up prediction ... 69

8.5.2 Intra prediction for luma block in Intra_16x16 macroblock type ... 69
8.5.2.1 Mode 0: vertical prediction ... 69
8.5.2.2 Mode 1: horizontal prediction ... 69
8.5.2.3 Mode 2: DC prediction ... 69
8.5.2.4 Mode 3: plane prediction .. 70

8.5.3 Prediction in intra coding of chroma blocks ... 70
8.5.3.1 Mode 0: vertical prediction ... 70
8.5.3.2 Mode 1: horizontal prediction ... 70
8.5.3.3 Mode 2: DC prediction ... 71
8.5.3.4 Mode 3: plane prediction .. 71

8.6 Transform coefficient decoding and picture construction prior to deblocking ... 71
8.6.1 Zig-zag scan .. 71
8.6.2 Scaling and transformation ... 72

8.6.2.1 Luma DC coefficients in Intra 16x16 macroblock .. 73
8.6.2.2 Chroma DC coefficients ... 73
8.6.2.3 Residual 4x4 blocks .. 74

8.6.3 Adding decoded samples to prediction with clipping ... 75
8.7 Deblocking Filter .. 75

8.7.1 Content dependent boundary filtering strength ... 76
8.7.2 Thresholds for each block boundary ... 77
8.7.3 Filtering of edges with Bs < 4 ... 78
8.7.4 Filtering of edges with Bs = 4 ... 79

9 Entropy Coding .. 80

DRAFT ISO/IEC 14496-10 : 2002 (E)

iv DRAFT ITU-T Rec. H.264 (2002 E)

9.1 Variable Length Coding ... 80
9.1.1 Exp-Golomb entropy coding .. 80
9.1.2 Unsigned Exp-Golomb entropy coding .. 80
9.1.3 Signed Exp-Golomb entropy coding .. 80
9.1.4 Mapped Exp-Golomb entropy coding .. 81
9.1.5 Entropy coding for Intra ... 83

9.1.5.1 Coding of Intra 4x4 and SIntra 4x4 prediction modes .. 83
9.1.5.2 Coding of mode information for Intra-16x16 mode ... 83

9.1.6 Context-based adaptive variable length coding (CAVLC) of transform coefficients 83
9.1.6.1 Entropy decoding of the number of coefficients and trailing ones: coeff_token 84

9.1.6.2 Table selection .. 86
9.1.6.3 Decoding of level information: coeff_level .. 86

9.1.6.3 Table selection .. 89
9.1.6.4 Decoding of run information .. 90

9.1.6.4.1 Entropy Decoding of the total number of zeros: total_zeros .. 90
9.1.6.4.2 Run before each coefficient ... 91

9.2 Context-based adaptive binary arithmetic coding (CABAC) .. 92
9.2.1 Decoding flow and binarization .. 92

9.2.1.1 Unary binarization .. 92
9.2.1.2 Truncated unary (TU) binarization ... 92
9.2.1.3 Concatenated unary/ kth-order Exp-Golomb (UEGk) binarization ... 92
9.2.1.4 Fixed-length (FL) binarization .. 93
9.2.1.5 Binarization schemes for macroblock type and sub macroblock type .. 93
9.2.1.6 Decoding flow and assignment of binarization schemes .. 96
9.2.1.7 Decoding flow and binarization of transform coefficients .. 96
9.2.1.8 Decoding of sign information related to motion vector data and transform coefficients 96
9.2.1.9 Decoding of macroblock skip flag and end-of-slice flag .. 96

9.2.2 Context definition and assignment.. 97
9.2.2.1 Overview of assignment of context labels .. 98
9.2.2.2 Context templates using two neighbouring symbols .. 99
9.2.2.3 Context templates using preceding bin values .. 100
9.2.2.4 Additional context definitions for information related to transform coefficients 101

9.2.3 Initialisation of context models ... 102
9.2.3.1 Initialisation procedure ... 102
9.2.3.2 Initialisation procedure ... 102

9.2.4 Table-based arithmetic coding .. 105
9.2.4.2 Probability estimation ... 105

9.2.4.3 Description of the arithmetic decoding engine ... 108
9.2.4.3.1 Initialisation of the decoding engine .. 108
9.2.4.3.2 Decoding a decision ... 109
9.2.4.3.3 Renormalization in the decoding engine (RenormD) ... 110
9.2.4.3.4 Input of compressed bytes (GetByte) ... 111
9.2.4.3.5 Decoder bypass for decisions with uniform pdf (Decode_eq_prob) .. 111

10 Decoding process for B slices ... 112
10.1 Introduction .. 112
10.2 Decoding process for macroblock types and sub macroblock types ... 113
10.3 Decoding process for motion vectors ... 113

10.3.1 Differential motion vectors ... 113
10.3.2 Motion vector decoding with scaled MV .. 114
10.3.3 Motion vectors in direct mode .. 114

10.3.3.1 Spatial technique of obtaining the direct mode motion parameters .. 114
10.3.3.2 Temporal technique of obtaining the direct mode motion parameters .. 115

10.4 Weighted prediction signal generation procedure .. 119
10.4.1 Weighted prediction in P and SP slices ... 119
10.4.2 Explicit weighted bi-prediction in B slices .. 120
10.4.3 Implicit bi-predictive weighting ... 121

11 Decoding process for SP and SI slices ... 122
11.1 General ... 122
11.2 SP decoding process for non-switching pictures .. 122

11.2.1 Luma transform coefficient decoding ... 122
11.2.2 Chroma transform coefficient decoding ... 123

11.3 SP and SI slice decoding process for switching pictures .. 124
11.3.1 Luma transform coefficient decoding ... 125

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) v

11.3.1.2 Chroma transform coefficient decoding .. 125
12 Adaptive block size transforms ... 125

12.1 Introduction .. 125
12.2 ABT Syntax ... 126

12.2.1 Macroblock layer syntax ... 126
12.2.1.1 Macroblock prediction syntax ... 127
12.2.1.2 Sub macroblock prediction syntax .. 128
12.2.1.3 Residual data syntax ... 129
12.2.1.3.1 Residual sub block CAVLC syntax ... 130

12.2.1.3.2 Residual sub block CABAC syntax ... 131
12.3 ABT Semantics .. 131

12.3.1 Macroblock layer semantics ... 131
12.3.1.1 Macroblock prediction semantics ... 132
12.3.1.2 Sub macroblock prediction semantics ... 132
12.3.1.3 Residual data semantics .. 132

12.3.1.3.1 Residual sub block CAVLC semantics .. 133
12.3.1.3.2 Residual sub block CABAC semantics .. 133

12.4 ABT decoding process .. 133
12.4.1 Intra Prediction for 4x8, 8x4, and 8x8 luma blocks .. 133

12.4.1.1 Mode 0: vertical prediction ... 134
12.4.1.2 Mode 1: horizontal prediction ... 134
12.4.1.3 Mode 2: DC prediction ... 134
12.4.1.4 Mode 3: diagonal down/left prediction ... 135
12.4.1.5 Mode 4: diagonal down/right prediction ... 135
12.4.1.6 Mode 5: vertical-left prediction .. 136
12.4.1.7 Mode 6: horizontal-down prediction ... 136
12.4.1.8 Mode 7: vertical-right prediction .. 137
12.4.1.9 Mode 8: horizontal-up prediction .. 138

12.4.2 Scanning method for ABT blocks... 139
12.4.2.1 Zig-zag scan .. 139
12.4.2.2 Field scan .. 140

12.4.3 Scaling and inverse transform for ABT blocks ... 141
12.4.4 Modifications for the deblocking filter ... 143

12.5 ABT entropy coding .. 143
12.5.1 ABT variable length coding .. 143

12.5.1.1 Mapped Exp-Golomb entropy coding ... 143
12.5.1.2 VLC entropy coding of ABT coefficients ... 143

12.5.1.2.1 Decoding num_coeff_abt ... 143
12.5.1.2.2 2D (level,run) symbols ... 144
12.5.1.2.3 Assignment of level and run to code numbers ... 145
12.5.1.2.4 escape_level and escape_run.. 145

12.5.2 ABT CABAC ... 146
12.5.2.1 Fixed-length (FL) binarization for mb_type ... 146
12.5.2.2 Context definition and assignment .. 146

12.5.2.2.1 Assignment of context labels ... 147
12.5.2.2.2 Context definitions using preceding bin values ... 147
12.5.2.2.3 Additional context definitions for information related to transform coefficients 147

12.5.2.3 Initialisation of context models ... 150
Annex A Profile and level definitions .. 151

A.1 Introduction .. 152
A.2 Requirements on video decoder capability ... 152
A.3 Baseline profile ... 152

A.3.1 Features ... 152
A.3.2 Limits .. 152

A.4 X profile .. 153
A.4.1 Features ... 153
A.4.2 Limits .. 153

A.5 Main profile .. 153
A.5.1 Features ... 153
A.5.2 Limits .. 153

A.6 Level definitions .. 153
A.6.1 General.. 153
A.6.2 Level limits ... 154

DRAFT ISO/IEC 14496-10 : 2002 (E)

vi DRAFT ITU-T Rec. H.264 (2002 E)

A.6.3 Reference memory constraints on modes ... 154
A.7 Effect of level limits on frame rate (informative) .. 155

Annex B Byte stream format ... 155
B.1 Introduction .. 156
B.2 Byte stream NAL unit syntax ... 156
B.3 Byte stream NAL unit semantics ... 156
B.4 Decoder byte-alignment recovery (informative) ... 156

Annex C Hypothetical Reference Decoder ... 157
C.1 Hypothetical reference decoder and buffering verifiers ... 157

C.1.1 Operation of VCL video buffering verifier (VBV) pre-decoder buffer .. 159
C.1.1.1 Timing of bitstream or packet stream arrival ... 159
C.1.1.2 Timing of coded picture removal ... 159
C.1.1.3 Conformance constraints on coded bitstreams or packet streams .. 160

C.1.2 Operation of the post-decoder buffer verifier ... 160
C.1.2.1 Arrival timing ... 160
C.1.2.2 Removal timing .. 160
C.1.2.3 Conformance constraints .. 161

C.2 Informative description of the HRD .. 161
C.2.1 Constrained arrival time leaky bucket (CAT-LB) model.. 161

C.2.1.1 Operation of the CAT-LB HRD ... 162
C.2.1.2 Low-delay operation .. 165
C.2.1.3 Bitstream / packet stream constraints ... 165

C.2.1.3.1 Underflow.. 165
C.2.1.3.2 Overflow.. 166
C.2.1.3.3 Constant bitrate (CBR) operation .. 166

C.2.1.4 Rate control considerations .. 166
C.2.2 Multiple leaky bucket description ... 166

C.2.2.1 Schedule of a bitstream .. 166
C.2.2.2 Containment in a leaky bucket ... 167
C.2.2.3 Minimum buffer size and minimum peak rate ... 167
C.2.2.4 Encoder considerations... 168

Annex D Supplemental enhancement information .. 169
D.1 Introduction .. 169
D.2 SEI payload syntax ... 170

D.2.1 Temporal reference SEI message syntax .. 171
D.2.2 Clock timestamp SEI message syntax .. 172
D.2.3 Pan-scan rectangle SEI message syntax.. 173
D.2.4 Buffering period SEI message syntax ... 173
D.2.5 HRD picture SEI message syntax ... 173
D.2.6 Filler payload SEI message syntax ... 173
D.2.7 User data registered by ITU-T Recommendation T.35 SEI message syntax .. 174
D.2.8 User data unregistered SEI message syntax .. 174
D.2.9 Random access point SEI message syntax .. 174
D.2.10 Reference picture buffer management Repetition SEI message syntax .. 174
D.2.11 Spare picture SEI message syntax .. 175
D.2.12 Scene information SEI message syntax .. 175
D.2.13 Sub-sequence information SEI message syntax .. 175
D.2.14 Sub-sequence layer characteristics SEI message syntax ... 176
D.2.15 Sub-sequence characteristics SEI message syntax .. 176
D.2.16 Reserved SEI message syntax ... 176

D.3 SEI payload semantics .. 176
D.3.1 Temporal reference SEI message semantics ... 176
D.3.2 Clock timestamp SEI message semantics ... 177
D.3.3 Pan-scan rectangle SEI message semantics .. 178
D.3.4 Buffering period SEI message semantics.. 178
D.3.5 HRD picture SEI message semantics .. 179
D.3.6 Filler payload SEI message semantics .. 179
D.3.7 User data registered by ITU-T Recommendation T.35 SEI message semantics 179
D.3.8 User data arbitrary SEI message semantics .. 179
D.3.9 Random access point SEI message semantics .. 179
D.3.10 Reference picture buffer management Repetition SEI message semantics .. 180
D.3.11 Spare picture SEI message semantics ... 180

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) vii

D.3.12 Scene information SEI message semantics ... 181
D.3.13 Sub-sequence information SEI message semantics .. 181
D.3.14 Sub-sequence layer characteristics SEI message semantics ... 181
D.3.15 Sub-sequence characteristics SEI message semantics .. 182
D.3.16 Reserved SEI message semantics ... 182

Annex E Video usability information.. 182
E.1 Introduction .. 182
E.2 VUI syntax .. 183

E.2.1 VUI sequence parameters syntax .. 183
E.2.2 HRD parameters syntax .. 184
E.2.3 VUI picture parameters syntax ... 184

E.3 VUI semantics ... 184
E.3.1 VUI sequence parameters semantics .. 184
E.3.2 HRD parameters semantics ... 190
E.3.3 VUI picture parameters semantics .. 191

LIST OF FIGURES

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame............................... 8
Figure 6-2 – Nominal vertical and temporal sampling locations of samples in 4:2:0 interlaced frames 9
Figure 6-3 – A picture with 11 by 9 macroblocks (QCIF picture).. 9
Figure 6-4 – Partitioning of the decoded frame into macroblock pairs. An MB pair can be coded as two frame MBs, or

one top-field MB and one bottom-field MB. The numbers indicate the scanning order of coded MBs. 11
Figure 6-5 – Numbering of the vectors for the different blocks in raster scan order depending on the inter mode. For

each block the horizontal component comes first followed by the vertical component. .. 11
Figure 6-6 – Ordering of blocks for coded_block_patternY, 4x4 intra prediction, and 4x4 residual coding 12
Figure 8-1 – Default reference field number assignment when the current picture is the first field coded in a frame 55
Figure 8-2 – Default reference field number assignment when the current picture is the second field coded in a frame .. 55
Figure 8-4 – Median prediction of motion vectors ... 61
Figure 8-5 – Directional segmentation prediction .. 62
Figure 8-6 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks

with lower-case letters) for quarter sample luma interpolation. ... 63
Figure 8-7 – Integer samples (‘A‘) and fractional sample locations for one eighth sample luma interpolation 64
Figure 8-8 – Diagonal interpolation for one eighth sample luma interpolation .. 65
Figure 8-9 – Fractional sample position dependent variables in chroma interpolation and surrounding integer position

samples A, B, C, and D. ... 66
Figure 8-10 – Identification of samples used for intra spatial prediction ... 66
Figure 8-11 – Intra prediction directions .. 67
Figure 8-12 – Zig-zag scan ... 72
Figure 8-13 – Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma boundaries

shown with dotted lines) ... 76
Figure 8-14 – Flow chart for determining the boundary strength (Bs), for the block boundary between two neighbouring

blocks p and q, where V1(p,x), V1(p,y) and V2(p, x), V2(p, y) are the horizontal and vertical components of the
motion vectors of block p for the first and second reference frames or fields. .. 77

Figure 8-15 – Convention for describing samples across a 4x4 block horizontal or vertical boundary 77
Figure 9-1 – a) Prediction mode of block C to be established, where A and B are adjacent blocks. b) order of intra

prediction information in the bitstream .. 83
Figure 9-2 – Illustration of the generic context template using two neighbouring symbols A and B for conditional coding

of a current symbol C ... 99

DRAFT ISO/IEC 14496-10 : 2002 (E)

viii DRAFT ITU-T Rec. H.264 (2002 E)

Figure 9-3 - Overview of the Decoding Process ... 108
Figure 9-4 – Flowchart of initialisation of the decoding engine ... 109
Figure 9-5 – Flowchart for decoding a decision ... 110
Figure 9-6 – Flowchart of renormalization ... 111
Figure 9-7 – Flowchart for Input of Compressed Bytes ... 111
Figure 9-8 – Flowchart of decoding bypass.. 112
Figure 10-1 – Illustration of B picture concept ... 113
Figure 10-2 – Differential motion vector decoding with scaled motion vector .. 114
Figure 10-3 – Both the current block and its co-located block in the list 1 reference picture are in frame mode (f0 and f1

indicate the corresponding fields) ... 116
Figure 10-4 – Both the current macroblock and its co-located macroblock in the temporally subsequent picture are in

field mode. .. 117
Figure 10-5 – The list 0 motion vector of the co-located block in field 1 of the list 1 reference frame may point to field 0

of the same frame. .. 117
Figure 10-6 – The current macroblock is in field mode and its co-located macroblock in the list 1 reference picture is in

frame mode ... 118
Figure 10-7 – The current macroblock is in frame mode while its co-located macroblock in the list 1 reference picture is

in field mode. .. 119
Figure 11-1 – A block diagram of a conceptual decoder for non-intra coded macroblocks in SP slices in which

sp_for_switch_flag = = 0. ... 122
Figure 11-2 – A block diagram of a conceptual decoder for non-intra macroblocks in SI slices; and for non-intra coded

macroblocks in SP slices in which sp_for_switch_flag = = 1... 124
Figure 12-1 – Ordering of blocks for CBPY and luma residual coding of ABT blocks ... 126
Figure 12-2 – Identification of samples used for ABT intra spatial prediction for 4x8, 8x4, and 8x8 luma blocks 133
Figure 12-3 – 4x4 zig-zag scan ... 139
Figure 12-4 – 4x8 zig-zag scan ... 139
Figure 12-5 – 8x4 zig-zag scan ... 139
Figure 12-6 – 8x8 zig-zag scan ... 140
Figure 12-7 – 4x4 field scan ... 140
Figure 12-8 – 4x8 field scan ... 140
Figure 12-9 – 8x4 field scan ... 141
Figure 12-10 – 8x8 field scan ... 141
Figure C-1 – Structure of Byte streams and NAL unit streams and HRD Conformance Points 158
Figure C-2 – HRD Buffer Verifiers .. 158
Figure C-3 – A Hypothetical Reference Decoder ... 161
Figure C-4 – Buffer fullness plot for example HRD in Table C-2 with picture sizes given in Table C-3 164
Figure C-5 – Illustration of the leaky bucket concept ... 167
Figure C-6 – Further illustration of the leaky bucket concept .. 168
Figure E-1 – Luma and chroma sample types .. 189
Figure E-2 – Luma and chroma association ... 189

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) ix

LIST OF TABLES
Table 7-1 – NAL Unit Type Codes 31
Table 7-2– Refined macroblock allocation map type 34
Table 7-3– Meaning of pic_type 35
Table 7-4 – Meaning of pic_structure 37
Table 7-5 – Meaning of slice_type_idc 37
Table 7-6 – Allowed macroblock prediction types for slice_type_idc 38
Table 7-7 – remapping_of_pic_nums_idc operations for re-mapping of reference pictures 39
Table 7-8 – Interpretation of ref_pic_buffering_mode 40
Table 7-9 – Memory management control operation (memory_management_control_operation) values 40
Table 7-10 – Macroblock types for I slices 43
Table 7-11 – Macroblock type with value 0 for SI slices 44
Table 7-12 – Macroblock type values 0 to 4 for P and SP slices 44
Table 7-13 – Macroblock type values 0 to 22 for B slices 45
Table 7-14 – Specification of nc values 46
Table 7-15 – Relationship between intra_chroma_pred_mode and spatial prediction modes 47
Table 7-16 – Sub macroblock types in P macroblocks 48
Table 7-17 – Sub macroblock types in B macroblocks 48
Table 8-1 – Allocation order for the box-out macroblock map allocation type 52
Table 8-2 – Specification of QPC as a function of QPY 72
Table 8-3 – QPav and offset dependent threshold parameters α and β 78
Table 8-3 (concluded) 78
Table 8-4 – Value of filter clipping parameter C0 as a function of IndexA and Bs 79
Table 8-4 (concluded) 79
Table 9-1 – Code number and Exp-Golomb codewords in explicit form and used as ue(v) 80
Table 9-2 – Assignment of symbol values and code_nums for signed Exp-Golomb entropy coding se(v) 80
Table 9-3 – Assignment of codeword number and parameter values for mapped Exp-Golomb-coded symbols 81
Table 9-4 – coeff_token: total_coeff() / trailing_ones(): Num-VLC0 84
Table 9-5 – coeff_token: total_coeff() / trailing_ones(): Num-VLC1 84
Table 9-6 – coeff_token: total_coeff() / trailing_ones(): Num-VLC2 85
Table 9-7 – coeff_token: total_coeff() / trailing_ones(): Num-VLC_Chroma_DC 86
Table 9-8 – Calculation of N for Num-VLCN 86
Table 9-9 – Level tables 86
Table 9-10 – Level VLC1 87
Table 9-11 – Level VLC2 88
Table 9-12 – Level VLC3 88
Table 9-13 – Level VLC4 88
Table 9-14 – Level VLC5 89
Table 9-15 – Level VLC6 89
Table 9-16 – total_zeros tables for all 4x4 blocks 90

DRAFT ISO/IEC 14496-10 : 2002 (E)

x DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-17 – TotalZeros table for chroma DC 2x2 blocks 91
Table 9-18 – Tables for run_before 91
Table 9-19 – Binarization by means of the unary code tree 92
Table 9-20 – Binarization for macroblock types for I slices 93
Table 9-21 – Binarization for macroblock types for P, SP, and B slices 94
Table 9-22 – Binarization for sub macroblock types in P and B slices 95
Table 9-23 – Syntax elements and associated context identifiers 97
Table 9-24 – Overview of context identifiers and associated context labels 98
Table 9-25 – Overview of context identifiers and associated context labels (continued) 99
Table 9-26 – Specification of context variables using context templates according to Equations (9-2) – (9-4) 99
Table 9-27 – Definition of context variables using the context template according to Equation (9-6) 100
Table 9-28 – Context categories for the different block types 101
Table 9-29 – Initialisation parameters for context identifiers ctx_mb_type_I, ctx_mb_type_SI_pref, ,

ctx_mb_type_SI_suf,ctx_mb_skip, ctx_mb_type_P, ctx_mb_type_B 102
Table 9-30 – Initialisation parameters for context identifiers ctx_b8_mode_P, ctx_b8_mode_B, ctx_mb_type_P_suf,

ctx_mb_type_B_suf 102
Table 9-31 – Initialisation parameters for context identifiers ctx_abs_mvd_h, ctx_abs_mvd_v, ctx_ref_idx 103
Table 9-32 – Initialisation parameters for context identifiers ctx_delta_qp, ctx_ipred_chroma, ctx_ipred_luma 103
Table 9-33 – Initialisation parameters for context identifiers ctx_cbp_luma, ctx_cbp_chroma 103
Table 9-34 – Initialisation parameters for context identifiers ctx_cbp4, ctx_sig, ctx_last, ctx_abs_level for context

category 0 – 4 104
Table 9-35 – Probability transition 106
Table 9-36 – RTAB[State][Q] table for interval subdivision 107
Table 12-1 – Modified macroblock types for I slices 131
Table 12-2 – ABT intra partitions 132
Table 12-3 – ABT Intra Block Types 132
Table 12-4 – IQP values 143
Table 12-5 – Assignment of Exp-Golomb codeword numbers for ABT syntax elements 143
Table 12-6 – Code structure for ABT num_coeff_abt and escape_run 144
Table 12-7 – Code structure for ABT (level, run) symbols 144
Table 12-8 – Code structure for escape_level 145
Table 12-9 – Assignment of Inter and Intra level and run to code numbers. 145
Table 12-10 – Binarization for macroblock type 146
Table 12-11 – Macroblock type and associated context identifier 146
Table 12-12 – Context identifiers and associated context labels 147
Table 12-13 – Context identifiers and associated context labels (continued) 147
Table 12-14 – Additional context categories for the different block types 147
Table 12-15 – Map_sig and Map_last for zig-zag scanning order used for the additional ABT block sizes 8x8, 8x4 and

4x8 148
Table 12-16 – Map_sig and Map_last for field-based scanning order used for the additional ABT block sizes 8x8, 8x4

and 4x8 149
Table 12-17 – Initialisation parameters for context identifier ctx_mb_type_I_ABT 150

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) xi

Table 12-18 – Initialisation parameters for context identifiers ctx_cbp4, ctx_sig, ctx_last, ctx_abs_level for context
category 5 – 7 150

Table A-1 – Level Limits 154
Table C-1 - Attributes of an example CAT-LB HRD 162
Table C-2 - Picture sizes, and encoding, arrival and removal times for the example CAT-LB HRD 163
Table D-1 – Definition of counting_type values 177
Table D-2 – Scene transition types. 181
Table E-1 – Meaning of sample aspect ratio 184
Table E-2 – Meaning of video_format 185
Table E-3 – Colour Primaries 186
Table E-4 – Transfer Characteristics 187
Table E-5 – Matrix Coefficients 188
Table E-6 – Chroma Sampling Structure Frame 188
Table E-7 – Chroma Sampling Structure Frame 189

DRAFT ISO/IEC 14496-10 : 2002 (E)

xii DRAFT ITU-T Rec. H.264 (2002 E)

Foreword
The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn,
produce Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid
down in WTSA Resolution 1. In some areas of information technology which fall within ITU-T's purview, the necessary
standards are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organisation for Standardisation) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote.

This Recommendation | International Standard is being submitted for approval to the ITU-T and ISO/IEC JTC1/SC29. It
was prepared jointly by ITU-T SG16 Q.6 also known as VCEG (Video Coding Experts Group) and by ISO/IEC
JTC1/SC29/WG11, also known as MPEG (Moving Picture Experts Group). VCEG was formed in 1997 to maintain prior
ITU-T video coding standards and develop new video coding standard(s) appropriate for a wide range of conversational
and non-conversational services. MPEG was formed in 1988 to establish standards for coding of moving pictures and
associated audio for various applications such as digital storage media, distribution and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

0 Introduction

0.0 Prolog

As processing power and memory costs have reduced, network support for coded video data has diversified, and
advances in video coding technology have progressed, the need has arisen for an industy standard for compressed video
representation with substantially increased coding efficiency and enhanced robustness to network environments. Toward
these ends the ITU-T video coding experts group (VCEG) and the ISO/IEC moving picture experts group (MPEG)
formed a joint video team (JVT) in 2001 for development of a new ITU-T Recommendation | International Standard.

0.1 Purpose

This Recommendation | International Standard was developed in response to the growing need for higher compression of
moving pictures for various applications such as video conferencing, digital storage media, television broadcasting,
internet streaming and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | Insternational Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media, transmitted
and received over existing and future networks and distributed on existing and future broadcasting channels.

0.2 Application

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.
DBS Direct broadcast satellite video services
DSL Digital subscriber line video services
DTTB Digital terrestrial television broadcasting
ISM Interactive storage media (optical disks, etc.)
MMM Multimedia mailing

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) xiii

MSPN Multimedia services over packet networks
RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance
SSM Serial storage media (digital VTR, etc.)

0.3 Profiles and levels
This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
they have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profile" and "level". These and other related terms are formally defined in
clause 4.

A "profile" is a subset of the entire bitstream syntax that is defined by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by parameters in the bitstream such as the
specified size of the decoded pictures. It is currently neither practical nor economic to implement a decoder capable of
dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are defined within each profile. A level is a defined set of constraints imposed
on parameters in the bitstream. These constraints may be simple limits on numbers. Alternatively they may take the form
of constraints on arithmetic combinations of the parameters (e.g. frame width multiplied by frame height multiplied by
frame rate).

Coded video content conforming to this Specification uses a common syntax. In order to achieve a subset of the
complete syntax, flags and parameters are included in the bitstream that signal the presence or otherwise of syntactic
elements that occur later in the bitstream. In order to specify constraints on the syntax (and hence define a profile), it is
thus only necessary to constrain the values of these flags and parameters that specify the presence of later syntactic
elements.

0.4 Overview of the syntax

The coded representation defined in the syntax achieves a high compression capability while preserving image quality.
The algorithm is not lossless as the exact sample values are not preserved through the encoding and decoding processes.
Obtaining good image quality at the bit rates of interest demands very high compression, which is not achievable with
intra picture coding alone. The need for random access, however, is best satisfied with pure intra picture coding. The
choice of the techniques is based on the need to balance a high image quality and compression capability with the
requirement to allow random access into the coded video data stream.

A number of techniques may be used to achieve high compression. The expected encoding algorithm (not specified in
this Recommendation | International Standard) first uses block-based motion compensation to reduce temporal
redundancy. Motion compensation is used both for causal prediction of a current picture from one or more previous
pictures, and for non-causal prediction from future pictures in decoder output order. Motion vectors may be defined for a
variety of region sizes in the picture. The prediction error is then further compressed using a transform to remove spatial
correlation before it is quantised, producing an irreversible process that discards less important information while
forming a close approximation to the source pictures. Finally, the motion vectors are combined with the quantised
transform coefficient information and encoded using either variable length codes or arithmetic coding.

0.4.1 Temporal processing

Because of the conflicting requirements of random access and highly efficient compression, three main picture types are
defined. Intra coded pictures (I-pictures) are coded without reference to other pictures. They provide access points to the
coded sequence where decoding can begin, but are coded with only moderate compression. Inter-coded pictures (P-
pictures) are coded more efficiently using motion compensated prediction of each block of sample values from some
previously decoded picture selected by the encoder. Bi-predictive pictures (B-pictures) provide the highest degree of
compression but require a higher degree of memory access capability in the decoding process, as each block of sample
values in a B picture may be predicted using a weighted average of two blocks of motion-compensated sample values.

The organisation of the three picture types in a sequence is flexible, and the order of the decoding process is generally
not the same as the order of the source picture capture process in the encoder or the output order from the decoder for

DRAFT ISO/IEC 14496-10 : 2002 (E)

xiv DRAFT ITU-T Rec. H.264 (2002 E)

display. The choice is left to the encoder and will depend on the requirements of the application. Figure Intro-1
illustrates one limited and example of the relationship among the three different picture types. Significantly different
inter-picture dependency relationships are also allowed at the discretion of the encoder within limits specified by the
profile and level. The decoding order is specified such that the decoding of pictures that use inter-picture prediction
follows later in decoding order than other pictures that are referenced in the decoding process.

0.4.2 Coding interlaced video

Each frame of interlaced video consists of two fields which are separated in capture time. This Recommendation |
International Standard allows either the representation of complete frames or the representation of individual fields.
Frame encoding or field encoding can be adaptively selected on a picture-by-picture basis and also on a more localized
basis within a coded frame. Frame encoding is typically preferred when the video scene contains significant detail with
limited motion. Field encoding, in which the second field can be predicted from the first, works better when there is fast
movement.

0.4.3 Macroblocks and motion segmentations

As in previous video coding Recommendations and International Standard, a macroblock consisting of a 16x16 block of
luma samples and a two corresponding blocks of chroma samples is used as the basic processing unit of the video
decoding process.

The selection of a motion compensation unit is a result of a trade-off between the coding gain provided by using motion
information and the quantity of data needed to represent it. In this Recommendation | International Standard the motion
compensation process can form segmentations for motion representation as small as 4x4 in size, using motion vector
accuracy of one quarter or one-eighth of a sample grid spacing displacement. The inter prediction process for motion
compensated prediction of a sample block can also involve the selection of the picture to be used as the reference picture
from a number of stored previously-decoded pictures.

In frame encoding, the prediction from the previous reference frame can itself be either frame-based or field-based.
depending on the type of the motion vector information and other information that is encoded within the compressed
picture representation. Motion vectors are encoded differentially with respect to predicted values formed from nearby
encoded motion vectors.

It is the responsibility of the encoder to calculate appropriate motion vectors or other data elements represented in the
video data stream. This motion estimation process in the encoder and the selection of whether to use inter-picture
prediction for the representation of each region of the video content is not specified in this Recommendation |
International Standard.

0.4.4 Spatial redundancy reduction

Both source pictures and prediction errors have high spatial redundancy. This Recommendation | International standard
is based on the use of a block-based transform method for spatial redundancy removal. After motion compensated
prediction or spatial-based prediction from previously-decoded samples within the current picture, the resulting
prediction error is split into 4x4 blocks. These are converted into the transform domain where they are quantised. After

T1516650-94/d01

I B B P B B B P

Bidirectional Interpolation

Prediction

Figure Intro. 1 – Example of temporal picture structure

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) xv

quantisation many of the transform coefficients are zero or have low amplitude and can thus be represented with a small
amount of encoded data. The processes of transformation and quantization in the encoder are not specified in this
Recommendation | International Standard.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 1

1 Scope
This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

– ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 AC coefficient: Any transform coefficient for which the frequency index in one or both dimensions is non-
zero.

3.2 B slice: A bi-predictive slice; A slice that is coded in a manner in which a weighted average of two inter
prediction blocks may be used for inter prediction.

3.3 bitstream: A sequence of bits that forms the representation of data and coded fields and frames.

3.4 block: An N-column by M-row array of samples, or NxM array of transform coefficients.

3.5 bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a top field.

3.6 byte: A sequence of 8 bits, ordered from the first and most significant bit on the left to the last and least
significant bit on the right.

3.7 byte aligned: A bit in a bitstream is byte-aligned if its position is a multiple of 8 bits from the first bit in the
bitstream.

3.8 byte stream format: A NAL unit stream containing start code prefixes and NAL units as per Annex B.

3.9 category: For slice layer and lower layer syntax elements, specifies the allocation of syntax elements to data
structures for data partitioning. It may also be used by the systems layer to refer to classes of syntax elements in a
manner not specified in this Recommendation | International Standard.

3.10 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for the chroma array or sample are Cr and Cb.

3.11 coded field: A coded representation of a field.

3.12 coded frame: A coded representation of a frame.

3.13 coded pictures input buffer: A first-in first-out (FIFO) buffer containing coded pictures in decoding order
specified in the video buffering verifier in Annex C.

3.14 coded representation: A data element as represented in its coded form.

3.15 common intermediate format (CIF): A video frame that is 22 macroblocks wide and 18 macroblocks high.

3.16 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

3.17 context: The numerical value of the context variable when decoding a symbol.

3.18 context modelling: The choice and specification of prior decoded symbols that are to be used in the decoding
of a symbol.

2 DRAFT ITU-T Rec. H.264 (2002 E)

3.19 context variable: Specified for each symbol by an equation containing the recently decoded symbols as
defined by context modelling.

3.20 dangling field: A field for which there is no adjacent field carrying the same frame number.

3.21 decoding order: The order in which the coded pictures are to be decoded.

3.22 data partitioning: A method of partitioning selected syntax elements into syntactical structures based on a
categorization of the syntax elements.

3.23 DC coefficient: The transform coefficient for which the frequency index is zero in both dimensions.

3.24 decoded picture: A decoded picture is obtained by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is a decoded top field or a decoded bottom field.

3.25 decoded pictures buffer: A buffer specified in the video buffering verifier in subclause C.1. The decoded
picture buffer comprises the reference picture buffer and the picture reordering buffer.

3.26 decoder: An embodiment of a decoding process.

3.27 decoding process: The process specified in this Recommendation | International Standard that reads a NAL
unit stream and produces decoded fields or frames.

3.28 direct prediction: An inter prediction for a block for which no motion vector is decoded.

3.29 encoder: An embodiment of an encoding process.

3.30 emulation prevention byte: A byte having a fixed value present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains a start
code prefix.

3.31 encoding process: A process, not specified in this Recommendation | International Standard, that reads a
sequence of fields and frames and produces a conforming NAL unit stream as specified in this Recommendation |
International Standard.

3.32 field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

3.33 flag: A variable which can take one of only two possible values.

3.34 frame: A frame contains sampled and quantized luma and chroma data of all rows of a of a video signal frame.
A frame consists of two fields, a top field and a bottom field. For interlaced video signal, one of these fields is sampled
temporally later than the other.

3.35 intra prediction: A prediction derived from the decoded samples of the same decoded picture.

3.36 instantaneous decoder refresh (IDR) picture: A special I picture that causes the decoder to mark all
reference pictures in the decoded pictures buffer as un-used immediately before decoding the IDR picture, and to
indicate that later coded pictures can be decoded without inter prediction from any picture decoded prior to the IDR
picture.

3.37 inter coding: Coding of a block, macroblock, slice, or picture that uses information from both, within the
picture and from other pictures.

3.38 inter prediction: A prediction derived from decoded samples of pictures other than the current decoded
picture. Inter prediction is a collective term for the prediction process in P, SP, and B macroblocks.

3.39 intra coding: Coding of a block, macroblock, slice or picture that uses intra prediction.

3.40 I picture: An intra picture; A picture that is coded using prediction only from decoded samples within the
same picture.

3.41 inverse transform: A part of the decoding process by which a block of scaled transform coefficient levels is
converted into a block of spatial-domain samples.

3.42 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the picture, slice, reference picture selection, macroblock, 8x8 block and 4x4 block
layers.

3.43 level: A defined set of constraints on the values which may be taken by the parameters of this
Recommendation | International Standard. The same set of level definitions are used with all profiles, but individual
implementations may support a different level for each supported profile. In a different context, level is the value of a
transform coefficient prior to scaling.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 3

3.44 long SCP: A start code prefix which is used in the construction of the byte stream format for NAL unit
streams. It is mandatory at the start of a coded picture in byte stream format. Optionally it can be used instead of a short
SCP at the start of a coded slice or lower coding layers.

3.45 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol used for luma is Y.

3.46 macroblock: The 16x16 luma samples and the two corresponding blocks of chroma samples.

3.47 macroblock address: The raster scan order number of a macroblock starting with zero for the top left
macroblock in a picture.

3.48 macroblock allocation map: A means of partitioning the macroblocks of a picture into slice groups. The
macroblock allocation map an array of numbers one for each coded macroblock indicating the slice group to which the
coded macroblock belongs.

3.49 macroblock location: The two dimensional coordinates of a macroblock in a picture designated by (x,y). For
the top left macroblock of the picture (x,y)=(0,0). x is incremented by 1 for each macroblock column from left to right. y
is incremented by 1 for each macroblock row from top to bottom.

3.50 macroblock pair: A pair of vertically-contiguous macroblocks in a picture that is coupled for use in
macroblock-adaptive frame/field decoder processing.

3.51 Mbit: 1 000 000 bits.

motion compensation: Part of the inter prediction process for sample values, using previously decoded samples that are
spatially displaced as signalled by means of motion vectors.

3.53 motion vector: A two-dimensional vector used for motion compensation that provides an offset from the
coordinate position in the decoded picture to the coordinates in a reference picture.

3.54 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data interspersed as necessary with emulation prevention bytes.

3.55 NAL unit stream: A sequence of NAL units containing the syntax structures associated with the coded video
content.

3.56 network abstraction layer (NAL): A definition of syntax structures and additional information including
framing and timing that are supported by a system

3.57 non-reference picture: a decoded picture that is marked as not used for inter prediction.

3.58 opposite parity: The opposite parity of top is bottom, and vice versa.

3.59 output order: The order in which the decoded pictures are intended for output.

3.60 output reordering delay: A delay between decoding a coded picture and its output that is caused when the
order of pictures specified for output is different from the order specified for decoding.

3.61 parity: The parity of a field can be top or bottom.

3.62 partitioning: The division of a set into sub-sets such that each element of the set is in exactly one of the sub-
sets.

3.63 P slice: A predictive slice; A slice that is coded using inter prediction from previously-decoded reference
pictures, using at most one motion vector and reference picture index to predict the sample values of each block.

3.64 picture: A collective term for a field or a frame.

3.65 picture order count: Picture position in output order relative to the latest IDR picture in decoding order.

3.66 picture reordering: The process of re-ordering the decoded pictures when the decoding order is different
from the output order.

3.67 prediction: An embodiment of the prediction process.

3.68 prediction process: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

3.69 prediction residual: The difference between the value of a source sample or data element and its predictor.

3.70 predictor: A combination of previously decoded sample values or data elements used in the decoding process
of subsequent sample values or data elements.

4 DRAFT ITU-T Rec. H.264 (2002 E)

3.71 probability model: The set of probability distributions used by the arithmetic decoding process when decoding
a symbol. The context determines which probability distribution is to be used when decoding a particular symbol at a
particular point, block, macroblock, etc. in the picture. For each symbol, the number of probability distributions in the
set is equal to the number of possible values for the context variable, i.e., the number of contexts.

3.72 profile: A specified subset of the syntax of this Recommendation | International Standard.

3.73 quantisation parameter: A parameter used by the decoding process for scaling of transform coefficient levels.

3.74 quarter common intermediate format (QCIF): A video frame that is 11 macroblocks wide and 9
macroblocks high.

3.75 random access: The ability to start the decoding of a coded NAL unit stream at a point other than the
beginning of the stream and recover and exact or approximate representation of the decoded pictures represented by that
NAL unit stream.

3.76 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first row of the two-dimensional pattern scanned from left to
right, followed similarly by the second, third, etc. rows of the pattern each scanned from left to right.

3.77 reference field: A reference field is used for inter prediction when P macroblocks, SP macroblocks, and B
macroblocks of a coded field or a coded frame are decoded.

3.78 reference frame: A reference frame is used for inter prediction when P macroblocks, SP macroblocks, and B
macroblocks of a coded frame are decoded.

3.79 reference index list: A list of indices that is assigned to the reference pictures in the reference picture buffer.

3.80 reference index list 0: The list of reference indices for use in reference list 0 prediction for a P, B, or SP slice.
All inter prediction used for P and SP slices is considered reference list 0 prediction. The reference index list 0 is one of
two reference index lists used for a B slice, with the other being the reference index list 1.

3.81 reference list 0 motion vector: A motion vector associated with a reference index pointing into the reference
index list 0.

3.82 reference list 0 prediction: Inter prediction of the content of a slice using a reference index into the reference
index list 0.

3.83 reference index list 1: A list of reference indices defined for use in inter prediction for a B slice. The
reference index list1 is one of two lists of reference indices used by a B slice, with the other being the reference index list
0.

3.84 reference list 1 motion vector: A motion vector associated with a reference index pointing into the reference
index list 1.

3.85 reference list 1 prediction: Inter prediction of the content of a B slice using a reference index into the
reference index list 1.

3.86 reference picture: A picture containing samples that are used for inter prediction.

3.87 reference picture buffer: A (part of the decoded pictures ?) buffer containing the reference pictures.

3.88 reference picture buffer management: specifies in the coded data, how the decoding process applies to the
decoded pictures buffer and in particular to the reference picture buffer.

3.89 reserved: The term “reserved”, when used in the clauses defining some values of a particular syntax element
means that these values may be used in extensions of this Recommendation | International Standard by ITU-T | ISO/IEC,
and that these values shall not be used unless so specified.

3.90 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

3.91 run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficients preceding a non-zero transform coefficient, in the block scan order. In another
context, the number of skipped macroblocks.

3.92 sample aspect ratio (SAR): Specifies the distance between luma samples. It is defined as the vertical
displacement of the rows of luma samples in a frame divided by the horizontal displacement of the luma samples. Thus
its units are (metres per row) ÷ (metres per sample).

3.93 scaling: The process of scaling the transform coefficient levels resulting in transform coefficients.

3.94 short SCP: A start code prefix which is used in the construction of a byte stream format of coded data. It can
be used instead of a long SCP at the start of a coded slice or lower coding layers.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 5

3.95 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock is
to be decoded as "skipped". This indication may be common to several macroblocks.

3.96 slice: An integer number of macroblocks ordered contiguously in raster scan order within a particular slice
group. Although a slice contains macroblocks that are contiguous in raster scan order within a slice group, these
macroblocks are not necessarily contiguous within the picture. The addresses of the macroblocks are derived from the
address of the first macroblock and the slice group parameters.

3.97 slice group: A sub-set of the macroblocks of a picture. The division of the picture into slice groups is a
partitioning of the picture. The partition is specified by the slice group parameters.

3.98 slice header: A part of a coded slice containing the coded representation of data elements pertaining to the
slice data that follow the slice header.

3.99 SI picture: A switching I picture; A picture that is coded using prediction only from decoded samples within
the same picture, encoded such that it can be reconstructed identically to another SP slice or SI slice, as specified in
clause 11.

3.100 SI slice: A switching I slice; A slice that is coded using prediction only from decoded samples within the same
slice, encoded such that it can be reconstructed identically to another SP slice or SI slice, as specified in subclause 11.

3.101 source (input): Term used to describe the video material or some of its attributes before encoding.

3.102 SP slice: A switching P slice; A slice that is coded using inter prediction from previously-decoded reference
pictures, using at most one motion vector and reference picture index to predict the sample values of each block, encoded
such that it can be reconstructed identically to another SP slice or SI slice, as specified in subclause 11.

3.103 start code prefix (SCP): One of a set of unique codes embedded in the byte-stream format that are used for
identifying the beginning of a coding layer. Emulation of start code prefixes is prohibited within NAL units.

3.104 string of data bits (SODB): An ordered sequence of some finite number of bits, in which the left-most bit is
considered to be the first and most significant bit (MSB) and the right-most bit is considered to be the last and least
significant bit (LSB).

3.105 symbol: A syntax element, or part thereof, to be decoded.

3.106 top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

3.107 transform coefficient: A scalar considered to be in a frequency domain that is associated with a particular
two-dimensional frequency index in the inverse transform of the decoding process.

3.108 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter code-words to
frequent symbols and longer code-words to less frequent symbols.

3.109 video buffering verifier (VBV): A hypothetical decoder that is connected to the output of the encoder. Its
purpose is to provide a constraint on the variability of the NAL unit stream that an encoder or editing process may
produce.

3.110 XYZ profile decoder: A decoder able to decode coded data conforming to the specifications of the XYZ
profile (with XYZ being any of the defined Profile names).

3.111 zig-zag scan: A specific sequential ordering of transform coefficients from (approximately) the lowest spatial
frequency to the highest.

4 Abbreviations
4.1 ABT: Adaptive Block size Transform

4.2 CABAC: Context-based Adaptive Binary Arithmetic Coding

4.3 CAVLC: Context-based Adaptive Variable Length Coding

4.4 CIF: Common Intermediate Format

4.5 DPA: Data Partition type A

4.6 DPB: Data Partition type B

4.7 DPC: Data Partition type C

4.8 FCC: Federal Communications Commission

6 DRAFT ITU-T Rec. H.264 (2002 E)

4.9 FIFO: First-In, First-Out

4.10 IDR: Instantaneous Decoder Refresh

4.11 LPS: Least Probable Symbol

4.12 LSB: Least Significant Bit

4.13 MB: Macroblock

4.14 MPS: Most Probable Symbol

4.15 MSB: Most Significant Bit

4.16 NAL: Network Abstraction Layer

4.17 QCIF: Quarter Common Intermediate Format

4.18 RBSP: Raw Byte Sequence Payload

4.19 SAR: Sample Aspect Ratio

4.20 SCP: Start Code Prefix

4.21 SEI: Supplemental Enhancement Information

4.22 SMPTE: Society of Motion Picture and Television Engineers

4.23 SODB: String Of Data Bits

4.24 VCL: Video Coding Layer

4.25 VBV: Video Buffering Verifier

4.26 VLC: Variable Length Coding

5 Conventions
The mathematical operators used to describe this Specification are similar to those used in the C programming language.
However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loops
generally begin from zero.

5.1 Arithmetic operators

The following mathematical and logical operators are defined as follows

+ Addition
– Subtraction (as a binary operator) or negation (as a unary operator)

+ + Increment, i.e. x+ + is equivalent to x = x + 1

– – Decrement, i.e. x– – is equivalent to x = x – 1

×

* Multiplication

^ Power
/ Integer division with truncation of the result toward zero. For example, 7/4 and –7/–4 are truncated to

1 and –7/4 and 7/–4 are truncated to –1.
DIV Integer division with truncation of the result toward minus infinity. For example 3 DIV 2 is rounded

to 1, and –3 DIV 2 is rounded to –2.

÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

 The summation of the f (i) with i taking all integer values from a up to and including b.

a % b Modulus operator. Remainder of a divided by b, defined only for a and b both positive integers

5.2 Logical operators
a && b Boolean logical "and" of a and b

∑
=

b

ai
if)(

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 7

a | | b Boolean logical "or" of a and b
! Logical NOT

5.3 Relational operators
> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

= = Equal to

!= Not equal to

5.4 Bit-wise operators
& AND
| OR
a >> b Arithmetic right shift of a two’s complement integer representation of a by b binary digits. This

function is defined only for positive values of b. Bits shifted into the MSBs as a result of the right
shift shall have a value equal to the MSB of a prior to the shift operation.

a << b Arithmetic left shift of a two’s complement integer representation of a by b binary digits. This
function is defined only for positive values of b.

5.5 Assignment
= Assignment operator

5.6 Functions

Sign(x) = (5-1)

Abs(x) = (5-2)

Clip3(a, b, c) = (5-3)

Clip1(x) = Clip3(0, 255, x) (5-4)

Ceil(x) rounds x up to the nearest integer. Defined only for non-negative values of x. (5-5)

Log2(x) returns the base-2 logarithm of x. (5-6)

6 Source coder

6.1 Picture formats

The image width and height of the decoded luma memory arrays are multiples of 16 samples. Decoder output picture
sizes that are not a multiple of 16 in width or height can be specified using a cropping rectangle. This Recommendation |
International Standard represents colour sequences using 4:2:0 chroma sampling.

The nominal vertical and horizontal locations of luma and chroma samples in frames are shown in Figure 6-1.
Alternative chroma sample locations may be indicated in video usability information syntax (see Annex E).

<−
≥

0;1
0;1

x
x

<−
≥

0;
0;

xx
xx

>
<

otherwise;
;
;

c
bcb
aca

8 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

This Recommendation | International Standard describes decoding of video that contains either progressive-scan or
interlaced-scan frames, which may be mixed together in the same sequence.

A decoded frame of video contains two fields, the top field and the bottom field, which are interleaved. The first (i.e.,
top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth, etc. rows of a decoded
frame are the bottom field rows. A top field picture consists of only the top field rows of a decoded frame. A bottom field
picture consists of only the bottom field rows of a decoded frame.

The two decoded fields of an interlaced frame are separated in time. They may be decoded separately as two fields or
together as a frame.

NOTE - A progressive frame should always be coded as a single frame picture. However, a progressive frame is still considered to
consist of two fields (at the same instant in time).

...

... ...

= Location of luminance sample
= Location of chrominance sample

Guide:

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 9

The nominal vertical and horizontal locations of luma and chroma samples in interlaced frames are shown in Figure 6-2.
The vertical sampling locations of the chroma samples in a top field of an interlaced frame are specified as shifted up by
1/4 luma sample height relative to the field-sampling grid in order for these samples to align vertically to the usual
location relative to the full-frame sampling grid. The vertical sampling locations of the chroma samples in a bottom field
of an interlaced frame are specified as shifted down by 1/4 luma sample height relative to the field-sampling grid in order
for these samples to align vertically to the usual location relative to the full-frame sampling grid. The horizontal
sampling locations of the chroma samples are specified as unaffected by the application of interlaced field coding.

Figure 6-2 – Nominal vertical and temporal sampling locations of samples in 4:2:0 interlaced frames

6.2 Spatial subdivision of a picture into macroblocks
Pictures are divided into macroblocks. For instance, a QCIF picture is divided into 99 macroblocks as indicated in Figure
6-3.

Figure 6-3 – A picture with 11 by 9 macroblocks (QCIF picture)

6.3 Calculation of the macroblock address
When mb_adaptive_frame_field_flag in the picture parameter set is 0, the macroblock address calculation is recursively
specified as follows:

Time

Top
Field

Bottom
Field

Top
Field

= Luminance Sample

= Chrominance Sample

10 DRAFT ITU-T Rec. H.264 (2002 E)

1. A coded slice contains in its slice header the macroblock address of the first macroblock in the coded slice. The
macroblock allocation map conveys the slice group identifier of the first macroblock in a slice.

2. Let g be the slice group identifier of the most recently decoded macroblock of a given coded slice. The next
macroblock address is found by searching the macroblock allocation map in scan order for the next macroblock that has
the same slice group identifier g.

When mb_adaptive_frame_field_flag in the picture parameter set is 1, the macroblock pair address calculation is
recursively specified as follows (see Figure 6-4):

1. A coded slice contains in its slice header the macroblock pair address of the first macroblock pair in the coded slice.
The slice group index of the first macroblock pair in a coded slice may be found by referencing the macroblock
allocation map.

2. Let g be the slice group identifier of the most recently decoded macroblock pair of a given coded slice. The next
macroblock pair address is found by searching the macroblock allocation map in scan order for the next macroblock pair
that has the same slice group identifier g.

NOTE - This note describes one of many possible implementations of the macroblock address calculation (the macroblock pair
address could be calculated with a similar algorithm).
Assume the availability of a one-dimensional array m with as many entries as there are macroblocks or macroblock pairs in the
picture, and that is initialized with a one-dimensional representation of the macroblock allocation map of the picture parameter set
(in one of the several explicit or implicit forms defined there). Let n be the macroblock address of the last decoded macroblock of
a given slice. The next macroblock address is calculated by the following three steps:
 1. Identify the slice group of the macroblock n by using n as an index into m.
 2. Search in m in ascending order, starting with n, for the next entry that has the same slice group identifier.
 3. This is the macroblock address for the next macroblock or macroblock pair of the coded slice.

NOTE - a coded slice may consist of one slice NAL unit or, when data partitioning is used, of three NAL units DPA, DPB, and DPC.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 11

An MB pair

1

2

3

4

5

0

Figure 6-4 – Partitioning of the decoded frame into macroblock pairs. An MB pair can be coded as two frame
MBs, or one top-field MB and one bottom-field MB. The numbers indicate the scanning order of coded MBs.

6.4 Assignment of symbols within a macroblock

Figures 6-5 indicates how a macroblock or sub macroblock is partitioned with each luma block and associated chroma
blocks being motion-compensated using a separate motion vector and (for luma blocks larger or equal to 8x8 samples
and associated chroma blocks) using a separate reference picture index. If the ABT feature is used, the transform for
residual coding is adapted to the partitioning pattern as well.

0

Sub macroblock
types

4*4

0

1
0 1

0 1

2 3

0

8*8 8*4 4*8

0

1

0 1

0

2

1

3

16*16 16*8 8*16 8*8

Macroblock
types

Figure 6-5 – Numbering of the vectors for the different blocks in raster scan order depending on the inter mode.
For each block the horizontal component comes first followed by the vertical component.

12 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 6-6 shows the order of the assignments of syntax elements resulting from coding a macroblock to sub-blocks of
the macroblock if the ABT feature is not used. The assignment order if the ABT feature is used is specified in
Figure 12-1.

0 1

2 3

CBPY 8*8 block order
(raster scan order in MB)

Luma 4x4 block order for 4x4
intra prediction and 4x4
residual coding
(raster scan order within 8x8
region nested in raster scan
order of 8x8 regions)

Chroma 4x4 block order for
4x4 residual coding, shown
as 16-25, and intra 4x4
prediction, shown as 18-21
and 22-25 (raster scan order
in each 8x8 chroma region)

10 4 5

2 3 6 7

8 9 12 13

10 11 14 15

2x2 DC

AC

Cb Cr16 17

-1Y

...

Luma 4x4 DC for Intra 16x16
macroblock type

18 19

20 21

22 23

24 25

Figure 6-6 – Ordering of blocks for coded_block_patternY, 4x4 intra prediction, and 4x4 residual coding

7 Syntax and semantics

7.1 Method of describing the syntax in tabular form

The syntax is described in a manner that closely follows the C-language syntactic constructs. Syntax elements in the
bitstream are represented in bold type. Each syntax element is described by its name, its syntax category and descriptor
for its method of coded representation. A decoder behaves according to the value of the syntax element and on the values
of previously decoded syntax elements.

The syntax tables describe a superset of the syntax of all correct and error-free input bitstreams. Additional constraints on
the syntax form may be specified in other clauses. An actual decoder must implement correct means for identifying
entry points into the bitstream for proper decoding and to identify and handle errors in the bitstream. The methods for
identifying and handling errors and other such situations are not described here.

Following C-language conventions, a value of ‘0‘ represents a FALSE condition in a test statement. The value TRUE is
represented by ‘1‘, but any other value different than zero is also understood as TRUE.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 13

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
indicates that a data element is read (extracted) from the bitstream and the bitstream pointer advances to the bit following
the last bit of the data element extracted.

 Category Descriptor
/* A statement can be a syntax element with an associated syntax
category and descriptor or can be an expression used to specify
conditions for the existence, type, and quantity of syntax elements, as in
the following two examples */

syntax_element 3 e(v)
conditioning statement

/* A group of statements enclosed in curly brackets is a compound
statement and is treated functionally as a single statement. */

{
 statement
 statement
 …
}

/* A “while” structure indicates a test of whether a condition is true, and
if true, indicates evaluation of a statement (or compound statement)
repeatedly until the condition is no longer true */

while(condition)
 statement

/* A “do … while” structure indicates evaluation of a statement once,
followed by a test of whether a condition is true, and if true, indicates
repeated evaluation of the statement until the condition is no longer true
*/

do
 statement
while(condition)

/* An “if … else” structure indicates a test of whether a condition is
true, and if the condition is true, indicates evaluation of a primary
statement, otherwise indicates evaluation of an alternative statement.
The “else” part of the structure and the associated alternative statement
is omitted if no alternative statement evaluation is needed */

if(condition)
 primary statement
else
 alternative statement

/* A “for” structure indicates evaluation of an initial statement, followed
by a test of a condition, and if the condition is true, indicates repeated
evaluation of a primary statement followed by a subsequent statement
until the condition is no longer true. */

for(initial statement; condition; subsequent statement)
 primary statement

14 DRAFT ITU-T Rec. H.264 (2002 E)

7.2 Definitions of functions and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoder from the bitstream.

byte_aligned()

• Returns TRUE if the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is
the first bit in a byte. Otherwise it returns FALSE

first_non_skip_mb_in_pair()

• Returns TRUE if the current macroblock is the first macroblock in a macroblock pair or if the previous
macroblock in the macroblock pair was skipped. Used only in macroblock-adaptive frame/field coding.

next_bits(n)

• Provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. If used within an RBSP syntax
structure or in a structure within an RBSP syntax structure, returns a non-matching value if fewer than n bits
remain within the RBSP prior to the rbsp_trailing_bits(). If used within the byte stream format syntax specified
in Annex B, returns a non-matching value if fewer than n bits remain within the byte stream.

more_rbsp_data()

• Returns TRUE if there is more data in an RBSP before rbsp_trailing_bits(). Otherwise it returns FALSE. The
method for enabling determination of whether there is more data in the slices is specified by the system (or in
Annex B for systems that use the byte stream format).

total_coeff()

• Returns the number of coefficients from coeff_token. See subclause 7.3.5.3.1.

trailing_ones()

• Returns the trailing ones from coeff_token. See subclause 7.3.5.3.1.

slice_type()

• Returns the coding type of slice.

The following descriptors are used to describe the type of each syntax element.

• b(8): byte having any value (8 bits).

• ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first.

• se(v): signed integer Exp-Golomb-coded syntax element with the left bit first.

• me(v): mapped Exp-Golomb-coded syntax element with the left bit first.

• ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first.

• f(n): fixed-value bit string using n bits written (from left to right) with the left bit first.

• i(n): signed integer using n bits for a two’s complement representation with most significant bit written first. If
n is "v", the number of bits varies in a manner dependent on the value of other decoded data.

• u(n): unsigned integer using n bits with most significant bit written first. If n is "v", the number of bits varies in
a manner dependent on the value of other decoded data.

• xe(v): extended Exp-Golomb-coded syntax element with left bit first. If indicating a selection from a list having
only two alternatives, shall be interpreted as u(1). If indicating a selection from a list having more than two
alternatives, shall be interpreted as ue(v).

• ae(v): context-adaptive arithmetic entropy-coded syntax element. Some syntax elements are coded using
CABAC when entropy_coding_mode = = 1. This is indicated by specifiying an alternative descriptor separated
by a bar.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 15

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { Category Descriptor
 forbidden_bit u(1)
 nal_storage_idc u(2)
 nal_unit_type u(5)
 NumBytesInRBSP = 0
 for(i = 0; i < NumBytesInNALunit-1; i++) {
 if(next_bits(16) = = 0x0003) {
 rbsp[NumBytesInRBSP++] b(8)
 i++
 emulation_prevention_byte /* = = 0x03 */ f(8)
 } else
 rbsp[NumBytesInRBSP++] b(8)
 }
}

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() { Category Descriptor
 profile_idc 0 ue(v)
 level_idc 0 ue(v)
 seq_parameter_set_id 0 ue(v)
 log2_max_frame_num_minus4 0 ue(v)
 pic_order_cnt_type 0 ue(v)
 if(pic_order_cnt_type = = 0)
 log2_max_pic_order_cnt_minus4 0 ue(v)
 else if(pic_order_cnt_type = = 1) {
 offset_for_non_stored_pic 0 se(v)
 num_stored_frames_in_pic_order_cnt_cycle 0 ue(v)
 for(i = 0; i < num_stored_frames_in_pic_order_cnt_cycle; i++)
 offset_for_stored_frame 0 se(v)
 }
 num_of_ref_frames 0 ue(v)
 required_frame_num_update_behaviour 0 u(1)
 pic_width_in_mbs_minus1 0 ue(v)
 pic_height_in_mbs_minus1 0 ue(v)
 send_filter_parameters_flag 0 u(1)
 constrained_intra_pred_flag 0 u(1)
 mb_frame_field_adaptive_flag 0 u(1)
 vui_seq_parameters_flag 0 u(1)
 if(vui_seq_parameters_flag)
 vui_seq_parameters() 0
 rbsp_trailing_bits() 0
}

16 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set_rbsp() { Category Descriptor
 pic_parameter_set_id 1 ue(v)
 seq_parameter_set_id 1 ue(v)
 entropy_coding_mode 1 ue(v)
 motion_resolution 1 ue(v)
 adaptive_block_size_transform_flag 1 u(1)
 num_slice_groups_minus1 1 ue(v)
 if(num_slice_groups_minus1 > 0) {
 mb_allocation_map_type 1 ue(v)
 if(mb_allocation_map_type = = 0)
 for(i = 0; i <= num_slice_groups_minus1; i++)
 run_length 1 ue(v)
 else if(mb_allocation_map_type = = 2)
 for(i = 0; i < num_mbs_in_pic; i++)
 slice_group_id 1 u(v)
 else if(mb_allocation_map_type = = 3)
 for(i = 0; i < num_slice_groups_minus1; i++) {
 top_left_mb 1 u(v)
 bottom_right_mb 1 u(v)
 }
 else if(mb_allocation_map_type = = 4 | |
 mb_allocation_map_type = = 5 | |
 mb_allocation_map_type = = 6) {

 slice_group_change_direction 1 u(1)
 slice_group_change_rate_minus1 1 ue(v)
 }
 }
 num_ref_idx_l0_active_minus1 1 ue(v)
 num_ref_idx_l1_active_minus1 1 ue(v)
 weighted_pred_flag 1 u(1)
 weighted_bipred_explicit_flag 1 u(1)
 weighted_bipred_implicit_flag 1 u(1)
 slice_qp_minus26 /* relative to 26 */ 1 se(v)
 slice_qp_s_minus26 /* relative to 26 */ 1 se(v)
 redundant_slice_flag 1 u(1)
 vui_pic_parameters_flag 1 u(1)
 if(vui_pic_parameters_flag) {
 vui_pic_parameters() 1
 }
 rbsp_trailing_bits() 1
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 17

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { Category Descriptor

do
sei_message() 7

while(more_rbsp_data())
rbsp_trailing_bits() 7

}

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { Category Descriptor

PayloadType = 0
while(next_bits(8) = = 0xFF) {

byte_ff /* equal to 0xFF */ 7 u(8)
PayloadType += 255

}
last_payload_type_byte 7 u(8)
PayloadType += last_payload_type_byte
PayloadSize = 0
while(next_bits(8) = = 0xFF) {

byte_ff 7 u(8)
PayloadSize += 255

}
last_payload_size_byte 7 u(8)
PayloadSize += last_payload_size_byte
sei_payload(PayloadType, PayloadSize) 7

}

7.3.2.4 Picture delimiter RBSP syntax

pic_delimiter_rbsp() { Category Descriptor
 three_reserved_bits 8 u(3)
 pic_type 8 u(3)
 non_stored_pic_flag 8 u(1)
 rbsp_trailing_bits() 8
}

7.3.2.5 Filler data RBSP syntax

filler_data_rbsp(NumBytesInRBSP) { Category Descriptor
 while(next_bits(8) = = 0xFF)
 byte_ff 9 f(8)
 rbsp_trailing_bits() 9
}

18 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.2.6 Slice layer RBSP syntax

slice_layer_no_partitioning_rbsp() { Category Descriptor
 slice_header() 4
 slice_data() /* all categories of slice_data() syntax */ 4 | 5 | 6
 rbsp_slice_trailing_bits() 4
}

7.3.2.7 Data partition RBSP syntax

7.3.2.7.1 Data partition A RBSP syntax

dpa_layer_rbsp() { Category Descriptor
 slice_header() 4
 slice_id 4 ue(v)
 slice_data() /* only the category 4 parts of slice_data() syntax */ 4
 rbsp_slice_trailing_bits() 4
}

7.3.2.7.2 Data partition B RBSP syntax

dpb_layer_rbsp() { Category Descriptor
 slice_id 5 ue(v)
 slice_data() /* only the category 5 parts of slice_data() syntax */ 5
 rbsp_slice_trailing_bits() 5
}

7.3.2.7.3 Data partition C RBSP syntax

dpc_layer_rbsp() { Category Descriptor
 slice_id 6 ue(v)
 slice_data() /* only the category 6 parts of slice_data() syntax */ 6
 rbsp_slice_trailing_bits() 6
}

7.3.2.8 RBSP trailing bits syntax

rsbp_trailing_bits() { Category Descriptor
 rbsp_stop_bit /* equal to 1 */ All f(1)
 while(!byte_aligned())
 rbsp_alignment_bit /* equal to 0 */ All f(1)
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 19

7.3.2.9 RBSP slice trailing bits syntax

rbsp_slice_trailing_bits() { Category Descriptor
 rbsp_stop_bit /* equal to 1 */ All f(1)
 if(entropy_coding_mode = = 1)
 while(next_bits(1) = = '1')
 cabac_stuffing_bit /* equal to 1 */ All f(1)
 while(!byte_aligned())
 rbsp_alignment_bit /* equal to 0 */ All f(1)
}

20 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3 Slice header syntax

slice_header() { Category Descriptor
 pic_parameter_set_id 4 ue(v)
 frame_num 4 u(v)
 pic_structure 4 ue(v)
 first_mb_in_slice 4 u(v)
 slice_type_idc 4 ue(v)
 if(pic_order_cnt_type = = 0)
 pic_order_cnt 4 u(v)
 else if(pic_order_cnt_type = = 1)
 delta_pic_order_cnt 4 se(v)
 if(redundant_slice_flag)
 redundant_pic_cnt 4 ue(v)
 if(slice_type_idc = = BiPred)
 direct_spatial_mv_pred_flag 4 u(1)
 num_ref_idx_active_override_flag 4 u(1)
 if(num_ref_idx_active_override_flag) {
 if(slice_type_idc = = Pred | | slice_type_idc = = SPred | |
 slice_type_idc = = BiPred) {

 num_ref_idx_l0_active_minus1 4 ue(v)
 if(slice_type_idc = = BiPred)
 num_ref_idx_l1_active_minus1 4 ue(v)
 }
 }
 ref_idx_reordering() 4
 if((weighted_pred_flag &&
 ((slice_type_idc = = Pred) | | (slice_type_idc = = SPred))) | |
 (weighted_bipred_explicit_flag &&
 (slice_type_idc = = BiPred)))

 pred_weight_table() 4
 ref_pic_buffer_management() 4
 slice_qp_delta 4 se(v)
 if(slice_type_idc = = SPred | | slice_type_idc = = SIntra) {
 if(slice_type_idc = = SPred)
 sp_for_switch_flag 4 u(1)
 slice_qp_s_delta 4 se(v)
 }
 if(send_filter_parameters_flag = = 1) {
 disable_deblocking_filter_flag 4 u(1)
 if(!disable_deblocking_filter_flag) {
 slice_alpha_c0_offset_div2 4 se(v)
 slice_beta_offset_div2 4 se(v)
 }
 }
 if(num_slice_groups_minus1 > 0 &&
 mb_allocation_map_type >= 4 &&
 mb_allocation_map_type <= 6)

 slice_group_change_cycle 4 u(v)
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 21

7.3.3.1 Reference index reordering syntax

ref_idx_reordering() { Category Descriptor
 if(slice_type() != Intra && slice_type() != SIntra) {
 ref_idx_reordering_flag_l0 4 u(1)
 if(ref_idx_reordering_flag_l0) {
 do {
 remapping_of_pic_nums_idc 4 ue(v)
 if(remapping_of_pic_nums_idc = = 0 | |
 remapping_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 4 ue(v)
 else if(remapping_of_pic_nums_idc = = 2)
 long_term_pic_idx 4 ue(v)
 } while(remapping_of_pic_nums_idc != 3)
 }
 }
 if(slice_type() = = BiPred) {
 ref_idx_reordering_flag_l1 4 u(1)
 if(ref_idx_reordering_flag_l1) {
 do {
 remapping_of_pic_nums_idc 4 ue(v)
 if(remapping_of_pic_nums_idc = = 0 | |
 remapping_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 4 ue(v)
 else if(remapping_of_pic_nums_idc = = 2)
 long_term_pic_idx 4 ue(v)
 } while(remapping_of_pic_nums_idc != 3)
 }
 }
}

22 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.3.2 Prediction weight table syntax

pred_weight_table() { Category Descriptor
 luma_log_weight_denom 4 ue(v)
 chroma_log_weight_denom 4 ue(v)
 for(i =0; i <= num_ref_idx_l0_active_minus1; i++) {
 luma_weight_flag_l0 4 u(1)
 if(luma_weight_flag_l0) {
 luma_weight_l0[i] 4 se(v)
 luma_offset_l0[i] 4 se(v)
 }
 chroma_weight_flag_l0 4 u(1)
 if(chroma_weight_flag_l0)
 for(j =0; j < 2; j++) {
 chroma_weight_l0[i][j] 4 se(v)
 chroma_offset_l0[i][j] 4 se(v)
 }
 }
 if(slice_type() = = BiPred) {
 for(i = 0; i<= num_ref_idx_l1_active_minus1num; i++) {
 luma_weight_flag_l1 4 u(1)
 if(luma_weight_flag_l1) {
 luma_weight_l1[i] 4 se(v)
 luma_offset_l1[i] 4 se(v)
 }
 chroma_weight_flag_l1 4 u(1)
 if(chroma_weight_flag_l1)
 for(j = 0; j < 2; j++) {
 chroma_weight_l1[i][j] 4 se(v)
 chroma_offset_l1[i][j] 4 se(v)
 }
 }
 num_custom_bipred_weights 4 ue(v)
 for(i=0; i < num_custom_bipred_weights; i++) {
 if(num_ref_idx_l0_active_minus1> 0)
 irp_l0 4 xe(v)
 if(num_ref_idx_l1_active_minus1 > 0)
 irp_l1 4 xe(v)
 luma_weight_bipred_l0[irp_l0][irp_l1] 4 se(v)
 luma_weight_bipred_l1[irp_l0][irp_l1] 4 se(v)
 luma_offset_bipred[irp_l0][irp_l1] 4 se(v)
 chroma_weight_flag_bipred[irp_l0][irp_l1] 4 u(1)
 if (chroma_weight_flag_bipred[irp_l0][irp_l1])
 for(j = 0; j < 2; j++) {
 chroma_weight_bipred_l0[irp_l0][irp_l1][j] 4 se(v)
 chroma_weight_bipred_l1[irp_l0][irp_l1][j] 4 se(v)
 chroma_offset_bipred[irp_l0][irp_l1][j] 4 se(v)
 }

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 23

 }
 }
}

7.3.3.3 Reference picture buffer management syntax

ref_pic_buffer_management() { Category Descriptor
 ref_pic_buffering_mode 4 | 7 u(1)
 if(ref_pic_buffering_mode = = 1)
 do {
 memory_management_control_operation 4 | 7 ue(v)
 if(memory_management_control_operation = = 1 | |
 memory_management_control_operation = = 3)

 difference_of_pic_nums_minus1 4 | 7 ue(v)
 if(memory_management_control_operation = = 2 | |
 memory_management_control_operation = = 3)

 long_term_pic_idx 4 | 7 ue(v)
 if(memory_management_control_operation = = 4)
 max_long_term_pic_idx_plus1 4 | 7 ue(v)
 } while(memory_management_control_operation != 0 &&
 memory_management_control_operation != 5)

}

24 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.4 Slice data syntax

slice_data() { Category Descriptor
 if(mb_frame_field_adapative_flag &&
 (pic_structure = = 0 | |
 pic_structure = = 3 | |
 pic_structure = = 4)) {

 MbPairY = first_mb_in_slice / (pic_width_in_mb_minus1 + 1)
 MbPairX = first_mb_in_slice % (pic_width_in_mb_minus1+1)
 MbNum = (MbPairY << 1) * (pic_width_in_mb_minus1 + 1)
 + MbPairX

 } else
 MbNum = first_mb_in_slice
 do {
 if(slice_type() != Intra && slice_type() != SIntra)
 if(entropy_coding_mode = = 0) {
 mb_skip_run 4 ue(v)
 MoreDataFlag = more_rbsp_data()
 } else {
 mb_skip_flag 4 ae(v)
 MoreDataFlag = !mb_skip_flag
 }
 if(MoreDataFlag)
 if(mb_frame_field_adaptive_flag &&
 (pic_structure = = 0 | |
 pic_structure = = 3 | | pic_structure = = 4) &&
 (slice_type() ! = BiPred)) {

 if(MbNum % 2 = = 0)
 MbFieldDecodingFlag = 1
 if(MbFieldDecodingFlag) {
 mb_field_decoding_flag 4 u(1) | ae(v)
 MbFieldDecodingFlag = 0
 } else
 mb_field_decoding_flag = 0
 }
 if(adaptive_block_size_transform_flag = = 0)
 macroblock_layer() 4 | 5 | 6
 else
 macroblock_layer_abt() 4 | 5 | 6
 if(entropy_coding_mode = = 0)
 MoreDataFlag = more_rbsp_data()
 else {
 if(MbNum < MAX_MB_ADDRESS) {
 if(mb_frame_field_adaptive_flag &&
 (pic_structure = = 0 | |
 pic_structure = = 3 | | pic_structure = = 4) &&

 MbNum % 2 != 0)
 MoreDataFlag = 1
 else {
 end_of_slice_flag 4 ae(v)
 MoreDataFlag = !end_of_slice_flag

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 25

 } else
 MoreDataFlag = 0
 }
 MbNum++
 } while(MoreDataFlag)
}

NOTE – macroblock_layer_abt() is specified in subclause 12.2.1.

7.3.5 Macroblock layer syntax

macroblock_layer() { Category Descriptor
 mb_type 4 ue(v) | ae(v)
 if(num_mb_partition[mb_type] = = 4)
 sub_mb_pred(mb_type) 4
 else
 mb_pred(mb_type) 4
 SendResidual = 0
 if(mb_partition_pred_mode(, 1) = = Intra &&
 mb_type != Intra_4x4) /* Intra_16x16_X_Y_Z mb_type */

 SendResidual = 1
 else {
 coded_block_pattern 4 me(v) | ae(v)
 if(coded_block_pattern > 0)
 SendResidual = 1
 }
 if(SendResidual) {
 if(!mb_frame_field_adaptive_flag | |
 (mb_frame_field_adaptive_flag &&
 (pic_structure = = 0 | |
 pic_structure = = 3 | | pic_structure = = 4) &&
 first_non_skip_mb_in_pair())

 delta_qp 4 se(v) | ae(v)
 residual() 5 | 6
 }
}

26 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.5.1 Macroblock prediction syntax

mb_pred(mb_type) { Category Descriptor
 if(mb_partition_pred_mode(mb_type, 1) = = Intra) {
 if(mb_type = = Intra_4x4 | | mb_type = = SIntra_4x4)
 for(i = 0; i < num_mb_intra_partition(mb_type); i++) /* for
each 4x4 luma block */

 intra_pred_mode 4 ce(v) | ae(v)
 intra_chroma_pred_mode 4 ue(v) | ae(v)
 } else if(mb_type != Direct_16x16) {
 for(i = 0; i < num_mb_partition(mb_type); i++)
 if(num_ref_idx_l0_active_minus1 > 0 &&
 mb_partition_pred_mode(mb_type, i) != Pred_L1)

 ref_idx_l0 4 ue(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type); i++) {
 if(num_ref_idx_l1_active_minus1 > 0 &&
 mb_partition_pred_mode(mb_type, i) != Pred_L0)

 ref_idx_l1 4 ue(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type); i++) {
 if(mb_partition_pred_mode (mb_type, i) != Pred_L1)
 for(j = 0; j < 2; j++)
 mvd_l0[i][j] 4 se(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type); i++) {
 if(mb_partition_pred_mode(mb_type, i) != Pred_L0)
 for(j = 0; j < 2; j++)
 mvd_l1[i][j] 4 se(v) | ae(v)
 }
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 27

7.3.5.2 Sub macroblock prediction syntax

sub_mb_pred(mb_type) { Category Descriptor
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 sub_mb_type[i] 4 ue(v) | ae(v)
 IntraChromaPredModeFlag = 0
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] = = Intra_8x8)
 for(j = 0; j < num_sub_mb_intra_partition(sub_mb_type[i]);
j++) { /* num_sub_mb_intra_partition() = 4 */

 intra_pred_mode 4 ce(v) | ae(v)
 IntraChromaPredModeFlag = 1
 }
 if(IntraChromaPredModeFlag)
 intra_chroma_pred_mode 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(num_ref_idx_l0_active_minus1 > 0 &&
 mb_type != Pred_8x8ref0 &&
 sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L1)

 ref_idx_l0 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(num_ref_idx_l1_active_minus1 > 0 &&
 (sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L0)

 ref_idx_l1 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L1)

 for(j = 0; j < num_sub_mb_partition(sub_mb_type[i]); j++)
 for(k = 0; k < 2; k++)
 mvd_l0[i][j][k] 4 se(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L0)

 for(j = 0; j < num_sub_mb_partition(sub_mb_type[i]); j++)
 for(k = 0; k < 2; k++)
 mvd_l1[i][j][k] 4 se(v) | ae(v)
}

28 DRAFT ITU-T Rec. H.264 (2002 E)

7.3.5.3 Residual data syntax

residual(mb_type) { Category Descriptor
 if(entropy_coding_mode = = 1)
 residual_4x4block = residual_4x4block_cabac() 5 | 6
 else
 residual_4x4block = residual_4x4block_cavlc() 5 | 6
 if(mb_type = = Intra_16x16)
 residual_4x4block(intra16x16DC, 16) 5
 for(i8x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */
 for(i4x4 = 0; i4x4 < num_sub_blocks(); i4x4++) /* each 4x4
sub-block of block */

 if(coded_block_pattern & (1 << i8x8))
 if(mb_type = = Intra_16x16)
 residual_4x4block(intra16x16AC, 16) 5
 else
 residual_4x4block(luma, 16) 5 | 6
 if(coded_block_pattern & 0x30) /* chroma DC residual coded */
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 residual_4x4block(chromaDC, 4)) 5 | 6
 if(coded_block_pattern & 0x20) /* chroma AC residual coded */
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 for(i4x4 = 0; i4x4 < 4; i4x4++)
 residual_4x4block(chromaAC, 16) 5 | 6
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 29

7.3.5.3.1 Residual 4x4 block CAVLC syntax

residual_4x4block_cavlc(block_mode, MaxNumCoeff) { Category Descriptor
 coeff_token 5 | 6 ce(v)
 NumCoeffs = total_coeff(coeff_token) - trailing_ones(coeff_token)
 if(trailing_ones(coeff_token) > 0)
 for(i = trailing_ones(coeff_token)-1; i >= 0; i--)
 trailing_ones_sign[i] 5 | 6 u(1)
 if(total_coeff(coeff_token) > 0) {
 for(i = NumCoeffs-1; i >= 0; i--)
 coeff_level[i] 5 | 6 ce(v)
 if(total_coeff(coeff_token) < MaxNumCoeff) {
 total_zeros 5 | 6 ce(v)
 i = total_coeff(coeff_token) - 1
 ZerosLeft = total_zeros
 if(i>0 && ZerosLeft > 0) {
 do {
 run_before[i] 5 | 6 ce(v)
 ZerosLeft -= run_before[i]
 i--
 } while(ZerosLeft > 0 && i > = 0)
 run_before[i] = ZerosLeft
 }
 }
 }
}

7.3.5.3.2 Residual 4x4 block CABAC syntax

residual_4x4block_cabac(BlockType, MaxNumCoeff) { Category Descriptor
 coded_block_flag 5 | 6 ae(v)
 if(coded_block_flag) {
 for(i = 0; i < MaxNumCoeff - 1; i++) {
 significant_coeff_flag[i] 5 | 6 ae(v)
 if(significant_coeff_flag[i]) {
 last_significant_coeff_flag[i] 5 | 6 ae(v)
 if(last_significant_coeff_flag[i])
 MaxNumCoeff = i + 1
 }
 }
 coeff_absolute_value_minus1[MaxNumCoeff-1] 5 | 6 ae(v)
 coeff_sign[MaxNumCoeff-1] 5 | 6 ae(v)
 for(i = MaxNumCoeff-2; i >= 0; i--)
 if(significant_coeff_flag[i]) {
 coeff_absolute_value_minus1[i] 5 | 6 ae(v)
 coeff_sign[i] 5 | 6 ae(v)
 }
 }
}

30 DRAFT ITU-T Rec. H.264 (2002 E)

7.4 Semantics

7.4.1 NAL unit semantics
NOTE - The Video Coding Layer (VCL) is specified to efficiently represent the content of the video data. The Network
Abstraction Layer (NAL) is specified to format that data and provide header information in a manner appropriate for conveyance
by the transport layers or storage media. All data are contained in NAL units, each of which contains an integer number of bytes.
A NAL unit specifies a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both
packet-oriented transport and bitstream is identical except that each NAL unit can be preceded by a start code prefix in a
bitstream-oriented transport layer.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit
and shall be conveyed by external means. Framing of NAL units is necessary to enable inference of
NumBytesInNALunit. Such framing into a byte stream format is specified in Annex B and other methods for framing
may be specified outside of this Recommendation | International Standard.

NOTE - Any sequence of bits can be formatted into a sequence of bytes in a manner defined as an RBSP by suffixing the data with
rbsp_trailing_bits(), and any RBSP can be encapsulated in a NAL unit a manner that prevents emulation of byte stream start code
prefixes within the NAL unit.

forbidden_bit shall be zero.
NOTE - The forbidden_bit may be used by external specifications to signal potentially corrupt NAL units.

nal_storage_idc equal to 0 signals that the content of the NAL unit belongs either to a picture that is not stored in the
reference picture buffer, SEI data or Filler data. nal_storage_idc shall not be 0 for sequence parameter set or picture
parameter set NAL units. If nal_storage_idc is 0 for one slice or data partition NAL unit of a particular picture, it shall be
0 for all slice and data partition NAL units of the picture. nal_storage_idc greater than 0 signals that the content of the
NAL unit belongs to a decoded picture that is stored in the reference picture buffer.

NOTE - In addition to signalling non-stored content, external specifications may use nal_storage_idc to indicate the relative
transport priority of the NAL unit in a manner not specified in this Recommendation | International Standard. The value 0 should
be used to signal the lowest transport priority and the priority should grow in ascending order of nal_storage_idc values.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 31

nal_unit_type indicates the type of element contained in the NAL unit according to the types specified in Table 7-1.

Table 7-1 – NAL Unit Type Codes

Value of nal_unit_type Content of NAL unit and RBSP syntax structure Category

0x0 Reserved for external use

0x1 Coded slice
slice_layer_no_partitioning_rbsp()

4, 5, 6

0x2 Coded data partition A (DPA)
dpa_layer_rbsp()

4

0x3 Coded data partition B (DPB)
dpb_layer_rbsp()

5

0x4 Coded data partition C (DPC)
dpc_layer_rbsp()

6

0x5 Coded slice of an IDR picture
slice_layer_no_partitioning_rbsp()

4, 5

0x6 Supplemental Enhancement Information (SEI)
sei_rbsp()

7

0x7 Sequence Parameter Set (SPS)
seq_parameter_set_rbsp()

0

0x8 Picture Parameter Set (PPS)
pic_parameter_set_rbsp()

1

0x9 Picture Delimiter (PD)
pic_delimiter_rbsp()

8

0xA Filler Data (FD)
filler_data_rbsp()

9

0xB – 0x17 Reserved

0x18 – 0x1F For external use

An instantaneous decoder refresh picture (IDR picture) implies that all pictures in the multi-picture buffer are marked as
“unused” except the current picture. Moreover, the maximum long-term index is reset to zero. An IDR picture contains
only I or SI slices, and IDR slice type shall be used for all slices of an IDR picture.

rbsp[i] a raw byte sequence payload is defined as an ordered sequence of bytes that contains an SODB. The RBSP
contains the SODB in the following form:

a) If the SODB is null, the RBSP is also null.
b) Otherwise, the RBSP shall contain the SODB in the following form:

1) The first byte of the RBSP shall contain the (most significant, left-most) eight bits of the SODB; the
next byte of the RBSP shall contain the next eight bits of the SODB, etc.; until fewer than eight bits
of the SODB remain.

2) The final byte of the RBSP shall have the following form:
i) The first (most significant, left-most) bits of the final RBSP byte shall contain the remaining bits

of the SODB, if any,
ii) The next bit of the final RBSP byte shall consist of a single rbsp_stop_bit having the value one

(‘1‘), and
iii) Any remaining bits of the final RBSP byte, if any, shall consist of one or more

rbsp_alignment_bit having the value zero (‘0‘).

The last byte of a RBSP shall never have the value zero (0x00), because it contains the rbsp_stop_bit.

If the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the bits of
the bytes of the RBSP and discarding the rbsp_stop_bit, which is the last (least significant, right-most) bit having the
value one (‘1‘), and discarding any following (less significant, farther to the right) bits that follow it, which have the
value zero (‘0‘).

32 DRAFT ITU-T Rec. H.264 (2002 E)

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

emulation_prevention_byte is a byte equal to 0x03.

Within the NAL unit, an emulation_prevention_byte shall be present after an rbsp[i] byte having the value zero
(0x00) if and only if a next byte of RBSP data rbsp[i+1] follows that has one of the following four values:

– zero (0x00)
– one (0x01)
– two (0x02)
– three (0x03)

NOTE - Example encoder procedure. The encapsulation of an SODB within an RBSP and the encapsulation of an RBSP within a
NAL unit is specified to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be
represented within a NAL unit and enable identification of the end of the SODB within the NAL unit.
The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:
 '00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10 or 11),
and a byte having the value three (0x03) is inserted to replace these bit patterns with the patterns
 '00000000 00000011 000000xx'
The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type of RBSP
data structure it contains.
This process can allow any RBSP data to be sent in NAL unit while ensuring that no long SCP and no byte-aligned short SCP is
emulated in the NAL unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

A sequence parameter set is called an active sequence parameter set when an IDR NAL unit refers to it. The parameters
of an active sequence parameter set shall be replaced only when an IDR NAL unit refers to a different sequence
parameter set.

A picture parameter set includes the parameters that remain unchanged within a coded picture. Every picture parameter
set shall refer to the active sequence parameter set. A decoded picture parameter set is an active picture parameter set
when the first slice NAL unit or first DPA NAL unit of a coded picture refers to it. The picture parameters of an active
picture parameter set shall be replaced only when the first slice NAL unit or DPA NAL unit of a picture refers to a
different picture parameter set.

NOTE - The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from
the transmission of coded macroblock data. The sequence parameter set, the picture parameter set, and the slice header contain all
the parameters needed to decode the slice data. It is recommended to convey sequence and picture parameter sets out-of-band
using a reliable transport mechanism. However, if an application requires a self-contained bitstream, in-band parameter set
information units may be used. In error-prone transmission environments, in-band sequence and picture parameter set information
units should be protected in a way that assures their successful reception. Synchronization between in-band and out-of-band
transmission of the sequence and picture parameter set information is outside of the scope of this Recommendation | International
Standard.

profile_idc and level_idc indicate profile and level as specified in Annex A.

seq_parameter_set_id identifies the sequence parameter set to be referred.

log2_max_frame_num_minus4 specifies the MAX_FN used in frame number related arithmetic as follows:

MAX_FN = 2^(log2_max_frame_num_minus4 + 4) (7-1)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type equal to 0 or 1 indicates the method to code picture order count (see subclause 8.3.2).
pic_order_cnt_type values greater than 1 are reserved.

log2_max_pic_order_cnt_minus4 is used to specify the MAX_PIC_ORDER_CNT used in picture order count related
arithmetic as follows:

MAX_PIC_ORDER_CNT = 2^(log2_max_pic_order_cnt_minus4 + 4) (7-2)

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 33

The size of the pic_order_cnt parameter in the slice header is log2_max_pic_order_cnt_minus4 + 4 bits. The value of
log2_max_pic_order_cnt_minus4 shall be in the range of 0 to 12, inclusive.

offset_for_non_stored_pic indicates an expected picture order count difference of a non-stored picture compared to a
stored picture having the same frame_num as the non-stored picture.

num_stored_frames_in_pic_order_cnt_cycle signals the number of frame numbers in a picture order count cycle. A
picture order count cycle is a repetitive pattern of picture order count differences, each of which corresponds to a
frame_num increment of one.

offset_for_stored_frame indicates an expected difference of picture order count corresponding to a frame_num
increment of one. Notation offset_for_stored_framen indicates the offset_for_stored_frame corresponding to index n in
the picture order count cycle. offset_for_stored_frame_in_pic_order_cnt_cycle is the sum of all values of
offset_for_stored_frame.

num_of_ref_frames specifies the total number of short- and long-term pictures in the reference picture buffer.

If required_frame_num_update_behaviour equal to 1 specifies a specific decoder behaviour in case of missing frame
numbers.

pic_width_in_mbs_minus1 and pic_height_in_mbs_minus1 specify the size of the luma picture array internal to the
decoder in units of macroblocks. The picture width and height in units of macroblocks is computed by adding 1 to the
decoded values of each of these parameters. The maximum macroblock address, MAX_MB_ADDRESS, shall be
calculated according to Equation 7-3.

MAX_MB_ADDRESS = (pic_width_in_mbs_minus1 + 1) ×
 (pic_height_in_mbs_minus1 + 1) – 1 (7-3)

The NUM_BITS_IN_MB_ADDRESS indicates the number of bits used to code a macroblock address with a fixed-
length unsigned integer. It is calculated as follows.

If a picture is a field-structured picture or if macroblock-adaptive frame/field coding is not in use for the picture, then

NUM_BITS_IN_MB_ADDRESS = Ceil(Log2(MAX_MB_ADDRESS + 1)) (7-4)

otherwise, NUM_BITS_IN_MB_ADDRESS shall be

NUM_BITS_IN_MB_ADDRESS = Ceil(Log2(MAX_MB_ADDRESS + 1) – 1) (7-4a)

send_filter_parameters_flag specifies whether a set of parameters controlling the characteristics of the deblocking filter
is indicated in the slice header.

constrained_intra_pred_flag equal to zero indicates normal intra prediction, whereas one indicates constrained intra
prediction, where no intra prediction is done from macroblocks coded with mb_pred_type != Intra.

mb_frame_field_adaptive_flag equal to zero indicates no switching between frame and field decoding mode at the
macroblock layer, whereas one indicates the use of switching between frame and field decoding mode at the macroblock
layer.

vui_seq_parameters_flag equal to zero specifies that default parameter values for the vui sequence parameters shall be
applied.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id the picture parameter set identifier to be used for reference.

seq_parameter_set_id refers to the sequence parameter set that is used with this picture parameter set.

entropy_coding_mode equal to zero indicates VLC and CAVLC (see subclause 9.1), whereas value one indicates
CABAC (see subclause 9.2). If CABAC is indicated, the ae(v) entropy coding is used for the assigned syntax elements.

motion_resolution equal to zero indicates 1/4 luma sample accurate motion resolution, and equal to one indicates 1/8
luma sample accurate motion resolution.

adaptive_block_size_transform_flag equal to zero indicates usage of 4x4 transforms for the luma residual, and equal
one indicates usage of transforms of size 4x4, 4x8, 8x4, and 8x8 for the luma residual. Clause 12 specifies modifications
as indicated in clause 7 that are related to syntax, semantics, and decoding process.

34 DRAFT ITU-T Rec. H.264 (2002 E)

num_slice_groups_minus1 the number of slice groups is equal to num_slice_groups_minus1 + 1. If
num_slice_groups_minus1 is zero, all slices of the picture belong to the same slice group.

NOTE – One slice group means that no flexible macroblock ordering is applied. If num_slice_groups_minus1 is greater than zero,
flexible macroblock ordering is in use.

mb_allocation_map_type the macroblock allocation map type is present only if num_slice_groups_minus1 is greater
than 0. This parameter indicates how the macroblock allocation map is coded. The value of this syntax element shall be
in the range of 0 to 6, inclusive.

mb_allocation_map_type 0 is used to indicate interleaved slices.

mb_allocation_map_type 1 is used to indicate a dispersed macroblock allocation.

mb_allocation_map_type 2 is used to explicitly assign a slice group to each macroblock location in raster scan order.

mb_allocation_map_type 3 is used to indicate one or more “foreground” slice groups and a “leftover” slice group.

mb_allocation_map_types 4, 5 and 6 are used to indicate changing slice groups. num_slice_groups_minus1 shall be 1,
when mb_allocation_map_type is 4, 5 or 6.

If mb_allocation_map_type is 0, the run_length syntax element follows for each slice group. It indicates the number of
consecutive macroblocks that are assigned to the slice group in raster scan order. After the macroblocks of the last slice
group have been assigned, the process begins again from the first slice group. The process ends when all the macroblocks
of a picture have been assigned.

NOTE - Example: To signal macroblock row interleaving in a QCIF picture (where all even numbered macroblocks are in slice
group 0, and all odd numbered macroblocks are in slice group 1), the number of slice groups is two and run_length is 11 for both
slice groups.

If mb_allocation_map_type is 1, the macroblock allocation map is formed using the following formula, where n is the
number of columns in the picture (in macroblocks) and p is the number of slice groups to be coded. Specifically,
macroblock position x is assigned to slice group S according to Equation 7-5.

S(x) = ((x % n) + ((floor(x / n) * p) / 2)) % p (7-5)

If mb_allocation_map_type is 2, slice_group_id identifies a slice group of a macroblock.
NOTE - slice_group_id is repeated as often as there are macroblocks in the picture.

If mb_allocation_map_type is 3, top_left_mb and bottom_right_mb are specified for each slice_group_id except for
the last one. The top_left_mb specifies the top-left corner of a rectangle and bottom_right_mb specifies the bottom-right
corner. top_left_mb and bottom_right_mb are indicated as macroblock addresses. The foreground slice group contains
the macroblocks that are within the indicated rectangle and that do not belong to any slice group having a smaller
slice_group_id. The last slice_group_id is dedicated for the leftover slice group, which contains the macroblocks that are
not covered by the foreground slice groups. The leftover slice group shall not be empty. The size of the top_left_mb and
bottom_right_mb parameters NUM_BITS_IN_MB_ADDRESS.

If mb_allocation_map_type is 4, 5 or 6, mb_allocation_map_type and slice_group_change_direction indicate the
refined macroblock allocation map type according to Table 7-2. The macroblock allocation map is generated each time
the decoder starts decoding of a new picture as described in subclause 8.3.4.

Table 7-2– Refined macroblock allocation map type

mb_allocation
_map_type

slice_group
_change_direction

refined macroblock
allocation map type

4 0 Box-out clockwise
4 1 Box-out counter-clockwise
5 0 Raster scan
5 1 Reverse raster scan
6 0 Wipe right
6 1 Wipe left

slice_group_change_rate_minus1 is the minimum non-zero number of macroblocks by which the size a slice group can
change from one picture to the next. The SLICE_GROUP_CHANGE_RATE variable is defined as follows:

SLICE_GROUP_CHANGE_RATE = slice_group_change_rate_minus1 + 1 (7-6)

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 35

The decoded value of slice_group_change_rate_minus1 shall be in the range of 0 to MAX_MB_ADDRESS – 1,
inclusive.

num_ref_idx_l0_active_minus1 specifies the number of reference pictures minus 1 in the reference list 0 that are used
to decode the picture.

num_ref_idx_l1_active_minus1 specifies the number of reference pictures minus 1 in the reference list 1 that are used
to decode the picture.

weighted_pred_flag equal to zero indicates that weighted prediction is not applied to P and SP slices.
weighted_pred_flag equal to one indicates that weighted prediction is applied to P and SP slices.

weighted_bipred_explicit_flag equal to zero indicates that explicit weighted prediction is not applied to B slices.
weighted_bipred_explicit_flag equal to one indicates that explicit weighted prediction is applied to B slices.
weighted_bipred_explicit_flag shall be zero if weighted_bipred_implicit_flag is one.

weighted_bipred_implicit_flag equal to zero indicates that implicit weighted prediction is not applied to B slices.
weighted_bipred_implicit_flag equal to one indicates that implicit weighted prediction is applied to B
slices.weighted_bipred_implicit_flag shall be zero if weighted_bipred_explicit_flag is one.

slice_qp_minus26 specifies the value of the default QPY for the macroblocks in an I, SI, P, SP, or B slice as specified in
Equation 7-7. The value of this syntax element shall be in the range of -26 to +25, inclusive.

slice_qp_s_minus26 specifies the value of the default QSY for the macroblocks in a SP or SI slice as specified in
Eqatition 7-8. The value of this syntax element shall be in the range of -26 to +25, inclusive.

redundant_slice_flag indicates the presence of the redundant_pic_cnt parameter in all slice headers referencing the
picture parameter set.

vui_pic_parameters_flag equal to zero specifies that default parameter values for the vui picture parameters shall be
applied.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode VCL data correctly
but is helpful for decoding or presentation purposes.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of SEI header and SEI payload. The
type and size of the SEI payload are coded using an extensible syntax. The SEI payload size is indicated in bytes. SEI
payload types are specified in Annex C.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which picture the
particular data belongs. The payload header shall be defined for each payload type separately.

An SEI message is associated with the next slice or data partition RBSP in decoding order.

byte_ff is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure it is used within.

last_payload_type_byte identifies the payload type of the last entry in an SEI message.

last_payload_size_byte identifies the size of the last entry in an SEI message.

7.4.2.4 Picture delimiter RBSP semantics

The picture delimiter may be used to signal the boundary between pictures, i.e., if present, it shall be inserted before the
first NAL unit of a picture in decoding order. There is no normative decoder process associated with the picture
delimiter.

pic_type signals which slice coding types are used in the following picture in decoding order. Table 7-3 shows the slice
coding types that can occur in a picture with a given pic_type.

Table 7-3– Meaning of pic_type

pic_type Allowed slice_type_idc

000 Intra
001 Intra, Pred
010 Intra, Pred, BiPred

36 DRAFT ITU-T Rec. H.264 (2002 E)

011 SIntra
100 SIntra, SPred
101 Intra, SIntra
110 Intra, SIntra, Pred, SPred
111 Intra, SIntra, Pred, SPred, BiPred

If adaptive_block_size_transform_flag = = 1, pic_type = = ‘000’, pic_type = = ‘001’, and pic_type = = ‘010’ are
allowed.

non_stored_content_flag equal to 1 indicates that the picture is not stored in the reference picture buffer.

7.4.2.5 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF.

7.4.2.6 Slice layer RBSP semantics

The slice layer RBSP consists of a slice header and slice data.

7.4.2.7 Data partition RBSP semantics

7.4.2.7.1 Data partition A RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition A
contains all symbols of Category 4.

NOTE - Category 4 consists of the header symbols of all coded MBs.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the
picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.4.2.7.2 Data partition B RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Data partition B
contains all symbols of Category 5.

NOTE - Category 5 consists of the intra coded block patterns and coefficients.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the
picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.4.2.7.3 Data partition C RBSP semantics

When data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Data partition C
contains all symbols of Category 6.

NOTE - Category 6 consists of the inter coded block patterns and coefficients.

slice_id Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the
picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice.

7.3.2.8 RBSP trailing bits semantics

rbsp_stop_bit is a single bit having the value one ('1').

rbsp_alignment_bit is a single bit having the value zero ('0').

7.3.2.9 RBSP slice trailing bits semantics

rbsp_stop_bit has the same semantics as in subclause 7.3.2.8.

rbsp_alignment_bit has the same semantics as in subclause 7.3.2.8.

cabac_stuffing_bit is a single bit having the value one ('1'). When entropy_coding_mode is equal to 1, the number of
bins resulting from decoding the contents of the slice layer NAL unit shall not exceed 0.5*NumBytesInNALunit. A
number of inserted cabac_stuffing_bit guarantee this condition.

NOTE – The method for determining the number of inserted cabac_stuffing_bit at the encoder is as follows: First, at the beginning
of the slice encoding, the index CodeLength pointing to the current position of the bit stream is stored in a variable
CodeLengthStored, i.e., CodeLength ← CodeLengthStored. In addition, two counters EBins and EBinsx8 are set to zero. Then,
each time a symbol is encoded, EBins is incremented by one, i.e., EBins ← EBins+1. In the renormalization procedure, each time
a new byte of compressed data is written, the following procedure is done:
 while(EBins > 7) {
 EBins ← EBins-8

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 37

 EBinsx8 ← EBinsx8+1
 }
After terminating the arithmetic encoding process such that the last pending bits have been written to the bitstream, the number of
written bits is determined by CodeLength ← 8*(CodeLength − CodeLengthStored). Given the number of encoded bins by
EBins ← 8*EBinsx8+EBins and the number NumMbSlice of macroblocks per slice, the following procedure is done:
 EBins ← 2*EBins
 if (CodeLength >= 4*NumMbSlice)
 {
 if (EBins > CodeLength)
 for(i = 0; i < EBins − CodeLength − 1; i++)
 putbits(‘1’) /* writes cabac_stuffing_bit */
 }

7.4.3 Slice header semantics

pic_parameter_set_id indicates the picture parameter set in use.

frame_num labels the frame. frame_num shall be incremented by 1 for each coded picture in decoding order, in modulo
MAX_FN operation, relative to the frame_num of the previous stored frame in decoding order. The frame_num serves
as a unique ID for each frame stored in the reference picture buffer. Therefore, a frame cannot be kept in the buffer after
its frame_num has been used by another frame unless it has been assigned a long-term frame index as specified below.
No frame_num of a frame to be added to the reference picture buffer shall equal to any other among the short-term
frames in the reference picture buffer. A decoder which encounters a frame number on a current frame having a value
equal to the frame number of some other short-term stored frame in the reference picture buffer should treat this
condition as an error.

pic_structure identifies the picture structure according to Table 7-4.

Table 7-4 – Meaning of pic_structure

Value of
pic_structure

Meaning

0 Progressive frame picture
1 Top field picture
2 Bottom field picture
3 Interlaced frame picture, whose top

field precedes its bottom field in time.
4 Interlaced frame picture, whose

bottom field precedes its top field in
time.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is the one that
occurs first in time.

first_mb_in_slice specifies the macroblock address of the first macroblock contained in this slice. The size of the
first_mb_in_slice parameter is NUM_BITS_IN_MB_ADDRESS. The value of first_mb_in_slice shall be in the range of
0 to MAX_MB_ADDRESS, inclusive.

If macroblock-adaptive frame/field decoding is in use, first_mb_in_slice contains a macroblock pair address rather than a
macroblock address and the number of macroblocks included in a slice shall be an even number.

slice_type_idc indicates the coding type of the slice according to Table 7-5.

Table 7-5 – Meaning of slice_type_idc

Value of
slice_type_idc

Prediction type of slice
(slice type)

0 Pred (P slice)
1 BiPred (B slice)
2 Intra (I slice)
3 SPred (SP slice)
4 SIntra (SI slice)

Table 7-6 specifies, which macroblock prediction types are allowed when a slice type is decoded.

38 DRAFT ITU-T Rec. H.264 (2002 E)

Table 7-6 – Allowed macroblock prediction types for slice_type_idc

Prediction type of
slice

(slice type)

Allowed
macroblock

prediction type

Pred (P slice) Intra, Pred
BiPred (B slice) Intra, Pred, BiPred

Intra (I slice) Intra
SPred (SP slice) SPred, Intra
SIntra (SI slice) SIntra, Intra

If adaptive_block_size_transform_flag = = 1, the use of SI slices and SP slices is not allowed.

pic_order_cnt carries the picture order count coded in modulo MAX_PIC_ORDER_CNT arithmetic. An IDR picture
shall have pic_order_cnt equal to 0. The size of the pic_order_cnt parameter is log2_max_pic_order_cnt_minus4 + 4
bits.

delta_pic_order_cnt signals the picture order count difference compared to the offset picture order count as described in
subclause 8.3.2.

redundant_pic_cnt is 0 for coded slices and data partitions belonging to the primary representation of the picture
contents. The redundant_pic_cnt is greater than 0 for coded slices and data partitions that contain redundant coded
representation of the picture contents. There should be no noticeable difference between the co-located areas of the
decoded primary representation of the picture and any decoded redundant slices. Decoded slices having the same
redundant_pic_cnt shall not overlap. Decoded slices having a redundant_pic_cnt greater than 0 may not cover the entire
picture area.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to determine the prediction values
direct prediction. If direct_spatial_mv_pred_flag is set to 0, then direct mode motion parameters are calculated from the
picture order count as described in subclause 10.3.3.2. Otherwise, if this flag is set to 1, then direct mode motion
parameters are calculated using the spatial motion vector prediction technique as described in subclause 10.3.3.1.

num_ref_idx_active_override_flag equal to zero indicates that the num_ref_idx_l0_active_minus1 and
num_ref_idx_l1_active_minus1 specified in the referred picture parameter set are in effect.
num_ref_idx_active_override_flag equal to one indicates that the num_ref_idx_l0_active_minus1 and
num_ref_idx_l1_active_minus1 specified in the referred picture parameter set are overridden by the following values in
the slice header.

num_ref_idx_l0_active_minus1 specifies the number of reference pictures minus 1 in the reference picture list 0 that
are used to decode the picture.

num_ref_idx_l1_active_minus1 specifies the number of reference pictures minus 1 in the reference picture list 1 that
are used to decode the picture.

slice_qp_delta specifies the value of the QPY for the MBs in the slice unless modified by the value of delta_qp in the
macroblock layer. From this value, the initial QPY parameter for the slice is computed as:

QPY = 26 + slice_qp_minus26 + slice_qp_delta (7-7)

The initial decoded QPY parameter shall be in the range of 0 to 51, inclusive. The value of QPY is initialised to the above
result and this value is used for the decoding of each macroblock in the slice unless updated by a delta_qp sent in the
macroblock layer.

sp_for_switch_flag indicates the decoding process to be used to decode the SP slice.

slice_qp_s_delta is signalled for SP and SI slices. The QSY parameter for the slice is computed as:

QSY = 26 + slice_qp_s_minus26 + slice_qp_s_delta (7-8)

The value of QSY shall be in the range of 0 to 51, inclusive. This value of QSY is used for the decoding of all
macroblocks in the slice.

disable_deblocking_filter_flag equal to zero specifes that the deblocking filter shall be applied to the edges controlled
by the macroblocks within the current slice. If disable_deblocking_filter_flag is 1, Filter_Offset_A and Filter_Offset_B
shall both be inferred to be equal to -51. If not present in the slice header the value of this field shall be inferred to be
zero.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 39

slice_alpha_c0_offset_div2 specifies the offset used in accessing the ALPHA and C0 deblocking filter tables for
filtering operations controlled by the macroblocks within the slice. The decoded value of this parameter shall be in the
range from -6 to +6, inclusive. From this value, the offset that shall be applied when addressing these tables is computed
as:

Filter_Offset_A = slice_alpha_c0_offset_div2 << 1

If not present in the slice header the value of this field shall be inferred to be zero unless disable_deblocking_filter_flag
is 1.

slice_beta_offset_div2 specifies the offset used in accessing the BETA deblocking filter table for filtering operations
controlled by the macroblocks within the slice. The decoded value of this parameter shall be in the range from -6 to +6,
inclusive. From this value, the offset that is applied when addressing the BETA table of the deblocking filter is computed
as:

Filter_Offset_B = slice_beta_offset_div2 << 1

If not present in the slice header the value of this field shall be inferred to be zero unless disable_deblocking_filter_flag
is 1.

slice_group_change_cycle × SLICE_GROUP_CHANGE_RATE indicates the number of macroblocks in slice group 0.
The size of the slice_group_change_cycle field is Ceil(Log2(Ceil(MAX_MB_LOCATION ÷
SLICE_GROUP_CHANGE_RATE))). The maximum value of slice_group_change_cycle is
Ceil(MAX_MB_LOCATION ÷ SLICE_GROUP_CHANGE_RATE).

7.4.3.1 Reference index reordering semantics

The syntax elements remapping_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_idx specify the
change from the default reference index lists to the reference index lists used for decoding the slice.

ref_idx_reordering_flag_l0 indicates whether the syntax elements remapping_of_pic_nums_idc,
abs_diff_pic_num_minus1, and long_term_pic_idx are present for specifying the reference index list 0.

ref_idx_reordering_flag_l1 has the same semantics as ref_idx_reordering_flag_l0 except that the reordering of the
reference index list 1 is specified instead of the reference index list 0.

remapping_of_pic_nums_idc together with abs_diff_pic_num_minus1 and long_term_pic_idx indicates which of the
reference pictures are re-mapped. The restrictions and the mapping to the code number are specified in Table 7-7. The
number of signalling remapping_of_pic_nums_idc is limited to the num_ref_idx_l0_active_minus1 + 1.

Table 7-7 – remapping_of_pic_nums_idc operations for re-mapping of reference pictures

Value of
remapping_of_pic_nums_idc

Re-mapping Specified

0 abs_diff_pic_num_minus1 is present and corresponds to a negative
difference to add to a picture number prediction value

1 abs_diff_pic_num_minus1 is present and corresponds to a positive
difference to add to a picture number prediction value

2 long_term_pic_idx is present and specifies the long-term index for a
reference picture

3 End loop for re-mapping of reference picture set relative indexing default
order

abs_diff_pic_num_minus1 plus 1 indicates the absolute difference between the picture number of the picture being
remapped and the picture number prediction value.

long_term_pic_idx indicates the long-term picture index of the picture being remapped. In the case of frame-structured
pictures, it shall be less than max_long_term_pic_idx_plus1; while in the case of field-structured pictures, it shall be less
than 2 x max_long_term_pic_idx_plus1.

40 DRAFT ITU-T Rec. H.264 (2002 E)

7.4.3.2 Reference picture buffer management semantics

The syntax elements ref_pic_buffering_mode, memory_management_control_operation,
difference_of_pic_nums_minus1, long_term_pic_idx, and max_long_term_pic_idx_plus1 specify the buffering of a
stored decoded picture into the reference picture buffer. Further, the reference picture buffer can be modified by marking
pictures as unused, by assigning long-term pictures indices and by resetting of the reference picture buffer. The syntax
elements ref_pic_buffering_mode, memory_management_control_operation, difference_of_pic_nums_minus1,
long_term_pic_idx, and max_long_term_pic_idx_plus1 shall be identical for all coded slices of a coded picture.

ref_pic_buffering_mode specifies the buffering mode of the currently decoded picture and specifies how the reference
picture buffer is modified after the current picture is decoded. The values for ref_pic_buffering_mode are specified in
Table 7-8.

Table 7-8 – Interpretation of ref_pic_buffering_mode

Value of
ref_pic_buffering_mode

Reference picture buffering mode specified

0 Sliding window buffering mode; A simple buffering mode providing
a first-in first-out mechanism for pictures that are not assigned a
long-term index

1 Adaptive buffering mode; A more flexible buffering mode than
sliding window buffering mode providing syntax elements to specify
marking pictures as unused, to assign long-term pictures indices, and
to reset the reference picture buffer.

memory_management_control_operation specifies a control operation to be applied to manage the reference picture
buffer. The memory_management_control_operation parameter is followed by data necessary for the operation specified
by the value of memory_management_control_operation. memory_management_control_operation commands do not
affect the buffer contents or the decoding process for the decoding of the current frame. They specify the necessary
buffer status for the decoding of subsequent coded pictures. The values and control operations associated with
memory_management_control_operation are defined in Table 7-9.

If memory_management_control_operation is Reset, all frames and fields in the reference picture buffer (but not the
current picture unless specified separately) shall be marked “unused” (including both short-term and long-term pictures).
Moreover, the maximum long-term picture index shall be reset to zero.

The frame height and width shall not change within the bitstream except within a picture containing a Reset
memory_management_control_operation command.

A “stored picture” shall not contain any memory_management_control_operation command which marks that (entire)
picture as “unused”. If the current picture is non-stored picture, the value of the
memory_management_control_operation shall not contain any of the following types of
memory_management_control_operation commands:

a) A Reset memory_management_control_operation command,
b) Any memory_management_control_operation command which marks any other picture (other than the

current picture) as “unused” that has not also been marked as “unused” in the RPS layer of a prior stored
picture, or

c) Any memory_management_control_operation command which assigns a long-term index to a picture that
has not also been assigned the same long-term index in the RPS layer of a prior stored picture.

Table 7-9 – Memory management control operation (memory_management_control_operation) values

Value of
memory_management_control_operation

Memory Management Control Operation Associated Data Fields Following

0 End memory_management_control_operation
Loop

None (end of RPS layer)

1 Mark a short-term picture as “Unused” difference_of_pic_nums_minus1

2 Mark a long-term prame as “Unused” long_term_pic_idx

3 Assign a long-term index to a picture difference_of_pic_nums and

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 41

long_term_pic_idx

4 Specify the maximum long-lerm picture index max_long_term_pic_idx_plus1

5 Reset None

difference_of_pic_nums_minus1 is used to assign a long-term index to a picture or to mark a short-term picture as
“unused”.

long_term_pic_idx is used to assign a long-term index to a picture or to mark a long-term picture as “unused”.

max_long_term_pic_idx_plus1 indicates the maximum index allowed for long-term reference frames (until receipt of
another value of max_long_term_pic_idx_plus1). The decoder shall initially infer that max_long_term_pic_idx_plus1 is
0 until some other value has been received.

7.4.3.3 Prediction weight table semantics

luma_log_weight_denom is the binary logarithm of the denominator for all luma weighting factors.

chroma_log_weight_denom is the binary logarithm of the denominator for all chroma weighting factors.

luma_weight_flag_l0 indicates whether weighting factors are present for the luma component of the list 0 prediction.

luma_weight_l0[i] is the weighting factor applied to the luma prediction value for reference index i in list 0 prediction.

luma_offset_l0[i] is the additive offset applied to the luma prediction value for reference index i in list 0 prediction.

If luma_weight_flag_l0 is equal to zero, luma_weight_l0[i] shall be interpreted as equal to 2luma_log_weight_denom and
luma_offset_l0[i] shall be interpreted as equal to zero.

chroma_weight_flag_l0 indicates whether weighting factors are present for the Cb and Cr components of the list 0
prediction.

chroma_weight_l0[i][0] is the weighting factor applied to the Cb prediction values for reference index i in list 0
prediction.

chroma_offset_l0[i][0] is the additive offset applied to the Cb prediction values for reference index i in list 0
prediction.

chroma_weight_l0[i][1] is the weighting factor applied to the Cr prediction values for reference index i in list 0
prediction.

chroma_offset_l0[i][1] is the additive offset applied to the Cr prediction values for reference index i in list 0
prediction.

If chroma_weight_flag_l0 is equal to zero, chroma_weight_l0[i] shall be interpreted as equal to 2chroma_log_weight_denom and
chroma_offset_l0[i] shall be interpreted as equal to zero.

luma_weight_flag_l1 indicates whether weighting factors are present for the luma component of the list 1 prediction.

luma_weight_l1[i] is the weighting factor applied to the luma prediction values for reference index i in list 1
prediction.

luma_offset_l1[i] is the additive offset applied to the luma prediction value for reference index i in list 1 prediction.

If luma_weight_flag_l1 is equal to zero, luma_weight_l1[i] shall be interpreted as equal to 2luma_log_weight_denom and
luma_offset_l1[i] shall be interpreted as equal to zero.

chroma_weight_flag_l1 indicates whether weighting factors are present for the chroma component of the list 1
prediction.

chroma_weight_l1[i][0] is the weighting factor applied to the Cb prediction values for reference index i in list 1
prediction.

chroma_offset_l1[i][0] is the additive offset applied to the Cb prediction values for reference index i in list 1
prediction.

chroma_weight_l1[i][1] is the weighting factor applied to the Cr prediction values for reference index i in list 1
prediction.

chroma_offset_l1[i][1] is the additive offset applied to the Cr prediction values for reference index i in list 1
prediction.

42 DRAFT ITU-T Rec. H.264 (2002 E)

If chroma_weight_flag_l1 is equal to zero, chroma_weight_l1[i][j] shall be interpreted as equal to 2chroma_log_weight_denom
and chroma_offset_l1[i][j] shall be interpreted as equal to zero.

num_custom_bipred_weights is the number of custom weight and offset combinations sent for bi-predictive weighting.

irp_l0 is the index of the reference picture in list 0 for which a custom weight and offset combination is indicated for
custom bi-predictive weighting.

irp_l1 is the index of the reference picture in list 1 for which a custom weight and offset combination is indicated for
custom bi-predictive weighting.

luma_weight_bipred_l0[irp_l0][irp_l1] is the weighting factor applied to the luma prediction value for reference
index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

luma_weight_bipred_l1[irp_l0][irp_l1] is the weighting factor applied to the luma prediction value for reference
index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

luma_offset_bipred[irp_l0][irp_l1] is the additive offset applied to the luma prediction values when reference index
irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_flag_bipred[irp_l0][irp_l1] indicates whether custom weight and offset combinations are sent for Cb
and Cr prediction when reference index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l0[irp_l0][irp_l1][0] is the weighting factor applied to the Cb prediction value for reference
index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l1[irp_l0][irp_l1][0] is the weighting factor applied to the Cb prediction value for reference
index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

chroma_offset_bipred[irp_l0][irp_l1][0] is the additive offset applied to the Cb prediction values when reference
index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l0[irp_l0][irp_l1][1] is the weighting factor applied to the Cr prediction value for reference
index irp_l0 in list 0 when used with reference index irp_l1 in list 1 for bi-prediction.

chroma_weight_bipred_l1[irp_l0][irp_l1][1] is the weighting factor applied to the Cr prediction value for reference
index irp_l1 in list 1 when used with reference index irp_l0 in list 0 for bi-prediction.

chroma_offset_bipred[irp_l0][irp_l1][1] is the additive offset applied to the Cr prediction values when reference
index irp_l0 in list 0 is used with reference index irp_l1 in list 1 for bi-prediction.

If chroma_weight_flag_bipred[irp_l0][irp_l1] is zero, chroma_weight_bipred_l0[irp_l0][irp_l1][j] and
chroma_weight_bipred[irp_l0][irp_l1][j] shall be interpreted as equal to 2chroma_log_weight_denom and
chroma_offset_bipred[irp_l0][irp_l1][j] shall be interpreted as equal to zero.

For any combination of irp_l0 and irp_l1 that is not sent, the following values shall be inferred:
– luma_weight_bipred_l0[irp_l0][irp_l1] = luma_weight_l0[irp_l0],
– luma_weight_bipred_l1[irp_l0][irp_l1] = luma_weight_l1[irp_l1],
– luma_offset_bipred[irp_l0][irp_l1] =

 (luma_offset_l0[irp_l0] + luma_offset_l1[irp_l1] + 1) >> 1
– chroma_weight_bipred_l0[irp_l0][irp_l1][j] = chroma_weight_l0[irp_l0][j],
– chroma_weight_bipred_l1[irp_l0][irp_l1][j] = chroma_weight_l1[irp_l1][j],
– chroma_offset_bipred[irp_l0][irp_l1][j] =

 (chroma_offset_l0[irp_l0][j] + chroma_offset_l1[irp_l1][j] + 1) >> 1

7.4.4 Slice data semantics

mb_skip_run indicates a number of consecutive macroblocks decoded as MbSkip macroblock type in P slices or
Direct_16x16 macroblock type and no additional transform coefficients in B slices when entropy_coding_mode = = 0.

For mb_frame_field_adaptive_flag = = 1, refer to the MB scanning order in Figure 6-4 (subclause 6.3).

mb_skip_flag indicates that the macroblock is decoded as MbSkip macroblock type in P slices or Direct_16x16
macroblock type and no additional transform coefficients in B slices when entropy_coding_mode = = 1.

For the MbSkip macroblock type no further information about the macroblock is decoded. The motion vector for a
MbSkip macroblock type shall be obtained as described in subclause 8.3.1.3. If pic_structure indicates a frame, then the
decoded frame with ref_idx_l0 = = 0, which either was decoded from a frame picture or is the union of two decoded
field pictures shall be used as reference in motion compensation. If pic_structure indicates a field, then the decoded field

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 43

of the same parity (top or bottom) with ref_idx_l0 = = 0, which was either decoded from a field picture or is part of the
most recently decoded frame picture shall be used as reference in motion compensation. For
mb_frame_field_adaptive_flag = = 1, a pair of macroblocks will be in frame mode only. If one of a pair of macroblocks
is skipped, it should be in the same frame/field coding mode as another macroblock of the same pair. In field coding, the
skipped macroblock is decoded by copying the co-located macroblock from the most recently decoded I or P field of the
same field parity.

mb_field_decoding_flag equal to zero indicates that the macroblock pair is decoded in frame decoding mode and equal
to one indicates that the macroblock pair is decoded in field decoding mode.

end_of_slice_flag equal to 0 indicates that another macroblock is following, whereas equal to 1 indicates the end of the
slice and that no further macroblock follows. end_of_slice_flag is only present if entropy_coding_mode = = 1 for each
macroblock except for the last macroblock of the picture.

If the current picture is a frame-structured picture and mb_adaptive_frame_field_flag is 1, the number of coded
macroblocks in the slice shall be an even number.

7.4.5 Macroblock layer semantics

mb_type indicates the macroblock types. The semantics of mb_type depend on the slice type. In the following, for I
slices, SI slices, P slices, SP slices, and B slices, tables and semantics are specified for the various macroblock types.

The macroblock types for I slices are specified in Table 7-10. If adaptive_block_size_transform_flag = = 1, the
macroblock types for I slices are specified in Table 12-1.

Table 7-10 – Macroblock types for I slices

Value of
mb_type

Name of mb_type
in I slices

mb_partition_pred_
mode(, 1)

num_sub_blocks() num_mb_intra
_partition()

0 Intra_4x4 Intra 4 16

1 Intra_16x16_0_0_0 Intra 4 na

2 Intra_16x16_1_0_0 Intra 4 na

3 Intra_16x16_2_0_0 Intra 4 na

4 Intra_16x16_3_0_0 Intra 4 na

5 Intra_16x16_0_1_0 Intra 4 na

6 Intra_16x16_1_1_0 Intra 4 na

7 Intra_16x16_2_1_0 Intra 4 na

8 Intra_16x16_3_1_0 Intra 4 na

9 Intra_16x16_0_2_0 Intra 4 na

10 Intra_16x16_1_2_0 Intra 4 na

11 Intra_16x16_2_2_0 Intra 4 na

12 Intra_16x16_3_2_0 Intra 4 na

13 Intra_16x16_0_0_1 Intra 4 na

14 Intra_16x16_1_0_1 Intra 4 na

15 Intra_16x16_2_0_1 Intra 4 na

16 Intra_16x16_3_0_1 Intra 4 na

17 Intra_16x16_0_1_1 Intra 4 na

18 Intra_16x16_1_1_1 Intra 4 na

19 Intra_16x16_2_1_1 Intra 4 na

44 DRAFT ITU-T Rec. H.264 (2002 E)

20 Intra_16x16_3_1_1 Intra 4 na

21 Intra_16x16_0_2_1 Intra 4 na

22 Intra_16x16_1_2_1 Intra 4 na

23 Intra_16x16_2_2_1 Intra 4 na

24 Intra_16x16_3_2_1 Intra 4 na

The following semantics are assigned to the macroblock types in Table 7-10:

• Intra_4x4: the macroblock is coded as Intra prediction type.

• Intra_16x16_x_y_z: x: Imode, y: nc, z: AC these modes refer to 16x16 Intra prediction type. Imode numbers
from 6 and upwards represent 16x16 intra coding.

The macroblock types for SI slices are specified in Table 7-11 and Table 7-10. The mb_type value 0 is specified in Table
7-11 and the mb_type values 1 to 25 are specified in Table 7-10 by adding 1 to the value of mb_type in Table 7-10.

NOTE - If adaptive_block_size_transform_flag = = 1, the use of SI slices is not allowed.

Table 7-11 – Macroblock type with value 0 for SI slices

Value of
mb_type

Name of mb_type
SI slices

mb_partition_pred_
mode(, 1)

num_sub_blocks()

0 SIntra_4x4 SIntra 4

The following semantics are assigned to the macroblock types in Table 7-11:

• SIntra_4x4: the macroblock is coded as SIntra prediction type.

The macroblock types for P slices are specified in Table 7-12 and Table 7-10. The mb_type values 0 to 4 are specified in
Table 7-12 and the mb_type values 5 to 28 are specified in Table 7-10 by adding 5 to the value of mb_type in Table 7-
10.

The macroblock types for SP slices are specified in Table 7-12, Table 7-11, and Table 7-10. The mb_type values 0 to 4
are specified in Table 7-12, the mb_type value 5 is specified in Table 7-11 by adding 5 to the value of mb_type in Table
7-11, and the mb_type values 6 to 29 are specified in Table 7-10 by adding 6 to the value of mb_type in Table 7-10.

NOTE - If adaptive_block_size_transform_flag = = 1, the use of SP slices is not allowed.

Table 7-12 – Macroblock type values 0 to 4 for P and SP slices

Value of
mb_type

Name of mb_type num_mb_partition
()

mb_partition_pred_
mode(, 1)

mb_partition_pred
_mode(, 2)

num_sub_
blocks()

0 Pred_L0_16x16 1 Pred_L0 4

1 Pred_L0_L0_16x8 2 Pred_L0 Pred_L0 4

2 Pred_L0_L0_8x16 2 Pred_L0 Pred_L0 4

3 Pred_8x8 4 Na na 4

4 Pred_8x8ref0 4 Na na na

 na

The following semantics are assigned to the macroblock types in Table 7-12:

• Pred_L0_16x16, Pred_L0_L0_16x8, Pred_L0_L0_8x16, and Pred_8x8: the macroblock is predicted from a past
picture with luma block sizes 16x16, 16x8, 8x16, and 8x8, respectively, and the associated chroma blocks. For
the macroblock types NxM=16x16, 16x8, and 8x16, a motion vector is provided for each NxM luma block and
the associated chroma blocks. If N=M=8, for each 8x8 sub macroblock an additional syntax element is decoded
which indicates in which type the corresponding sub macroblock is decoded (see subclause 7.4.5.2). Depending

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 45

on N,M and the sub macroblock types modes there may be 1 to 16 sets of motion data elements for a
macroblock.

• Pred_8x8ref0: same as Pred_8x8 but ref_idx_l0 is not sent and set to 0 for all sub macroblocks.

The macroblock types for B slices are specified in Table 7-13 and Table 7-10. The mb_type values 0 to 22 are specified
in Table 7-13 and the mb_type values 23 to 57 are specified in Table 7-10 by adding 23 to the value of mb_type in Table
7-10.

Table 7-13 – Macroblock type values 0 to 22 for B slices

Value of
mb_type

Macroblock type
mb_type name

num_mb_partition() mb_partition_pred_
mode(, 1)

mb_partition_pred_
mode(, 2)

num_sub_
blocks()

0 Direct_16x16 1 Direct 4

1 Pred_L0_16x16 1 Pred_L0 4

2 BiPred_L1_16x16 1 Pred_L1 4

3 BiPred_Bi_16x16 1 BiPred 4

4 Pred_L0_L0_16x8 2 Pred_L0 Pred_L0 4

5 Pred_L0_L0_8x16 2 Pred_L0 Pred_L0 4

6 BiPred_L1_L1_16x8 2 Pred_L1 Pred_L1 4

7 BiPred_L1_L1_8x16 2 Pred_L1 Pred_L1 4

8 BiPred_L0_L1_16x8 2 Pred_L0 Pred_L1 4

9 BiPred_L0_L1_8x16 2 Pred_L0 Pred_L1 4

10 BiPred_L1_L0_16x8 2 Pred_L1 Pred_L0 4

11 BiPred_L1_L0_8x16 2 Pred_L1 Pred_L0 4

12 BiPred_L0_Bi_16x8 2 Pred_L0 BiPred 4

13 BiPred_L0_Bi_8x16 2 Pred_L0 BiPred 4

14 BiPred_L1_Bi_16x8 2 Pred_L1 BiPred 4

15 BiPred_L1_Bi_8x16 2 Pred_L1 BiPred 4

16 BiPred_Bi_L0_16x8 2 BiPred Pred_L0 4

17 BiPred_Bi_L0_8x16 2 BiPred Pred_L0 4

18 BiPred_Bi_L1_16x8 2 BiPred Pred_L1 4

19 BiPred_Bi_L1_8x16 2 BiPred Pred_L1 4

20 BiPred_Bi_Bi_16x8 2 BiPred BiPred 4

21 BiPred_Bi_Bi_8x16 2 BiPred BiPred 4

22 BiPred_8x8 4 na na

The following semantics are assigned to the macroblock types in Table 7-13:

• Direct_16x16 type: no motion vector data is transmitted.

• BiPred_x_y_NxM, x,y=L0,L1,Bi: each NxM block of a macroblock is predicted by using distinct motion
vectors, reference pictures, and prediction directions. As indicated in Table 11-11, three different macroblock
types that differ in their prediction methods exist for the 16x16 mode. For the 16x8 and 8x16 macroblock types,
nine different combinations of the prediction methods are possible. If a macroblock is coded in 8x8 mode, an

46 DRAFT ITU-T Rec. H.264 (2002 E)

additional codeword for each 8x8 sub-partition indicates the decomposition of the 8x8 block as well as the
chosen prediction direction (see Table 11-2).

• BiPred_8x8: the macroblock is partitioned into sub macroblocks. The coding of each sub macroblock is
specified using sub_mb_type.

coded_block_pattern contains information which of the 8x8 blocks - luma and chroma - contain transform coefficients.
An 8x8 block contains four 4x4 blocks. An indication that an 8x8 block contains coefficients means that one or more of
the four 4x4 blocks within the 8x8 block contains coefficients‘. The four least significant bits of coded_block_pattern
contain information on which of four 8x8 luma blocks in the macroblock contains nonzero coefficients. These four bits
are denoted as coded_block_patternY. The ordering of 8x8 blocks is indicated in Figure 6-5. A bit equal to zero in
position n of coded_block_pattern (binary representation) indicates that the corresponding 8x8 block has no coefficients
and a bit equal to 1 indicates that the 8x8 block has one or more non-zero coefficients. For chroma, 3 possibilities are
specified in Table 7-14.

Table 7-14 – Specification of nc values

Value of nc Description

0 All chroma coefficients are 0.

1 One ore more chroma DC coefficients are non-zero.
All chroma AC coefficients are 0.

2 Zero or more chroma DC coefficients are non-zero.
One ore more chroma AC coefficients are non-zero.

The value of coded_block_pattern for a macroblock is given by coded_block_pattern = coded_block_patternY + 16 x nc

The coded_block_pattern is indicated with a different codeword for macroblocks in P, SP, and B slices compared to
macroblocks in I and SI slices.

If adaptive_block_size_transform_flag = = 1, the semantics for coded_block_pattern are specified in subclause 12.3.

delta_qp the value of QPY can be changed in the macroblock layer by the parameter delta_qp. The delta_qp parameter
is present only for non-skipped macroblocks, as defined by:

• If coded_block_pattern indicates that there are nonzero transform coefficients in the macroblock or

• If the macroblock is 16x16 based intra coded

Furthermore, when macroblock-level adaptive frame/field coding is in use, delta_qp is present only for the first non-
skipped macroblock of each macroblock pair.

The decoded value of delta_qp shall be in the range from -26 to +25, inclusive. This specifies the value of QPY in the
range [0..51], as given by

QPY = (QPY + delta_qp + 52) % 52 (7-9)

7.4.5.1 Macroblock prediction semantics

All samples of the macroblock are predicted. The prediction mode is signalled using the mb_type syntax element.
Depending on the mb_type syntax element, intra prediction information is signalled using intra_pred_mode or inter
prediction information is signalled using the syntax elements ref_idx_l0, ref_idx_l1, mvd_l0, and mvd_l1.

If adaptive_block_size_transform_flag = = 1, modifications to the macroblock prediction semantics are specified in
subclause 12.2.1.1.

The return value of num_mb_intra_partition() is always equal to 16 if adaptive_block_size_transform_flag = = 0.
NOTE - If adaptive_block_size_transform_flag = = 1 the semantics regarding the function num_mb_intra_partition() are
specified in subclause 12.2.1.1.

intra_pred_mode indicates the intra prediction mode.

intra_chroma_pred_mode indicates the type of spatial prediction used for chroma whenever any part of the luma
macroblock is intra coded. This is shown in Table 7-15.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 47

Table 7-15 – Relationship between intra_chroma_pred_mode and spatial prediction modes

Value of
intra_chroma_pred_mode

Prediction Mode

0 DC

1 Horizontal

2 Vertical

3 Plane

ref_idx_l0, when present, indicates the reference picture to be used for prediction.

If pic_structure indicates that the current picture is a frame picture, then the reference picture is a previous frame in list 0
that was either indicated as a single frame picture or a frame that was indicated as two field pictures and has been
reconstructed as a frame. Thus for frames the following table gives the reference frame:

Code_num Reference frame

0 The first frame in list 0

1 The second frame in list 0

2 The third frame in list 0

.. ..

If pic_structure indicates that the current picture is a field picture, then the reference picture is a previous field in list 0
that was either coded as part of a frame-structured picture or coded as a field-structured picture. Thus for fields the
following table gives the reference field:

Code_num Reference field

0 The first field in list 0

1 The second field in list 0

2 The third field in list 0

.. ..

If num_ref_idx_l0_active_minus1 is equal to 0, ref_idx_l0 is not present. If num_ref_idx_l0_active_minus1 is equal to
1, only a single encoded bit is used to represent ref_idx_l0. If num_ref_idx_l0_active_minus1 is greater than 1, the value
of ref_idx_l0 is represented by a decoded index.

ref_idx_l1 has the same semantics as ref_idx_l0, except that it is applied to the reference index list 1.

mvd_l0 if so indicated by mb_type, vector data for 1-16 blocks are transmitted. For every block a prediction is formed
for the horizontal and vertical components of the motion vector. mvd_l0 signals the difference between the vector
component to be used and this prediction. Motion vectors are allowed to point to samples outside the reference picture.
If a sample outside the reference picture is referred to in the prediction process, the nearest sample belonging to the
picture (an edge or corner sample) shall be used. All fractional sample positions shall be interpolated as described in
subclause 8.3.2. If a sample referred in the interpolation process (necessarily integer accuracy) is outside of the reference
picture it shall be replaced by the nearest sample belonging to the picture (an edge or corner sample). Reconstructed
motion vectors shall be clipped to ±19 integer samples outside of the picture.

mvd_l1 has the same semantics as mvd_l0, except that it is applied to the reference index list 1.

7.4.5.2 Sub macroblock prediction semantics

sub_mb_type indicates the sub macroblock types.

If adaptive_block_size_transform_flag = = 1, modifications to the sub macroblock prediction semantics are specified in
subclause 12.2.1.2.

The return value of num_sub_mb_intra_partition() is always equal to 4 if adaptive_block_size_transform_flag = = 0.

48 DRAFT ITU-T Rec. H.264 (2002 E)

NOTE - If adaptive_block_size_transform_flag = = 1 the semantics regarding the function num_sub_mb_intra_partition() are
specified in subclause 12.2.1.1.

The sub macroblock types for P macroblocks are defined in Table 7-16.

Table 7-16 – Sub macroblock types in P macroblocks

Value of
sub_mb_type

Name of
sub_mb_type

num_sub_mb_
partition()

sub_mb_pred_
mode()

num_sub_mb_intra
_partition()

num_sub_blocks
()

0 Pred_L0_8x8 1 Pred_L0 na 4

1 Pred_L0_8x4 2 Pred_L0 na 4

2 Pred_L0_4x8 2 Pred_L0 na 4

3 Pred_L0_4x4 4 Pred_L0 4 4

4 Intra_8x8 na Intra

The following semantics are assigned to the sub macroblock types in Table 7-16:

• Pred_L0_ XxY, X,Y=4,8 the corresponding partition of the sub macroblock is predicted from a past picture
with luma block size 8x4, 4x8, and 4x4, respectively, and the associated chroma blocks. A motion vector is
transmitted for each NxM=8x4, 4x8, and 4x4 block. Depending on N and M, up to 4 motion vectors may be
decoded for a sub macroblock, and thus up to 16 motion vectors maybe dedoced for a macroblock.

• Intra_8x8 the 8x8 sub-partition is coded in intra mode. Intra_8x8 shall not be present in SPred slices.

The sub macroblock types for B macroblocks are defined in Table 7-17.

Table 7-17 – Sub macroblock types in B macroblocks

Value of
sub_mb_type

Name of
sub_mb_type

num_sub_
mb_partition()

sub_mb_pred_mode() num_sub_mb_intra
_partition()

num_sub_blocks()

0 Direct_8x8 1 Direct na 4

1 Pred_L0_8x8 1 Pred_L0 na 4

2 BiPred_L1_8x8 1 Pred_L1 na 4

3 BiPred_Bi_8x8 1 BiPred na 4

4 Pred_L0_8x4 2 Pred_L0 na 4

5 Pred_L0_4x8 2 Pred_L0 na 4

6 BiPred_L1_8x4 2 Pred_L1 na 4

7 BiPred_L1_4x8 2 Pred_L1 na 4

8 BiPred_Bi_8x4 2 BiPred na 4

9 BiPred_Bi_4x8 2 BiPred na 4

10 Pred_L0_4x4 4 Pred_L0 na 4

11 BiPred_L1_4x4 4 Pred_L1 na 4

12 BiPred_Bi_4x4 4 BiPred na 4

13 Intra_8x8 1 Intra 4 4

The following semantics are assigned to the sub macroblock types in Table 7-17:

• Pred_L0_XxY, X,Y=4,8, have the same semantics as in Table 7-16.

• BiPred_Z_X_Y, Z=L1,Bi, X,Y=4,8

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 49

• Intra_8x8 has the same semantics as in Table 7-16.

7.4.5.3 Residual data semantics

If adaptive_block_size_transform_flag = = 1, modifications to the residual data semantics are specified in subclause
12.2.1.3.

The return value of num_sub_blocks() is always equal to 4 if adaptive_block_size_transform_flag = = 0.
NOTE - If adaptive_block_size_transform_flag = = 1 the semantics regarding the function num_sub_blocks() are specified in
subclause 12.2.1.3.

7.4.5.3.1 Residual 4x4 block CAVLC semantics

7.4.5.3.2 Residual 4x4 block CABAC semantics

coded_block_flag indicates whether the block contains non-zero transform coefficients. If coded_block_flag is equal to
0, the block contains no non-zero transform coefficients. If coded_block_flag is equal to 1, the block contains at least one
non-zero transform coefficient.

significant_coeff_flag[i] indicates whether the transform coefficient at scanning position i is non-zero. If
significant_coeff_flag[i] is equal to 0, the transform coefficient at scanning position i is equal to zero; if
significant_coeff_flag[i] is equal to 1, the transform coefficient at position i has a non-zero value.

last_significant_coeff_flag[i] indicates for the scanning position i whether there are non-zero transform coefficients for
subsequent scanning positions i+1 to max_numcoeff-1. If all following transform coefficients (in scanning order) of the
block have value equal to zero last_significant_coeff_flag[i] is equal to 1. If last_significant_coeff_flag[i] is equal to 0,
there are further non-zero transform coefficients along the scanning path.

coeff_absolute_value_minus_1 is the absolute value of the transform coefficient minus 1.

coeff_sign is the sign of the transform coefficient. A coeff_sign equal to 0 indicates a positive transform coefficient; a
coeff_sign equal to 1 indicates a negative transform coefficient.

8 Decoding process

8.1 Ordering of decoding process

A macroblock or sub-partition is decoded in the following order.

1. Parsing of syntax elements using VLC/CAVLC (see subclause 9.1) or CABAC (see subclause 9.2)

2. Motion compensation (see subclause 8.4) or Intra prediction (see subclause 8.5)

3. Transform coefficient decoding (see subclause 8.6)

4. Deblocking Filter (see subclause 8.7)

8.2 NAL unit decoding

8.2.1 NAL unit delivery and decoding order

This subclause presents the requirements for the NAL unit deliver and decoding order.

Decoders conforming to this Recommendation | International Standard shall be capable of receiving NAL units in
decoding order. Systems conveying NAL unit streams conforming to this Recommendation | International Standard shall
either

1) Present NAL unit streams to the decoder in decoding order, or
2) Provide a means to indicate the NAL unit decoding order to the decoder in the case of enhanced-capability

decoders which may be capable of receiving or processing some NAL units in an out-of-order fashion.
No such enhanced capability is defined or required herein for decoders conforming to this
Recommendation | International Standard.

The decoding order of a sequence parameter set shall precede the decoding order of other NAL units that refer to that
sequence parameter set.

50 DRAFT ITU-T Rec. H.264 (2002 E)

The decoding order of a picture parameter set shall precede the decoding order of other NAL units that refer to that
picture parameter set..

A coded picture is called a primary coded picture if the redundant_slice_flag is 0 or if its slice headers contain
redundant_pic_cnt equal to 0.

The decoding order of coded slices and data partitions of a primary coded picture shall be contiguous relative to the
decoding order of coded slices and data partitions of other primary coded pictures.

The decoding order of coded slices and data partitions of a primary or redundant coded picture shall precede the
decoding order of coded slices and data partitions of any other coded picture that uses the primary coded picture as a
reference for inter-picture prediction.

The decoding order of any coded slices or data partitions of a primary coded picture shall precede the decoding order of
any redundant slices or data partitions containing coded data for the same macroblock locations represented in the slice
or data partition for the primary deoded picture.

The decoding order of any redundant coded slice or data partition shall precede the decoding order of the coded slices
and data partitions of any other coded picture that uses the primary coded picture corresponding to the coded slice or data
partition of the redundant coded slice or data partition as a reference for inter-picture prediction.

The decoding order of slices and data partitions of primary coded pictures shall be non-decreasing in frame number
order. The decoding order of the slices and data partitions of non-stored primary coded pictures shall be subsequent to
the decoding order of the the slices and data partitions of the stored picture with the same frame number. If multiple
primary coded pictures share the same frame number, the decoding order of the slices and data partitions of the non-
stored pictures shall be in ascending order of redundant_pic_cnt.

Depending on the profile in use, arbitrary slice ordering may or may not be allowed. If arbitrary slice ordering is allowed,
the slices and data partitions of a primary coded picture may follow any decoding order relative to each other. If arbitrary
slice ordering is not allowed, the decoding order of slices and data partitions of a primary coded picture shall be
increasing in the raster scan order of the first macroblock of each slice, and the decoding order of data partition A of a
coded slice shall precede the decoding order of data partition B of the same coded slice, and the decoding of data
partition B of a coded slice shall precede the decoding order of data partition C of the same coded slice, and data
partitions A, B, and C of a coded slice shall be contiguous in decoding order relative to the decoding order of any data
partitions or non-partitioned slice data NAL units of other coded slices.

The decoding order of SEI NAL units shall precede the decoding order of the slices and the slices and data partitions of
the corresponding slice or data partition or coded picture or sequence of pictures to which the SEI NAL unit corresponds,
and shall be subsequent to the decoding order of any SEI NAL units, slices, and data partitions of pictures that preced the
corresponding coded picture in decoding order.

The decoding order of a picture delimiter, if present, shall precede the decoding order of the SEI NAL units, slices and
data partitions of the corresponding coded picture, and shall be subsequent to the decoding order of any SEI NAL units,
slices, and data partitions of pictures that precede the corresponding coded picture in decoding order.

8.2.2 Parameter set decoding

The decoder maintains 16 sequence parameter set locations. For each 16 possible values of seq_parameter_set_id, the
most recent decoded sequence parameter set is copied into the location referenced by seq_parameter_set_id immediately
before the decoding of the next IDR picture.

The decoder maintains 64 picture parameter set locations. For each 64 possible values of pic_parameter_set_id, the most
recent picture parameter set is copied into the location referenced by pic_parameter_set_id immediately before the
decoding of a slice or DPA belonging to the next coded picture.

8.3 Slice decoding

8.3.1 Detection of coded picture boundaries

Decoding of a new picture is started from the slice to be decoded, herein called the current slice, if the slice is not a
redundant slice and if one of the following conditions is true:

1. The frame number of the current slice is different from the frame number of the previously decoded slice.

2. The frame number of the current slice is the same as frame number of the previously decoded slice, the
nal_storage_idc of the previously decoded slice is zero, and the nal_storage_idc of the current slice is non-zero.

3. The frame number of the current slice is the same as frame number of the previously decoded slice,
pic_order_cnt_type is 0, and pic_order_cnt is different from the pic_order_cnt in the previously decoded slice.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 51

4. The frame number of the current slice is the same as the previously decoded slice, pic_order_cnt_type is 1 and
delta_pic_order_cnt is different from the delta_pic_order_cnt in the previously decoded slice.

8.3.2 Picture order count

Each coded picture is associated with a picture order count, called PicOrderCnt, which is a 32-bit signed integer. An IDR
picture shall have PicOrderCnt equal to 0. The PicOrderCnt of each stored picture shall be stored as long as the picture
stays in the reference picture buffer.

The decoder should treat a wraparound, underflow or overflow of pic_order_cnt, PicOrderCntOffset, FrameNumOffset
and AbsFrameNum defined in subclauses 8.3.2.1 and 8.3.2.2 as an error.

8.3.2.1 Picture order count type 0

If pic_order_cnt_type is 0, the decoder shall maintain a picture order count offset, called PicOrderCntOffset, which is a
32-bit signed integer. The PicOrderCntOffset shall be zero for an IDR picture.

If pic_order_cnt_type is 0 and if the decoding of a new picture is started, the PicOrderCntOffset is updated and the
pic_order_cnt of the picture is calculated. The pic_order_cnt of the previous picture in decoding order is herein called
PreviousPicOrderCnt. If pic_order_cnt is smaller than PreviousPicOrderCnt and if (PreviousPicOrderCnt –
pic_order_cnt) is greater than or equal to (MAX_PIC_ORDER_CNT / 2), PicOrderCntOffset is calculated according to
Equation 8-1.

PicOrderCntOffset = PicOrderCntOffset + MAX_PIC_ORDER_CNT (8-1)

If pic_order_cnt is greater than PreviousPicOrderCnt and if (pic_order_cnt – PreviousPicOrderCnt) is greater than or
equal to (MAX_PIC_ORDER_CNT / 2), PicOrderCntOffset is calculated according to Equation 8-2.

PicOrderCntOffset = PicOrderCntOffset – MAX_PIC_ORDER_CNT (8-2)

Otherwise, the value of PicOrderCntOffset is not changed.

If pic_order_cnt_type is 0 and if the decoding of a new picture is started, the PicOrderCnt of the picture is calculated
according to Equation 8-3.

PicOrderCnt = PicOrderCntOffset + pic_order_cnt (8-3)

8.3.2.2 Picture order count type 1

If pic_order_cnt_type is 1, the decoder shall maintain a FrameNumOffset that is a 32-bit unsigned integer. The
FrameNumOffset of an IDR picture shall be zero.

If pic_order_cnt_type is 1 and if the decoding of a new picture is started, the PicOrderCnt of the picture is calculated. In
the following, AbsFrameNum and PicOrderCntCycleCount are 32-bit unsigned integers, and the frame_num of the
previous picture in decoding order is called PreviousFrameNum. First, the FrameNumOffset is updated. If frame_num is
greater than or equal to the PreviousFrameNum, FrameNumOffset is unchanged. Otherwise, when frame_num is smaller
than PreviousFrameNum, FrameNumOffset is calculated according to Equation 8-4.

FrameNumOffset = FrameNumOffset + MAX_FN (8-4)

Second, the AbsFrameNum is calculated according to Equation 8-5.

AbsFrameNum = FrameNumOffset + frame_num (8-5)

Third, the PicOrderCntCycleCount is calculated according to Equation 8-6.

PicOrderCntCycleCount = AbsFrameNum / num_stored_frames_in_pic_order_cnt_cycle
 (8-6)

Fourth, the FrameNumInPicOrderCntCycle is calculated according to Equation 8-7.

FrameNumInPicOrderCntCycle = AbsFrameNum %
num_stored_frames_in_pic_order_cnt_cycle
 (8-7)

52 DRAFT ITU-T Rec. H.264 (2002 E)

In the following, the EXPECTED_DELTA_PER_PIC_ORDER_CNT_CYCLE is the sum of offset_for_stored_frame
values. Finally, the PicOrderCnt of the picture is computed using the algorithm expressed in Equation 8-8.

PicOrderCnt = PicOrderCntCycleCount ×
 EXPECTED_DELTA_PER_PIC_ORDER_CNT_CYCLE

for(i = 0; i <= FrameNumInPicOrderCntCycle; i++)
 PicOrderCnt = PicOrderCnt + offset_for_stored_framei

PicOrderCnt = PicOrderCnt + delta_pic_order_cnt

if(nal_storage_idc = = 0)
 PicOrderCnt = PicOrderCnt + offset_for_non_stored_pic (8-8)

8.3.3 Decoder process for redundant slices

If the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice. If
some of the samples in the decoded primary picture are incorrect and if the coded redundant slice can be correctly
decoded, the decoder should replace the incorrect samples with the corresponding samples of the redundant decoded
slice.

8.3.4 Specification of macroblock allocation map

If decoding of a new picture is started, if num_slice_groups_minus1 is greater than 0 and if mb_allocation_map_type is
4, 5 or 6, a macroblock allocation map is generated. Slice group 0 has a growth order specified in ubclauses 8.3.4.1-
8.3.4.4. The number of macroblocks in slice group 0 is equal to slice_group_change_cycle ×
SLICE_GROUP_CHANGE_RATE. This number of macroblock locations in the specified growth order is allocated for
slice group 0. The rest of the macroblocks of the picture are allocated for slice group 1.

8.3.4.1 Allocation order for box-out

Let H denote the number of coded macroblock rows of the picture and W denote the number of coded macroblocks
columns of the picture. Macroblock locations are indicated with coordinates (x, y), where the top-left macroblock
location of the picture has coordinates (0, 0) and the bottom-right macroblock location has coordinates (W – 1, H – 1).
The allocation order is created using a AllocationDirection variable that indicates the next macroblock location relative
to the current one. AllocationDirection can have four values: (-1, 0), (1, 0), (0, -1) and (0, 1). Furthermore, the left-most
and right-most macroblock columns allocated in the allocation order and the top-most and bottom-most macroblock rows
allocated in the allocation order are stored in the variables Left, Right, Top, and Bottom respectively. For the box-out
clockwise macroblock allocation map type, the first macroblock location in the allocation order is (x, y) = (W/2, H/2)
and the initial AllocationDirection is (-1, 0). For the counter-clockwise macroblock allocation map type, the first
macroblock location in allocation order is (x, y) = ((W – 1)/2, (H – 1)/2) and the initial AllocationDirection is (0, 1). At
the beginning, Left = Right = x, and Top = Bottom = y. A subsequent macroblock location (x, y) in allocation order is
allocated by searching the first row from top to bottom in Table 8-1 for the same value of AllocationDirection and where
the given condition is true. Then, the x, y, AllocationDirection, Left, Right, Top and Bottom variables are updated
according to the refined macroblock allocation map type. If Left >= 0, Right < W, Top >= 0 and Bottom < H, the next
macroblock location (x, y) in allocation order is allocated as described above. Otherwise, all macroblock locations have
been allocated.

Table 8-1 – Allocation order for the box-out macroblock map allocation type

AllocationDirection Condition Box-out clockwise Box-out counter-clockwise

(-1, 0) x > Left x = x – 1 x = x – 1

(-1, 0) x = = 0 y = Top – 1
Top = Top – 1
AllocationDirection = (1, 0)

y = Bottom + 1
Bottom = Bottom + 1
AllocationDirection = (1, 0)

(-1, 0) x = = Left x = x – 1
Left = Left – 1
AllocationDirection = (0, -1)

x = x –1
Left = Left – 1
AllocationDirection = (0, 1)

(1, 0) x < Right x = x + 1 x = x + 1

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 53

(1, 0) x = = W – 1 y = Bottom + 1
Bottom = Bottom + 1
AllocationDirection = (-1, 0)

y = Top – 1
Top = Top – 1
AllocationDirection = (-1, 0)

(1, 0) x = = Right x = x + 1
Right = Right + 1
AllocationDirection = (0, 1)

x = x + 1
Right = Right + 1
AllocationDirection = (0, -1)

(0, -1) y > Top y = y – 1 y = y – 1

(0, -1) y = = 0 x = Right + 1
Right = Right + 1
AllocationDirection = (0, 1)

x = Left – 1
Left = Left – 1
AllocationDirection = (0, 1)

(0, -1) y = = Top y = y – 1
Top = Top –1
AllocationDirection = (1, 0)

y = y –1
Top = Top –1
AllocationDirection = (-1, 0)

(0, 1) y < Bottom y = y + 1 y = y + 1

(0, 1) y = = H – 1 x = Left – 1
Left = Left – 1
AllocationDirection = (0, -1)

x = Right + 1
Right = Right + 1
AllocationDirection = (0, -1)

(0, 1) y = = Bottom y = y + 1
Bottom = Bottom + 1
AllocationDirection = (-1 ,0)

y = y + 1
Bottom = Bottom + 1
AllocationDirection = (1 ,0)

8.3.4.2 Allocation order for raster scan

For the raster scan slice group macroblock allocation map type, the first macroblock in the allocation order is the top-left
one of the picture, and the allocation order follows the raster scan order.

For the reverse raster scan slice group macroblock allocation map type, the first macroblock in the allocation order is the
bottom-right one of the picture, and the allocation order follows the reverse raster scan order.

8.3.4.3 Allocation order for wipe

For the wipe right slice group macroblock allocation map type, the first macroblock in the allocation order is the top-left
one of the picture. The allocation order runs from top to bottom. The next macroblock after the bottom macroblock of a
column is the top macroblock of the column to the right of the previous column.

For the wipe left slice group macroblock allocation map type, the first macroblock in the allocation order is the bottom-
right one of the picture. The allocation order runs from bottom to top. The next macroblock after the top macroblock of a
column is the bottom macroblock of the column to the left of the previous column.

8.3.4.4 Allocation order for macroblock level adaptive frame and field coding

Allocation order follows Figure 6-4 in subclause 6.2, instead of raster scan.

8.3.5 Data partitioning

When data partitioning is not used, coded slices start with a slice header and are followed by all the entropy coded
symbols of Categories 4, 5, and 6 (see Category column in clause 7) of the macroblock data for the macroblocks of the
slice.

When Data Partitioning is used, the macroblock data of a Slice is partitioned in three partitions. Partition A contains a
partition A header and all entropy coded symbols of Category 4. Partition B contains a partition B header all symbols of
Category 5. Partition C contains a partition C header and all symbols of Category 6. When data partitioning is used,
each partition is conveyed in its own NAL unit, which may be empty if no symbols of the respective Category.

NOTE - Symbols of Category 5 are relevant to the decoding of intra coded texture information. Symbols of Category 6 are
relevant to the decoding of residual data in Inter slices. Category 4 encompasses all other symbol types related to the decoding of
macroblocks, and their information is often denoted as header information. The Partition A header contains all the symbols of the
slice header, and additionally a slice number that is used to associate the partitions B and C with the partition A. The partition B
and C headers contain only the slice number which allows their association with the partition A of the slice

8.3.6 Decoder process for management and use of the reference picture buffer

8.3.6.1 General

Intro to multi picture buffer.

54 DRAFT ITU-T Rec. H.264 (2002 E)

Decoder stores reference pictures as indicated in the bitstream. These are used for prediction. The buffer is divided into
two independent buffers: the short term buffer and the long term buffer. Pictures can only remain in the short term buffer
for a finite duration, given by MAX_FN. Pictures can remain in the long term buffer until the next IDR picture. mmco
commands are used to control the contents of these buffers.

The decoder employs indices when referencing a picture for motion compensation on the macroblock layer. Default
indices are defined. These indices of pictures in the reference picture buffer are re-mapped onto newly specified indices
according to the remapping_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_idx fields.

8.3.6.2 Picture Numbering

Picture numbers are used in the decoding process for management and use of the reference picture buffer for both
changing the default indices and for controlling the contents of the reference picture buffer using memory management
control operations.

In frame structured pictures, the picture number, PN, of a frame that has frame number FN, is given by PN = FN

In field structured pictures, the picture number, PN, of a field that has frame number FN, is given by PN = 2 x FN if the
field is a top field, and is given by PN = 2 x FN + 1 if the field is a bottom field.

Long term picture numbers are also used in the decoding process for management and use of the reference picture buffer.
Long term picture numbers are used for both changing the default indices of pictures in the long term buffer, and are
used for transferring pictures from short term buffer to the long term buffer and for removing pictures from the long term
buffer.

In frame structured pictures, the long term picture number, LTPN, of a frame that has long-term frame index LTFI, is
given by LTPN = LTFI

In field structured pictures, the long term picture number, LTPN, of a field that has long-term frame index LTFI, is given
by LTPN = 2 x LTFI if the field is a top field, and is given by LTPN = 2 x LTFI + 1 if the field is a bottom field.

In frame-structured pictures, the parameter MAX_PN is defined to equal MAX_FN, and in field-structured pictures , the
parameter MAX_PN is defined to equal 2 x MAX_FN.

8.3.6.3 Default index orders

8.3.6.3.1 General

A reference index is a relative index into a list of reference indices to indicate which reference picture out of the
reference picture buffer is used for motion compensation. When decoding a P or SP slice, there is one such list of
reference indices, called the first reference index list. When decoding a B slice, there may be two reference indices used
per block each pointing into a separate lists of reference indices which are called the first reference index list and second
reference index list.

The first reference index list and the second reference index list have default mappings to the pictures numbers in the
reference picture buffer as defined below.

8.3.6.3.2 Default index order for P and SP slices in frame-structured pictures

The default index order for list 0 prediction of P and SP slices in frame-structured pictures (i.e., frames which have not
been given a long-term index) to precede the long-term frames in the reference indexing order. Within the set of short-
term frames, the default order is for the frames to be ordered starting with the most recently-decoded reference frame and
proceeding through to the reference frame in the short-term buffer that was decoded first (i.e., in decreasing order of
frame_num in the absence of wrapping of the frame_num value). Within the set of long-term frames, the default order is
for the frames to be ordered starting with the frame with the smallest long-term index and proceeding up to the frame
with largest long-term index.

A field that is stored in the short term or long term buffer for which the opposite parity field is not stored in the same
buffer, are not included in the default index order, shall not be remapped, and shall not be used for prediction in frame-
structured pictures.

A field that is stored in the short term or long term buffer for which the opposite parity field is not stored in the same
buffer, are not included in the default index order, shall not be remapped, and shall not be used for prediction in frame-
structured pictures.

For example, assuming no wrap of the frame_num field, if the buffer contains three short-term frames with frame_num
equal to 300, 302, and 303 and two long-term frames with long-term frame indices 0 and 3, the default index order is:

default relative index 0 refers to the short-term frame with frame_num 303,
default relative index 1 refers to the short-term frame with frame_num 302,

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 55

default relative index 2 refers to the short-term frame with frame_num 300,
default relative index 3 refers to the long-term frame with long-term frame index 0, and
default relative index 4 refers to the long-term frame with long-term frame index 3.

8.3.6.3.3 Default index order for P and SP slices in field-structured pictures

In the case that the current picture is field-structured, each field of the stored reference pictures is identified as a separate
reference picture with a unique index. Thus field structured pictures effectively have at least twice the number of pictures
available for referencing. The calculated decoding order of reference fields alternates between reference pictures of the
same and opposite parity, starting with fields that have the same parity as the current field-structured picture. Figure 8-6
shows the case of the first field in a field-structured picture pair, while Figure 8-7 shows the case of the second field. If
one field of a reference frame was neither decoded nor stored, the decoding order calculation shall ignore the missing
field and instead index the next available stored reference field of the respective parity in decoding order. When there are
no more fields of the respective parity in the short term buffer, default indices shall be allocated to the not yet indexed
fields of the other parity starting with the most recently decoded such field and progressing to the first decoded such
field.

current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

76 89

Figure 8-1 – Default reference field number assignment when the current picture is the first field coded in a frame

current field0 12 34 5

Ref. Frame (field) Buf.

Ref. Field No.

......

f1 f2f1 f2f1 f2f1 f2f1 f2f1 f2 f1 f2

68 710 9

Figure 8-2 – Default reference field number assignment when the current picture is the second field coded in a
frame

8.3.6.3.4 Default index order for B slices in frame-structured pictures

The organisation of short term pictures in the default order for B slices depends on output order, as given by
PicOrderCnt.

The default index order for list 0 prediction of B slices in frame-structured pictures is for the short-term frames (i.e.,
frames which have not been given a long-term index) to precede the long-term frames in the reference indexing order.
Within the set of short-term frames, the default order is for the frames to be ordered starting with the decoded reference
frame with the largest value of PicOrderCnt less than the value of PicOrderCnt of the current frame and proceeding

56 DRAFT ITU-T Rec. H.264 (2002 E)

through to the reference frame in the short-term buffer that has the smallest value of PicOrderCnt; and then the frame
with the largest value of PicOrderCnt greater than the value of PicOrderCnt of the current frame and proceeding through
to the reference frame in the short-term buffer that has the smallest value of PicOrderCnt greater than the value of
PicOrderCnt of the current frame. Within the set of long-term frames, the default order is for the frames to be ordered
starting with the frame with the smallest long-term index and proceeding up to the frame with the largest long-term
index.

The default index order for list 1 prediction of B slices in frame-structured pictures is for the short-term frames (i.e.,
frames which have not been given a long-term index) to precede the long-term frames in the reference indexing order.
Within the set of short-term frames, the default order is for the frames to be ordered starting with the decoded reference
frame with the largest value of PicOrderCnt and proceeding through to the reference frame in the short-term buffer that
has the smallest value of PicOrderCnt. Within the set of long-term frames, the default order is for the frames to be
ordered starting with the frame with the smallest long-term index and proceeding up to the frame with the largest long-
term index.

The ordinary default order defined in the previous paragraph shall be used as the default index order for list 1 prediction
unless there is more than one reference picture in the set and the ordinary default index order for list 1 prediction is the
same as the default index order for list 0 prediction. In this exceptional case, the default index order for list 1 prediction
shall be the ordinary default index order with the order of the first two pictures switched.

A field that is stored in the short term or long term buffer for which the opposite parity field is not stored in the same
buffer, are not included in the default index order, shall not be remapped, and shall not be used for prediction in frame-
structured pictures.

8.3.6.3.5 Default index order for B slices in field-structured pictures

The default index order for list 0 and list 1 prediction of B slices in field-structured pictures is as for frame-structured
pictures except that it is split between even indices for same-parity fields and odd indices for opposite-parity fields.

8.3.6.4 Changing the default index orders

8.3.6.4.1 General

The syntax elements remapping_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_idx fields allow
indexing into the reference picture buffer to be temporarily altered from the default index order for the decoding of the
current slice. A remapping_of_pic_nums_idc "end loop" indication indicates the end of a list of re-ordering commands.

The indices are assigned starting at zero and increasing by one for each remapping_of_pic_nums_idc field. Pictures that
are not re-mapped to a specific order by remapping_of_pic_nums_idc, shall follow after any pictures having a re-mapped
order in the indexing scheme, following the default order amongst these non-re-mapped pictures.

8.3.6.4.2 Changing the default index orders for short term pictures

abs_diff_pic_num_minus1 plus one indicates the absolute difference between the picture number of the picture being re-
mapped and the prediction value. For the first occurence of the abs_diff_pic_num_minus1 field in ref_idx_reordering(),
the prediction value is the picture number of the current picture. For subsequent occurences of the
abs_diff_pic_num_minus1 field in ref_idx_reordering(), the prediction value is the picture number of the picture that was
re-mapped most recently using abs_diff_pic_num_minus1.

The decoder shall determine the picture number of the picture being re-mapped, PNQ, in a manner mathematically
equivalent to the following, where the picture number prediction is PNP.

if(remapping_of_pic_nums_idc = = 0)

{ /* a negative difference */

 if(PNP – abs_diff_pic_num_minus1 < 0)

 PNQ = PNP – abs_diff_pic_num_minus1 + MAX_PN;

 else

 PNQ = PNP – abs_diff_pic_num_minus1;

}

else

{ /* a positive difference */

 if(PNP + abs_diff_pic_num_minus1 > MAX_PN-1)

 PNQ = PNP + abs_diff_pic_num_minus1 – MAX_PN;

 else

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 57

 PNQ = PNP + abs_diff_pic_num_minus1;

}

The encoder shall control remapping_of_pic_nums_idc and abs_diff_pic_num_minus1 such that the decoded value of
abs_diff_pic_num_minus1 shall not be greater than or equal to MAX_PN.

As an example implementation, the encoder may use the following process to determine values of
abs_diff_pic_num_minus1 and remapping_of_pic_nums_idc to specify a re-mapped picture number in question, PN:

if(remapping_of_pic_nums_idc = = 0)

{ /* a negative difference */

 if(PNP – abs_diff_pic_num_minus1 < 0)

 PNQ = PNP – abs_diff_pic_num_minus1 + MAX_PN;

 else

 PNQ = PNP – abs_diff_pic_num_minus1;

}

else

{ /* a positive difference */

 if(PNP + abs_diff_pic_num_minus1 > MAX_PN-1)

 PNQ = PNP + abs_diff_pic_num_minus1 – MAX_PN;

 else

 PNQ = PNP + abs_diff_pic_num_minus1;

}

where abs() indicates an absolute value operation.

remapping_of_pic_nums_idc is then determined by the sign of MDELTA.

The prediction value used by any subsequent abs_diff_pic_num_minus1 re-mappings is not affected by
long_term_pic_idx.

8.3.6.4.3 Changing the default index orders for long term pictures

The long_term_pic_idx field indicates the long term picture number of the long term picture being remapped.

8.3.6.5 Overview of decoder process for reference picture buffer management

The reference picture buffer consists of two independent parts: a short term buffer and a long term buffer. The decoder
shall assume the initial size of the long term buffer to be 0, that is, it shall assume that max_long_term_pic_idx_plus1 is
set to zero.

The long term buffer has capacity to store max_long_term_idx_plus1 frames. The usage of the long term buffer is
constrained so that it has capacity for no more than max_long_term_idx_plus1 top fields and no more than
max_long_term_idx_plus1 bottom fields.

The remainder of the reference picture buffer is allocated to the short term buffer, which has capacity to store
(num_of_ref_frames - max_long_term_idx_plus1) frames. There is no further constraint on its capacity to store top and
bottom fields. For example, the whole of the short term buffer could be used to store top fields.

nal_storage_idc indicates whether the current picture is stored in the reference picture buffer. When nal_storage_idc is
equal to 0, the current picture is not stored in the reference picture buffer, otherwise it is stored in the reference picture
buffer.

If the current picture is stored in the reference picture buffer, the process used for storing is indicated by
ref_pic_buffering_mode, which indicates either "Sliding Window", a first-in, first-out mechanism, or "Adaptive Memory
Control", a customised adaptive buffering operation specified with memory_management_control_operation commands.

In frame structured pictures, memory_management_control_operation commands apply to both fields of the frame.

In field structured pictures, memory_management_control_operation commands apply to individual fields.

8.3.6.6 Sliding window reference picture buffer management

The "Sliding Window" buffering mode operates as follows.

58 DRAFT ITU-T Rec. H.264 (2002 E)

If there is sufficient “unused” capacity in the short term buffer to store the current picture, the current picture is stored in
the short term buffer and no pictures are removed from the short term buffer.

Otherwise if the current picture is a field-structured picture, the short-term field with the largest default index, that is,
field that has been in the short term buffer for the longest time, is marked “unused”, thus creating sufficient capacity to
store the current picture. The current picture is then stored in the short term buffer.

Otherwise if the current picture is a frame-structured picture, default indices are calculated as done when decoding a
field-structured picture, and the short-term field with the largest default index is marked “unused”. If there is still
insufficient “unused” capacity in the short term buffer to store the current picture, the short-term field which now has the
largest default index is also marked “unused”. The current picture is then stored in the short term buffer.

8.3.6.7 Adaptive Memory Control reference picture buffer management

8.3.6.7.1 General

The "Adaptive Memory Control" buffering mode allows specified pictures to be removed from either or both of the short
and long term buffers, allows specified pictures to be moved from the short term buffer to the long term buffer, allows
specified pictures to be removed from the long term buffer, allows the number of long term pictures to be modified, and
allows the whole buffer to be reset, by use of memory_management_control_operation commands.

memory_management_control_operation commands are processed in the order they occur in the bitstream, and are
processed after the whole picture has been decoded. When all commands have been processed, storage of the current
picture is considered. When nal_storage_idc is equal to 0, the current picture is not stored in the reference picture buffer,
otherwise it is stored in the short term buffer. memory_management_control_operation commands in the bitstream shall
be such that when nal_storage_idc indicates that the current picture is to be stored, that there shall be sufficient “unused”
capacity in the short term buffer to store the current picture.

8.3.6.7.2 Removal of short term pictures

If memory_management_control_operation equals 1 (Mark a Short-Term Picture as “Unused”), a specified short term
picture in the short term buffer is marked as “unused”, if that picture has not already been marked as “unused”.

If the current decoded picture number is PNC, difference_of_pic_nums_minus1 is used in an operation mathematically
equivalent to the following equations, to calculate, PNQ, the picture number of the short term picture to be marked as
“unused”.

if(PNC < difference_of_pic_nums_minus1)

 PNQ = PNC – difference_of_pic_nums_minus1 – 1 + MAX_PN;

else

 PNQ = PNC – difference_of_pic_nums_minus1 - 1;

Similarly, the encoder may compute the difference_of_pic_nums_minus1 value to encode using the following relation:
if(PNC < PNQ)

 difference_of_pic_nums_minus1 = PNC – PNQ – 1 + MAX_PN;

else

 difference_of_pic_nums_minus1 = PNC – PNQ - 1;

8.3.6.7.3 Removal of long term pictures

If memory_management_control_operation equals 2 (Mark a Long-Term Picture as “Unused”), a specified long term
picture in the long term buffer is marked as “unused”, if that picture has not already been marked as “unused”.

The field long_term_pic_idx indicates the the long term picture number, LTPN, of the picture to be marked as “unused”.

NOTE: this use of long_term_pic_idx is different to its use when transferring short term pictures to the long term buffer.

8.3.6.7.4 Transfer of short term pictures to the long term buffer

If memory_management_control_operation equals 3 (Assign a Long-Term Index to a Picture), a specified short term
picture in the short term buffer is transferred to the long term buffer with a specified long-term index, if that picture has
not already been transferred to the long term buffer. If the picture specified in a long-term assignment operation is
already associated with the required long_term_pic_idx, no action shall be taken by the decoder. The specified short term
picture is no longer in the short term buffer following the processing of this command, and shall not be referenced at a
later point in the bitstream by reference to its picture number.

If another picture is already present in the long term buffer with the same long-term index as the specified long-term
index, the other picture is marked as “unused”.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 59

The picture in the short term buffer to be transferred is identified by its picture number, which is derived from
difference_of_pic_nums_minus1 as in 9.2.6.6.1.

A top field in the short term buffer can only be transferred to the top field of a long term frame, and a bottom field in the
short term buffer can only be transferred to the bottom field of a long term frame. The long term frame number of the
frame into which the short term picture is transferred is given by long_term_pic_idx.

long_term_pic_idx shall not be greater than max_long_term_idx_plus1–1. If long_term_pic_idx does not satisfy this
constraint, this condition should be treated by the decoder as an error.

For error resilience, the bitstream may contain the same long-term index assignment operation or
max_long_term_idx_plus1 specification message repeatedly.

A bitstream shall not assign a long-term index to a short-term picture that has been marked as “unused” by the decoding
process prior to the first such assignment message in the bitstream. A bitstream shall not assign a long-term index to a
picture number that has not been sent.

Once a long-term picture index has been assigned to a picture, the only potential subsequent use of the long term
picture’s picture number within the bitstream shall be in a repetition of the long-term index assignment.
long_term_pic_idx becomes the unique ID for the life of a long term picture.

8.3.6.7.5 Modification of the size of the long term buffer

If memory_management_control_operation equals 4 (Specify the Maximum Long-Term Frame Index),
max_long_term_pic_idx_plus1 indicates the maximum index allowed for long-term reference frames (until receipt of
another value of max_long_term_pic_idx_plus1).

If max_long_term_pic_idx_plus1 is smaller than its previous value, all frames in the long term buffer having indices
greater than max_long_term_pic_idx_plus1 – 1 shall be marked “unused”.

If max_long_term_pic_idx_plus1 is greater than its previous value, the capacity of the short term buffer is reduced by the
same amount as the capacity of the long term buffer is increased. The memory_management_control_operation
commands in the bitstream shall be such that at the time of processing this command, the reduced capacity of the short
term buffer shall be sufficient for the contents of the short term buffer.

NOTE: max_long_term_pic_idx_plus1 can therefore be used to remove long term pictures from the long term buffer but
can not be used to remove short term pictures from the short term buffer.

The frequency of transmitting max_long_term_idx_plus1 is out of the scope of this Recommendation. However, the
encoder should send an max_long_term_idx_plus1 parameter upon receiving an error message, such as an Intra request
message.

8.3.6.7.6 Buffer reset

If memory_management_control_operation equals 5 (Reset), or the current picture is an IDR picture, all pictures in the
short and long term buffers are marked as “unused”, and max_long_term_pic_idx_plus1 is set to zero.

8.3.6.8 Error resilience with reference picture buffer management

If required_frame_num_update_behaviour equals 1 the following picture buffer management behaviour shall be used.

If the decoder identifies that pictures that should have been stored have not been decoded, by a gap in frame numbers, the
decoder shall act as if the missing pictures had been inserted into the reference picture buffer using the “Sliding
Window” buffering mode. An index for a missing picture is called an “invalid” index. The decoder should infer an
unintentional picture loss if any “invalid” index is referred to in motion compensation or if an “invalid” index is re-
mapped.

If required_frame_num_update_behaviour equals 0, the decoder should infer an unintentional picture loss if one or
several frame numbers are missing or if a picture not stored in the reference picture buffer is indicated in an
abs_diff_pic_num_minus1 or long_term_pic_idx field.

Note: In case of an unintentional picture loss, the decoder may invoke some concealment process. If
required_frame_num_update_behaviour equals 1, the decoder may replace the picture corresponding to an “invalid” index with an
error-concealed one and remove the “invalid” indication. Otherwise, the decoder may insert an error-concealed picture into the
reference picture buffer assuming the “Sliding Window” buffering mode. Concealment may be conducted by copying the closest
temporally preceding picture that is available in the reference picture buffer into the position of the missing picture. The temporal
order of the short-term pictures in the reference picture buffer can be inferred from their picture numbers. In addition or instead,
the decoder may send a forced intra update signal to the encoder by external means (for example, Recommendation H.245) if such
external means is available, or the decoder may use external means or back-channel messages (for example, Recommendation
H.245) to indicate the loss of pictures to the encoder if such external means is available.

60 DRAFT ITU-T Rec. H.264 (2002 E)

8.3.6.9 Decoding process for macroblock level frame/field adaptive coding

When mb_ frame_field_adaptive_flag = = 1, the decoded frame is scanned on a macroblock pair by macroblock pair
basis, as shown in Figure 6-4 (subclause 6.2). A macroblock pair can be decoded in either frame or field decoding mode.
For frame decoding mode, a macroblock pair is decoded as two frame macroblocks, and each can be further divided into
one of block patterns shown in Figure 6-4. For field coding mode, a macroblock pair is first split into one top-field
macroblock and one bottom-field macroblock, as shown in Figure 8-3. The top-field macroblock and the bottom-field
macroblock are further divided into block patterns shown in Figure 6-5. Each macroblock in either frame or field
decoding mode can have a different mb_type described in subclause 7.4.6.

a pair of MBs in frame top/bottom MBs in field

Figure 8-3 – Split of a pair of macroblocks into one top-field macroblock and one bottom-field macroblock.

When mb_field_decoding_flag = = 0, the top macroblock of a macroblock pair is decoded first, followed by the bottom
macroblock, as shown in Figure 6-4 (subclause 6.2). When mb_field_decoding_flag = = 1, the top-field macroblock is
decoded first, followed by the bottom-field macroblock (see Figure 6-4). A few specific rules/conventions are specified
as follows.

For intra prediction, if a block/macroblock is in field decoding mode, its neighbouring samples in calculating the
prediction shall be the neighbouring samples of the same field.

As in frame decoding mode, the prediction mode of a 4x4 field block is decoded based upon the prediction modes of the
(above and left) neighbouring blocks. For interior blocks of a field macroblock pair, the neighbouring blocks used in
coding of intra prediction mode are the blocks above and left of the current block. For boundary blocks of a field
macroblock pair, the above or left neighbouring block may be in different macroblock pair that can be of either frame or
field coding mode. The neighbouring blocks for these boundary blocks shall be as follows:

– If the above or the left macroblock pair is also in field decoding mode, the neighbours of the boundary
blocks in the current macroblock pair are in the same field of the above or the left macroblock pair.

– If the above or the left macroblock pair is in frame decoding mode, the neighbours of the boundary blocks
in the top (bottom) field macroblock are defined to be the corresponding blocks in the top (bottom)
macroblock in the frame macroblock pair.

– For macroblock pairs on the upper boundary of a slice, if the left macroblock pair is in frame decoding
mode, then the intra mode prediction value used to predict a field macroblock shall be set to DC
prediction.

8.4 Motion compensation

The motion compensation process generates motion compensated predictions for picture blocks using previously
decoded reference pictures. The reference picture selection is described in subclauses 7.3.3, 7.3.5.1-2, 7.4.6.1, and 8.3.6-
7. If pic_structure indicates a field picture, only the reference field indicated by the ref_idx_l0 or ref_idx_l1 is used in the
motion compensation. The motion vectors to be used are described in subclauses 7.3.5.1-2, 7.4.5, 7.4.6.1 and 8.4.1.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 61

If the current MB pair is in frame mode and one or more neighbouring blocks is in field mode, the reference frame index
used in MV prediction from the field coded neighbours is obtained by dividing the reference field list index by 2 and
truncation any fractional result toward zero to obtain the effective frame index for prediction. If the MB pair is in frame
mode, the reference field number for any frame coded neighbour is obtained by multiplying the reference frame index by
2.

When a macroblock pair is in field mode, each field macroblock may refer to any (top or bottom) field in the reference
picture buffer.

8.4.1 Prediction of vector components

No vector component prediction takes place across macroblock boundaries of macroblocks that do not belong to the
same slice. For the purpose of vector component prediction, macroblocks that do not belong to the same slice are treated
as outside the picture.

With exception of the 16x8 and 8x16 block shapes, "median prediction" (see subclause 8.4.1.1) is used. In case the
macroblock may be classified to have directional segmentation the prediction is defined in subclause 8.4.1.2. Motion
vector for a Skip mode macroblock shall be obtained as described in subclause 8.4.1.3.

8.4.1.1 Median prediction

The prediction of the components of the motion vector value for a block E is formed based on the parameters of
neighbouring blocks A, B, C, and D as shown in Figure 8-4. This process is referred to as median prediction.

A The block containing the sample to the left of the upper left sample in E

B The block containing the sample just above the upper left sample in E

C The block containing the sample above and to the right of the upper right sample in E

D The block containing the sample above and to the left of the upper left sample in E
NOTE - The prediction of A, B, C, D and E may use different indices into the reference picture list.

Figure 8-4 – Median prediction of motion vectors

The following rules specify the predicted motion vector value resulting from the median prediction process for block E:
– If block C is outside the current picture or slice or is not available due to the decoding order within a

macroblock as specified in Figure 6-4, its motion vector and reference picture index shall be considered
equal to the motion vector and reference picture index for block D.

– If blocks B, C, and D are all outside the current picture or slice, their motion vector values and reference
picture indices shall be considered as equal to the motion vector value and reference picture index for
block A.

– If any predictor not specified by the first or second rules above is coded as intra or is outside the current
picture or slice, its motion vector value shall be considered equal to zero and it shall be considered to have
a different reference picture than block E.

– If only one of the three blocks A, B and C has the same reference picture as block E, then the predicted
motion vector for block E shall be equal to the motion vector of the A, B, or C block with the same
reference picture as block E; otherwise, each component of the predicted motion vector value for block E
shall be the median of the corresponding motion vector component values for blocks A, B, and C.

The following additional considerations apply in the case of macroblock-adaptive frame/field coding:
– If a block A is field type then it is assigned two frame MV’s for the purpose of motion vector prediction.

The first frame MV is the field MV of the block with vertical motion vector component multiplied by 2,

A

B C

E

D

62 DRAFT ITU-T Rec. H.264 (2002 E)

and the second MV is the field MV of the block in same geometric location as A in the second MB of the
MB pair (vertical motion vector component multiplied by two). If a block A is frame type then it is
assigned two field MV’s for the purpose of motion vector prediction. The first field MV is the frame MV
of the block with vertical motion vector component divided by 2, and the second MV is the frame MV of
the block in same geometric location as A in the second MB of the MB pair (vertical motion vector
component divided by two). Similar rules are used to determine the two reference frames (fields) of a field
(frame) block.

– If E is in frame coding mode, the MVs of A, B, C and D used in calculating PMV are also frame-based. If
block A, B, C, or D is coded in field coding mode, its two frame-based MVs are averaged. In that case, the
two reference field numbers of A, B, C or D shall be the same, and they shall be equal to the reference
frame number of E multplied by 2.

– If E is in field coding mode, the MVs of A, B, C and D used in calculating PMV are also field-based in
the same field parity. If block A, B, C, or D is frame coded, the field-based motion vector is obtained by
averaging the two field MVs of the block. In that case, two frame reference numbers of A, B, C or D shall
be the same, and they shall be equal to the reference field number of E divided by 2 with truncation of
fractional values toward zero.

8.4.1.2 Directional segmentation prediction

If the macroblock where the block to be predicted is coded in 16x8 or 8x16 mode, the prediction is generated as follows
(refer to Figure 8-5 and the definitions of A, B, C, E above):

a) Vector block size 8x16:
1) Left block: A is used as prediction if it has the same reference picture as E, otherwise "median

prediction" is used
2) Right block: C is used as prediction if it has the same reference picture as E, otherwise "median

prediction" is used
b) Vector block size 16x8:

1) Upper block: B is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

2) Lower block: A is used as prediction if it has the same reference picture as E, otherwise "median
prediction" is used

If the indicated prediction block is outside the picture, the same substitution rules are applied as in the case of median
prediction.

For field-coded macroblocks, the directional segmentation follow the same conventions as the above, but the
neighbouring blocks are constructed from samples of the macroblock pair having the same field parity.

Figure 8-5 – Directional segmentation prediction

8.4.1.3 Motion vector for a skip mode macroblock

Motion vector for a Skip mode macroblock shall be obtained identically to the prediction motion vector for the 16x16
macroblock type. However, if any of the conditions below hold, a zero motion vector shall be used instead:

a) The Macroblock immediately above or to the left is not available (that is, is outside of the picture or
belongs to a different slice)

b) Either one of the motion vectors applying to samples A or B (as described in subclause 8.4.1.1) uses the
last decoded picture as reference and has zero magnitude.

8*16 16*8

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 63

8.4.1.4 Chroma vectors

Chroma vectors are derived from the luma vectors. Since chroma has half resolution compared to luma, the chroma
vectors are obtained by dividing the corresponding luma motion vectors by two.

Due to the lower resolution of the chroma array relative to the luma array, a chroma vector applies to 1/4 as many
samples as the luma vector. For example if the luma vector applies to 8x16 luma samples, the corresponding chroma
vector applies to 4x8 chroma samples and if the luma vector applies to 4x4 luma samples, the corresponding chroma
vector applies to 2x2 chroma samples.

8.4.2 Fractional sample accuracy

Fractional sample accuracy is indicated by motion_resolution. If motion_resolution has the value 0, quarter-sample
interpolation with a 6-tap filter is applied to the luma samples in the block. If motion_resolution has the value 1, eighth-
sample interpolation with an 8-tap filter is used. The prediction process for chroma samples in both cases is described in
subclause 8.4.2.3.

8.4.2.1 Quarter sample luma interpolation

In Figure 8-6, the positions labelled with upper-case letters within shaded blocks represent reference picture samples at
integer sample positions, and the positions labelled with lower-case letters within un-shaded blocks represent reference
picture samples at fractional sample positions.

bb

a cE F I JG

h

d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g

ji k

qp r

aa

b

cc dd ee ff

hh

gg

Figure 8-6 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation.

The luma prediction values at half sample positions shall be obtained by applying a 6-tap filter with tap values (1, -5, 20,
20, -5, 1). The luma prediction values at quarter sample positions shall be obtained by averaging samples at integer and
half sample positions. The process for each fractional position is described below.

– The samples at half sample positions labelled ‘b’ shall be obtained by first calculating intermediate values
denoted as ‘b’ by applying the 6-tap filter to the nearest integer position samples in the horizontal
direction. The samples at half sample positions labelled ‘h’ shall be obtained by first calculating
intermediate values denoted as ‘h’ by applying the 6-tap filter to the nearest integer position samples in the
vertical direction:

64 DRAFT ITU-T Rec. H.264 (2002 E)

 b=(E-5F+20G+20H-5I+J),

 h=(A-5C+20G+20M-5R+T).

 The final prediction values shall be calculated using:

 b=Clip1((b+16)>>5),

 h= Clip1((h+16)>>5).
– The samples at half sample position labelled as ‘j’ shall be obtained by first calculating intermediate value

denoted as ‘j’ by applying the 6-tap filter to the intermediate values of the closest half sample positions in
either the horizontal or vertical direction because these yield an equivalent result.

 j=cc-5dd+20h+20m-5ee+ff, or

 j=aa-5bb+20b+20s-5gg+hh,
 where intermediate values denoted as ‘aa’, ‘bb’, ‘gg’, ‘s’ and ‘hh’ shall be obtained by applying the 6-tap

filter horizontally in an equivalent manner to ‘b’ and intermediate values denoted as ‘cc’, ‘dd’, ‘ee’, ‘m’
and ‘ff’ shall be obtained by applying the 6-tap filter vertically in an equivalent manner to ‘h’. The final
prediction value shall be calculated using: j=Clip1((j+512)>>10).

– The samples at quarter sample positions labelled as ‘a’, ‘c’, ‘d’, ‘n’, ‘f’, ‘i’, ‘k’ and ‘q’ shall be obtained
by averaging with truncation the two nearest samples at integer and half sample positions using:
a=(G+b)>>1, c=(H+b)>>1, d=(G+h)>>1, n=(M+h)>>1, f=(b+j)>>1, i=(h+j)>>1, k=(j+m)>>1 and
q=(j+s)>>1.

– The samples at quarter sample positions labelled as ‘e’, ‘g’ and ‘p’ shall be obtained by averaging with
truncation the two nearest samples at half sample positions in the diagonal direction using e=(b+h)>>1,
g=(b+m)>>1, p=(h+s)>>1.

– The sample at quarter sample position labelled as ‘r’ shall be obtained by averaging with rounding using
the four nearest samples at integer positions using r=(G+H+M+N+2)>>2.

8.4.2.2 One eighth sample luma interpolation

The positions labelled ‘A‘ in Figure 8-7 represent reference picture samples in integer positions. Other symbols represent
interpolated values at fractional sample positions.

d dA

d de fh

d dcq

bh d d

d d e

d d

d f g

d d

d dg

d d

d d g

d d

d dg

d r

d de d d e

A

A

bh bh

bh bh bhA

bv

bv

bv

bv

bv

bv

cq

cq cq cq

cq

cqcq

cm

fh

fhfh

fv

fv fv

fv

Figure 8-7 – Integer samples (‘A‘) and fractional sample locations for one eighth sample luma interpolation

The samples at half and quarter sample positions shall be obtained by applying 8-tap filters with following coefficients:

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 65

– coeff1 for sample values at 1/4 positions: (-3, 12, -37, 229, 71, -21, 6, -1),
– coeff2 for sample values at 2/4 positions: (-3, 12, -39, 158, 158, -39, 12, -3),
– coeff3 for sample values at 3/4 positions: (-1, 6, -21, 71, 229, -37, 12, -3).

The samples at one eighth sample positions are defined as weighted averages of reference picture samples at integer, half
and quarter sample positions. The process for each position is described below.

– The samples at half and quarter sample positions denoted as ‘bh’ shall be obtained by first calculating
intermediate values b, by applying 8-tap filter to the nearest samples ‘A’ at integer positions in a
horizontal direction. For left ‘bh’, middle ‘bh’ and right ‘bh’ in Figure 8-7, coefficients coeff1, coeff2 and
coeff3 are used, respectively. The final value of ‘bh’ shall be obtained using bh = Clip1((b+128)>>8). The
samples at half and quarter sample positions labelled as ‘bv’ shall be obtained equivalently with the filter
applied in vertical direction. For upper ‘bv’, middle ‘bv’ and bottom ‘bv’ coefficients coeff1, coeff2 and
coeff3 are used, respectively.

– The samples at half and quarter sample positions labelled as ‘cm’ and ‘cq’ shall be obtained by 8-tap
filtering of the closest intermediate values b in either horizontal or vertical direction to obtain value c, and
then the final result shall be obtained using cm=Clip1((c+32768)>>16) or cq = Clip1((c+32768)>>16).
Filtering in horizontal and vertical direction gives identical results. When filtering in horizontal direction is
applied, for left ‘cq’, middle ‘cq’ and right ‘cq’, coefficients coeff1, coeff2 and coeff3 are used,
respectively. When filtering in vertical direction is applied, for upper ‘cq’, middle ‘cq’ and bottom ‘cq’
coefficients coeff1, coeff2 and coeff3 are used, respectively. For ‘cm’ coefficients coeff2 are used.

– The samples at one eighth sample positions labelled as ‘d’ shall be obtained by averaging with truncation
of the two closest samples at half and quarter sample positions using d = (A+bh)>>1, d = (bh+bh)>>1, d =
(A+bv)>>1, d = (bh+cq)>>1, d = (bv+cq)>>1, d = (cq+cq)>>1, d = (bv+bv)>>1, or d = (cq+cm)>>1.

– The samples at one eighth sample positions labelled as ‘e’ shall be obtained by averaging with truncation
the closest ‘bh’ and ‘bv’ samples in diagonal direction using e = (bh+bv)>>1.

– The samples at one eighth sample positions labelled as ‘g’ shall be obtained from the closest integer
samples ‘A’ and the ‘cm’ samples using g = (A+3cm+2)>>2.

– The samples at one eighth sample positions labelled as ‘fh’ and ‘fv’ shall be calculated as fh = (3bh+
bv+2)>>2 and fv = (3bv+ bh+2)>>2.

Figure 8-8 – Diagonal interpolation for one eighth sample luma interpolation

8.4.2.3 Chroma interpolation

Motion compensated prediction fractional chroma samples shall be obtained using Equation 8-13.

 (8-13)

where A, B, C and D are the integer position reference picture samples surrounding the fractional sample location; dx and
dy are the fractional parts of the sample position in units of one eighth samples for quarter sample interpolation or one
sixteenth samples for one eighth sample interpolation; and s is 8 for quarter sample interpolation and is 16 for one eighth
sample interpolation. The relationships between the variables in Equation 8-13 and reference picture positions are
illustrated in Figure 8-9.

Integer position
samples
Samples at one eight
positions

Samples at half and
quarter positions

22 /)2/)()())(((ssDddCddsBdsdAdsdsv yxyxyxyx ++−+−+−−=

66 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 8-9 – Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D.

8.5 Intra Prediction
Two Intra coding modes for macroblocks are described below. Sample values used in the prediction process for intra
sample prediction shall be sample values prior to alteration by any deblocking filter operations.

8.5.1 Intra Prediction for 4x4 luma block in Intra_4x4 macroblock type

Figure 8-10 illustrates the Intra prediction for a 4x4 block. The samples of a 4x4 block containing samples a to p in
Figure 8-10 are predicted using samples A to Q in Figure 8-10 from neighbouring blocks. Samples A to Q may already
be decoded and may be used for prediction. Any sample A-Q shall be considered not available under the following
circumstances:

– if they are outside the picture or outside the current slice,
– if they belong to a macroblock that is subsequent to the current macroblock in raster scan order,
– if they are sent later than the current 4x4 block in the order shown in Figure 6-5, or
– if they are in a non-intra macroblock and constrained_intra_pred is 1.

When samples E-H are not available, the sample value of D is substituted for samples E-H. When samples M-P are not
available, the sample value of L is substituted for samples M-P.

Figure 8-10 – Identification of samples used for intra spatial prediction

For the luma signal, there are nine intra prediction modes labelled 0, 1, 3, 4, 5, 6, 7, and 8. Mode 2 is ‘DC-prediction’
(see below). The other modes represent directions of predictions as indicated in Figure 8-11.

A B

C D

dx
dy

s-dx

s-dy

a b c d

e f g h

i j k l

m n o p

Q A B C D E F G

I

J

K

L

M

H

N

O

P

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 67

Figure 8-11 – Intra prediction directions

If adaptive_block_size_transform_flag = = 1, the intra prediction modes may be used for 4x8, 8x4, and 8x8 blocks as
specified in subclause 12.4.1.

8.5.1.1 Mode 0: vertical Prediction

This mode shall be used only if A, B, C, D are available. The prediction in this mode shall be as follows:
– a, e, i, m are predicted by A,
– b, f, j, n are predicted by B,
– c, g, k, o are predicted by C,
– d, h, l, p are predicted by D.

8.5.1.2 Mode 1: horizontal prediction

This mode shall be used only if I, J, K, L are available. The prediction in this mode shall be as follows:
– a, b, c, d are predicted by I,
– e, f, g, h are predicted by J,
– i, j, k, l are predicted by K,
– m, n, o, p are predicted by L.

8.5.1.3 Mode 2: DC prediction

If all samples A, B, C, D, I, J, K, L, are available, all samples are predicted by (A+B+C+D+I+J+K+L+4)>>3. If A, B, C,
and D are not available and I, J, K, and L are available, all samples shall be predicted by (I+J+K+L+2)>>2. If I, J, K,
and L are not available and A, B, C, and D are available, all samples shall be predicted by (A+B+C+D+2)>>2. If all
eight samples are not available, the prediction for all luma samples in the 4x4 block shall be 128. A block may therefore
always be predicted in this mode.

8.5.1.4 Mode 3: diagonal down/left prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are available. This is a 'diagonal' prediction. The prediction
in this mode shall be as follows:

– a is predicted by (A + 2B + C + I + 2J + K + 4) >> 3
– b, e are predicted by (B + 2C + D + J + 2K + L + 4) >> 3
– c, f, i are predicted by (C + 2D + E + K + 2L + M + 4) >> 3
– d, g, j, m are predicted by (D + 2E + F + L + 2M + N + 4) >> 3
– h, k, n are predicted by (E + 2F + G + M + 2N + O + 4) >> 3
– l, o are predicted by (F + 2G + H + N + 2O + P + 4) >> 3
– p is predicted by (G + H + O + P + 2) >> 2

0

1

43

57

8

6

68 DRAFT ITU-T Rec. H.264 (2002 E)

8.5.1.5 Mode 4: diagonal down/right prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are available. This is a 'diagonal' prediction. The prediction
in this mode shall be as follows:

– m is predicted by: (J + 2K + L + 2) >> 2
– i, n are predicted by (I + 2J + K + 2) >> 2
– e, j, o are predicted by (Q + 2I + J + 2) >> 2
– a, f, k, p are predicted by (A + 2Q + I + 2) >> 2
– b, g, l are predicted by (Q + 2A + B + 2) >> 2
– c, h are predicted by (A + 2B + C + 2) >> 2
– d is predicted by (B + 2C + D + 2) >> 2

8.5.1.6 Mode 5: vertical-left prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are inside the slice. This is a 'diagonal' prediction.
– a, j are predicted by (Q + A + 1) >> 1
– b, k are predicted by (A + B + 1) >> 1
– c, l are predicted by (B + C + 1) >> 1
– d is predicted by (C + D + 1) >> 1
– e, n are predicted by (I + 2Q + A + 2) >> 2
– f, o are predicted by (Q + 2A + B + 2) >> 2
– g, p are predicted by (A + 2B + C + 2) >> 2
– h is predicted by (B + 2C + D + 2) >> 2
– i is predicted by (Q + 2I + J + 2) >> 2
– m is predicted by (I + 2J + K + 2) >> 2

8.5.1.7 Mode 6: horizontal-down prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are available. This is a 'diagonal' prediction. The prediction
in this mode shall be as follows:

– a, g are predicted by (Q + I + 1) >> 1
– b, h are predicted by (I + 2Q + A+ 2) >> 2
– c is predicted by (Q + 2A + B+ 2) >> 2
– d is predicted by (A + 2B + C+ 2) >> 2
– e, k are predicted by (I + J + 1) >> 1
– f, l are predicted by (Q + 2I + J+ 2) >> 2
– i, o are predicted by (J + K + 1) >> 1
– j, p are predicted by (I + 2J + K+ 2) >> 2
– m is predicted by (K + L + 1) >> 1
– n is predicted by (J + 2K + L + 2) >> 2

8.5.1.8 Mode 7: vertical-right prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are available. This is a 'diagonal' prediction. The prediction
in this mode shall be as follows:

– a is predicted by (2A + 2B + J + 2K + L + 4) >> 3
– b, i are predicted by (B + C + 1) >> 1
– c, j are predicted by (C + D + 1) >> 1
– d, k are predicted by (D + E + 1) >> 1
– l is predicted by (E + F + 1) >> 1
– e is predicted by (A + 2B + C + K + 2L + M + 4) >> 3
– f, m are predicted by (B + 2C + D + 2) >> 2

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 69

– g, n are predicted by (C + 2D + E + 2) >> 2
– h, o are predicted by (D + 2E + F + 2) >> 2
– p is predicted by (E + 2F + G + 2) >> 2

8.5.1.9 Mode 8: horizontal-up prediction

This mode shall be used only if all A, B, C, D, I, J, K, L, Q are available. This is a 'diagonal' prediction. The prediction
in this mode shall be as follows:

– a is predicted by (B + 2C + D + 2I + 2J + 4) >> 3
– b is predicted by (C + 2D + E + I + 2J + K + 4) >> 3
– c, e are predicted by (J + K + 1) >> 1
– d, f are predicted by (J + 2K + L + 2) >> 2
– g, i are predicted by (K + L + 1) >> 1
– h, j are predicted by (K + 2L + M + 2) >> 2
– l, n are predicted by (L + 2M + N + 2) >> 2
– k, m are predicted by (L + M + 1) >> 1
– o is predicted by (M + N + 1) >> 1
– p is predicted by (M + 2N + O + 2) >> 2

8.5.2 Intra prediction for luma block in Intra_16x16 macroblock type

Denote the block to be predicted as having sample locations 0 to 15 horizontally and 0 to 15 vertically. The notation
P(x,y) is used, where x = 0..15 corresponds to horizontal positions and y = 0..15 corresponds to vertical positions. P(x,-
1), x=0..15 are the neighbouring samples above the block and P(-1,y), y=0..15 are the neighbouring samples to the left of
the block. Pred(x,y) x,y = 0..15 is the prediction for the luma macroblock samples. There are 4 different prediction
modes as specified in subclauses 8.5.2.1 to 8.5.2.4.

Samples P(x,-1) or P(-1,y) shall be considered not available under the following circumstances:
– if they are outside the picture or outside the current slice, or
– if they are in a non-intra macroblock and constrained_intra_pred is 1.

8.5.2.1 Mode 0: vertical prediction

This mode shall be used only if all neighbouring samples P(x, -1) are available.

 Pred(x, y) = P(x, -1), x, y=0..15 (8-14)

8.5.2.2 Mode 1: horizontal prediction

This mode shall be used only if all neighbouring samples P(-1, y) are available.

 Pred(x, y) = P(-1, y), x, y=0..15 (8-15)

8.5.2.3 Mode 2: DC prediction

 Pred(x, y) = ∑ ∑
= =

>>+−+−
15

0'

15

0'
5]16)',1()1,'([

x y
yPxP x, y=0..15 (8-16)

If the neighbouring samples P(x, -1) are not available and the neighbouring samples P(-1, y) are available, the prediction
for all luma samples in the macroblock is given by Equation 8-17.

 Pred(x, y) = 4]8)',1([
15

0'
>>+−∑

=y
yP x, y=0..15, (8-17)

If the neighbouring samples P(-1, y) are not available and the neighbouring samples P(x, -1) are available, the prediction
for all luma samples in the macroblock is given by Equation 8-18.

70 DRAFT ITU-T Rec. H.264 (2002 E)

 Pred(x, y) = 4]8)1,'([
15

0'
>>+−∑

=x
xP x, y=0..15, (8-18)

If none of the neighbouring samples P(x,-1) and P(-1,y) are available, the prediction for all luma samples in the
macroblock shall be 128.

8.5.2.4 Mode 3: plane prediction

This mode shall be used only if all neighbouring samples P(x, -1) and P(-1, y) are available.

 Pred(x,y) = Clip1((a + b·(x-7) + c·(y-7) +16) >> 5), (8-19)

where:

 a = 16·(P(-1,15) + P(15,-1)) (8-20)

 b = (5*H+32)>>6 (8-21)

 c = (5*V+32)>>6 (8-22)

and H and V are defined in Equations 8-23 and 8-24.

 (8-23)

 (8-24)

8.5.3 Prediction in intra coding of chroma blocks

The chroma in intra macroblocks is predicted in a manner very similar to the luma block in Intra_16x16 macroblock type
(subclause 8.5.2), using one of four prediction modes. The same prediction mode is applied to both chroma blocks, but it
is independent of the prediction mode used for the luma.

NOTE - If any portion of the luma macroblock is coded in intra mode, the entire chroma macroblock is coded intra.

Let P(x,-1), x=0..7 be the neighbouring samples above the chroma macroblock and P(-1,y), y=0..7 be the neighbouring
samples to the left of the chroma macroblock. Pred(x,y), x,y = 0..7 is the prediction for the whole chroma macroblock,
and is computed as follows for the four prediction modes. Samples P(x,-1) or P(-1,y) shall be considered not available
under the following circumstances:

– if they are outside the picture or outside the current slice,
– if they are in a non-intra macroblock and constrained_intra_pred is 1.

Whenever P(x,y) is not available, P(x,y) is inferred to have the value 128 except as specified in subclause 8.5.3.3.

For the horizontal and vertical prediction, P(x,y) is first filtered using a {1,2,1}/4 filter, with pixel replication at the
edges.

8.5.3.1 Mode 0: vertical prediction

1)1)1,1()1,0(()1,0(>>+−+−=− PPF (8-25)

2)2)1,1()1,(2)1,1(()1,(>>+−++−×+−−=− xPxPxPxF , x=1,…,6 (8-26)

1)1)1,7()1,6(()1,7(>>+−+−=− PPF (8-27)

Pred(x, y) = F(x, -1), x, y=0..7 (8-28)

8.5.3.2 Mode 1: horizontal prediction

1)1)1,1()0,1(()0,1(>>+−+−=− PPF (8-29)

∑
=

−−−−+⋅=
8

1
))1,7()1,7((

x
xPxPxH

∑
=

−−−+−⋅=
8

1
))7,1()7,1((

y
yPyPyV

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 71

2)2)1,1(),1(2)1,1((),1(>>++−+−×+−−=− yPyPyPyF , y=1,…,6 (8-30)

1)1)7,1()6,1(()7,1(>>+−+−=− PPF (8-31)

Pred(x, y) = F(-1, y), x, y=0..7 (8-32)

8.5.3.3 Mode 2: DC prediction

If all samples P(-1,n) and P(n,-1) used in Equation 8-33 are available, the prediction is formed as

 Pred(x, y) = () 48)1,(),1(
7

0
>>

+

−+−∑

=n
nPnP x,y=0..7, (8-33)

If the 8 samples P(-1,n) are not available, the prediction is formed as

Pred(x,y) =

+

−∑

=

4)1,(
7

0n
nP >> 3 x,y=0..7, (8-33a)

If the 8 samples P(n,-1) are not available, the prediction is formed as

Pred(x,y) =

+

−∑

=

4)1,(
7

0n
nP >> 3 x,y=0..7, (8-33b)

If all 16 samples are not available, the prediction Pred(x,y) for all samples x,y=0..7is 128.

8.5.3.4 Mode 3: plane prediction

For the plane mode, the prediction is formed as:

 Pred(i,j) = Clip1((a + b·(i-3) + c·(j-3) +16) >> 5), i,j=0,…,7 (8-34)

where:

a = 16·(P(-1,7) + P(7,-1)) (8-35)

b = (17*H+16)>>5) (8-36)

c = (17*V+16)>>5) (8-37)

and H and V are defined as:

∑
=

−−−−+⋅=
4

1
))1,3()1,3((

i
iPiPiH (8-38)

∑
=

−−−+−⋅=
4

1
))3,1()3,1((

j
jPjPjV (8-39)

8.6 Transform coefficient decoding and picture construction prior to deblocking

This subclause defines aspects related to transform coefficient decoding.

8.6.1 Zig-zag scan

The decoder maps the sequence of transform coefficient levels to the transform coefficient level positions. For this
mapping, the scanning pattern is shown in Figure 8-12.

72 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 8-12 – Zig-zag scan

In the case of 16x16 intra macroblocks, the coefficients of the 4x4 luma DC transform are scanned in the same scan
order as ordinary 4x4 coefficient blocks. Then for each 4x4 block of luma coefficients with AC coefficients to scan, the
15 remaining coefficients are scanned by starting the zig-zag scan at its second position.

The coefficients of the 2x2 chroma DC transform are scanned in raster order. Then for each 4x4 block of chroma
coefficients with AC coefficients to scan, the 15 remaining coefficients are scanned by starting the zig-zag scan at its
second position.

If adaptive_block_size_transform_flag = = 1, 4x4, 4x8, 8x4, and 8x8 luma coefficient blocks are scanned using zig-zag
scans and field scans as specified in subclause 12.4.2.

8.6.2 Scaling and transformation

There are 52 different values of QP values that are used, ranging from 0 to 51, inclusive. The value of QPC for chroma is
determined from the current value of QPY. The scaling equations are defined such that the equivalent scaling parameter
doubles for every increment of 6 in QP. Thus, there is an increase in scaling magnitude of approximately 12% from one
QP to the next.

The value of QPC shall be determined from the value of QPY as specified in Table 8-2:

Table 8-2 – Specification of QPC as a function of QPY

QPY <30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

QPC =QPY 29 30 31 32 32 33 34 34 35 35 36 36 37 37 37 38 38 38 39 39 39 39

QPY shall be used as the QP to be applied for luma scaling and QPC shall be used for chroma scaling.

The coefficients defined in Equation 8-40 are used in Equations 8-43, 8-44, 8-46, 8-47 and 8-48.

 (8-40)

where the first and second subscripts of V are row and column indices, respectively, of the matrix defined as:

0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

)(m
ijR

∈
∈

=
otherwise;

)},3,3(),1,3(),3,1(),1,1{(),(for
)},2,2(),0,2(),2,0(),0,0{(),(for

2

1

0
)(

m

m

m
m

ij

V
jiV
jiV

R

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 73

. (8-41)

8.6.2.1 Luma DC coefficients in Intra 16x16 macroblock

After decoding the coefficient levels for a 4x4 block of luma DC coefficients coded in 16x16 intra mode and assembling
these into a 4x4 matrix C of elements cij, a transform process shall be applied in a manner mathematically equivalent to
the following process. The process uses application of a transform before the scaling process.

The transform for the 4x4 luma DC coefficients in 16x16 intra macroblocks is defined by:

. (8-42)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of F that exceeds the range of integer values from –215 to 215–1, inclusive.

After the transform, scaling is performed according to the following:
a) If QP is greater than or equal to 12, then the scaled result shall be calculated as

. (8-43)

b) If QP is less than 12, then the scaled results shall be calculated as

. (8-44)

A bitstream conforming to this Recommendation | International Standard shall not contain data that results in element of
DCij that exceeds the range of integer values from –215 to 215–1, inclusive.

8.6.2.2 Chroma DC coefficients

After decoding the coefficient levels for a 2x2 block of chroma DC coefficients and assembling these into a 2x2 matrix C
of elements cij, the transform process is applied before the scaling process.

Definition of transform:

. (8-45)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of F that exceeds the range of integer values from –215 to 215–1, inclusive.

After the transform, scaling is performed according to the following.
a) If QP is greater than or equal to 6, then the scaling result shall be calculated as

. (8-46)

b) If QP is less than 6, then the scaling results shall be calculated by

. (8-47)

=

232918
202516
182314
162013
141811
131610

V

−−
−−

−−

−−
−−

−−
=

1111
1111
1111
1111

1111
1111
1111
1111

33323130

23222120

13121110

03020100

cccc
cccc
cccc
cccc

F

3,,0,),26/(][)6%(
00 =−<<⋅= jiQPRFDC QP

ijij

3,,0,),6/2(]2[6/1)6%(
00 =−>>+⋅= − jiQPRFDC QPQP

ijij

−

−

=
11
11

11
11

1110

0100

cc
cc

F

3,...,0,),16/(][)6%(
00 =−<<⋅= jiQPRFDC QP

ijij

3,...,0,,1][)6%(
00 =>>⋅= jiRFDC QP

ijij

74 DRAFT ITU-T Rec. H.264 (2002 E)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in
any element of DCij that exceeds the range of integer values from –215 to 215–1, inclusive.

8.6.2.3 Residual 4x4 blocks

Scaling of 4x4 block coefficient levels cij other than those as specified in subclauses 8.6.2.1 and 8.6.2.2 shall be
performed according to Equation 8-48

. (8-48)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in a
value of wij that exceeds the range of integer values from –215 to 215–1, inclusive.

After constructing an entire 4x4 block of scaled transform coefficients and assembling these into a 4x4 matrix W of
elements wij illustrated as

 (8-49)

in which the w00 element may be a result DCij from Equation 8-43, 8-44, 8-46, or 8-47; or may be from Equation 8-48, as
appropriate, the transform process shall convert the block of reconstructed transform coefficients to a block of output
samples in a manner mathematically equivalent to the following process:

a) First, each row of reconstructed transform coefficients is transformed using a one-dimensional transform,
and

b) Second, each column of the resulting matrix is transformed using the same one-dimensional transform.

The one-dimensional transform is defined as follows for four input samples w0, w1, w2, w3.
a) First, a set of intermediate values is computed:

z0 = w0 + w2 (8-50)

z1 = w0 – w2 (8-51)

z2 = (w1 >> 1) – w3 (8-52)

z3 = w1 + (w3 >> 1) (8-53)

b) Then the transformed result is computed from these intermediate values

x0 = z0 + z3 (8-54)

x1 = z1 + z2 (8-55)

x2 = z1 – z2 (8-56)

x3 = z0 – z3 (8-57)

A bitstream conforming to this Recommendation | International Standard shall not contain indicated data that results in a
value of z0, z1, z2, z3, x0, x1, x2, or x3 that exceeds the range of integer values from –215 to 215–1, inclusive, in either the
first (horizontal) or second (vertical) stage of application of this transformation process. A bitstream conforming to this
Recommendation | International Standard shall not contain indicated data that results in a value of x0, x1, x2, or x3 that
exceeds the range of integer values from –215 to 215–33, inclusive, in the second (vertical) stage of application of this
transformation process.

After performing the transform in both the horizontal and vertical directions to produce a block of transformed samples,

3,...,0,),6/(][)6%(=<<⋅= jiQPRcw QP
ijijij

=

33323130

23222120

13121110

03020100

wwww
wwww
wwww
wwww

W

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 75

, (8-58)

the final reconstructed sample residual values shall be obtained as

 (8-59)

If adaptive_block_size_transform_flag = = 1, scaling and inverse transform for 4x8, 8x4, and 8x8 coefficient blocks is
specified in subclause 12.4.3.

8.6.3 Adding decoded samples to prediction with clipping

Finally, the reconstructed sample residual values X'' from Equation 8-59 are added to the prediction values Pij from
motion compensated prediction or spatial prediction and clipped to the range of 0 to 255 to form the final decoded
sample result prior to application of the deblocking filter:

S'ij = Clip1(Pij + X''ij) (8-60)

8.7 Deblocking Filter

A conditional filtering shall be applied to all macroblocks of a picture. This filtering is done on a macroblock basis, with
macroblocks being processed in raster-scan order throughout the picture. For luma, as the first step, the 16 samples of the
4 vertical edges of the 4x4 raster shall be filtered beginning with the left edge, as shown in Figure 8-13. Filtering of the 4
horizontal edges (vertical filtering) follows in the same manner, beginning with the top edge. The same ordering applies
for chroma filtering, with the exception that 2 edges of 8 samples each are filtered in each direction. This process also
affects the boundaries of the already reconstructed macroblocks above and to the left of the current macroblock. Picture
edges are not filtered.

When mb_adaptive_frame_field_flag = 1, a MB may be coded in frame or field decoding mode. For frame MB,
deblocking is performed on the frame samples. In this case, if neighbouring MB pairs are field MBs, they shall be
converted into frame MB pairs (Figure 8-3) before deblocking. For field MB, deblocking is performed on the field
samples of the same field parity. In this case, if neighbouring MB pairs are frame MBs, they shall be converted into field
MB pairs (Figure 8-3) before deblocking.

=

33323130

23222120

13121110

03020100

''''
''''
''''
''''

'

xxxx
xxxx
xxxx
xxxx

X

6]2'['' 5 >>+= ijij xX

76 DRAFT ITU-T Rec. H.264 (2002 E)

Vertical edges
(chroma)

Vertical edges
(luma)

Horizontal edges
(luma)

Horizontal edges
(chroma)

16*16 Macroblock 16*16 Macroblock

Figure 8-13 – Boundaries in a macroblock to be filtered (luma boundaries shown with solid lines and chroma
boundaries shown with dotted lines)

Intra prediction of a macroblock shall be done using the unfiltered content of the already decoded neighbouring
macroblocks. Depending on the implementation, the values necessary for intra prediction may need to be stored before
filtering in order to be used in the intra prediction of the macroblocks to the right and below the current macroblock.

When pic_structure indicates a field picture all decoding operations for the deblocking filter are based solely on samples
within the current field.

8.7.1 Content dependent boundary filtering strength

For each boundary between neighbouring 4x4 luma blocks, a “Boundary Strength” Bs is assigned as shown in Figure 8-
14. If Bs=0, filtering is skipped for that particular edge. In all other cases filtering is dependent on the local sample
properties and the value of Bs for this particular boundary segment.

For each edge, if one of the neighbouring blocks is intra-coded, a relatively strong filtering (Bs=3) is applied. A special
procedure with even stronger filtering might be applied on intra-coded macroblock boundaries (Bs=4). If neither of the
blocks are intra-coded and at least one of them contains non-zero coefficients, medium filtering strength (Bs=2) is used.
If none of the previous conditions are satisfied, filtering takes place with Bs=1 if at least one of the following conditions
is satisfied: (a) prediction of the two blocks is formed using different reference frames or a different number of reference
frames. (b) a pair of motion vectors from the two blocks is referencing the same frame and either component of this pair
has a difference of more than one sample. Otherwise filtering is skipped for that particular edge (Bs=0).

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 77

Figure 8-14 – Flow chart for determining the boundary strength (Bs), for the block boundary between two
neighbouring blocks p and q, where V1(p,x), V1(p,y) and V2(p, x), V2(p, y) are the horizontal and vertical

components of the motion vectors of block p for the first and second reference frames or fields.

8.7.2 Thresholds for each block boundary

p3 p2 p1 p0 q0 q1 q2 q3

Figure 8-15 – Convention for describing samples across a 4x4 block horizontal or vertical boundary

In the following description, the set of eight samples across a 4x4 block horizontal or vertical boundary is denoted as
shown in Figure 8-15 with the actual boundary lying between p0 and q0. Uppercase letters indicate filtered samples and
lower case letters indicate unfiltered samples with regard to the current edge filtering operation. However, p1 and p2 may
indicate samples that have been modified by the filtering of a previous block edge.

Sets of samples across this edge are only filtered if the condition

Bs ≠ 0 && |p0 – q0| < α && |p1 – p0| < β && |q1 – q0| < β (8-61)

is true. The values of the thresholds α and β are dependent on the average value of QP for the two blocks as well as on a
pair of index offsets “Filter_Offset_A” and “Filter_Offset_B” that may be transmitted in the slice header for the purpose
of modifying the characteristics of the filter. The average QP value for the two blocks is computed as QPav =
(QPp+QPq)>>1. The index used to access the α-table (Table 8-3), as well as the C0-table (Table 8-4) that is used in the
default filter mode, is computed as:

IndexA = Clip3(0, 51, QPav + Filter_Offset_A) (8-62)

78 DRAFT ITU-T Rec. H.264 (2002 E)

NOTE - In SP and SI slices, QPav is calculated in the same way as in other slice types. QSY from Equation 7-8 is not used in the
deblocking filter.

The index used to access the β-table (Table 8-3) is computed as:

IndexB = Clip3(0, 51, QPav + Filter_Offset_B) (8-63)

If adaptive_block_size_transform_flag = = 1, IndexA and IndexB are calculated as specified in subclause 12.4.4.

The relationships between the indices (Equations 8-62 and 8-63) and the thresholds (α and β) are shown in Table 8-3.

Table 8-3 – QPav and offset dependent threshold parameters α and β

 IndexA (for α) or IndexB (for β)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

β 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

Table 8-3 (concluded)

 IndexA (for α) or IndexB (for β)

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

β 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

8.7.3 Filtering of edges with Bs < 4

Two types of filtering are defined. In the default case with 0 < B < 4, Equations 8-64, 8-65 and 8-66 are used to filter p0
and q0:

∆ = Clip3(-C, C, (((q0 – p0) << 2 + (p1 – q1) + 4) >> 3)) (8-64)

P0 = Clip1(p0+∆) (8-65)

Q0 = Clip1(q0- ∆) (8-66)

where C is determined as specified below.

The two intermediate threshold variables

ap = |p2 – p0| (8-67)

aq = |q2 – q0| (8-68)

shall be used to determine whether filtering for the luma samples p1 and q1 is taking place at this position of the edge.

If ap < β for a luma edge, a filtered sample P1 shall be produced as specified by

P1 = p1 + Clip3(-C0, C0, (p2 + (p0 + q0)>>1 – (p1<<1)) >> 1) (8-69)

If aq < β for a luma edge, a filtered sample Q1 shall be produced as specified by

Q1 = q1 + Clip3(-C0, C0, (q2 + (p0 + q0)>>1 – (q1<<1) >> 1) (8-70)

where C0 is specified in Table 8-4. Chroma samples p1 and q1 are never filtered.

C is determined by setting it equal to C0 and then incrementing it by one if ap<β, and again by one if aq<β.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 79

Table 8-4 – Value of filter clipping parameter C0 as a function of IndexA and Bs

 IndexA

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Bs = 1 0 1 1 1

Bs = 2 0 1 1 1 1 1

Bs = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Table 8-4 (concluded)

 IndexA

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Bs = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

Bs = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

Bs = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

8.7.4 Filtering of edges with Bs = 4

When Bs is equal to 4 and the following condition holds:

ap < β && |p0 – q0| < ((α >> 2) + 2) (8-71)

filtering of the left/upper side of the block edge is specified by Equations 8-72 and 8-73.

P0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3 (8-72)

P1 = (p2 + p1 + p0 + q0 + 2) >> 2 (8-73)

In the case of luma filtering, the filter in Equation 8-74 is also applied.

P2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3 (8-74)

Otherwise, if the condition of 8-71 does not hold, the filter in Equation 8-75 is applied.

P0 = (2*p1 + p0 + q1 + 2) >> 2 (8-75)

Similarly, for filtering of the right/lower side of the edge, if the following condition holds:

 aq < β && |p0 – q0| < ((α >> 2) +2) (8-76)

filtering is defined by Equations 8-77 and 8-78.

Q0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3 (8-77)

Q1 = (p0 + q0 + q1 + q2 + 2) >> 2 (8-78)

In the case of luma filtering, the filter in Equation 8-79 is also applied.

Q2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3 (8-79)

Otherwise, if the condition of 8-76 does not hold, the filter in Equation 8-80 is applied:

Q0 = (2*q1 + q0 + p1 + 2) >> 2 (8-80)

80 DRAFT ITU-T Rec. H.264 (2002 E)

9 Entropy Coding

9.1 Variable Length Coding

9.1.1 Exp-Golomb entropy coding

The table of Exp-Golomb codewords is written in the following compressed form.
 1

 0 1 x0

 0 0 1 x1 x0

 0 0 0 1 x2 x1 x0

0 0 0 0 1 x3 x2 x1 x0

…..............

where xn take values 0 or 1. A codeword can be referred by its length in bits (L = 2n-1) and INFO = xn,…x1, x0. Notice
that the number of bits in INFO is n-1 bits. The codewords are numbered from 0 and upwards. The definition of the
numbering is:

Code_num = 2L/2 + INFO -1 (L/2 denotes division with truncation and INFO = 0 when L = 1). The first 10 code
numbers and codewords are specified explicitly in Table 9-1. As an example, for the code number 5, L = 5 and INFO =
10 (binary) = 2 (decimal).

Table 9-1 – Code number and Exp-Golomb codewords in explicit form and used as ue(v)

Code_num Code word

0 1

1 0 1 0

2 0 1 1

3 0 0 1 0 0

4 0 0 1 0 1

5 0 0 1 1 0

6 0 0 1 1 1

7 0 0 0 1 0 0 0

8 0 0 0 1 0 0 1

9 0 0 0 1 0 1 0

When L (L = 2N-1) and INFO is known, the regular structure of the table makes it possible to create a codeword usning
the structure of the table. A decoder shall decode a codeword by reading in N bit prefix followed by N-1 INFO. L and
INFO are then available. For each parameter to be coded, there is a conversion rule from the parameter value to the code
number (or L and INFO).

9.1.2 Unsigned Exp-Golomb entropy coding

The value of syntax elements that are represented by unsigned Exp-Golomb entropy coding directly corresponds to the
code_num value of Table 9-1. This type of entropy coding is indicated via ue(v).

9.1.3 Signed Exp-Golomb entropy coding

The syntax elements that are represented by signed Exp-Golomb entropy coding are assigned to the code_num by
ordering using their absolute values in increasing order and representing the positive value with the lower code_num.
Table 9-2 provides the assignment rule.

Table 9-2 – Assignment of symbol values and code_nums for signed Exp-Golomb entropy coding se(v)

Code number Symbol value

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 81

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

7 4

8 -4

9 5

10 -5

k (-1)k+1 Ceil(k÷2)

This type of entropy coding is denoted as se(v).

9.1.4 Mapped Exp-Golomb entropy coding

Table 9-3 specifies the assignment of all mapped Exp-Golomb-coded slice data symbols. This type of entropy coding is
indicated via me(v). These symbols are decoded differently when entropy_coding_mode = = 1.

If adaptive_block_size_transform_flag = = 1, additional syntax elements are mapped to the Exp-Golomb code as
specified in Table 12-5.

Table 9-3 – Assignment of codeword number and parameter values for mapped Exp-Golomb-coded symbols

Code
number

coded_block_pattern
assignment to

macroblock prediction
types

Tcoeff_chroma_DC1 Tcoeff_chroma_AC1
Tcoeff_luma1
Zig-zag scan

 Intra, SIntra Pred, SPred Level Run Level Run

0 47 0 EOB - EOB -

1 31 16 1 0 1 0

2 15 1 -1 0 -1 0

3 0 2 2 0 1 1

4 23 4 -2 0 -1 1

5 27 8 1 1 1 2

6 29 32 -1 1 -1 2

7 30 3 3 0 2 0

8 7 5 -3 0 -2 0

9 11 10 2 1 1 3

10 13 12 -2 1 -1 3

11 14 15 1 2 1 4

12 39 47 -1 2 -1 4

13 43 7 1 3 1 5

82 DRAFT ITU-T Rec. H.264 (2002 E)

14 45 11 -1 3 -1 5

15 46 13 4 0 3 0

16 16 14 -4 0 -3 0

17 3 6 3 1 2 1

18 5 9 -3 1 -2 1

19 10 31 2 2 2 2

20 12 35 -2 2 -2 2

21 19 37 2 3 1 6

22 21 42 -2 3 -1 6

23 26 44 5 0 1 7

24 28 33 -5 0 -1 7

25 35 34 4 1 1 8

26 37 36 -4 1 -1 8

27 42 40 3 2 1 9

28 44 39 -3 2 -1 9

29 1 43 3 3 4 0

30 2 45 -3 3 -4 0

31 4 46 6 0 5 0

32 8 17 -6 0 -5 0

33 17 18 5 1 3 1

34 18 20 -5 1 -3 1

35 20 24 4 2 3 2

36 24 19 -4 2 -3 2

37 6 21 4 3 2 3

38 9 26 -4 3 -2 3

39 22 28 7 0 2 4

40 25 23 -7 0 -2 4

41 32 27 6 1 2 5

42 33 29 -6 1 -2 5

43 34 30 5 2 2 6

44 36 22 -5 2 -2 6

45 40 25 5 3 2 7

46 38 38 -5 3 -2 7

47 41 41 8 0 2 8

K - - see below see below see below see below

For the entries above the horizontal line, the table is needed for relation between code number and Level/Run/EOB. For
the remaining Level/Run combination there is a simple rule. The Level/Run combinations are assigned a code number
according to the following priority: 1) sign of Level (+ -) 2) Run (ascending) 3) absolute value of Level (ascending).

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 83

9.1.5 Entropy coding for Intra

In intra mode, prediction is always used for each sub block in a macroblock.

9.1.5.1 Coding of Intra 4x4 and SIntra 4x4 prediction modes

The chosen intra-prediction mode (intra_pred_mode) of a 4x4 block is highly correlated with the prediction modes of
adjacent blocks. This is illustrated in Figure 9-1. When the prediction modes of A and B are known (including the case
that A or B or both are outside the slice) the most probable mode (most_probable_mode) of C is given. If one of the
blocks A or B is “outside” the most probable mode is equal to prediction mode 2. Otherwise it is equal to the minimum
of modes used for blocks A and B. When an adjacent block is coded by 16x16 intra mode, prediction mode is “mode 2:
DC prediction”; when it is coded a non-intra macroblock, prediction mode is “mode 2: DC prediction” in the usual case
and “outside” in the case of constrained intra update.

To signal prediction mode number for a 4x4 block first parameter use_most_probable_mode is transmitted. This
parameter is represented by 1 bit codeword and can take values 0 or 1. If use_most_probable_mode is equal to 1 the most
probable mode is used. Otherwise an additional parameter remaining_mode_selector, which can take value from 0 to 7 is
sent as 3 bit codeword. The codeword is a binary representation of remaining_mode_selector value. The prediction mode
number is calculated as:

if (remaining_mode_selector < most_probable_mode)

intra_pred_mode = remaining_mode_selector;

else

 intra_pred_mode = remaining_mode_selector+1;

The ordering of prediction modes assigned to blocks C is therefore the most probable mode followed by the remaining
modes in the ascending order.

Figure 9-1 – a) Prediction mode of block C to be established, where A and B are adjacent blocks. b) order of intra
prediction information in the bitstream

9.1.5.2 Coding of mode information for Intra-16x16 mode

Three numbers are specified at the end of the names of Intra-16x16 modes as defined in Table 7-10 as a function of
mb_type. The first of these numbers is termed Imode and ranges from 0 to 3, inclusive. The second is termed nc and
contains the coded_block_pattern bits for chroma as specified in subclause 9.2.1.6. The third and final of these numbers
is termed ac_flag. ac_flag equal to zero indicates that there are no AC coefficients in the 16x16 block. ac_flag equal to
1 indicates that at least one AC coefficient is present for the 16x16 block, requiring scanning of AC coefficient values for
all 16 of the 4x4 blocks in the 16x16 block.

9.1.6 Context-based adaptive variable length coding (CAVLC) of transform coefficients

CAVLC (Context-based Adaptive VLC) is the method used for decoding of transform coefficients. The following
coding elements are used:

1. If there are non-zero coefficients, it is typically observed that there is a string of coefficients at the highest
frequencies that are ±1. The coding element coeff_token gives the total number of coefficients (from now
referred to as TotalCoeffs) and also contains the number of "Trailing 1s" (from now referred to as T1s).

B C

A

a b

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

84 DRAFT ITU-T Rec. H.264 (2002 E)

2. For T1s the sign is decoded from trailing_ones_sign and the level magnitude is 1.

3. For coefficients other than the T1s, level information is decoded from coeff_level.

4. The Run information is decoded. Since the number of coefficients is already known, this limits possible values
for Run. Run is split into the Total number of zeros before all coefficients and Run before each non-zero
coefficient, given by total_zeros and run_before.

Zig-zag scanning as described in subclause 9.4.1 is used, but in the decoding of coefficient data, both levels and runs, the
scanning is done in reverse order. Therefore the signs of T1s are decoded first (in reverse order), then the Level
information of the last coefficient in the zig-zag scan order not included in the T1s, and so on. Run information is
decoded similarly. First Total number of zeros in Runs is decoded, followed by Run before the last nonzero coefficient
in the zig-zag scan order, and so on.

If adaptive_block_size_transform_flag = = 1, the VLC method for decoding 4x4, 4x8, 8x4, and 8x8 luma coefficient
blocks is specified in subclause 12.5.1.

9.1.6.1 Entropy decoding of the number of coefficients and trailing ones: coeff_token

The syntax element coeff_token is decoded using the VLC specified in Tables 9-4 to 9-7.

Four VLC tables are used for combined decoding of number of coefficients and T1s, i.e. one codeword signals both
parameters. VLCs are listed in the tables below. T1s is clipped to 3. Any remaining trailing 1s are decoded as normal
levels. The variable TotalCoeff is the value returned by the function total_coeff(); the variable T1s is the value returned
by the function trailing_ones(); and the variable NumCoeff related to these quantities by TotalCoeff-T1s.

Table 9-4 – coeff_token: total_coeff() / trailing_ones(): Num-VLC0

trailing_ones() 0 1 2 3

total_coeff()

0 1 - - -

1 000101 01 - -

2 00000111 000100 001 -

3 000000111 00000110 0000101 00011

4 0000000111 000000110 00000101 000011

5 00000000111 0000000110 000000101 0000100

6 0000000001111 00000000110 0000000101 00000100

7 0000000001011 0000000001110 00000000101 000000100

8 0000000001000 0000000001010 0000000001101 0000000100

9 00000000001111 00000000001110 0000000001001 00000000100

10 00000000001011 00000000001010 00000000001101 0000000001100

11 000000000001111 000000000001110 00000000001001 00000000001100

12 000000000001011 000000000001010 000000000001101 00000000001000

13 0000000000001111 000000000000001 000000000001001 000000000001100

14 0000000000001011 0000000000001110 0000000000001101 000000000001000

15 0000000000000111 0000000000001010 0000000000001001 0000000000001100

16 0000000000000100 0000000000000110 0000000000000101 0000000000001000

Table 9-5 – coeff_token: total_coeff() / trailing_ones(): Num-VLC1

trailing_ones() 0 1 2 3

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 85

total_coeff()

0 11 - - -

1 001011 10 - -

2 000111 00111 011 -

3 0000111 001010 001001 0101

4 00000111 000110 000101 0100

5 00000100 0000110 0000101 00110

6 000000111 00000110 00000101 001000

7 00000001111 000000110 000000101 000100

8 00000001011 00000001110 00000001101 0000100

9 000000001111 00000001010 00000001001 000000100

10 000000001011 000000001110 000000001101 00000001100

11 000000001000 000000001010 000000001001 00000001000

12 0000000001111 0000000001110 0000000001101 000000001100

13 0000000001011 0000000001010 0000000001001 0000000001100

14 0000000000111 00000000001011 0000000000110 0000000001000

15 00000000001001 00000000001000 00000000001010 0000000000001

16 00000000000111 00000000000110 00000000000101 00000000000100

Table 9-6 – coeff_token: total_coeff() / trailing_ones(): Num-VLC2

trailing_ones() 0 1 2 3

total_coeff()

0 1111 - - -

1 001111 1110 - -

2 001011 01111 1101 -

3 001000 01100 01110 1100

4 0001111 01010 01011 1011

5 0001011 01000 01001 1010

6 0001001 001110 001101 1001

7 0001000 001010 001001 1000

8 00001111 0001110 0001101 01101

9 00001011 00001110 0001010 001100

10 000001111 00001010 00001101 0001100

11 000001011 000001110 00001001 00001100

12 000001000 000001010 000001101 00001000

13 0000001101 000000111 000001001 000001100

86 DRAFT ITU-T Rec. H.264 (2002 E)

14 0000001001 0000001100 0000001011 0000001010

15 0000000101 0000001000 0000000111 0000000110

16 0000000001 0000000100 0000000011 0000000010

Table 9-7 – coeff_token: total_coeff() / trailing_ones(): Num-VLC_Chroma_DC

trailing_ones() 0 1 2 3

total_coeff()

0 01 - - -

1 000111 1 - -

2 000100 000110 001 -

3 000011 0000011 0000010 000101

9.1.6.2 Table selection

For all elements, except chroma DC, a choice between three tables and one FLC is made. N is a value used for Table
selection. Selection is done as follows: N is calculated based on the number of coefficients in the block above and to the
left of the current block: NU and NL. In the table below, X means that the block is available in the same slice. The block’s
coding mode is not taken into account when determining availability. When finding the block above and to the left for a
block of Intra16x16 DC coefficients, the location of the block is assumed to be (0,0), i.e. the upper left corner of the
macroblock.

Table 9-8 – Calculation of N for Num-VLCN

Upper block (NU) Left block (NL) N

X X (NL+NU)/2

X NU

 X NL

 0

0 <= N < 2 : Num-VLC0

2 <= N < 4 : Num-VLC1

4 <= N < 8 : Num-VLC2

N >= 8 : 6 bit FLC xxxxyy, as follows:

As a part of the coeff_token, TotalCoeff–1 is transmitted in the first 4 bits (xxxx) and T1s is transmitted as the last 2 bits
(yy). There is one exception: the codeword 000011 represents TotalCoeff=0.

For chroma DC, Num-VLC_Chroma_DC is used.

9.1.6.3 Decoding of level information: coeff_level

First, the sign of T1s are decoded from 1 bit each of trailing_ones_sign. A maximum of 3 bits are read.

For the remaining level information, seven structured VLCs are used to decode levels. The structured level tables are
explained in Tables 9-9 to 9-15. Lev-VLC0 has its own structure while the other tables, Lev-VLCN, N = 1 to 6, share a
common structure.

Table 9-9 – Level tables

Lev-VLC0

Code no Code LevelCode (±1, ±2..)

0 1 1

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 87

1 01 -1

2 001 2

3 0001 -2

..

13 00000000000001 -7

14-29 000000000000001xxxx ±8 to ±15

30-> 0000000000000001xxxxxxxxxxxx ±16 ->

 For Lev-VLCN, N = 1 to 6, the following structure is used:

 let level_code be the level information to be decoded from the VLC tables,

 if (|level_code|-1) < (15<<(N-1)),

 Code: 0….01x..xs,

 where number of 0’s = (|level_code|-1) >> (N -1),

 number of x’s = N-1,

 value of x’s = (|level_code|-1) % 2(N -1),

 s = sign bit (0 – positive, 1 – negative)

else,

 28-bit escape code: 0000 0000 0000 0001 xxxx xxxx xxxs,

 where value of x’s = (|level_code|-1) - (15<<(N -1)),

 s = sign bit (0 – positive, 1 – negative)

Table 9-10 – Level VLC1

Lev-VLC1

Code no Code LevelCode (±1, ±2..)

0-1 1s ±1

2-3 01s ±2

..

28-43 000000000000001s ±15

44 -> 0000000000000001xxxxxxxxxxxs ±16 ->

88 DRAFT ITU-T Rec. H.264 (2002 E)

Table 9-11 – Level VLC2

Lev-VLC2

Code no Code LevelCode (±1, ±2..)

0-3 1xs ±1 to ±2

4-7 01xs ±3 to ±4

.. ..s ..

56-71 000000000000001xs ±29 to ±30

72 -> 0000000000000001xxxxxxxxxxxs ±31 ->

Table 9-12 – Level VLC3

Lev-VLC3

Code no Code LevelCode (±1, ±2..)

0-7 1xxs ±1 to ±4

8-16 01xxs ±5 to ±8

..

112-127 000000000000001xxs ±57 to ±60

128 -> 0000000000000001xxxxxxxxxxxs ±61 ->

Table 9-13 – Level VLC4

Lev-VLC4

Code no Code LevelCode (±1, ±2..)

0-7 1xxxs ±1 to ±8

8-16 01xxxs ±9 to ±16

..

112-127 000000000000001xxxs ±113 to ±120

128 -> 0000000000000001xxxxxxxxxxxs ±121 ->

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 89

Table 9-14 – Level VLC5

Lev-VLC5

Code no Code LevelCode (±1, ±2..)

0-7 1xxxxs ±1 to ±16

8-16 01xxxxs ±17 to ±32

..

112-127 000000000000001xxxxs ±225 to ±240

128 -> 0000000000000001xxxxxxxxxxxxxs ±241 ->

Table 9-15 – Level VLC6

Lev-VLC6

Code no Code no LevelCode (±1, ±2..)

0-15 1xxxxxs ±1 to ±32

8-16 01 xxxxxs ±33 to ±64

..

112-127 000000000000001xxxxxs ±449 to ±480

128 -> 0000000000000001xxxxxxxxxxs ±481 ->

Normally all coefficient levels (coeff_level) are equal to the decoded LevelCode value given in Tables 9-9 to 9-15.
However, when T1s is less than 3, the level of the first coefficient (after T1s) is equal to the decoded LevelCode plus 1:

If (first coefficient && trailing_ones() < 3)
 coeff_level = (|level_code| + 1) * sign(level_code)
else
 coeff_level = level_code

The last two entries in Lev-VLC0 table are escape codes. The first escape code with 19 bits, four “x”’s, is used to decode
the 8 levels above the last regularly coded level. The next escape code with 28-bits, 12 “x”’s, is used to decode all
remaining levels. For Lev-VLC1 to Lev-VLC6 tables, only the 28-bit escape code is used.

9.1.6.3 Table selection

Selections of the tables are changed during the decoding process based on number of coefficients, number of trailing
ones, and the size of the previously decoded level value (coeff_level).

Let VLC denote the Lev-VLCN (N=0-6) to be used. After each level is decoded, the VLCN is updated according to
the following method, where Level is the absolute value of the previously decoded level (coeff_level).

// VLC initialization for decoding first level

if (total_coeff(coeff_token) > 10 && trailing_ones(coeff_token)< 3)

 VLC = 1 // use Lev-VLC1 for first level

else

 VLC = 0 // use Lev-VLC0 for first level

// Assign FirstCoeff

// Decode level_code here and assign coeff_level and Level

// VLC update after decoding each level

vlc_inc table[7] = {0, 3, 6, 12, 24, 48, 215}

90 DRAFT ITU-T Rec. H.264 (2002 E)

if (Level > vlc_inc[VLC])

 VLC ++

if (FirstCoeffand Level > 3)

 VLC = 2

The first coefficient is always decoded with Lev-VLC0 or Lev-VLC1 while the rest of the coefficients are always
decoded with Lev-VLC1 to Lev-VLC6.

The same procedure is used for chroma AC and DC coefficient levels.

9.1.6.4 Decoding of run information

Run decoding is separated in total number of Zeros (i.e. the number of zeros located before the last non-zero coefficient
in the zig-zag scan) and Run (of zeros) before each coefficient.

9.1.6.4.1 Entropy Decoding of the total number of zeros: total_zeros

The variable TotalZeros as given by total_zeros, is the sum of all zeros located before the last non-zero coefficient in a
zig-zag scan. For example, given the string of coefficients 0 0 3 0 0 4 0 0 0 0 2 0 1 0 0 0, TotalZeros will be 2+2+4+1=9.
Since TotalCoeff is already known, it determines the maximum possible value of TotalZeros. One out of 15 VLC tables
is chosen based on TotalCoeff.

If TotalCoeff indicates that all coefficients are non-zero, TotalZeros is not decoded since it is known to be zero

Table 9-16 – total_zeros tables for all 4x4 blocks

TotalCoeff
TotalZeros

1 2 3 4 5 6 7

0 1 111 0101 00011 0101 000001 000001

1 011 110 111 111 0100 00001 00001

2 010 101 110 0101 0011 111 101

3 0011 100 101 0100 111 110 100

4 0010 011 0100 110 110 101 011

5 00011 0101 0011 101 101 100 11

6 00010 0100 100 100 100 011 010

7 000011 0011 011 0011 011 010 0001

8 000010 0010 0010 011 0010 0001 001

9 0000011 00011 00011 0010 00001 001 000000

10 0000010 00010 00010 00010 0001 000000 -

11 00000011 000011 000001 00001 00000 - -

12 00000010 000010 00001 00000 - - -

13 000000011 000001 000000 - - - -

14 000000010 000000 - - - - -

15 000000001 - - - - - -

TotalCoeff
TotalZeros

8 9 10 11 12 13 14 15

0 000001 000001 00001 0000 0000 000 00 0

1 0001 000000 00000 0001 0001 001 01 1

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 91

2 00001 0001 001 001 01 1 1 -

3 011 11 11 010 1 01 - -

4 11 10 10 1 001 - - -

5 10 001 01 011 - - - -

6 010 01 0001 - - - - -

7 001 00001 - - - - - -

8 000000 - - - - - - -

9 - - - - - - - -

10 - - - - - - - -

11 - - - - - - - -

12 - - - - - - - -

13 - - - - - - - -

Table 9-17 – TotalZeros table for chroma DC 2x2 blocks

NumCoeff
TotalZeros

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

9.1.6.4.2 Run before each coefficient

At this stage it is known how many zeros are left to distribute (call this ZerosLeft). When decoding a run_before for the
first time, ZerosLeft begins at TotalZeros, and decreases as more run_before elements are decoded.

For example, if there is only 1 zero left, the run before the next coefficient must be either of length 0 or 1, and only one
bit is needed.

The number of preceding zeros before each non-zero coefficient (called RunBefore) needs to be decoded to properly
locate that coefficient. Before decoding the next RunBefore, ZerosLeft is updated and used to select one out of 7 tables.
RunBefore does not need to be decoded in the following two situations:

• If the total number of zeros has been reached (ZerosLeft = 0)

• For the last coefficient in the reverse zig-zag scan. Then the value is known to be ZerosLeft. This also means that
the maximum value to be decoded is 14.

Table 9-18 – Tables for run_before

TotalZeros
Run Before

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

92 DRAFT ITU-T Rec. H.264 (2002 E)

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

9.2 Context-based adaptive binary arithmetic coding (CABAC)

9.2.1 Decoding flow and binarization

A binarization scheme provides a mapping of a non-binary valued alphabet of symbols onto a set of sequences of binary
decisions, so-called bins. In subclauses 9.2.1.1 - 9.2.1.4 the elementary types of binarization schemes for CABAC are
specified.

A specification of the decoding flow and the assignment of binarization schemes for all syntax elements is given in
subclauses 9.2.1.5 - 9.2.1.9.

9.2.1.1 Unary binarization

Table 9-19 shows the first five codewords of the unary code used for binarization of code symbols. For a code symbol C
it consists of |C| ‘1’ bits followed by the last bit with value ‘0’. The first bin number corresponds to the first bit of the
unary codeword with increasing bin numbers towards the last bit, as shown in Table 9-19.

Table 9-19 – Binarization by means of the unary code tree

Code
symbol Binarization

0 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

bin_num 1 2 3 4 5 6

9.2.1.2 Truncated unary (TU) binarization

The truncated unary (TU) binarization is defined for a finite alphabet {0,…,Cmax} by applying the unary binarization of
subclause 9.2.1.1 to all code symbols C with C < Cmax; the binarization of the symbol C=Cmax is defined by a code word
consisting of Cmax ‘1’s (without the last bit of value‘0’). Numbering of the bins is the same as for unary binarization.

9.2.1.3 Concatenated unary/ kth-order Exp-Golomb (UEGk) binarization

Concatenated unary/kth-order Exp-Golomb (UEGk) binarization consists of a concatenation of a prefix code word and a
suffix code word. The prefix is formed by using a truncated unary binarization with Cmax=UCoff, where UCoff denotes
the cut-off parameter. For all code symbols C with C < UCoff, the suffix code word is void; for code symbols C with C ≥
UCoff, the suffix consists of an Exp-Golomb code of order k for the symbol C−UCoff. For a given symbol S the Exp-
Golomb code of order k is constructed as follows:

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 93

while(1) {
 //first unary part of EGk
 if (symbol >= (unsigned int)(1<<k)) {
 put(‘1’);
 S = S - (1<<k);
 k++;’
 }
 else
 {
 put(‘0’); //now terminating zero of unary part of EGk
 while (k--) //finally binary part of EGk
 put((S>>k) & 0x01);
 break;
 }
}

The numbering of bins is such that bin number bin_num = 1 relates to the first binary decision in the unary prefix code
with increasing numbers towards the least significant bits of the binary part of the Exp-Golomb suffix.

9.2.1.4 Fixed-length (FL) binarization

Fixed-length (FL) binarization is applied to a finite alphabet {0 , …, Cmax} of code symbols. It is constructed by using a
L-bit binary representation of a code symbol, where L= log2Cmax +1. The numbering of bins for the fixed-length
binarization is such that the bin_num = 1 relates to the least significant bit with increasing bin numbers towards the most
significant bit.

9.2.1.5 Binarization schemes for macroblock type and sub macroblock type

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-20. If
adaptive_block_size_transform_flag = = 1, the binarization for decoding of macroblock type in I slices is specified in
Table 12-10.

For macroblock types in SI slices the binarization consists of a prefix and a suffix part. The prefix consists of a single bit
b1= ((mb_type = = SIntra_4x4) ? 0 : 1). The suffix part for mb_type Sintra_4x4 is void, while the suffix parts for all
other macroblock types are given by the corresponding binarization pattern specified in Table 9-20.

The binarization schemes for P, SP, and B slices are specified in Table 9-21. The binarization for intra macroblock types
in P and SP slices corresponding to mb_type values 7 to 30 consists of a prefix as specified in Table 9-21 and a suffix as
specified in Table 9-20 for the corresponding intra mb_type. For intra macroblock types in B slices (mb_type values 23
to 47) the binarization consists of a prefix as specified in Table 9-21 and a suffix as specified in Table 9-20 for the
corresponding intra mb_type. If adaptive_block_size_transform_flag = = 1, the same prefix is used as specified in Table
9-21 for intra macroblock types of the corresponding slice type. However, the corresponding suffix parts are specified in
Table 12-10.

For P, SP, and B slices the specification of the binarization for sub_mb_type is given in Table 9-22.

Table 9-20 – Binarization for macroblock types for I slices

Value (name) of mb_type Binarization

0 (Intra_4x4) 0

1 (Intra_16x16_0_0_0) 1 0 0 0 0

2 (Intra_16x16_1_0_0) 1 0 0 0 1

3 (Intra_16x16_2_0_0) 1 0 0 1 0

4 (Intra_16x16_3_0_0) 1 0 0 1 1

5 (Intra_16x16_0_1_0) 1 0 1 0 0 0

6 (Intra_16x16_1_1_0) 1 0 1 0 0 1

7 (Intra_16x16_2_1_0) 1 0 1 0 1 0

8 (Intra_16x16_3_1_0) 1 0 1 0 1 1

94 DRAFT ITU-T Rec. H.264 (2002 E)

9 (Intra_16x16_0_2_0) 1 0 1 1 0 0

10 (Intra_16x16_1_2_0) 1 0 1 1 0 1

11 (Intra_16x16_2_2_0) 1 0 1 1 1 0

12 (Intra_16x16_3_2_0) 1 0 1 1 1 1

13 (Intra_16x16_0_0_1) 1 1 0 0 0

14 (Intra_16x16_1_0_1) 1 1 0 0 1

15 (Intra_16x16_2_0_1) 1 1 0 1 0

16 (Intra_16x16_3_0_1) 1 1 0 1 1

17 (Intra_16x16_0_1_1) 1 1 1 0 0 0

18 (Intra_16x16_1_1_1) 1 1 1 0 0 1

19 (Intra_16x16_2_1_1) 1 1 1 0 1 0

20 (Intra_16x16_3_1_1) 1 1 1 0 1 1

21 (Intra_16x16_0_2_1) 1 1 1 1 0 0

22 (Intra_16x16_1_2_1) 1 1 1 1 0 1

23 (Intra_16x16_2_2_1) 1 1 1 1 1 0

24 (Intra_16x16_3_2_1) 1 1 1 1 1 1

bin_num 1 2 3 4 5 6

Table 9-21 – Binarization for macroblock types for P, SP, and B slices

Slice type Value (name) of mb_type Binarization

P, SP slices

0 (Pred_L0_16x16) 0 0 0

1 (Pred_L0_L0_16x8) 0 1 1

2 (Pred_L0_L0_8x16) 0 1 0

4 (Pred_8x8) 0 0 1

6 (Pred_8x8ref0) na

7 to 30 (Intra, prefix only) 1

B slices

0 (Direct_16x16) 0

1 (Pred_L0_16x16) 1 0 0

2 (BiPred_L1_16x16) 1 0 1

3 (BiPred_Bi_16x16) 1 1 0 0 0 0

4 (Pred_L0_L0_16x8) 1 1 0 0 0 1

5 (Pred_L0_L0_8x16) 1 1 0 0 1 0

6 (BiPred_L1_L1_16x8) 1 1 0 0 1 1

7 (BiPred_L1_L1_8x16) 1 1 0 1 0 0

8 (BiPred_L0_L1_16x8) 1 1 0 1 0 1

9 (BiPred_L0_L1_8x16) 1 1 0 1 1 0

10 (BiPred_L1_L0_16x8) 1 1 0 1 1 1

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 95

11 (BiPred_L1_L0_8x16) 1 1 1 1 1 0

12 (BiPred_L0_Bi_16x8) 1 1 1 0 0 0 0

13 (BiPred_L0_Bi_8x16) 1 1 1 0 0 0 1

14 (BiPred_L1_Bi_16x8) 1 1 1 0 0 1 0

15 (BiPred_L1_Bi_8x16) 1 1 1 0 0 1 1

16 (BiPred_Bi_L0_16x8) 1 1 1 0 1 0 0

17 (BiPred_Bi_L0_8x16) 1 1 1 0 1 0 1

18 (BiPred_Bi_L1_16x8) 1 1 1 0 1 1 0

19 (BiPred_Bi_L1_8x16) 1 1 1 0 1 1 1

20 (BiPred_Bi_Bi_16x8) 1 1 1 1 0 0 0

21 (BiPred_Bi_Bi_8x16) 1 1 1 1 0 0 1

22 (BiPred_8x8) 1 1 1 1 1 1

23 to 47 (Intra, prefix only) 1 1 1 1 0 1

bin_num 1 2 3 4 5 6 7

Table 9-22 – Binarization for sub macroblock types in P and B slices

Slice type Value (name) of
sub_mb_type Binarization

P slices

0 (Pred_L0_8x8) 1

1 (Pred_L0_8x4) 0 0 0

2 (Pred_L0_4x8) 0 0 1 1

3 (Pred_L0_4x4) 0 0 1 0

4 (Intra_8x8) 0 1

B slices

0 (Direct_8x8) 0

1 (Pred_L0_8x8) 1 0 0

2 (BiPred_L1_8x8) 1 0 1

3 (BiPred_Bi_8x8) 1 1 0 0 0

4 (Pred_L0_8x4) 1 1 0 0 1

5 (Pred_L0_4x8) 1 1 0 1 0

6 (BiPred_L1_8x4) 1 1 0 1 1

7 (BiPred_L1_4x8) 1 1 1 0 0 0

8 (BiPred_Bi_8x4) 1 1 1 0 0 1

9 (BiPred_Bi_4x8) 1 1 1 0 1 0

10 (Pred_L0_4x4) 1 1 1 0 1 1

11 (BiPred_L1_4x4) 1 1 1 1 0 0

12 (BiPred_Bi_4x4) 1 1 1 1 0 1

13 (Intra_8x8) 1 1 1 1 1

96 DRAFT ITU-T Rec. H.264 (2002 E)

bin_num 1 2 3 4 5 6

9.2.1.6 Decoding flow and assignment of binarization schemes

In this subclause, the binarization schemes used for decoding of coded_block_pattern, delta_qp, the syntax elements of
reference picture index, motion vector data, Intra4x4 prediction modes and are specified.

The coded block pattern information is decoded using the relationship as given in subclause 7.4.6: coded_block_pattern
= coded_block_patternY + 16∗nc. In a first step, the luma part coded_block_patternY of coded_block_pattern is decoded
using the fixed-length (FL) binarization with Cmax = 15 and L = 4. Then, the chroma part nc is decoded using TU
binarization with Cmax = 2.

Decoding of the delta_qp parameter is a two-step process. First, an unsigned code value wrapped_delta_qp ≥ 0 is
decoded using the unary binarization. Then, wrapped_delta_qp is mapped to the signed value of the delta_qp parameter
according to the relationship given in Table 9-2.

The decoding process for spatial intra prediction modes associated with luma of macroblock type Intra_4x4 and
Sintra_4x4 is as follows. First, a parameter intra_pred_indicator is decoded using the truncated unary (TU) binarization
with Cmax = 8. If intra_pred_indicator = 0, use_most_probable_mode is set to 1. If intra_pred_indicator ≥ 1,
remaining_mode_selector = intra_pred_indicator − 1. Given the parameters most_probable_mode and
remaining_mode_selector, the intra prediction mode intra_pred_mode is obtained in the same way as specified in
subclause 9.1.5.1. The decoding order of the prediction modes is the same as shown in Figure 9-1 b). For decoding of
the spatial intra prediction mode for chroma intra_chroma_pred_mode, the truncated unary (TU) binarization with
Cmax = 3 is used.

The reference picture index parameter is decoded using the unary binarization as given in subclause 9.2.1.1.

Each component of the motion vector data is decoded separately starting with the horizontal (h) component. First the
absolute value abs_mvd_comp and then the sign sign_mvd_comp of each component (comp=h,v) shall be decoded. The
binarization scheme applied to abs_mvd_comp is given by the concatenated unary/3rd-order Exp-Golomb (UEG3)
binarization with cut-off parameter Ucoff = 9. Note that for decoding the Exp-Golomb suffix the decoder bypass
Decode_eq_prob as specified in subclause 9.2.4.3.5 is used.

9.2.1.7 Decoding flow and binarization of transform coefficients

Decoding of transform coefficients is a three-step process. First, the one-bit coded_block_flag is decoded for each block
of transform coefficients unless the coded_block_pattern symbol on macroblock level indicates that the regarded block
has no non-zero coefficients. If the coded_block_flag symbol is zero, no further information has to be decoded for the
block. Otherwise, it is indicated that there are significant coefficients inside the block. The latter case implies that, in a
second decoding step, for each scanning position i except the last position in a block the binary-valued
significant_coeff_flag[i] has to be decoded. If significant_coeff_flag[i] has the value of one, the corresponding position i
in the block contains a significant coefficient and a further binary-valued last_significant_coeff_flag[i] is decoded. If
last_significant_coeff_flag[i] is zero, there is at least one further significant coefficient to be decoded; otherwise, the last
significant coefficient along the scanning path is reached. If this is the case, the absolute value minus 1
coeff_absolute_value_minus_1 and then the sign of the coefficient coeff_sign is decoded for each significant transform
coefficient by traversing the block in reverse scanning order. coeff_absolute_value_minus_1 is decoded using the
concatenated unary/zero-order Exp-Golomb (UEG0) binarization with UCoff=14. Similar to the decoding of absolute
values of the motion vector components, the Exp-Golomb suffix is decoded by using the decoder bypass
Decode_eq_prob.

9.2.1.8 Decoding of sign information related to motion vector data and transform coefficients

Decoding of the sign information sign_mvd_comp of the motion vector components and coeff_sign of the levels
corresponding to significant transform coefficients is performed as follows. Using the decoder bypass Decode_eq_prob
as specified in subclause 9.2.4.3.5 first a binary indicator sign_ind is decoded. Then the sign information sign_info is
recovered by sign_info = ((sign_ind = = 0) ? 1 : -1).

9.2.1.9 Decoding of macroblock skip flag and end-of-slice flag

Decoding of the mb_skip_flag is as follows: First, a binary-valued mb_skip_flag_decoded is decoded using the context
model as specified in subclause 9.2.2.2. In a second step, the actual value of mb_skip_flag is obtained by inverting
mb_skip_flag_decoded, i.e., mb_skip_flag = mb_skip_flag_decoded ^ 0x01.

The end_of_slice_flag is decoded using a fixed, non-adaptive model by chosing State = 63 and MPS = 0. The following
mechanism guarantees a fixed model, although the coding engine uses a probability estimator after each decoding step as
further specified in subclause 9.2.4.2. By observing a sequence of end_of_slice values ‘0’ meaning that the end of a slice
has not been reached, the initial chosen state will not be altered, since for the observation of a MPS symbol the state

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 97

variable State = 63 will be mapped onto itself in the probability estimation. However, as soon as a LPS value of ‘1’ is
decoded for end_of_slice_flag, the probability estimation for the LPS will not affect the subsequent decoding process,
because the end of a slice is reached, and all context models are refreshed using the initial states.

9.2.2 Context definition and assignment

For each bin number, a context variable is defined by a conditioning term containing prior decoded symbols or parts
thereof. The possible numerical values of a context variable specify the different context models associated with a
specific bin number. Typically, there are several possible values or context labels for each bin number bin_num.
However, in some cases the context variable may simply be a constant label, in which case there is only one fixed
context model.

This subclause defines first a variety of generic types of context variables, so-called context templates, for conditional
coding of syntax elements. Then, for each bin number of a syntax element, the specification of the corresponding context
variable is given. For the different bin numbers associated with the binarization of a given syntax element or parts
thereof, a unique context identifier context_id is chosen such that the context variable associated to bin number k is given
by context_id[k]. Since there is always a maximum bin number N with a context variable context_id[N] that is different
from the corresponding context variable context_id[N−1] for the preceding bin number N−1, it is sufficient to specify a
context identifier for each index k with 1≤ k≤ N, where N is called the maximum index of the context identifier
max_idx_ctx_id.

Table 9-23 provides an overview of the context identifiers associated to each category of syntax elements. A detailed
description of the corresponding context variables is given in the subsequent subclauses. Note that each context identifier
corresponds to a unique range of context labels, which, in the case of macroblock type, may overlap for the different
slice types I, SI, P, SP, and B.

If adaptive_block_size_transform_flag = = 1, the context identifiers related to decoding of transform coefficients utilize
an additional set of ranges as further specified in Table 12-12.

Table 9-23 – Syntax elements and associated context identifiers

Syntax element Context identifier Type of
Binarization max_idx_ctx_id

Range of
context
label

mb_skip_flag ctx_mb_skip -/- 1 0 – 2

mb_type

ctx_mb_type_I Table
9-14 5 0 – 7

ctx_mb_type_SI_pref -/- 1 0 – 2

ctx_mb_type_SI_suf Table
9-14 5 3 – 10

ctx_mb_type_P Table
9-15

3 3 – 6

ctx_mb_type_B 4 3 – 8

ctx_mb_type_P_suf Table
9-14

5 6 – 9

ctx_mb_type_B_suf 5 8 – 11

ctx_b8_mode_P Table
9-16

4 12 – 15

ctx_b8_mode_B 4 12 – 15

mvd_l0 and mvd_l1
ctx_abs_mvd_h UEG3,

UCoff=9 5 16 – 22

ctx_abs_mvd_v UEG3,
UCoff=9 5 23 – 29

ref_idx_l0 and ref_idx_l1 ctx_ref_idx Unary 3 30 – 35

delta_qp ctx_delta_qp Unary 3 36 – 39

chroma_pred_mode ctx_ipred_chroma TU,
Cmax=3 3 40 – 44

98 DRAFT ITU-T Rec. H.264 (2002 E)

intra_pred_mode ctx_ipred_luma TU,
Cmax=8 2 45 – 62

coded_block_pattern
ctx_cbp_luma FL,

Cmax=15 4 63 – 66

ctx_cbp_chroma TU,
Cmax=2 2 67 – 74

coded_block_flag ctx_cbp4 -/- -/- 75 – 94

significant_coeff ctx_sig -/- -/- 95 – 155

last_coeff ctx_last -/- -/- 156 – 216

coeff_absolute_value_minus_1 ctx_abs_level UEG0,
UCoff=14 2 217 – 266

end_of_slice_flag ctx_eos Fixed, non-adaptive model with
State(ctx_eos) = 63, MPS(ctx_eos) = 0

9.2.2.1 Overview of assignment of context labels

Tables 9-24 and 9-25 contain all context identifiers along with their corresponding range of context labels. The
association of context labels (modulo some offset) and bin numbers shows which context variable uses a fixed model and
which one implies a choice of different models. The latter are characterized by those entries where a set of different
context labels are given for a specific bin number bin_num (Table 9-24) or block type dependent context_category
(Table 9-25). These context variables are specified in the following subclauses.

Table 9-24 – Overview of context identifiers and associated context labels

Context identifier
Range of
context
label

Offset for
context label max_idx_ctx_id

bin_num

1 2 3 4 ≥ 5

ctx_mb_skip 0 – 2 0 1 0,1,2 -/- -/- -/- -/-

ctx_mb_type_I 0 – 7 0 5 0,1,2 3 4 5,6 6,7

ctx_mb_type_SI_pref 0 – 2 0 1 0,1,2 -/- -/- -/- -/-

ctx_mb_type_SI_suf 3 – 10 3 5 0,1,2 3 4 5,6 6,7

ctx_mb_type_P 3 – 6 3 3 0 1 2,3 -/- -/-

ctx_mb_type_P_suf 6 – 9 6 5 0 1 2 2,3 3

ctx_mb_type_B 3 – 8 3 4 0,1,2 3 4,5 5 5

ctx_mb_type_B_suf 8 – 11 8 5 0 1 2 2,3 3

ctx_b8_mode_P 12 – 15 12 4 0 1 2 3 -/-

ctx_b8_mode_B 12 – 15 12 4 0 1 2,3 3 3

ctx_abs_mvd_h 16 – 22 16 5 0,1,2 3 4 5 6

ctx_abs_mvd_v 23 – 29 23 5 0,1,2 3 4 5 6

ctx_ref_idx 30 – 35 30 3 0,1,2,3 4 5 5 5

ctx_delta_qp 36 – 39 36 3 0,1 2 3 3 3

ctx_ipred_chroma 40 – 44 36 3 0,1,2 3 4 -/- -/-

ctx_ipred_luma 45 – 62 42 2 0,...,8 9,...,17 9,...,17 9,...,17 9,...,17

ctx_cbp_luma 63 – 66 60 4 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3 -/-

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 99

ctx_cbp_chroma 67 – 74 64 2 0,1,2,3 4,5,6,7 -/- -/- -/-

ctx_abs_level 217 – 266 217+
10*context_category 2 0,...,4 5,...,9 5,...,9 5,...,9 5,...,9

Table 9-25 – Overview of context identifiers and associated context labels (continued)

Context
identifier

Offset (range) of
context label

context_category (as specified in Table 9-22)

0 1 2 3 4

ctx_cbp4 75 (75 – 94) 0 – 3 4 – 7 8 – 11 12 – 15 16 – 19

ctx_sig 95 (95 – 155) 0 – 14 15 – 28 29 – 43 44 –46 47 – 60

ctx_last 156 (156 – 216) 0 – 14 15 – 28 29 – 43 44 –46 47 – 60

Figure 9-2 – Illustration of the generic context template using two neighbouring symbols A and B for conditional
coding of a current symbol C

9.2.2.2 Context templates using two neighbouring symbols

The generic design of this type of context variable is shown in Figure 9-2. It involves two previously decoded symbols or
bins of the same syntax element that correspond to the spatially neighbouring blocks to the left (A) and on the top (B) of
the regarded block C. The generic form of the equation defining this type of context is given by

 ctx_var_spat = cond_term(A, B), (9-1)

where the conditioning term cond_term(A, B) describes the functional relationship between the spatially neighbouring
symbols A and B, on the one hand, and the values of the context variable, on the other hand. Three special cases of this
template are specified as follows:

 ctx_var_spat1 = cond_term(A) + cond_term(B), (9-2)

 ctx_var_spat2 = cond_term(A) + 2*cond_term(B), (9-3)

 ctx_var_spat3 = cond_term(A). (9-4)

Table 9-26 contains the specification of context variables relying on templates using two neighbouring symbols. The
conditioning term of the context variable ctx_cbp4 depends on six block types as given in Table 9-28 (Luma-DC, Luma-
AC, Chroma-U-DC, Chroma-V-DC, Chroma-U-AC, Chroma-V-AC).

Table 9-26 – Specification of context variables using context templates according to Equations (9-2) – (9-4)

Context variable Context template cond_term(X),
semantics of X

cond_term(X),
if X not available

ctx_mb_skip ctx_var_spat1 (mb_skip_flag(X) = = 0) ? 1: 0
X: neighbouring macroblock 0

ctx_mb_type_I[1] ctx_var_spat1 (mb_type(X) != Intra_4x4) ? 1: 0
X: neighbouring macroblock 0

ctx_mb_type_SI_pref[1] ctx_var_spat1 (mb_type(X) != Sintra_4x4) ? 1: 0
X: neighbouring macroblock 0

B

CA

100 DRAFT ITU-T Rec. H.264 (2002 E)

ctx_mb_type_SI_suf[1] ctx_var_spat1 (mb_type(X) != Intra_4x4) ? 1: 0
X: neighbouring macroblock 0

ctx_mb_type_B[1] ctx_var_spat1 ((mb_type(X) != Direct) ? 1: 0)
X: neighbouring macroblock 0

ctx_ipred_chroma[1] ctx_var_spat1 ((intra_chroma_pred_mode(X) != 0) ? 1: 0)
X: neighbouring macroblock 0

ctx_ref_idx[1] ctx_var_spat2 (ref_idx_l0/ref_idx_l1(X) != 0) ? 1: 0
X: neighbouring block 0

ctx_ipred_luma[i], i=1,2 ctx_var_spat3 9*(i−1) + intra_pred_mode(X)
X: neighbouring block 0

ctx_cbp_luma[i], i=1,…,4 ctx_var_spat2 i-th bit of coded_block_patternY(X)
X: neighbouring 8x8 block of i-th block 0

ctx_cbp_chroma[1] ctx_var_spat2 (nc(X) != 0) ? 1: 0
X: neighbouring macroblock 0

ctx_cbp_chroma[2] ctx_var_spat2 4 + (nc(X) = = 2) ? 1: 0
X: neighbouring macroblock 0

ctx_cbp4 ctx_var_spat2 coded_block_pattern_4(X)
X: neighbouring block of same block type

1, if X is INTRA;
0, otherwise

ctx_delta_qp ctx_var_spat3 (delta_qp(X) != 0) ? 1: 0
X: neighbouring macroblock 0

The specification of the context variables ctx_abs_mvd_h[1] and ctx_abs_mvd_v[1] is given as follows.

 (9-5)

where comp denotes the component h (horizontal) or v (vertical) and A, B denote the neighbouring blocks of the block to
decode as shown in Figure 9-2. Since the neighbouring blocks A and B may belong to different macroblock partitions,
the following principle for identifying the proper neighbouring blocks that are used in Equation (9-5) is established. First,
the motion vector data is assumed to be given in oversampled form such that each 4x4 block has its own motion vector
(MV). That means, on the one hand, that in case of a neighbouring block having a coarser partition, the related 4x4 sub-
blocks are assumed to inherit the MV from the corresponding parent block(s) in the quadtree partition. On the other hand,
if the current block C represents a larger block than a 4x4 block, it is assumed to be represented by the corresponding
leftmost 4x4 sub-block in the top row of 4x4 sub-blocks. Then, given a block C, the neighbouring 4x4 sub-blocks B on
top and A to the left of the representing 4x4 sub-block of C are chosen for evaluation of Equation (9-5).

9.2.2.3 Context templates using preceding bin values

Let (b1, …, bN) denote the binarization of a given symbol C. Then, a generic type of context variable associated with the
k-th bin of C is specified as

 ctx_var_bin[k] = cond_term(b1,…,bk-1), (9-6)

where 1<k≤N. In Table 9-27, the specification of context variables using this type of context template is given.

Table 9-27 – Definition of context variables using the context template according to Equation (9-6)

Context variable cond_term(b1,…,bk-1)

ctx_mb_type_I[4] (b3 = = 0) ? 5: 6

ctx_mb_type_I[5] (b3 = = 0) ? 6: 7

ctx_mb_type_SI_suf[4] (b3 = = 0) ? 5: 6

ctx_mb_type_SI_suf[5] (b3 = = 0) ? 6: 7

[]

>+

<+

=

,,1
,32))(_)(_(,2

,3))(_)(_(,0

1___
otherwise

BcompmvdAcompmvd

BcompmvdAcompmvd

compmvdabsctx

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 101

ctx_mb_type_P[3] (b2 = = 0) ? 2: 3

ctx_mb_type_P_suf[4] (b3 = = 0) ? 2: 3

ctx_mb_type_B[3] (b2 = = 1) ? 4: 5

ctx_mb_type_B_suf[4] (b3 = = 0) ? 2: 3

ctx_b8_mode_B[3] (b2 = = 1) ? 2: 3

9.2.2.4 Additional context definitions for information related to transform coefficients

Three different additional context identifiers are used for conditioning of information related to transform coefficients.
All these three types depend on context categories of different block types denoted by the variable context_category. The
definition of these context categories is given in Table 9-28.

Table 9-28 – Context categories for the different block types

block_type MaxNumCoeff context_category

Luma DC block for INTRA16x16 mode 16 0:Luma-Intra16-DC

Luma AC block for INTRA16x16 mode 15 1:Luma-Intra16-AC

Luma block for INTRA 4x4 mode 16
2:Luma-4x4

Luma block for INTER 4x4 mode 16

U-Chroma DC block for INTRA mode 4

3:Chroma-DC
V-Chroma DC block for INTRA mode 4

U-Chroma DC block for INTER mode 4

V-Chroma DC block for INTER mode 4

U-Chroma AC block for INTRA mode 15

4:Chroma-AC
V-Chroma AC block for INTRA mode 15

U-Chroma AC block for INTER mode 15

V-Chroma AC block for INTER mode 15

Additional context categories are used in the case of adaptive_block_size_transform_flag = = 1 as specified in
subclause 12.5.2. The context identifiers ctx_sig and ctx_last are related to the binary valued information of SIG and
LAST; the related context variables includes an additional dependency on the scanning position scanning_pos within the
regarded block:

 ctx_sig[scanning_pos] = Map_sig(scanning_pos), (9-7)

 ctx_last[scanning_pos] = Map_last(scanning_pos). (9-8)

The specifiaction of Map_sig and Map_last in Equations (9-7) and (9-8) depends on the block type. For context_category
0 – 4 the corresponding maps are given by the identity, i.e.,

Map_sig(scanning_pos) = Map_last(scanning_pos) = scanning_pos, if context_category = 0,…,4,

where scanning_pos denotes the position related to the zig-zag scan. For the additional context categories 5 – 7, which
are only in use if adaptive_block_size_transform_flag = = 1, the specification of Map_sig and Map_last is given in
subclause 12.5.2.

For decoding of abs_level_m1, the absolute values of significant transform coefficients minus 1, the context identifier
ctx_abs_level consisting of the two context variables ctx_abs_level[1] and ctx_abs_level[2] is used, which are defined
as follows:

 ctx_abs_lev[1] = ((num_decod_abs_lev_gt1!=0) ? 4: min(3, num_decod_abs_lev_eq1)), (9-9)

102 DRAFT ITU-T Rec. H.264 (2002 E)

 ctx_abs_lev[2] = min(4, num_decod_abs_lev_gt1), (9-10)

where num_decod_abs_lev_eq1 denotes the number of decoded coefficients with magnitude equal to 1, and
num_decod_abs_lev_gt1 denotes the number of decoded coefficients with magnitude greater than 1. Both numbers are
related to the same transform coefficient block, where the current decoding takes place, which means that no
additionalinformation outside the regarded transform coefficient block is used for the context variables ctx_abs_level[k],
k=1,2.

9.2.3 Initialisation of context models

9.2.3.1 Initialisation procedure

At the beginning of each slice, each context model is initialised with an initial state, which consists of a state number and
the meaning of the most probable symbol (MPS) as further described in subclause 9.2.4.2. The actual initial state of a
context model depends linearly on the (initial) quantization parameter QP of the given slice, such that for each context
model a pair of table entries {m, n} is given, from which the initial state is computed in the following way

1. Compute pre_state = ((m∗(QP−12))>>4) + n;

2. Limit pre_state to the range of [0,101] for P- and B-slices and to the range of [27,74] for I-slices, i.e.,
pre_state = min (101, max(0,pre_state)) for P- and B-slices and
pre_state = min (74, max(27,pre_state)) for I-slices;

3. Map pre_state to {state, MPS} pair according to the following rule:
if (pre_state <= 50) then {state = 50-pre_state, MPS = 0} else {state = pre_state-51, MPS = 1}

9.2.3.2 Initialisation procedure

Tables 9-29 – 9-34 contain the initialisation parameters related to the context variables of all syntax elements, from
which the initial states can be obtained by using the rules given in subclause 9.2.3.1.

Table 9-29 – Initialisation parameters for context identifiers ctx_mb_type_I, ctx_mb_type_SI_pref, ,
ctx_mb_type_SI_suf,ctx_mb_skip, ctx_mb_type_P, ctx_mb_type_B

Context
label

ctx_mb_type_I ctx_mb_type_SI_pref ctx_mb_skip

m n m n m n m n m n

0 7 25 7 25 -23 66

1 8 35 8 35 -14 77

2 -2 63 -2 63 -9 88

 ctx_mb_type_SI_suf ctx_mb_type_P ctx_mb_type_B

3 -9 68 7 25 2 13 9 49

4 -15 74 8 35 14 24 3 65

5 -3 36 -2 63 -21 69 0 78

6 -1 51 -9 68 -1 52 -13 81

7 0 50 -15 74 -14 73

8 -3 36 -8 64

9 -1 51

10 0 50

Table 9-30 – Initialisation parameters for context identifiers ctx_b8_mode_P, ctx_b8_mode_B, ctx_mb_type_P_suf,
ctx_mb_type_B_suf

Context
label

ctx_mb_type_P_suf
ctx_mb_type_B_suf

Context
label ctx_b8_mode_P ctx_b8_mode_B

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 103

m n m n m n

9 -9 55 12 8 46 -9 62

10 -7 50 13 12 11 -12 66

11 2 47 14 -4 62 -9 56

 15 18 48 3 47

Table 9-31 – Initialisation parameters for context identifiers ctx_abs_mvd_h, ctx_abs_mvd_v, ctx_ref_idx

Context
label

ctx_abs_mvd_h Context
label

ctx_abs_mvd_v Context
label

ctx_ref_idx

m n m n m n

16 1 48 23 -1 45 30 3 27

17 -5 60 24 -5 59 31 -1 47

18 -8 70 25 -9 71 32 0 45

19 2 52 26 0 50 33 -2 60

20 2 62 27 3 61 34 -1 57

21 -3 64 28 -3 63 35 0 48

22 -2 80 29 1 80

Table 9-32 – Initialisation parameters for context identifiers ctx_delta_qp, ctx_ipred_chroma, ctx_ipred_luma

Context
label

ctx_delta_qp Context
label

ctx_ipred_luma Context
label

ctx_ipred_luma

m n m n m n

36 0 28 45 -5 49 54 -4 61

37 0 50 46 -3 58 55 -6 64

38 0 50 47 -5 58 56 -6 63

39 0 50 48 -4 58 57 -3 75

 ctx_ipred_chroma

49 -5 59 58 -4 63

40 -5 50 50 -4 60 59 -7 65

41 0 50 51 -6 61 60 -1 63

42 0 50 52 -5 62 61 -18 66

43 0 50 53 -4 60 62 -9 67

44 0 50

Table 9-33 – Initialisation parameters for context identifiers ctx_cbp_luma, ctx_cbp_chroma

Context
label

ctx_cbp_luma

Context
label

ctx_cbp_chroma

Context
label

ctx_cbp_chroma

I slices P, B slices I slices P, B slices I slices P, B slices

m n m n m n m n m n m n

63 -3 75 -21 81 67 -7 65 -23 58 71 -18 66 -11 46

64 -4 63 -15 60 68 -1 63 -18 64 72 -9 67 -6 56

104 DRAFT ITU-T Rec. H.264 (2002 E)

65 -4 70 -14 61 69 -9 77 -16 63 73 -13 70 -8 59

66 -5 56 -15 47 70 -4 76 -18 73 74 -7 74 -18 74

Table 9-34 – Initialisation parameters for context identifiers ctx_cbp4, ctx_sig, ctx_last, ctx_abs_level for context
category 0 – 4

Context
label

Context
category 0 Context

label

Context
category 1 Context

label

Context category 2

Context
label

Context
category 3 Context

label

Context
category 4 I slices P, B

slices

m n m n m n m n m n m n

ctx_cbp4

75 -4 72 79 -4 37 83 -2 52 -4 57 87 0 55 91 -3 41

76 -4 68 80 -3 50 84 -7 68 -9 66 88 -3 70 92 -4 62

77 -6 75 81 -6 49 85 -5 61 -7 64 89 -4 68 93 -6 58

78 -6 75 82 -3 61 86 -8 77 -17 80 90 -4 75 94 -8 73

ctx_sig

95 -6 68 124 -7 67 4 46 139 -3 71

96 -11 66 110 0 44 125 -11 64 1 43 140 -9 69 142 -6 60

97 -5 63 111 2 53 126 -8 66 2 45 141 0 70 143 0 63

98 -5 56 112 0 49 127 -11 63 -4 46 144 -3 54

99 2 43 113 1 43 128 -9 63 -1 45 145 -4 54

100 1 47 114 4 45 129 -8 60 3 43 146 4 52

101 -8 58 115 -2 40 130 -11 55 -6 44 147 -5 44

102 -3 46 116 -1 45 131 -10 61 1 45 148 -1 48

103 4 38 117 0 50 132 -7 63 2 46 149 -7 57

104 0 58 118 2 55 133 -7 60 0 46 150 11 51

105 1 51 119 -7 52 134 -16 61 -12 49 151 -13 51

106 -7 57 120 -2 57 135 -2 62 3 50 152 7 55

107 -1 53 121 7 50 136 -1 58 11 46 153 5 57

108 2 47 122 2 52 137 -8 61 4 50 154 2 51

109 -1 59 123 4 66 138 -3 68 9 64 155 4 68

ctx_last

156 0 5 185 11 25 16 27 200 12 27

157 1 1 171 4 42 186 9 24 21 19 201 12 28 203 10 28

158 2 2 172 5 46 187 12 24 20 23 202 16 38 204 14 30

159 3 6 173 9 40 188 14 23 21 22 205 17 30

160 4 3 174 7 41 189 13 23 21 23 206 20 30

161 5 4 175 6 46 190 16 22 24 23 207 15 37

162 6 4 176 10 40 191 19 20 25 24 208 21 39

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 105

163 7 3 177 14 33 192 18 21 23 27 209 22 33

164 8 4 178 10 43 193 21 21 25 29 210 21 39

165 9 5 179 12 48 194 23 25 23 35 211 15 52

166 10 9 180 13 39 195 20 23 19 36 212 8 49

167 11 2 181 13 41 196 24 25 21 40 213 13 52

168 12 3 182 16 43 197 25 29 23 45 214 8 60

169 13 1 183 21 35 198 24 33 15 53 215 15 56

170 14 6 184 11 55 199 14 53 8 70 216 3 71

ctx_abs_level

217 -5 55 227 -10 57 237 -10 63 -6 51 247 -9 70 257 -7 58

218 -3 36 228 -1 30 238 -5 37 -5 24 248 -14 55 258 0 33

219 -1 35 229 0 32 239 -7 43 -7 32 249 -10 57 259 -1 40

220 -2 40 230 -1 35 240 -6 46 -4 34 250 -5 56 260 -2 45

221 -6 50 231 0 40 241 -5 49 -5 39 251 -4 57 261 -3 49

222 -3 44 232 -5 39 242 -8 50 -12 43 252 -14 63 262 -7 48

223 -4 51 233 -4 47 243 -7 56 -7 50 253 -11 67 263 -9 58

224 -3 53 234 -9 55 244 -9 62 0 48 254 -5 68 264 -16 66

225 -4 55 235 -6 58 245 -9 64 -3 53 255 -9 71 265 -12 65

226 -11 63 236 -4 56 246 -11 70 -8 60 256 0 50 266 -12 68

9.2.4 Table-based arithmetic coding
NOTE - Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(‘0’) and
p(‘1’)=1−p(‘0’) of a binary decision (‘0’, ‘1’), an initially given interval with range R will be subdivided into two sub-intervals
having range p(‘0’)×R and R−p(‘0’)×R, respectively. Depending on the decision, which has been observed, the corresponding sub-
interval will be chosen as the new code interval, and a binary code string pointing into that interval will represent the sequence of
observed binary decisions. It is useful to distinguish between the most probable symbol (MPS) and the least probable symbol
(LPS), so that binary decisions have to be identified as either MPS or LPS, rather than ‘0’ or ‘1’. Given this terminology, each
context model CTX is defined by the probability pLPS of the LPS and the value of MPS, which is either ‘0’ or ‘1’.
The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

- The probability estimation is performed by means of a finite-state machine with a table-based transition process between
64 different representative probability states {Pk | 0≤ k <64} for the LPS probability pLPS.

- The range R representing the state of the coding engine is quantized to a small set {Q1,…,Q4} of pre-defined
quantization values prior to the calculation of the new interval range. Storing a table containing all 64×4 pre-computed
product values of Qi× Pk allows a multiplication-free approximation of the product R× Pk.

- For syntax elements or parts thereof with an approximately uniform probability distribution a separate simplified
encoding and decoding path is used.

9.2.4.2 Probability estimation

The probability estimator is realized by a finite-state machine (FSM) consisting of a set of representative probabilities
{Pk | 0≤ k <64} for the LPS together with some appropriately defined state transition rules. Table 9-35 shows the
transition rules for adapting to a given MPS or LPS decision. For transition from one state to another each state is only
addressed by its index State, which will be appropriately changed to a new index Next_State_MPS(State) or
Next_State_LPS(State) after the encoding/decoding of a MPS or LPS symbol, respectively.

The numbering of the states is arranged in such a way that the state with index State=0 corresponds to a LPS probability
value of 0.5, with decreasing LPS probability towards higher states. However, for I-slices it is of advantage to restrict
the number of states to the first 24 state indices. Therefore, Table 9-35 contains a separate column containing the
transition rule Next_State_MPS_INTRA that is used for decoding the syntax elements of an I-slice only. Note, that
Next_State_MPS_INTRA differs from Next_State_MPS only by one entry. To prevent the FSM from switching to states

106 DRAFT ITU-T Rec. H.264 (2002 E)

higher than State=23, we set Next_State_MPS(35)= 23 for I-slice decoding. For the clarity of presentation, a separate
table entry for I-slice decoding is shown in Table 9-35.

After encoding or decoding a decision, an update of the probability estimate is obtained by switching the state index
State to a new index, such that for I-slice coding

if(decision = = MPS)
 State ← Next_State_MPS_INTRA(State)
else
 State ← Next_State_LPS(State)

and all other slice types
if(decision = = MPS)
 State ← Next_State_MPS(State)
else
 State ← Next_State_LPS(State).

In the case, where the current state corresponds to a probability value of 0.5, which corresponds to the State index of 0,
and a LPS symbol is observed, the sense of MPS and LPS has to be interchanged.

Table 9-35 – Probability transition

State Next_State_MPS_INTRA Next_State_MPS Next_State_LPS State Next_State_MPS Next_State_LPS

0 1 1 0 32 33 22

1 2 2 0 33 34 22

2 3 3 1 34 35 23

3 4 4 2 35 36 23

4 5 5 2 36 37 24

5 6 6 3 37 38 24

6 7 7 4 38 39 25

7 8 8 5 39 40 25

8 9 9 6 40 41 26

9 10 10 7 41 42 26

10 11 11 8 42 43 27

11 12 12 8 43 44 27

12 13 13 10 44 45 28

13 14 14 10 45 46 28

14 15 15 10 46 47 29

15 16 16 11 47 48 29

16 17 17 12 48 49 30

17 18 18 13 49 50 30

18 19 19 14 50 51 30

19 20 20 14 51 52 31

20 21 21 14 52 53 32

21 22 22 14 53 54 33

22 23 23 15 54 55 33

23 23 24 16 55 56 34

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 107

24 -/- 25 17 56 57 34

25 -/- 26 18 57 58 35

26 -/- 27 19 58 59 35

27 -/- 28 19 59 60 36

28 -/- 29 20 60 61 37

29 -/- 30 20 61 62 37

30 -/- 31 21 62 63 38

31 -/- 32 21 63 63 38

Table 9-36 – RTAB[State][Q] table for interval subdivision

State 0 1 2 3 State 0 1 2 3

0 9216 11264 13312 15360 32 896 1152 1344 1536

1 8832 10816 12800 14720 33 896 1088 1280 1472

2 8512 10368 12288 14144 34 832 1024 1216 1408

3 8128 9920 11712 13504 35 832 960 1152 1344

4 7680 9344 11072 12736 36 768 960 1088 1280

5 7168 8768 10368 11968 37 768 896 1088 1216

6 6912 8448 9984 11520 38 704 896 1024 1152

7 6336 7808 9216 10624 39 704 832 960 1152

8 5888 7232 8512 9856 40 640 832 960 1088

9 5440 6656 7872 9088 41 640 768 896 1088

10 5120 6208 7360 8512 42 640 768 896 1024

11 4608 5632 6656 7680 43 576 704 832 960

12 4224 5184 6144 7104 44 576 704 832 960

13 3968 4800 5696 6592 45 576 704 832 960

14 3712 4480 5312 6144 46 512 640 768 896

15 3456 4224 4992 5760 47 512 640 768 896

16 3072 3776 4416 5120 48 512 640 768 832

17 2816 3456 4096 4736 49 512 640 704 832

18 2624 3200 3776 4416 50 512 576 704 832

19 2432 3008 3520 4096 51 448 576 704 768

20 2304 2816 3328 3840 52 448 576 640 768

21 2048 2496 2944 3392 53 448 512 640 704

22 1856 2240 2688 3072 54 448 512 640 704

23 1664 2048 2432 2816 55 448 512 576 704

24 1536 1856 2240 2560 56 384 512 576 704

108 DRAFT ITU-T Rec. H.264 (2002 E)

25 1408 1728 2048 2368 57 384 512 576 640

26 1344 1600 1920 2176 58 384 448 576 640

27 1216 1472 1792 2048 59 384 448 576 640

28 1152 1408 1664 1920 60 384 448 512 640

29 1088 1344 1536 1792 61 384 448 512 640

30 1024 1280 1472 1728 62 384 448 512 576

31 960 1216 1408 1600 63 384 448 512 576

9.2.4.3 Description of the arithmetic decoding engine

The status of the arithmetic decoding engine is represented by a value V pointing into the code sub-interval and the
corresponding range R of that sub-interval. Figure 9-3 gives an illustration of the whole decoding process. Performing
the InitDecoder procedure, which is further specified in subclause 9.2.4.3.1, appropriately initialises V and R. For
decoding of each single decision S, the following two-step operation is employed: First, the related context model CTX is
determined according to the rules specified in subclauses 9.2.2. Given the context model CTX, the decoding operation
Decode(CTX) then delivers the decoded symbol S as is described in detail in subclause 9.2.4.3.2.

Done

Decoder

Init Decoder

S = Encode (CTX)

Read CTX

Finished ?

Yes

No

Figure 9-3 - Overview of the Decoding Process

9.2.4.3.1 Initialisation of the decoding engine

In the initialisation procedure of the decoder, as illustrated in Figure 9-4, V is first filled with two bytes of the
compressed data using the GetByte routine as specified in subclause 9.2.4.3.4, and then the range R is set to 0x8000.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 109

Figure 9-4 – Flowchart of initialisation of the decoding engine

9.2.4.3.2 Decoding a decision

Figure 9-5 shows the flowchart for decoding a single decision. In a first step, the estimation of the sub-interval ranges
RLPS and RMPS corresponding to the LPS and the MPS decision is performed as follows.

Given the interval range R, we first map R to a quantized value Q using

 Q=(R-0x4001)>>12, (9-11)

such that the state index State and Q are used as an entry in the look-up table RTAB to determine RLPS:

 RLPS=RTAB[State][Q]. (9-12)

Table 9-36 specifies the corresponding values of RTAB in 16-bit representation. The tabulated values are actually given
in 8-bit accuracy; the maximum value of RTAB corresponds to 14 bits and all values have been left-shifted by 6 bits for
a better access in a 16-bit architecture.

In a second step, the current value of V is compared to the size of the MPS sub-interval RMPS. If V is greater than or equal
to RMPS a LPS is decoded, V is decremented by RMPS and the new range R is set to RLPS; otherwise a MPS is decoded and
the new range R is determined to be RMPS. Given the decoded decision, the probability update is performed accordingly
as specified in subclause 9.2.4.2. Depending on the current value of the new range R, renormalization will be performed
as described in more detail in subclause 9.2.4.3.3.

Init Decoder

BG = 0
V = 0
i = 0

Done

i < 16

Yes

No

BG = BG - 1

R = 0x8000

BG < 0 Yes

GetByte
No

V = (V<<1) | (B&1)
B = B >> 1

i = i +1

110 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 9-5 – Flowchart for decoding a decision

9.2.4.3.3 Renormalization in the decoding engine (RenormD)

Renormalization is illustrated in Figure 9-6. The current range R is first logically compared to 0x4000: If it is greater
than that value, no renormalization is needed and RenormD is finished; otherwise the renormalization loop is entered.
Within this loop, the range R is doubled, i.e. left-shifted by 1 and the bit-counter BG is decremented by 1. In the case,
that the condition BG<0 holds, a new byte of compressed is inserted into B by calling the GetByte routine. Finally, the
next bit of B is shifted into V.

V >= RMPS

S = !MPS(CTX)
V = V - RMPS

R=RLPS

S = MPS(CTX)
R=RMPS

State(CTX) = Next_State_MPS[State(CTX)]

Yes No

RenormD

Done

Decode (CTX)

Q = (R-0x4001)>>12
RLPS = RTAB[State(CTX)][Q]

RMPS = R - RLPS

State(CTX)==0?

MPS(CTX) = MPS(CTX)^1

State(CTX) = Next_State_LPS[State(CTX)]

Yes

No

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 111

Figure 9-6 – Flowchart of renormalization

9.2.4.3.4 Input of compressed bytes (GetByte)

Figure 9-7 shows how the input of compressed data is performed. At the initialsation stage of the whole decoding
process or in case a renormalization occurs and the bit-counter BG has a negative value, this procedure will be invoked.
First, a new byte of compressed data is read out of the bitstream C; then the index CL pointing to the current position of
the bitstream C is incremented by 1 and the bit-counter is set to 7.

Figure 9-7 – Flowchart for Input of Compressed Bytes

9.2.4.3.5 Decoder bypass for decisions with uniform pdf (Decode_eq_prob)

This special decoding routine applies to decoding of the sign information of motion vector data and the sign of the levels
of significant transform coefficients, which are assumed to have a uniform probability distribution. Consequently
omitting the probability estimation in this special case reduces the decoding process to a single comparison (V>=Rhalf?)
in order to determine the right subinterval and its corresponding decoded symbol value S. The subsequent
renormalization process is similar to that performed in the renormalization procedure RenormD, as depicted in Figure 9-
8 with two modifications. Firstly, the rescaling operation R←(R<<1) is unnecessary and secondly, the initial comparison
(R<=0x4000?) can be omitted.

R <= 0x4000

Yes

Done

RenormD

BG < 0 Yes

V = V << 1
V = V + (B & 1)

B = B >> 1

No

No

R = R << 1
BG = BG - 1

GetByte

B = C[CL]
CL = CL + 1

BG = 7

Done

Get Byte

112 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 9-8 – Flowchart of decoding bypass

10 Decoding process for B slices

10.1 Introduction

The use of B (bi-predictive) slices is indicated in the nal_unit_type. A B slice is an inter predicted slice. The major
difference between a B slice and P slice is that B slices are coded in a manner in which some macroblocks or blocks may
use a weighted average of two distinct inter prediction values for building the prediction signal. Generally, B slices
utilize two distinct reference index lists. Each of these index lists refer to pictures in the reference picture buffer.

V >= Rhalf

S = 1
V = V - Rhalf

S = 0

Yes No

Done

Decode_eq_prob

BG < 0

V = (V<<1) | (B&1)
B = B>>1

Yes

No

Rhalf = R >> 1

BG = BG - 1

GetByte

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 113

I0 B1 B2 B3 P4 B5 B6 B7 P8

Figure 10-1 – Illustration of B picture concept

NOTE - The location of pictures in the bitstream is in a decoding order. Pictures that are dependent on other pictures shall occur
in the bitstream after the pictures on which they depend. Figure 10-1 shows one hypothetical example, where three B pictures are
inserted in output order between an I and a P picture and the subscripts indicate the output order. The P picture P4 only depends on
the first Intra picture I0. The B picture B2, which is temporally located between I0 and P4, depends on both of these pictures. The B
picture B1 depends on I0, P4, and B2; the B picture B3 additionally depends on B1. While the output order for this example is given
by I0, B1, B2, B3, P4, the decoding order is I0, P4, B2, B1, B3.

10.2 Decoding process for macroblock types and sub macroblock types

There are five different prediction modes supported by B pictures. They are the list 0, list 1, bi-predictive, direct, and
intra prediction modes. In bi-predictive mode, the prediction signal is formed by a weighted average of list 0 and list 1
prediction values. The direct mode can result in prediction modes list 0, list 1, or bi-predictive. Prediction using the
direct mode is derived from a combination of the motion vectors and macroblock type used in the co-located macroblock
of the first picture (the picture at index 0) in list 1.

Coded macroblocks in B pictures utilize a similar tree-structured macroblock partitioning to P pictures. Depending on the
number of elements in the two reference picture lists, up to two reference picture indices are coded for each bi-predicted
region. Additionally, for each luma block of 16x16, 16x8, 8x16 samples and the associated chroma blocks, and each sub
macroblock, the prediction mode (list 0, list 1, bi-predictive, direct, intra) can be chosen separately. In order to avoid a
separate codeword to specify the prediction mode,the indication of the prediction direction is incorporated into the
codewords for macroblock type and sub macroblock type, respectively, as shown in the Table 7-12 and Table 7-17. A
sub macroblock of a B picture macroblock can also be coded in direct mode.

When mb_adaptive_frame_field_flag = = 1, the current direct-mode macroblock shall follow the same frame/field
coding mode as its co-located macroblock.

10.3 Decoding process for motion vectors

10.3.1 Differential motion vectors
In the following, the terms temporal ordering and temporal distance refer to ordering and distance according to the
picture order counter described in subclause 8.3.2. This is also the decoder output order and the intended display order.
Motion vectors for list 0, list 1, or bi-predictive blocks are differentially encoded. A prediction has to be added to the
motion vector differences in order to reconstruct motion vectors for the current macroblock.
As a special case of bi-predictive blocks, if the two reference pictures used for the bi-prediction both occur temporally
earlier or both occur temporally later than the current picture being decoded, then the motion vector decoding is
performed as described in subclause 10.3.2.
Otherwise, the predictions for bi-predictive blocks are formed from the motion vectors of spatially neighbouring blocks
in a way similar to that described in subclause 8.4.1, but with a few important distinctions.
First, a list i, where i = 0 or 1, motion vector MVi from the current block is predicted only from neighbouring blocks that
contain motion vectors with the same temporal direction (earlier or later in time) as MVi. If a neighbouring block does
not have a motion vector with the same temporal direction, the predictor for that block is set to zero and the neighbouring
block shall be considered as belonging to a different reference picture for purposes of computing the median prediction
of subclause 8.4.1.1.
Second, if a neighbouring bi-predicted block has both motion vectors pointing in the same temporal direction as MVi,
and both motion vectors point to the same reference picture, then the list 0 motion vector from that block is used as a
prediction. Otherwise, if a neighbouring bi-predicted block has both motion vectors pointing in the same temporal

114 DRAFT ITU-T Rec. H.264 (2002 E)

direction as MVi but they point to different reference pictures, then the motion vector that points to the temporally closest
reference picture is used.
Third, reconstructed motion vectors in direct mode neighbouring blocks shall be used as predictions for the current block
motion vectors.

If a direct mode neighbouring block has two motion vectors, then this block is treated as if it were a bi-
predictive neighbouring block.
If a direct mode neighbouring block has only one motion vector, then this block is considered as a list 0 or list 1
block.
In the case that the co-located block in such a direct mode block is intra coded and the
direct_spatial_mv_pred_flag is 0, the direct mode block is treated as belonging to a different reference picture
for purposes of computing the median prediction of subclause 8.4.1.1.

10.3.2 Motion vector decoding with scaled MV
If both reference pictures (ref_idx_l0 & ref_idx_l1) occur temporally earlier or both occur temporally later than the
current picture being decoded, then the following process is followed for decoding the motion vectors MV1 and MV2 for
bi-predictive modes. The motion vector decoding process is illustrated in Figure 10-2. The motion vector MV1 for the
first reference picture (ref_idx_l0) is differentially decoded using motion vector prediction as described in 10.3.1.
However, the method used for decoding the motion vector MV2 for the second reference picture (ref_idx_l1) is as
follows:
The scaled motion vector (smv) is first calculated from the motion vector MV1 as:

Z = (TD2 × 256) / TD1 smv = (Z × MV1 + 128) >> 8

where TD1 is the temporal distance between the current picture and the reference picture indicated by ref_idx_l0, and
TD2 is the temporal distance between the current picture and the reference picture indicated by ref_idx_l1.
Then, MV2 is differentially coded with respect to smv.

MV2

smv

MV2-smv

picture indicated
by ref_idx_l0

picture indicated
by ref_idx_l1

MV1

current
picture

Figure 10-2 – Differential motion vector decoding with scaled motion vector

10.3.3 Motion vectors in direct mode
The direct_spatial_mv_pred_flag identifies for the current slice whether the direct mode motion vectors are calculated
using a spatial or temporal technique. If this indicator is set to 1 then the spatial technique is used. Otherwise, if this
indicator is set to 0, then direct mode motion vectors are calculated using the temporal technique.

10.3.3.1 Spatial technique of obtaining the direct mode motion parameters

The first step in the spatial technique for direct mode prediction is the determination of a candidate reference picture
index for each list (list 0 and list 1).

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 115

The reference picture indices for the neighbouring blocks A, B, C, and D within the current slice for the 16x16 current
luma block E, as described in subclause 8.4.1.1 and shown in Figure 8-4, shall be used to determine a preliminary
candidate reference picture index for each list. The preliminary candidate reference picture index for each list (list 0 and
list 1) shall be the minimum reference picture index among the reference picture indices used from the same list for the
prediction or bi-prediction of the neighbouring blocks. If no neighbouring blocks are present within the current slice that
use prediction from the same list, either for prediction or bi-prediction, the preliminary candidate reference index for that
list shall be interpreted as not existing.

If a preliminary candidate reference index exists for either list, decision of the final candidate reference indices and
associated motion vector values for that list for each 4x4 block of the current macroblock depends on the coded
parameters of the co-located 4x4 blocks in the first picture in list 1. If the first picture in list 1 is a short-term picture and
if all lines of the co-located 4x4 block were predicted using list 0 prediction with reference picture index 0 and motion
vector components in the range of -1 to 1 inclusive, then the final candidate reference picture index for the list of the
current 4x4 block shall be 0 and shall be associated with a candidate motion vector value of (0, 0). Otherwise, the final
candidate reference picture index for the list shall be the preliminary candidate reference picture index for the list and the
associated candidate motion vector shall be obtained, using the 16x16 block motion vector prediction, as described in
subclause 8.4.1 by using the final reference picture index.

If both candidate reference picture indices exist, then the block is predicted as a bi-prediction block using the final
candidate reference picture index and motion vector for each list. Otherwise, if a candidate reference picture index exists
for only one of the two lists, the block shall be predicted by single-list prediction using the final candidate reference
picture index and associated motion vector for the existing candidate. Finally, if neither candidate reference picture index
exists, bi-prediction shall be used with reference picture index zero and associated motion vector (0, 0) for both lists.

10.3.3.2 Temporal technique of obtaining the direct mode motion parameters
In the temporal technique direct mode, the same block structure as for the co-located macroblock of the first picture (the
picture at index 0) in list 1 is used. For each block of the current macroblock, the list 0 and list 1 motion vectors are
computed as scaled versions of the list 0 motion vector of the co-located block in the list 1 reference picture as described
below.
The list 0 reference picture for the direct mode current block is the same as the list 0 reference picture used for the co-
located block in the list 1 reference picture. The list 0 and list 1 motion vectors for direct mode macroblocks are
calculated differently depending on whether picture_struct and the reference indicate fields or frames. Also if the list 1
co-located macroblock is an intra-coded block, the motion vectors are set to zero, and the list 0 reference picture for the
direct mode is the most recent temporally preceding stored picture.
With possible adaptive switching of frame/field coding at picture level, a B frame or its list 1 reference frame can be
coded in either frame structure or field structure. Hence, there are four possible combinations of frame or field coding for
a pair of a macroblock in the current B picture and its co-located macroblock in the list 1 reference picture. Calculations
of the two motion vectors in direct mode are slightly different for the four cases.
Case 1: Both the current macroblock and its co-located in the list 1 reference picture are in frame mode, as shown in
Figure 10-3. The list 0 reference for each block within the current macroblock is the same as the list 0 reference of the
co-located block in the list 1 reference picture. Two motion vectors (MVF, MVB) are calculated by

Z = (TDB × 256)/ TDD MVF = (Z × MV +128) >> 8
W= Z – 256 MVB = (W× MV +128) >> 8

where TDB is the temporal distance between the current B frame and the list 0 reference frame, and TDD is the temporal
distance between the list 1 reference frame and the list 0 reference frame (see Figure 10-3).
In the case that the co-located block in the list 1 reference frame has a list 0 motion vector pointing to a long-term frame,
the list 0 and list 1 motion vectors for the direct mode current block are calculated by

MVF = MV
MVB = 0

116 DRAFT ITU-T Rec. H.264 (2002 E)

f0 f1f1f0f1f0

TDD

TDB

MV

Time

MVF

MVB

............

current block co-located block

List 1 ReferenceList 0 Reference Current B

Figure 10-3 – Both the current block and its co-located block in the list 1 reference picture are in frame mode (f0
and f1 indicate the corresponding fields)

Case 2: Both the current macroblock and its co-located macroblock in the list 1 reference picture are in field mode. Two
motion vectors for each block within the current macroblock are calculated from the list 0 motion vector of the co-
located block in the list 1 reference field of the same parity.
For field 0, the list 0 motion vector of the co-located block will always point to one of the previously coded list 0 fields,
as shown in Figure 10-4. The list 0 reference field for the direct mode block will be the same as the list 0 field of the co-
located list 1 block, and the list 1 reference field will be field 0 of the list 1 reference frame. The list 0 and list 1 motion
vectors (MVF,i, MVB,i) for the direct mode block are calculated as follows:

Z= TDB,i × 256/ TDD,i MVF,i = (Z × MVi +128) >> 8

W = Z – 256 MVB,i = (W× MVi +128) >> 8

where the subscript i is the field index (0 for the 1st field and 1 for the 2nd field), and MVi is the list 0 motion vector of
the co-located block in field i of the list 1 reference frame. TDB,i is the temporal distance between the current B field and
the list 0 reference field. TDD,i is the temporal distance between the list 1 reference field and the list 0 reference field.
For field 1, the list 0 motion vector of the co-located list 1 block may point to one of the temporally previous coded
fields, in which case calculation of the list 0 and list 1 motion vectors follows the same equations as above.
However, it is also possible that the list 0 motion vector of the co-located block in field 1 of the list 1 reference frame
points to field 0 of the same frame, as shown in Figure 10-5. In this case, the two motion vectors for field 1 of the direct
mode current block are calculated as follows:

Z = -TDB,1 × 256/ TDD,1 MVF,1 = (Z × MV1 +128) >> 8

W = Z – 256 MVB,1 = (W × MV1 +128) >> 8

Note that both motion vectors are now pointing to field 0 and field 1 of the list 1 reference frame respectively.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 117

Figure 10-4 – Both the current macroblock and its co-located macroblock in the temporally subsequent picture
are in field mode.

In the case that the co-located block in the list 1 reference field has a list 0 motion vector pointing to a long-term field,
the list 0 and list 1 motion vectors for the direct mode are calculated by

MVF,i = MVi

MVB,i = 0

f0 f1f1f0f1f0

TDD,1

TDB,1

MV1

Time

MVF,1

MVB,1

............

current block co-located block

List 1 ReferenceList 0 Reference Current B

Figure 10-5 – The list 0 motion vector of the co-located block in field 1 of the list 1 reference frame may point to
field 0 of the same frame.

Case 3: The current macroblock is in field mode and its co-located macroblock in the list 1 reference picture is in frame
mode, as shown in Figure 10-6. Let ycurrent and yco-located be the vertical indices of the blocks in the current macroblock and
in its co-located macroblock respectively. Then, yco-located = 2 × ycurrent. The blocks in the current macroblock and its co-
located macroblock have the same horizontal indices. The list 0 reference field is the same-parity field of the list 0 frame,
and the list 1 reference field will be the same-parity field of the list 1 reference frame as shown in Figure 10-6.

f0 f1f1f0f1f0

TDD,0

TDB,0

MV0

Time

MVF,0

MVB,0

............

current block co-located block

List 1 ReferenceList 0 Reference Current B

118 DRAFT ITU-T Rec. H.264 (2002 E)

f0 f1f1f0f1f0

TDD

TDB,0

MV

Time

MVF,0

MVB,0

............

blocks at (ycurrent,x)

List 1 ReferenceList 0 Reference Current B

block at (2×ycurrent,x)

MVB,1

MVF,1

Figure 10-6 – The current macroblock is in field mode and its co-located macroblock in the list 1 reference picture
is in frame mode

The motion vectors of a direct mode block are calculated from the list 0 motion vector of the co-located block in the list
1 reference frame as follows:

Z = TDB,i × 256/ TDD MVF,i = (Z × MV +128) >> 8

W = Z – 256 MVB,i = (W× MV +128) >> 8

In the case that the block in the list 1 reference frame used for the direct mode motion vector calculation has a list 0
motion vector pointing to a long-term picture, the list 0 and list 1 motion vectors for the direct mode are calculated by

MVF,i = MV
MVB,i = 0

Case 4: The current macroblock is in frame mode while its co-located macroblock in the list 1 reference picture is in field
mode, as shown in Figure 10-7. Let ycurrent and yco-located be the vertical indices of the blocks in the current macroblock
and in its co-located macroblock respectively. Then, yco-located = ycurrent / 2. The blocks in the current macroblock and in
its co-located macroblock have the same horizontal indices. The two fields of the co-located block in the list 1 reference
may be coded in different modes. Since field 0 of the list 1 reference is temporally close to the current B picture, it is
used in calculating the motion vectors and determining the references for direct mode current blocks as shown in Figure
10-7.
Two frame-based motion vectors of direct mode block are calculated as follows:

Z= TDB × 256/ TDD,0 MVF = (Z× MV0 +128) >> 8

W = Z – 256 MVB = (W× MV0 +128) >> 8

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 119

f0 f1f1f0f1f0

TDD,0

TDB

MV0

Time

MV2
F=MV1

F

............

block 1 at (ycurrent,x) block (ycurrent / 2,x)

List 1 ReferenceList 0 Reference Current B

block 2 at (ycurrent + 1,x)
MV1

B

MV1
F

MV2
B=MV1

B

Figure 10-7 – The current macroblock is in frame mode while its co-located macroblock in the list 1 reference
picture is in field mode.

In the case that the block in the list 1 reference field used for the direct mode motion vector calculation has a list 0
motion vector pointing to a long-term picture, the list 0 and list 1 motion vectors for the direct mode are calculated by

MVF = MV0
MVB = 0

Ed.Note: I don’t understand the following sentence. More explanation maybe needed here. This appears to indicate that
if the co-located macroblock is in field, then also field mode should be used for the current macroblock/block.
Considering though that AFF is done in pairs of macroblocks, is somehow the whole group forced to be in the same
mode as its co-located? This is what this seems to indicate.] When mb_frame_field_adaptive_flag = = 1, the current
direct-mode macroblock is in the same frame/field coding mode as its co-located macroblock.

10.4 Weighted prediction signal generation procedure

If weighted_pred_ flag is equal to one, explicit weighted prediction is applied to P and SP slices. If
weighted_pred_explicit_flag is equal to one, explicit weighted bi-prediction is applied to B slices. If
weighted_bipred_implicit_flag is equal to one, implicit weighted bi-prediction is applied to B slices.

10.4.1 Weighted prediction in P and SP slices

In P and SP slices, when weighted_pred_flag is equal to one, weighted prediction is applied for predicted macroblocks.
When 0 ≤ mb_type ≤ 4, the luma prediction is generated as

))2((1clip 0
1

00 OLWDWPP LWD +>>+×= −

and the chroma prediction block is generated as

))2)128((1281(clip 0
1

00 COCWDCWCPP CWD +>>+×−+= −

where
P0 = reference prediction block
LWD = luma_log_weight_denom
W0 = luma_weight_l0[ref_idx_l0]
O0 = luma_offset_l0[ref_idx_l0]
j = 0 for Cb and 1 for Cr
CP0 = chroma reference prediction block

120 DRAFT ITU-T Rec. H.264 (2002 E)

CWD = chroma_log_weight_denom
CW0 = chroma_weight_l0[ref_idx_l0][j]
CO0 = chroma_offset_l0[ref_idx_l0][j]

To limit the calculation to 16-bit precision, the following conditions shall be met:

127128 0 ≤≤− W

127128 0 ≤≤− CW

10.4.2 Explicit weighted bi-prediction in B slices

In B slices, when weighted_bipred_explicit_flag is equal to one, weighted prediction is applied for predicted
macroblocks. For reference list 0 prediction, the luma prediction is generated as

))21((clip 0
1

00 OLWDWPP LWD +>>+×= −

For reference list 1 prediction, the luma prediction block is generated as:

))21((clip 1
1

11 OLWDWPP LWD +>>+×= −

where
P0 = reference prediction block from list 0
P1 = reference prediction block from list 1
LWD = luma_log_weight_denom
W0 = luma_weight_l0[ref_idx_l0]
W1 = luma_weight_l1[ref_idx_l1]
O0 = luma_offset_l0[ref_idx_l0]
O1 = luma_offset_l1[ref_idx_l1]

When bi-prediction is used, the luma prediction block is generated as:

))1()21((clip 1100 BDOLWDBDWPBDWPP LWD ++>>+×+×=

where

BDW0 = luma_weight_bipred_l0[ref_idx_l0][ref_idx_l1]

BDW1 = luma_weight_bipred_l1[ref_idx_l0][ref_idx_l1]

BDO = luma_offset_bipred[ref_idx_l0][ref_idx_l1]

For reference list 0 prediction, the chroma prediction block is generated as

))2)128((1281(clip 0
1

00 COCWDCWCPP CWD +>>+×−+= − .

For reference list 1 prediction, the chroma prediction block is generated as:

))2)128((1281(clip 1
1

11 COCWDCWCPP CWD +>>+×−+= − .

When bi-prediction is used, the chroma prediction block is generated as

))1()2)128()128((1281(clip 1100 CBDOCWDCBDWCPCBDWCPP CWD ++>>+×−+×−+=

where
j = 0 for Cb and 1 for Cr
CP0 = chroma reference prediction block from list 0
CP1 = chroma reference prediction block from list 1

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 121

CWD = chroma_log_weight_denom
CW 0 = chroma_weight_l0[ref_idx_l0][j]
CW 1 = chroma_weight_l1[ref_idx_l1][j]
CO 0 = chroma_offset_l0[ref_idx_l0][j]
CO 1 = chroma_offset_l1[ref_idx_l1][j]
CBDW 0 = chroma_weight_bipred_l0[ref_idx_l0][ref_idx_l1][j]
CBDW 1 = chroma_weight_bipred_l1[ref_idx_l0][ref_idx_l1][j]
CBDO = chroma_offset_bipred[ref_idx_l0][ref_idx_l1][j]

To limit the calculation to 16-bit precision, the following conditions shall be met:

127128 0 ≤≤− W

127128 1 ≤≤− W

127128 10 ≤+≤− WW

127128 0 ≤≤− CW

127128 1 ≤≤− CW

127128 10 ≤+≤− CWCW

127128 10 ≤+≤− BDWBDW

127128 10 ≤+≤− CBDWCBDW

10.4.3 Implicit bi-predictive weighting

When weighted_bipred_implicit_flag is equal to 1, the prediction weighting factors are not sent explicitly and the luma
and chroma predictions are generated as follows.

If the decoding order of the reference picture indicated by ref_idx_l0 is previous to or the same as that indicated by
ref_idx_l1, or for skipped macroblocks or direct mode, the prediction signals are generated as follows:

)21(clip 10 PPP −×=

where

P0 = reference prediction block from list 0
P1 = reference prediction block from list 1;

otherwise, the prediction signals are generated as follows

1)1(10 >>++= PPP

where

P0 = reference prediction block from list 0
P1 = reference prediction block from list 1.

122 DRAFT ITU-T Rec. H.264 (2002 E)

11 Decoding process for SP and SI slices

11.1 General

SP slices make use of motion-compensated predictive coding to exploit temporal redundancy in the sequence, in a
similar manner to P slices. SI slices make use of spatial prediction, in a similar manner to I slices. Unlike P slices,
however, SP slice coding allows identical reconstruction of a slice even when different reference pictures are being used.
SI slice coding allows identical reconstruction to a corresponding SP slice.

NOTE - Above mentioned properties of SP and SI slices provide functionalities for bitstream switching, splicing, random access,
VCR functionalities such as fast-forward, and error resilience/recovery.

An SP slice consists of macroblocks coded either as Intra type (Intra_4x4 or Intra_16x16) or Pred type (MbSkip,
Pred_L0_16x16, Pred_L0_L0_16x8, Pred_L0_L0_8x16, Pred_8x8 or Pred_8x8ref0). An SI slice consists of
macroblocks coded either as Intra type or SIntra4x4 type.

Intra macroblocks in SP slices shall be decoded as described in subclause 8.3. All other macroblocks, including MbSkip,
are decoded as described below.

The Intra_8x8 sub-partition mode shall not be present in SP slices.

Intra macroblocks in SI slices are decoded as described in subclause 8.3, with the addition that the prediction mode of a
neighbouring SIntra_4x4 block is considered to be “mode 2: DC prediction”. SIntra_4x4 macroblocks are decoded as
described below.

11.2 SP decoding process for non-switching pictures

This subclause applies to all macroblocks in SP slices in which sp_for_switch_flag = = 0, except those with slice_type()
equal to Intra_4x4 or Intra_16x16. It does not apply to SI slices.

Figure 11-1 depicts generic decoding for non-intra coded macroblocks in SP slices. The prediction P(x,y) for the current
macroblock of the slice being decoded is formed by the motion compensated prediction block using the same process as
is used in P slice decoding. After forming the predicted block P(x,y), decoding is performed as follows.

WQERR

PREDc

QRECc wderr cPRIOR QREC

D
E

M
U

LT
IP

LE
X

IN
G

decoded
video

from
encoder

Inverse
Transform

frame
memory

Inverse
QuantisationQuantisation

Inverse
Quantisation

motion information

R(x,y)

MC
 predictionTransform

Loopfilter

P(x,y)

Figure 11-1 – A block diagram of a conceptual decoder for non-intra coded macroblocks in SP slices in which
sp_for_switch_flag = = 0.

11.2.1 Luma transform coefficient decoding

The predicted block, P(x,y), where P(x,y) ={p00 … p33}, is transformed according to Equation 11-1 to produce transform
coefficients cPRED.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 123

−−
−−

−−

−−
−−

−−
=

1121
2111
2111

1121

1221
1111
2112

1111

33323130

23222120

13121110

03020100

PPPP
PPPP
PPPP
PPPP

cPRED (11-1)

The received prediction residual coefficients, wQERR, are scaled using quantisation parameter QP, and added to the
transform coefficients of the prediction block, as in Equation 11-2.

cij
PRIOR = cij

PRED + (((wij
QERR *Rij

(QP%6) *Aij
) << (QP/6)) >> 6) i, j = 0,…,3 (11-2)

where R is defined in Equation 8-40, and where A is defined as:

Aij
(m)= 16 for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

Aij
(m) = 25 for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

Aij
(m) = 20 otherwise;.

For luma, QP = QPY, as defined in Equation 7-7 and 7-9.

The coefficients Qij
(m), used in the formulas below, are defined as:

Qij
(m)= Mm,0 for (i,j) = {(0,0),(0,2),(2,0),(2,2)},

Qij
(m) = Mm,1 for (i,j) = {(1,1),(1,3),(3,1),(3,3)},

Qij
(m) = Mm,2 otherwise;

where the first and second subscripts of M are row and column indices, respectively, of the matrix defined as:

=

455928937282
524333558192
582536479362
6554419410082
7490466011916
8066524313107

M

The resulting sum, cPRIOR, is quantised with a quantisation parameter QS, as in Equation 11-3.

For luma, QS = QSY, which is defined in Equation 7-8.

cij
QREC = {Sign(cij

PRIOR)*[Abs(cij
PRIOR)*Qij

(QS%6) + (1<<(15+QS/6))]}>>(16+QS/6)
 i, j = 0,…,3 (11-3)

These quantised levels, cQREC, are scaled as in Equation 11-4.

wij
QREC = (cij

QREC * Rij
(QS%6)) << (QS/6) i, j = 0,…, 3 (11-4)

where R is defined in Equation 8-40.

The transform and reconstruction processes are performed for these scaled levels, as defined in Equations 8-48 through
8-59. Finally, after the reconstruction of a macroblock, filtering takes place as described in subclause 8.7.

11.2.2 Chroma transform coefficient decoding

The decoding of chroma components for non-intra coded macroblocks in SP slices is similar to the decoding of luma
components.

The predicted block, P(x,y), where P(x,y) ={p00 … p33}, is transformed according to Equation 11-1 to produce transform
coefficients cPRED. An additional 2x2 transform is applied to the DC coefficients of these blocks. The 2 dimensional 2x2
transform procedure is defined in Equation 11-5:

124 DRAFT ITU-T Rec. H.264 (2002 E)

−

−

=
11

11
11

11

1110

0100

DCDC
DCDC

cPRED (11-5)

The received DC prediction residual coefficients, wQERR, are scaled using quantisation parameter QP, and added to the
DC transform coefficients of the prediction block, as in Equation 11-6.

cij
PRIOR = cij

PRED + (((wij
QERR * Rij

(QP%6) * Aij
) << (QP/6)) >>5) i, j =0,…, 3 (11-6)

The resulting sum, cPRIOR, is quantised with a quantisation parameter QS, as in Equation 11-7.

cij
QREC = {Sign(cij

PRIOR)*[Abs(cij
PRIOR)*Qij

 (QS%6) + (1<<(16+QS/6))]}>>(17+QS/6)
 i, j = 0, …, 3 (11-7)

These quantised levels, cij
QREC, are scaled as in Equation 11-4.

AC coefficients are decoded in an identical process to that used for luma.

The value of QP to be used for chroma data, denoted QPC, is obtained from QPY using the relationship specified in Table
9-1. Similarly, the value of QS to be used for chroma data, denoted QSC, is obtained from QSY using the relationship
specified in Table 9-1.

11.3 SP and SI slice decoding process for switching pictures

This subclause applies to all macroblocks in SP slices in which sp_for_switch_flag = = 1, except those with slice_type()
equal to Intra_4x4 or Intra_16x16; and to all macroblocks in SI slices, except those with slice_type() equal to Intra_4x4
or Intra_16x16.

Figure 11-2 depicts generic decoding for macroblocks in SI and SP slices that are not Intra coded. In SP slices, the
prediction P(x,y) for the current coded macroblock of the slice being decoded is formed by the inter prediction block
using the same process as is used in P slice decoding. In SI slices, the prediction P(x,y) is formed by intra prediction
using the same process as is used in I slice decoding. After forming the predicted block P(x,y), the decoding of SI and
non-intra coded macroblocks in SP slices follows the same steps.

WQERR

PREDc

QRECc
wwPRED QREC

D
E

M
U

LT
IP

LE
X

IN
G

decoded
video

from
encoder

Inverse
Transform

frame
memory

Inverse
Quantisation

Quantisation
P (x,y)

motion information

R(x,y)MC
 prediction

Transform

 prediction
Intra

Intra prediction mode information

Loopfilter

Figure 11-2 – A block diagram of a conceptual decoder for non-intra macroblocks in SI slices; and for non-intra
coded macroblocks in SP slices in which sp_for_switch_flag = = 1.

When decoding SIntra_4x4 macroblocks, the intra prediction modes of the neighbouring SIntra_4x4 and Intra_4x4
blocks are taken into account as described in subclause 8.5.

When decoding Intra_4x4 macroblocks, the intra prediction modes of the neighbouring Intra_4x4 blocks are taken into
account as described in subclause 8.5, but the prediction mode of the neighbouring SIntra_4x4 blocks are considered to
be “mode 2: DC prediction”.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 125

11.3.1 Luma transform coefficient decoding

The predicted block, P(x,y), where P(x,y) ={p00 … p33}, is transformed according to Equation 11-1 to produce transform
coefficients cPRED. These transform coefficients are then quantised with a quantisation parameter QS, as in Equation 11-8.

wij
PRED = {Sign(cij

PRED)*[Abs(cij
PRED)*Qij

 (QS%6) + (1<<(15+QS/6))]}>>(16+QS/6) i, j = 0,…,
3 (11-8)

Note: Equation 11-8 is the same as Equation 11-3 except for the change of name of input and output variables.

For luma, QS = QSY, which is defined in Equation 7-8.

The received prediction residual coefficients, wQERR, are added to these quantised transform coefficients of the prediction
block, as in Equation 11-9.

cij
QREC = wij

PRED + wij
QERR i, j = 0,…, 3 (11-9)

These quantised levels, cQREC, are decoded as in subclause 11.1.1

11.3.1.2 Chroma transform coefficient decoding

The decoding of chroma components for SP and SI non-intra macroblocks is similar to the decoding of luma
components.

The predicted block, P(x,y), where P(x,y) ={p00 … p33}, is transformed according to Equation 11-1 to produce transform
coefficients cPRED. An additional 2x2 transform is applied to the DC coefficients of these blocks as in Equation 11-5:

The DC transform coefficients are then quantised with a quantisation parameter QS, as in Equation 11-10.

wij
PRED = {Sign(cij

PRED)*[Abs(cij
PRED)*Qij

 (QS%6) + (1<<(16+QS/6))]}>>(17+QS/6)
i, j = 0,…, 3 (11-10)

NOTE - Equation 11-10 is the same as Equation 11-7 except for the change of name of input and output variables.

The received prediction residual DC coefficients, wQERR, are added to these quantised DC transform coefficients of the
prediction block, as in Equation 11-9.

AC coefficients are decoded in an identical process to that used for luma.

The value of QP to be used for chroma data, denoted QPC, is obtained from QPY using the relationship specified in Table
9-1. Similarly, the value of QS to be used for chroma data, denoted QSC, is obtained from QSY using the relationship
specified in Table 9-1.

12 Adaptive block size transforms

12.1 Introduction

In this clause, the modifications to the syntax and semantics in clause 7 and the changes to the decoding process in
clause 8 and to entropy coding in clause 9 for adaptive block size transforms are described.

If adaptive_block_size_transform_flag = = 1, additional transforms of size 4x8, 8x4, and 8x8 are specified for the luma
residual. The chroma residual decoding process remains unchanged. Adaptive block size transforms are used for all
macroblocks with QPY >= 12. In inter predicted macroblocks, the transform block size is indicated by the block size
used for inter prediction. For intra macroblocks, the block size used for intra prediction is connected to the block size of
the transformation. For intra macroblocks in inter slices, the block size is indicated by the syntax element
intra_block_typeABT. For intra slices, the intra block size is indicated by the macroblock block mode.

Figure 12-1 shows the order of the assignments of syntax elements for luma resulting from coding a macroblock to sub-
blocks of the macroblock if the ABT features is used. The assignment of blocks and coded_block_patternY is specified
in Figure 12-1. An 8x8 block may contain 1, 2, or 4 transform blocks. An indication that an 8x8 block contains
coefficients means that the 8x8 transform blocks or one or more of the 2, or 4 transform blocks within the 8x8 block
contains coefficients. The chroma 4x4 residual blocks are ordered after the luma blocks as indicated in Figure 6-6.

126 DRAFT ITU-T Rec. H.264 (2002 E)

0 1

2 3

CBPY 8x8 block order

0 0 1
0

1

0 1

2 3

8x8 8x4 4x8 4x4

Luma residual coding ABT block order
for one CBPY 8x8 block

Figure 12-1 – Ordering of blocks for CBPY and luma residual coding of ABT blocks

12.2 ABT Syntax

12.2.1 Macroblock layer syntax

macroblock_layer_abt() { Category Descriptor
 mb_type 4 ue(v) | ae(v)
 if(num_mb_partition[mb_type] = = 4)
 sub_mb_pred_abt(mb_type) 4
 else
 mb_pred_abt(mb_type) 4
 SendResidual = 0
 if(mb_partition_pred_mode(, 1) = = Intra &&
 mb_type != Intra_4x4) { /* Intra_16x16_X_Y_Z mb_type */

 coded_block_pattern 4 me(v) | ae(v)
 if(coded_block_pattern > 0)
 SendResidual = 1
 } else {
 coded_block_pattern 4 me(v) | ae(v)
 if(coded_block_pattern > 0)
 SendResidual = 1
 }
 if(SendResidual) {
 if(!mb_frame_field_adaptive_flag | |
 (mb_frame_field_adaptive_flag &&
 (pic_structure = = 0 | |
 pic_structure = = 3 | | pic_structure = = 4) &&
 first_non_skip_mb_in_pair())

 delta_qp 4 se(v) | ae(v)
 residual_abt() 5 | 6
 }
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 127

12.2.1.1 Macroblock prediction syntax

mb_pred_abt(mb_type) { Category Descriptor
 if(mb_partition_pred_mode(, 1) = = Intra) {
 if(mb_type = = Intra_4x4
 mb_type = = ABTIntra_4x4 | |
 mb_type = = ABTIntra_4x8 | |
 mb_type = = ABTIntra_8x4 | |
 mb_type = = ABTIntra_8x8) {

 if(MbABTFlag && (slice_type() = = Pred | | slice_type() = = BiPred)
 intra_block_typeABT 4 me(v) | ae(v)
 for(i = 0; i < num_mb_intra_partition(); i++) /* for each luma block */
 intra_pred_mode 4 ce(v) | ae(v)
 }
 intra_chroma_pred_mode 4 ue(v) | ae(v)
 } else if(mb_type != Direct_16x16) {
 for(i = 0; i < num_mb_partition(mb_type, i); i++)
 if(num_ref_idx_l0_active_minus1 > 0 &&
 mb_partition_pred_mode(mb_type, i) != Pred_L1)

 ref_idx_l0 4 ue(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type, i); i++) {
 if(num_ref_idx_l1_active_minus1 > 0 &&
 mb_partition_pred_mode(mb_type, i) != Pred_L0)

 ref_idx_l1 4 ue(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type); i++) {
 if(mb_partition_pred_mode (mb_type, i) != Pred_L1)
 for(j = 0; j < 2; j++)
 mvd_l0[i][j] 4 se(v) | ae(v)
 for(i = 0; i < num_mb_partition(mb_type); i++) {
 if(mb_partition_pred_mode(mb_type, i) != Pred_L0)
 for(j = 0; j < 2; j++)
 mvd_l1[i][j] 4 se(v) | ae(v)
 }
}

128 DRAFT ITU-T Rec. H.264 (2002 E)

12.2.1.2 Sub macroblock prediction syntax

sub_mb_pred_abt(mb_type) { Category Descriptor
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 sub_mb_type[i] 4 ue(v) | ae(v)
 IntraChromaPredModeFlag = 0
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] = = Intra_8x8) {
 if(MbABTFlag) {
 intra_block_typeABT 4 me(v) | ae(v)
 for(j = 0; j < num_sub_mb_intra_partition(); j++) {
 intra_pred_mode 4 ce(v) | ae(v)
 IntraChromaPredModeFlag = 1
 }
 }
 if(IntraChromaPredModeFlag)
 intra_chroma_pred_mode 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(num_ref_idx_l0_active_minus1 > 0 &&
 mb_type != Pred_8x8ref0 &&
 sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L1)

 ref_idx_l0 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(num_ref_idx_l1_active_minus1 > 0 &&
 (sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L0)

 ref_idx_l1 4 ue(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L1)

 for(j = 0; j < num_sub_mb_partition(sub_mb_type[i]); j++)
 for(k = 0; k < 2; k++)
 mvd_l0[i][j][k] 4 se(v) | ae(v)
 for(i = 0; i < 4; i++) /* for each sub macroblock */
 if(sub_mb_type[i] != Intra_8x8 &&
 sub_mb_type[i] != Direct_8x8 &&
 sub_mb_pred_mode(sub_mb_type[i]) != Pred_L0)

 for(j = 0; j < num_sub_mb_partition(sub_mb_type[i]); j++)
 for(k = 0; k < 2; k++)
 mvd_l1[i][j][k] 4 se(v) | ae(v)
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 129

12.2.1.3 Residual data syntax

residual_abt(mb_type) { Category Descriptor
 if(entropy_coding_mode = = 1) {
 residual_4x4block = residual_4x4block_cabac() /* function pointer */ 5 | 6
 residual_subblock = residual_subblock_cabac() /* function pointer */ 5 | 6
 } else {
 residual_4x4block = residual_4x4block_cavlc() /* function pointer */ 5 | 6
 residual_subblock = residual_subblock_cavlc() /* function pointer */ 5 | 6
 }
 if(mb_type = = Intra_16x16)
 residual_4x4block(intra16x16DC, 16) 5
 for(i8x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */
 for(i4x4 = 0; i4x4 < num_sub_blocks(); i4x4++) /* each sub-block of block */
 if(coded_block_pattern & (1 << i8x8))
 if(mb_type = = Intra_16x16)
 residual_4x4block(intra16x16AC, 16) 5
 else
 if(MbABTFlag && (slice_type() = = Intra | | mb_type = = Intra_4x4)
 residual_subblock(IntraABT, sub_block_type) 5 | 6
 else
 residual_subblock(InterABT, sub_block_type) 5 | 6
 if(coded_block_pattern & 0x30) /* chroma DC residual coded */
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 residual_4x4block(chromaDC, 4)) 5 | 6
 if(coded_block_pattern & 0x20) /* chroma AC residual coded */
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 For(i4x4 = 0; i4x4 < 4; i4x4++)
 residual_4x4block(chromaAC, 16) 5 | 6
}

130 DRAFT ITU-T Rec. H.264 (2002 E)

12.2.1.3.1 Residual sub block CAVLC syntax

residual_subblock_cavlc(block_coding_type, sub_block_type) {
 if(! MbABTFlag)
 residual_4x4block_cavlc(luma, 16) 5 | 6
 else {
 if(block_coding_type = = IntraABT) {
 num_coeff_abt 5 | 6 ce(v)
 for (i=0; i<num_coeff_abt; i++) {
 code_number 5 | 6 ce(v)
 if(code_number != escape) {
 level[i] = code_number2level_intra(code_number, sub_block_type)
 run[i] = code_number2run_intra(code_number, sub_block_type)
 } else {
 code_number 5 | 6 ce(v)
 level[i] = escape_level[code_number]
 code_number 5 | 6 ce(v)
 run[i] = escape_run[code_number]
 }
 }
 } else {
 for(i=0; i<max_numcoeffABT(sub_block_type); i++) {
 code_number 5 | 6 ce(v)
 if(code_number = = 0)
 break;
 if(code_number != escape) {
 run[i] = code_number2run_inter(code_number, sub_block_type)
 level[i] = code_number2level_inter(code_number, sub_block_type)
 } else {
 code_number 5 | 6 ce(v)
 level[i] = escape_level[code_number]
 code_number 5 | 6 ce(v)
 run[i] = escape_run[code_number]
 }
 }
 }
 }
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 131

12.2.1.3.2 Residual sub block CABAC syntax

residual_subblock_cabac(block_coding_type, sub_block_type) { Category Descriptor
 if(! MbABTFlag)
 residual_4x4block_cabac(luma, 16) 5 | 6
 else {
 if(sub_block_type != 8x8)
 cbp4 5 | 6 ae(v)
 if(cbp4 | | sub_block_type = = 8x8) {
 max_numcoeff = max_num_coeff_abt(sub_block_type)
 significant_coeff[max_numcoeff - 1] = 1
 for(i = 0; i < max_numcoeff; i++) {
 significant_coeff[i] 5 | 6 ae(v)
 if(significant_coeff[i] && i < max_numcoeff-1) {
 last_significant_coeff[i] 5 | 6 ae(v)
 if(last_significant_coeff[i])
 max_numcoeff = i + 1
 }
 }
 for(i = max_numcoeff-1; i >= 0; i--)
 if(significant_coeff[i]) {
 coeff_absolute_value_minus1[i] 5 | 6 ae(v)
 coeff_sign[i] 5 | 6 ae(v)
 }
 }
 }
}

12.3 ABT Semantics

12.3.1 Macroblock layer semantics

MbABTFlag indicates the usage of ABT for the macroblock. If adaptive_block_transform_flag is equal 1 and QPY >=
'12' MbABTFlag = 1 else MbABTFlag = 0.

The meaning of mb_type 'Intra_4x4' in Inter slices is modified for ABT. If MbABTFlag is equal 1, this macroblock type
indicates application of ABT Intra prediction and transformation. In Inter slices, the block size used for prediction and
transform is indicated by the syntax element intra_block_typeABT. For I slices, the prediction and transform block size
is derived from the macroblock mode. The modified macroblock types for I slices are specified in Table 12-1 below.

Table 12-1 – Modified macroblock types for I slices

Value of
mb_type

Name of mb_type
in I slices

if MbABTFlag = = 1

mb_partition_pred_
mode(, 1)

0 ABTIntra_4x4 Intra

1 ABTIntra_4x8 Intra

2 ABTIntra_8x4 Intra

3 ABTIntra_8x8 Intra

132 DRAFT ITU-T Rec. H.264 (2002 E)

12.3.1.1 Macroblock prediction semantics

num_mb_intra_partition() depends on mb_type in I slices and on intra_block_typeABT in P slices. The assignment of
num_mb_intra_partition() is specified in Table 12-2.

intra_block_typeABT indicates the blocksize used for ABT intra decoding in Inter slices. Blocks of size 4x4, 4x8, 8x4
and 8x8 samples may be used for ABT intra prediction. Table 12-2 provides num_mb_intra_partition and
num_sub_mb_intra_partition specifying the number of intra_pred_mode syntax elements to be decoded.

Table 12-2 – ABT intra partitions

mb_type intra_block_typeABT num_mb_intra_partition() num_sub_mb_intra_partition()

ABTIntra_4x4 4x4 16 4

ABTIntra_4x8 4x8 8 2

ABTIntra_8x4 8x4 8 2

ABTIntra_8x8 8x8 4 1

12.3.1.2 Sub macroblock prediction semantics

If MbABTFlag is equal 1, the number of decoded intra prediction modes is indicated by num_sub_mb_intra_partition()
as specified in Table 12-2.

12.3.1.3 Residual data semantics

num_sub_blocks() indicates the number of partitions in a luma 8x8 block. If MbABTFlag is equal 0 num_sub_blocks is
4. If MbABTFlag equals 1, num_sub_blocks may be 1, 2, or 4 depending on sub_block_type as specified in Table 12-3.

Table 12-3 – ABT Intra Block Types

sub_block_type num_sub_blocks() max_num_coeff_abt()

4x4 4 16

4x8 2 32

8x4 2 32

8x8 1 64

sub_block_type indicates the block type used for decoding of an 8x8 block. The decoded blocks may be of size 4x4,
4x8, 8x4, or 8x8 samples. For intra slices with MbABTFlag = = 1, sub_block_type for macroblock type
ABTIntra_NxM is NxM. For intra macroblocks and intra sub macroblocks in inter slices sub_block_type is equal to
intra_block_typeABT. For inter macroblocks with macroblock type Pred_x_NxM or Pred_x_y_NxM or BiPred_x_NxM
or BiPred_x_y_NxM, x, y = L0, L1, Bi, sub_block_type is N'xM'. N' and M' are derived from N and M by clipping:

N' = Clip3(4, 8, N) (12-1)

M' = Clip3(4, 8, M) (12-2)

For sub macroblocks with sub macroblock type Pred_x_NxM or Pred_x_y_NxM or BiPred_x_NxM or
BiPred_x_y_NxM, x, y = L0, L1, Bi, sub_block_type is NxM.

For macroblocks and sub macroblocks that are predicted in direct mode, sub_block_type is derived from the co-located
macroblock or sub macroblock. If MbABTFlag is equal 1 for the co-located macroblock, sub_block_type for the current
macroblock is derived from the co-located macroblock type or sub macroblock type as specified above. If MbABTFlag
is equal 0 for the co-located macroblock and the type of the co-located macroblock is not Intra_16x16, sub_block_type is
equal 4x4. If MbABTFlag is equal 0 for the co-located macroblock and the type of the co-located macroblock is
Intra_16x16, sub_block_type is equal 8x8. If the co-located macroblock type is MbSkip, sub_block_type is equal 8x8.

block_coding_type indicates if an Inter or an Intra block is decoded. Inter blocks are indicated by block_coding_type =
'InterABT', intra blocks are indicated by block_coding_type = 'IntraABT'.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 133

12.3.1.3.1 Residual sub block CAVLC semantics

num_coeff_abt indicates the number of coefficients to be decoded. num_coeff_abt is bound by max_num_coeff_abt()
specified in Table 12-3.

code_number indicates the number of the decoded codeword. The code structure of the codewords depending on the
syntax element to be decoded is specified in subclause 12.4.1.

code_number2run_intra() retrieves run from Table 12-9 for Intra blocks dependent on QPY.

code_number2run_inter() retrieves run from Table 12-9 for Inter blocks.

code_number2level_intra() retrieves level from Table 12-9 for Intra blocks dependent on QPY.

code_number2level_inter() retrieves level from Table 12-9 for Inter blocks.

escape indicates separate() decoding of level and run. The value of escape is specified in subclause 12.5.1.2.2.

escape_level() retrieve level symbol after escape as specified in Table 12-8.

escape_run() retrieve run symbol after escape as specified in Table 12-6.

12.3.1.3.2 Residual sub block CABAC semantics

 The syntax elements of residual_subblock_cabac() are specified in subclause 7.4.5.3.2.

12.4 ABT decoding process

12.4.1 Intra Prediction for 4x8, 8x4, and 8x8 luma blocks

t0 t1 t6t5t4t3t2 t7 t8 t9 t14t13t12t11t10 t15

l0

l1

l6

l5

l4

l3

l2

l7

l8

l9

l14

l13

l12

l11

l10

l15

q

p00 p01 p02 p03 p04 p05 p06 p07

p10 p11 p12 p13 p14 p15 p16 p17

p20 p21 p22 p23 p24 p25 p26 p27

p30 p31 p32 p33 p34 p35 p36 p37

p40 p41 p42 p43 p44 p45 p46 p47

p50 p51 p52 p53 p54 p55 p56 p57

p60 p61 p62 p63 p64 p65 p66 p67

p70 p71 p72 p73 p74 p75 p76 p77

8x4 block

8x8 block

4x8 block

Figure 12-2 – Identification of samples used for ABT intra spatial prediction for 4x8, 8x4, and 8x8 luma blocks

Figure 12-2 illustrates the intra prediction for 4x8, 8x4, and 8x8 blocks that may be used in addition to the 4x4 intra
prediction specified in subclause 8.5. The samples pmn, with m=0 to M-1 and n=0 to N-1, M,N = {4,8}, are predicted
using samples tk, k=0 to (N+M-1), q, and lk, k=0 to (N+M-1), from neighbouring blocks.

134 DRAFT ITU-T Rec. H.264 (2002 E)

Samples tk, k=0 to (N+M-1) or samples lk, k=0 to (N+M-1) shall be considered not available under the following
circumstances:

– if they are outside the picture or outside the current slice,
– if they belong to a macroblock that is subsequent to the current macroblock in raster scan order,
– if they are sent later than the current block in the order shown in Figure 12-1, or
– if they are in a non-intra macroblock and constrained_intra_pred is 1.

When samples tk, k=N to (N+M-1) are not available the sample value of tN-1 is substituted for the samples tk, k=N to
(N+M-1). When samples lk, k=M to (N+M-1) are not available the sample value of lM-1 is substituted for the samples lk,
k=N to (N+M-1).

12.4.1.1 Mode 0: vertical prediction

tk, k = 0 to (N-1) shall be available. Prediction sample q is denoted as t-1. If q is not in the slice, t0 substitutes q.
block size samples predicted by

4x8 k = 0 to 7, i = 0 to 3

pki (ti-1 + ti<<1 + ti+1 + 2) >> 2 8x4 k = 0 to 3, i = 0 to 7

8x8 k = 0 to 7, i = 0 to 7

12.4.1.2 Mode 1: horizontal prediction

lk, k = 0 to (M-1) shall be available. Prediction sample q is denoted as l-1. If q is not in the slice, l0 substitutes q.
block size samples predicted by

4x8 k = 0 to 7, i = 0 to 3

pki (li-1 + li<<1 + li+1 + 2) >> 2 8x4 k = 0 to 3, i = 0 to 7

8x8 k = 0 to 7, i = 0 to 7

12.4.1.3 Mode 2: DC prediction

For DC prediction, all samples pki are predicted by the same value p.

a) If lk, k = 0 to (M-1) are available and tk, k = 0 to (N-1) are available
block size p

4x8 ((t0 + t1 + t2 + t3 + 2) >> 2 + (l0 + l1 + l2 + l3 + l4 + l5 + l6 + l7 + 4) >> 3) >> 1

8x4 ((t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + 4) >> 3 + (l0 + l1 + l2 + l3 + 2) >> 2) >> 1

8x8 (t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + l0 + l1 + l2 + l3 + l4 + l5 + l6 + l7 + 8) >> 4

b) If lk, k = 0 to (M-1) are available and tk, k = 0 to (N-1) are not available
block size p

4x8 (l0 + l1 + l2 + l3 + l4 + l5 + l6 + l7 + 4) >> 3

8x4 (l0 + l1 + l2 + l3 + 2) >> 2

8x8 (l0 + l1 + l2 + l3 + l4 + l5 + l6 + l7 + 4) >> 3

c) If lk, k = 0 to (M-1) are not available and tk, k = 0 to (N-1) are available
block size p

4x8 (t0 + t1 + t2 + t3 + 2) >> 2

8x4 (t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + 4) >> 3

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 135

8x8 (t0 + t1 + t2 + t3 + t4 + t5 + t6 + t7 + 4) >> 3

d) If lk, k = 0 to (M-1) are not available and tk, k = 0 to (N-1) are not available
block size p

4x8 128

8x4 128

8x8 128

12.4.1.4 Mode 3: diagonal down/left prediction

tk, k = 0 to (N-1) shall be available, and lk, k = 0 to (M-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

p00 p00 p00 ((l2 + l1<<1 + l0 + 2) >> 2 + (t0 + t1<<1 + t2 + 2) >> 2) >> 1

p01, p10 p01, p10 p01, p10 ((l3 + l2<<1 + l1 + 2) >> 2 + (t1 + t2<<1 + t3 + 2) >> 2) >> 1

p02, p11, p20 p02, p11, p20 p02, p11, p20 ((l4 + l3<<1 + l2 + 2) >> 2 + (t2 + t3<<1 + t4 + 2) >> 2) >> 1

p03, p12, p21, p30 p03, p12, p21, p30 p03, p12, p21, p30 ((l5 + l4<<1 + l3 + 2) >> 2 + (t3 + t4<<1 + t5 + 2) >> 2) >> 1

p13, p22, p31, p40 p04, p13, p22, p31 p04, p13, p22, p31, p40 ((l6 + l5<<1 + l4 + 2) >> 2 + (t4 + t5<<1 + t6 + 2) >> 2) >> 1

p23, p32, p41, p50 p05, p14, p23, p32 p05, p14, p23, p32, p41, p50 ((l7 + l6<<1 + l5 + 2) >> 2 + (t5 + t6<<1 + t7 + 2) >> 2) >> 1

p33, p42, p51, p60 p06, p15, p24, p33 p06, p15, p24, p33, p42, p51, p60 ((l8 + l7<<1 + l6 + 2) >> 2 + (t6 + t7<<1 + t8 + 2) >> 2) >> 1

p43, p52, p61, p70 p07, p16, p25, p34 p07, p16, p25, p34, p43, p52, p61, p70 ((l9 + l8<<1 + l7 + 2) >> 2 + (t7 + t8<<1 + t9 + 2) >> 2) >> 1

p53, p62, p71 p17, p26, p35 p17, p26, p35, , p44, p53, p62, p71 ((l10 + l9<<1 + l8 + 2) >> 2 + (t8 + t9<<1 + t10 + 2) >> 2) >> 1

p63, p72 p27, p36 p27, p36, p45, p54, p63, p72 ((l11 + l10<<1 + l9 + 2) >> 2 + (t9 + t10<<1 + t11 + 2) >> 2) >> 1

p73 p37 p37, p46, p55, p64, p73 ((l12 + l11<<1 + l10 + 2) >> 2 + (t10 + t11<<1 + t12 + 2) >> 2) >> 1

- - p47, p56, p65, p74 ((l13 + l12<<1 + l11 + 2) >> 2 + (t11 + t12<<1 + t13 + 2) >> 2) >> 1

- - p57, p66, p75 ((l14 + l13<<1 + l12 + 2) >> 2 + (t12 + t13<<1 + t14 + 2) >> 2) >> 1

- - p67, p76 ((l15 + l14<<1 + l13 + 2) >> 2 + (t13 + t14<<1 + t15 + 2) >> 2) >> 1

- - p77 ((l15 + l15<<1 + l14 + 2) >> 2 + (t14 + t15<<1 + t15 + 2) >> 2) >> 1

12.4.1.5 Mode 4: diagonal down/right prediction

tk, k = 0 to (N-1) shall be available, and q, and lk, k = 0 to (M-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

- p07 p07 (t5 + t6<<1 + t7 + 2) >> 2

- p06, p17 p06, p17 (t4 + t5<<1 + t6 + 2) >> 2

- p05, p16, p27 p05, p16, p27 (t3 + t4<<1 + t5 + 2) >> 2

- p04, p15, p26, p37 p04, p15, p26, p37 (t2 + t3<<1 + t4 + 2) >> 2

p03 p03, p14, p25, p36 p03, p14, p25, p36, p47 (t1 + t2<<1 + t3 + 2) >> 2

p02, p13 p02, p13, p24, p35 p02, p13, p24, p35, p46, p57 (t0 + t1<<1 + t2 + 2) >> 2

p01, p12, p23 p01, p12, p23, p34 p01, p12, p23, p34, , p45, p56, p67 (q + t0<<1 + t1 + 2) >> 2

p00, p11, p22, p33 p00, p11, p22, p33 p00, p11, p22, p33, p44, p55, p66, p77 (l0 + q<<1 + t0 + 2) >> 2

136 DRAFT ITU-T Rec. H.264 (2002 E)

p10, p21, p32, p43 p10, p21, p32 p10, p21, p32, , p43, p54, p65, p76 (l1 + l0<<1 + q + 2) >> 2

p20, p31, p42, p53 p20, p31 p20, p31, p42, p53, p64, p75 (l2 + l1<<1 + l0 + 2) >> 2

p30, p41, p52, p63 p30 p30, p41, p52, p63, p74 (l3 + l2<<1 + l1 + 2) >> 2

p40, p51, p62, p73 - p40, p51, p62, p73 (l4 + l3<<1 + l2 + 2) >> 2

p50, p61, p72 - p50, p61, p72 (l5 + l4<<1 + l3 + 2) >> 2

p60, p71 - p60, p71 (l6 + l5<<1 + l4 + 2) >> 2

p70 - p70 (l7 + l6<<1 + l5 + 2) >> 2

12.4.1.6 Mode 5: vertical-left prediction

tk, k = 0 to (N-1) shall be available, and q, and lk, k = 0 to (M-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

- p07 p07 ((t6 + t7<<1 + t8 + 2) >> 2 + (t7 + t8<<1 + t9 + 2) >> 2) >> 1

- p17 p17 (t6 + t7<<1 + t8 + 2) >> 2

- p06, p27 p06, p27 ((t5 + t6<<1 + t7 + 2) >> 2 + (t6 + t7<<1 + t8 + 2) >> 2) >> 1

- p16, p37 p16, p37 (t5 + t6<<1 + t7 + 2) >> 2

- p05, p26 p05, p26, p47 ((t4 + t5<<1 + t6 + 2) >> 2 + (t5 + t6<<1 + t7 + 2) >> 2) >> 1

- p15, p36 p15, p36, p57 (t4 + t5<<1 + t6 + 2) >> 2

- p04, p25 p04, p25, p46, p67 ((t3 + t4<<1 + t5 + 2) >> 2 + (t4 + t5<<1 + t6 + 2) >> 2) >> 1

- p14, p35 p14, p35, p56, p77 (t3 + t4<<1 + t5 + 2) >> 2

p03 p03, p24 p03, p24, p45, p66 ((t2 + t3<<1 + t4 + 2) >> 2 + (t3 + t4<<1 + t5 + 2) >> 2) >> 1

p13 p13, p34 p13, p34, p55, p76 (t2 + t3<<1 + t4 + 2) >> 2

p02, p23 p02, p23 p02, p23, p44, p65 ((t1 + t2<<1 + t3 + 2) >> 2 + (t2 + t3<<1 + t4 + 2) >> 2) >> 1

p12, p33 p12, p33 p12, p33, p54, p75 (t1 + t2<<1 + t3 + 2) >> 2

p01, p22, p43 p01, p22 p01, p22, p43, p64 ((t0 + t1<<1 + t2 + 2) >> 2 + (t1 + t2<<1 + t3 + 2) >> 2) >> 1

p11, p32, p53 p11, p32 p11, p32, p53, p74 (t0 + t1<<1 + t2 + 2) >> 2

p00, p21, p42, p63 p00, p21 p00, p21, p42, p63 ((l0 + q<<1 + t0 + 2) >> 2 + (t0 + t1<<1 + t2 + 2) >> 2) >> 1

p10, p31, p52, p73 p10, p31 p10, p31, p52, p73 (l0 + q<<1 + t0 + 2) >> 2

p20, p41, p62 p20 p20, p41, p62 (l2 + l1<<1 + l0 + 2) >> 2

p30, p51, p72 p30 p30, p51, p72 (l3 + l2<<1 + l1 + 2) >> 2

p40, p61 - p40, p61 (l4 + l3<<1 + l2 + 2) >> 2

p50, p71 - p50, p71 (l5 + l4<<1 + l3 + 2) >> 2

p60 - p60 (l6 + l5<<1 + l4 + 2) >> 2

p70 - p70 (l7 + l6<<1 + l5 + 2) >> 2

12.4.1.7 Mode 6: horizontal-down prediction

tk, k = 0 to (N-1) shall be available, and q, and lk, k = 0 to (M-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

- p07 p07 (t5 + t6<<1 + t7 + 2) >> 2

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 137

- p06 p06 (t4 + t5<<1 + t6 + 2) >> 2

- p05, p17 p05, p17 (t3 + t4<<1 + t5 + 2) >> 2

- p04, p16 p04, p16 (t2 + t3<<1 + t4 + 2) >> 2

p03 p03, p15, p27 p03, p15, p27 (t1 + t2<<1 + t3 + 2) >> 2

p02 p02, p14, p26 p02, p14, p26 (t0 + t1<<1 + t2 + 2) >> 2

p01, p13 p01, p13, p25, p37 p01, p13, p25, p37 (q + t0<<1 + t1 + 2) >> 2

p00, p12 p00, p12, p24, p36 p00, p12, p24, p36 ((l0 + q<<1 + t0 + 2) >> 2 + (q + l0<<1 + l1 + 2) >> 2) >> 1

p10, p22 p10, p22, p34 p10, p22, p34, p46 ((q + l0<<1 + l1 + 2) >> 2 + (l0 + l1<<1 + l2 + 2) >> 2) >> 1

p11, p23 p11, p23, p35 p11, p23, p35, p47 (q + l0<<1 + l1 + 2) >> 2

p20, p32 p20, p32 p20, p32, p44, p56 ((l0 + l1<<1 + l2 + 2) >> 2 + (l1 + l2<<1 + l3 + 2) >> 2) >> 1

p21, p33 p21, p33 p21, p33, p45, p57 (l0 + l1<<1 + l2 + 2) >> 2

p30, p42 p30 p30, p42, p54, p66 ((l1 + l2<<1 + l3 + 2) >> 2 + (l2 + l3<<1 + l4 + 2) >> 2) >> 1

p31, p43 p31 p31, p43, p55, p67 (l1 + l2<<1 + l3 + 2) >> 2

p40, p52 - p40, p52, p64, p76 ((l2 + l3<<1 + l4 + 2) >> 2 + (l3 + l4<<1 + l5 + 2) >> 2) >> 1

p41, p53 - p41, p53, p65, p77 (l2 + l3<<1 + l4 + 2) >> 2

p50, p62 - p50, p62, p74 ((l3 + l4<<1 + l5 + 2) >> 2 + (l4 + l5<<1 + l6 + 2) >> 2) >> 1

p51, p63 - p51, p63, p75 (l3 + l4<<1 + l5 + 2) >> 2

p60, p72 - p60, p72 ((l4 + l5<<1 + l6 + 2) >> 2 + (l5 + l6<<1 + l7 + 2) >> 2) >> 1

p61, p73 - p61, p73 (l4 + l5<<1 + l6 + 2) >> 2

p70 - p70 ((l5 + l6<<1 + l7 + 2) >> 2 + (l6 + l7<<1 + l8 + 2) >> 2) >> 1

p71 - p71 (l5 + l6<<1 + l7 + 2) >> 2

12.4.1.8 Mode 7: vertical-right prediction

tk, k = 0 to (N-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

p00 p00 p00 ((t0 + t1<<1 + t2 + 2) >> 2 + (t1 + t2<<1 + t3 + 2) >> 2) >> 1

p10 p10 p10 (t1 + t2<<1 + t3 + 2) >> 2

p01, p20 p01, p20 p01, p20 ((t1 + t2<<1 + t3 + 2) >> 2 + (t2 + t3<<1 + t4 + 2) >> 2) >> 1

p11, p30 p11, p30 p11, p30 (t2 + t3<<1 + t4 + 2) >> 2

p02, p21, p40 p02, p21 p02, p21, p40 ((t2 + t3<<1 + t4 + 2) >> 2 + (t3 + t4<<1 + t5 + 2) >> 2) >> 1

p12, p31, p50 p12, p31 p12, p31, p50 (t3 + t4<<1 + t5 + 2) >> 2

p03, p22, p41, p60 p03, p22 p03, p22, p41, p60 ((t3 + t4<<1 + t5 + 2) >> 2 + (t4 + t5<<1 + t6 + 2) >> 2) >> 1

p13, p32, p51, p70 p13, p32 p13, p32, p51, p70 (t4 + t5<<1 + t6 + 2) >> 2

p23, p42, p61 p04, p23 p04, p23, p42, p61 ((t0 + t1<<1 + t2 + 2) >> 2 + (t1 + t2<<1 + t3 + 2) >> 2) >> 1

p33, p52, p71 p14, p33 p14, p33, p52, p71 (t5 + t6<<1 + t7 + 2) >> 2

p43, p62 p05, p24 p05, p24, p43, p62 ((t5 + t6<<1 + t7 + 2) >> 2 + (t6 + t7<<1 + t8 + 2) >> 2) >> 1

p53, p72 p15, p34 p15, p34, p53, p72 (t6 + t7<<1 + t8 + 2) >> 2

138 DRAFT ITU-T Rec. H.264 (2002 E)

p63 p06, p25 p06, p25, p44, p63 ((t6 + t7<<1 + t8 + 2) >> 2 + (t7 + t8<<1 + t9 + 2) >> 2) >> 1

p73 p16, p35 p16, p35, p54, p73 (t7 + t8<<1 + t9 + 2) >> 2

- p07, p26 p07, p26, p45, p64 ((t7 + t8<<1 + t9 + 2) >> 2 + (t8 + t9<<1 + t10 + 2) >> 2) >> 1

- p17, p36 p17, p36, p55, p74 (t8 + t9<<1 + t10 + 2) >> 2

- p27 p27, p46, p65 ((t8 + t9<<1 + t10 + 2) >> 2 + (t9 + t10<<1 + t11 + 2) >> 2) >> 1

- p37 p37, p56, p75 (t9 + t10<<1 + t11 + 2) >> 2

- - p47, p66 ((t9 + t10<<1 + t11 + 2) >> 2 + (t10 + t11<<1 + t12 + 2) >> 2) >> 1

- - p57, p76 (t10 + t11<<1 + t12 + 2) >> 2

- - p67 ((t10 + t11<<1 + t12 + 2) >> 2 + (t11 + t12<<1 + t13 + 2) >> 2) >> 1

- - p77 (t11 + t12<<1 + t13 + 2) >> 2

12.4.1.9 Mode 8: horizontal-up prediction

lk, k = 0 to (M-1) shall be available.
4x8 block samples 8x4 block samples 8x8 block samples predicted by

p00 p00 p00 ((l0 + l1<<1 + l2 + 2) >> 2 + (l1 + l2<<1 + l3 + 2) >> 2) >> 1

p01 p01 p01 (l1 + l2<<1 + l3 + 2) >> 2

p10, p02 p10, p02 p10, p02 ((l1 + l2<<1 + l3 + 2) >> 2 + (l2 + l3<<1 + l4 + 2) >> 2) >> 1

p11, p03 p11, p03 p11, p03 (l2 + l3<<1 + l4 + 2) >> 2

p20, p12 p20, p12, p04 p20, p12, p04 ((l2 + l3<<1 + l4 + 2) >> 2 + (l3 + l4<<1 + l5 + 2) >> 2) >> 1

p21, p13 p21, p13, p05 p21, p13, p05 (l3 + l4<<1 + l5 + 2) >> 2

p30, p22 p30, p22, p14, p06 p30, p22, p14, p06 ((l3 + l4<<1 + l5 + 2) >> 2 + (l4 + l5<<1 + l6 + 2) >> 2) >> 1

p31, p23 p31, p23, p15, p07 p31, p23, p15, p07 (l4 + l5<<1 + l6 + 2) >> 2

p40, p32 p32, p24, p16 p40, p32, p24, p16 ((l4 + l5<<1 + l6 + 2) >> 2 + (l5 + l6<<1 + l7 + 2) >> 2) >> 1

p41, p33 p33, p25, p17 p41, p33, p25, p17 (l5 + l6<<1 + l7 + 2) >> 2

p50, p42 p34, p26 p50, p42, p34, p26 ((l5 + l6<<1 + l7 + 2) >> 2 + (l6 + l7<<1 + l8 + 2) >> 2) >> 1

p51, p43 p35, p27 p51, p43, p35, p27 (l6 + l7<<1 + l8 + 2) >> 2

p60, p52 p36 p60, p52, p44, p36 ((l6 + l7<<1 + l8 + 2) >> 2 + (l7 + l8<<1 + l9 + 2) >> 2) >> 1

p61, p53 p37 p61, p53, p45, p37 (l7 + l8<<1 + l9 + 2) >> 2

p70, p62 - p70, p62, p54, p46 ((l7 + l8<<1 + l9 + 2) >> 2 + (l8 + l9<<1 + l10 + 2) >> 2) >> 1

p71, p63 - p71, p63, p55, p47 (l8 + l9<<1 + l10 + 2) >> 2

p72 - p72, p64, p56 ((l8 + l9<<1 + l10 + 2) >> 2 + (l9 + l10<<1 + l11 + 2) >> 2) >> 1

p73 - p73, p65, p57 (l9 + l10<<1 + l11 + 2) >> 2

- - p74, p6 ((l9 + l10<<1 + l11 + 2) >> 2 + (l10 + l11<<1 + l12 + 2) >> 2) >> 1

- - p75, p67 (l10 + l11<<1 + l12 + 2) >> 2

- - p76 ((l10 + l11<<1 + l12 + 2) >> 2 + (l11 + l12<<1 + l13 + 2) >> 2) >> 1

- - p77 (l11 + l12<<1 + l13 + 2) >> 2

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 139

12.4.2 Scanning method for ABT blocks

Scanning patterns for blocks of size 4x4, 4x8, 8x4, and 8x8 coefficients are given below. For blocks decoded in frame
mode, the zig-zag scans are used. For block decoded in field mode, the field scans are used. The zig-zag scan for 4x4
blocks corresponds to the zig-zag scan specified in Figure 8-12.

12.4.2.1 Zig-zag scan
0 1 5 6

2 4 7 12

3 8 11 13

9 10 14 15

Figure 12-3 – 4x4 zig-zag scan

0 2 3 9

1 4 8 10

5 7 11 17

6 12 16 18

13 15 19 25

14 20 24 26

21 23 27 30

22 28 29 31

Figure 12-4 – 4x8 zig-zag scan

0 1 5 6 13 14 21 22

2 4 7 12 15 20 23 28

3 8 11 16 19 24 27 29

9 10 17 18 25 26 30 31

Figure 12-5 – 8x4 zig-zag scan

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

140 DRAFT ITU-T Rec. H.264 (2002 E)

Figure 12-6 – 8x8 zig-zag scan

12.4.2.2 Field scan
0 2 8 12

1 5 9 13

3 6 10 14

4 7 11 15

Figure 12-7 – 4x4 field scan

0 4 12 20

1 5 13 21

2 6 14 22

3 11 19 27

7 15 23 28

8 16 24 29

9 17 25 30

10 18 26 31

Figure 12-8 – 4x8 field scan

0 2 6 10 14 18 22 26

1 5 9 13 17 21 25 29

3 7 11 15 19 23 27 30

4 8 12 16 20 24 28 31

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 141

Figure 12-9 – 8x4 field scan

0 3 8 15 22 30 38 52

1 4 14 21 29 37 45 53

2 7 16 23 31 39 46 58

5 9 20 28 36 44 51 59

6 13 24 32 40 47 54 60

10 17 25 33 41 48 55 61

11 18 26 34 42 49 56 62

12 19 27 35 43 50 57 63

Figure 12-10 – 8x8 field scan

12.4.3 Scaling and inverse transform for ABT blocks

The scaling and inverse transform of residual blocks of block size larger than 4x4 is specified below. The scaling and
inverse transform for 4x4 blocks is specified in subclause 8.6. For 8x8 blocks, the coefficients)(m

ijR , used in the
formulas below, are defined as:

88)(x
m

m
ij VR = (12-3)

where the subscript of V8x8 is the row index of the vector defined as:

=

27
24
22
19
17
15

88xV . (12-4)

For 4x8 blocks, the coefficients)(m
ijR , used in the formulas below, are defined as:

==
==

=
3,1;7,...,0for
2,0;7,...,0for

84,48
1

84,48
0)(

jiV
jiV

R xx
m

xx
mm

ij (12-5)

where the first and second subscripts of V8x4,4x8 are row and column indices, respectively, of the matrix defined as:

=

2015
1714
1612
1411
1210
119

84,48 xxV . (12-6)

142 DRAFT ITU-T Rec. H.264 (2002 E)

For 8x4 blocks, the coefficients)(m
ijR , used in the formulas below, are defined as:

==
==

=
7,...,0;3,1for
7,...,0;2,0for

84,48
1

84,48
0)(

jiV
jiV

R xx
m

xx
mm

ij (12-7)

where the first and second subscripts of V8x4,4x8 are row and column indices, respectively, of the matrix defined in
Equation 12-6.

The coefficient levels are multiplied with the scaling value R

MjNiQPRcw QP
ijijij ,...,0,,...,0),26/(][)6%(==−<<⋅= (12-8)

After constructing an entire MxN block of scaled transform coefficients and assembling these into a MxN matrix W of
elements wij illustrated as

=

−−−

−

)1)(1(0)1(

)1(000

NMM

N

ww

ww
W

 (12-9)

W is inverse transformed horizontally. If N = = 4, the one-dimensional inverse transform is performed as specified in
subclause 8.6.2.3. If N = = 8, the inverse transform is specified by Equation 12-10,

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

−−

391519191593
717177717177
151939931915

1313131313131313
931915151939

177717177717
191593391519

1313131313131313

'

7)1(0)1(

0700

MM ww

ww
Z

 (12-10)

The result is rounded

() ()[] shift
1shift2'abs'sign BZZZ B

ijijij >>+= − (12-11)

where Bshift = = 7 for 8x8 blocks, and Bshift = = 2 for 4x8 or 8x4 blocks. If N = = 4, the second one-dimensional inverse
transform is performed as specified in subclause 8.6.2.3. If N = = 8, the second inverse transform is specified by
Equation 12-12 below,

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

−

−

)1(770

)1(000

3715139171913
9171913371513
1517313197913

1979131517313
1979131517313

1517313197913
9171913371513

3715139171913

'

N

N

zz

zz
X

 (12-12)

After the second (vertical) transform in Equation 12-12 step the final reconstructed sample residual values X'' shall be
obtained as specified in Equation 8-59.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 143

Finally, the reconstructed sample residual values X'' from Equation 8-59 are added to the prediction values Pij from
motion compensated prediction or spatial prediction and clipped to the range of 0 to 255 to form the final decoded
sample result prior to application of the deblocking filter as specified in subclause 8.6.3.

12.4.4 Modifications for the deblocking filter

If ABT is used, the boundary strength shall be Bs = 0 for all 4x4 luma block edges inside an ABT block. The index into
the threshold table (Table 8-3) is increased by IQP. For ABT blocks, IQP depends on the sizes of the neighbouring blocks
as specified in Table 12-4. IQP = 0 for non-ABT blocks.

Table 12-4 – IQP values

IQP
Block q

4x4 4x8 8x4 8x8

Block p

4x4 0 1 1 2

4x8 1 2 2 3

8x4 1 2 2 3

8x8 2 3 3 3

The index used to access the α-table, as well as the C0-table that is used in the default filter mode, is computed as:

IndexA = Clip3(0, 51, QPav + IQP + Filter_Offset_A)

The index used to access the β-table is computed as:

IndexB = Clip3(0, 51, QPav + IQP + Filter_Offset_B),

with QPav, Filter_Offset_A, and Filter_Offset_B as specified in subclause 8.7.2. The values for the thresholds (α and β)
are specified in Table 8-3.

12.5 ABT entropy coding

12.5.1 ABT variable length coding

12.5.1.1 Mapped Exp-Golomb entropy coding

The ABT intra macroblock types in Intra slices and the intra_block_typeABT syntax elements in Inter slices are to Exp-
Golomb codeword numbers as specified in Table 12-5.

Table 12-5 – Assignment of Exp-Golomb codeword numbers for ABT syntax elements

code_number mb_type intra_block_typeABT

0 ABTIntra_4x4 4x4

1 ABTIntra_4x8 4x8

2 ABTIntra_8x4 8x4

3 ABTIntra_8x8 8x8

12.5.1.2 VLC entropy coding of ABT coefficients

12.5.1.2.1 Decoding num_coeff_abt

For ABT Intra blocks, num_coeff_abt is specified. The structure of the codewords for num_coeff and escape_run,
specified in subclause 12.4.2.4, is indicated in Table 12-6. The info bits xi, i=0 to n can take values 0 or 1.

144 DRAFT ITU-T Rec. H.264 (2002 E)

Table 12-6 – Code structure for ABT num_coeff_abt and escape_run

codeword length L

1 x1 x0 3

0 1 x2 x1 x0 5

0 0 1 x3 x2 x1 x0 7

0 0 0 1 x4 x3 x2 x1 x0 9

0 0 0 0 1 x5 x4 x3 x2 x1 x0 11

The value of num_coeff is specified as the code number of the decoded codeword. The code number is specified as

code_number = 2(L+1)/2 – 4 + INFO (12-13)

For a codeword with info bits xi, i=0 to n, INFO is specified as

∑
=

⋅=
n

i

ii
0

2xINFO . (12-14)

12.5.1.2.2 2D (level,run) symbols

The code structure used for decoding (level,run) symbols depends on block type. The structure of the codes is specified
in Table 12-7. For all block types, the codewords with code numbers 0 to 59 are used, with code number 59 being the
escape symbol. INFO is specified in Equation 12-14

Table 12-7 – Code structure for ABT (level, run) symbols

Block type Code structure length L code_number

Intra 8x8, 8x4, 4x8, 4x4
Inter 8x8

1 x1 x0 3

2(L+2)/2 – 4 + INFO
0 1 x2 x1 x0 5

0 0 1 x3 x2 x1 x0 7

0 0 0 x4 x3 x2 x1 x0 8

Inter 8x4, 4x8

1 x0 2

2(L+1)/2 – 2 + INFO

0 1 x1 x0 4

0 0 1 x2 x1 x0 6

0 0 0 1 x3 x2 x1 x0 8

0 0 0 0 x4 x3 x2 x1 x0 9

Inter 4x4

1 1 0

0 1 x0 3

2L/2 – 1 + INFO
0 0 1 x1 x0 5

0 0 0 1 x2 x1 x0 7

0 0 0 0 1 x3 x2 x1 x0 9

0 0 0 0 0 x4 x3 x2 x1 x0 10 2(L+1)/2 – 1 + INFO

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 145

12.5.1.2.3 Assignment of level and run to code numbers

For positive level, the assignment of code numbers to run and level is specified in Table 12-9. Run and negative levels
are assigned as follows

code_number(-abs(level), run) = code_number(abs(level), run) + 1. (12-15)

12.5.1.2.4 escape_level and escape_run

The code structure for escape_level is specified in Table 12-8. The code number of a decoded codeword is

code_number = 2(L+2)/2 – 8 + INFO, (12-16)

with INFO as specified in Equation 12-14. The assignment of code numbers to escape_level is specified as follows:

if((code_number % 2) > 0)
 escape_level = -(code_number/2)
else
 escape_level = code_number/2 (12-17)

The code structure for escape_run is specified in Table 12-6. The value of escape_run is specified as the code number of
the decoded codeword. The code number for escape_run decoding is specified in Equation 12-13.

Table 12-8 – Code structure for escape_level

Codeword length L

1 x2 x1 x0 4

0 1 x3 x2 x1 x0 6

0 0 1 x4 x3 x2 x1 x0 8

0 0 0 1 x5 x4 x3 x2 x1 x0 10

0 0 0 0 1 x6 x5 x4 x3 x2 x1 x0 12

0 0 0 0 0 1 x7 x6 x5 x4 x3 x2 x1 x0 14

0 0 0 0 0 0 1 x8 x7 x6 x5 x4 x3 x2 x1 x0 16

0 0 0 0 0 0 0 1 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 18

Table 12-9 – Assignment of Inter and Intra level and run to code numbers.

run

Inter Intra

EOB level>0 level>0 (QP < 26) level>0 (26 <= QP < 34) level>0 (QP >= 34)

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 1 5 13 21 31 39 47 0 2 6 8 12 18 20 0 2 8 12 18 22 30 0 4 12 20 32 42 56

1 - 3 15 33 51 - - - 4 14 24 30 38 44 49 4 16 26 36 48 56 - 2 16 30 48 - - -

2 - 7 25 53 - - - - 10 28 40 50 - - - 6 24 42 - - - - 6 24 46 - - - -

3 - 9 35 - - - - - 16 34 54 - - - - 10 34 - - - - - 8 34 - - - - -

4 - 11 45 - - - - - 22 42 - - - - - 16 44 - - - - - 10 40 - - - - -

5 - 17 55 - - - - - 26 56 - - - - - 20 5 - - - - - 14 50 - - - - -

6 - 19 - - - - - - 32 - - - - - - 28 - - - - - - 18 - - - - - -

7 - 23 - - - - - - 36 - - - - - - 32 - - - - - - 22 - - - - - -

8 - 27 - - - - - - 46 - - - - - - 38 - - - - - - 26 - - - - - -

146 DRAFT ITU-T Rec. H.264 (2002 E)

9 - 29 - - - - - - 52 - - - - - - 40 - - - - - - 28 - - - - - -

10 - 37 - - - - - - - - - - - - - 46 - - - - - - 36 - - - - - -

11 - 41 - - - - - - - - - - - - - 52 - - - - - - 38 - - - - - -

12 - 43 - - - - - - - - - - - - - 54 - - - - - - 44 - - - - - -

13 - 49 - 52 - - - - - -

14 - 57 - 54 - - - - - -

12.5.2 ABT CABAC

12.5.2.1 Fixed-length (FL) binarization for mb_type

Table 12-10 shows the binarization scheme used for decoding of macroblock types in I-slices. In case of mb_type = 6 for
P slices or mb_type = 23 for B slices, intra_block_typeABT has to be decoded as additional information related to the
chosen intra mode for these macroblock types. This shall be done in the same way as specified for mb_type in I slices.

Table 12-10 – Binarization for macroblock type

Slice type Code number for mb_type Binarization

I slice

0 (ABTIntra_4x4) 1 0

1 (ABTIntra_4x8) 0 0

2 (ABTIntra_8x4) 0 1

3 (ABTIntra_8x8) 1 1

12.5.2.2 Context definition and assignment

Table 12-11 provides the context identifier associated to the syntax element macroblock type. A detailed description of
the corresponding context variables is given in the subsequent subclauses. For the syntax elements related to decoding of
transform coefficients, each of the context identifiers utilizes a separate set of ranges depending on whether the
additional context categories 5 – 7 given in Table 12-14 are used, which is only the case if MbABTFlag=1.

Table 12-11 – Macroblock type and associated context identifier

Syntax element Context identifier
Type

of
Binarization

max_idx_ctx_id
Range of
context
label

Macroblock type ctx_mb_type_I_ABT Table
10-16 2 0 – 4

Transform coefficients

ctx_cbp4 -/- -/- 75 – 94, 267 – 274

ctx_sig -/- -/- 95 – 155, 275 – 319

ctx_last -/- -/- 156 – 216, 320 – 346

ctx_abs_level UEG0,
UCoff=14 2 217 – 266, 347 – 376

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 147

12.5.2.2.1 Assignment of context labels

Tables 12-12 and 12-13 contain context identifiers along with their corresponding range of context labels. The
association of context labels (modulo some offset) and bin numbers shows which context variable uses a fixed model and
which one implies a choice of different models. The latter are characterized by those entries where a set of different
context labels are given for a specific bin_no (Table 12-12) or block type dependent context_category (Table 12-13);
these are the context variables, which need to be specified further in the following subclauses 12.5.2.2.2 and 12.5.2.2.3.

Table 12-12 – Context identifiers and associated context labels

Context identifier
Range of
context
label

 Offset for
context label max_idx_ctx_id

bin_no

1 2 3 4 ≥ 5

ctx_mb_type_I_ABT 0 – 4 0 2 0,1,2 3,4 -/- -/- -/-

ctx_abs_level
(context_category 5 – 7) 347 – 376 347+

10*(context_category−5) 2 0 to 4 5 to 9 5 to 9 5 to 9 5 to 9

Table 12-13 – Context identifiers and associated context labels (continued)

Context
identifier

Offset (range) of
context label for
context_category

5 – 7

context_category of block_type

0 1 2 3 4 5 6 7

 ctx_cbp4 267 (267 – 274) 0 – 3 4 – 7 8 – 11 12 – 15 16 – 19 -/- 0 – 3 4 – 7

ctx_sig 275 (275 – 319) 0 – 14 15 – 28 29 – 43 44 –46 47 – 60 0 – 14 15 –29 30 – 44

ctx_last 320 (320 – 346) 0 – 14 15 – 28 29 – 43 44 –46 47 – 60 0 – 9 10 –19 20 – 29

12.5.2.2.2 Context definitions using preceding bin values

For the context identifier ctx_mb_type_I_ABT, the choice of the model for the 2nd bin depends on the value of the first
bin as specified in Equation 12-18:

 ctx_mb_type_I_ABT[2] = (b1 = = 0) ? 3: 4 (12-18)

Table 12-14 – Additional context categories for the different block types

block_type
Maximum
number of

coefficients
context_category

Luma block for INTRA 8x8 mode 64
5:Luma-8x8

Luma block for INTER 8x8 mode 64

Luma block for INTRA 8x4 mode 32
6:Luma-8x4

Luma block for INTER 8x4 mode 32

Luma block for INTRA 4x8 mode 32
7:Luma-4x8

Luma block for INTRA 4x8 mode 32

12.5.2.2.3 Additional context definitions for information related to transform coefficients

As specified in subclause 9.2.2.4, three different additional context identifiers are used for conditioning of information
related to transform coefficients. All these three types depend on context categories of different block types denoted by
the variable context_category. The definition of these context categories is given in Tables 9-24 and 12-14. Note that the
context categories 5 – 7 are only used in the case when MbABTFlag = 1. The context identifiers ctx_sig and ctx_last are
related to the binary valued information of SIG and LAST; the definition of the related context variables includes an
additional dependency on the scanning position scanning_pos within the regarded block:

 ctx_sig[scanning_pos] = Map_sig(scanning_pos), (12-19)

148 DRAFT ITU-T Rec. H.264 (2002 E)

 ctx_last[scanning_pos] = Map_last(scanning_pos). (12-20)

The definition of Map_sig and Map_last in Equations 12-19 and 12-20 depends on the block type. For context_category
0 – 4 the corresponding maps are given by

Map_sig(scanning_pos) = Map_list(scanning_pos)=scanning_pos, if context_category = 0,…,4, (12-21)

where scanning_pos denotes the position related to the zig-zag scan. For context categories 5 – 7, which are only in use if
MbABTFlag = 1, two cases are distinguished. In frame coding mode, where the zig-zag scan is used, Map_sig and
Map_last are given by the definition in Table 12-15; for field coding mode, Map_sig and Map_last related to the
alternative scans are given in Tabel 12-16. In each case, the offset for the context category given in Table 12-17 has to be
added for calculating the context label of each scanning position.

For abs_level_m1, the decoding process is specified in subclause 9.2.2.4.

Table 12-15 – Map_sig and Map_last for zig-zag scanning order used for the additional ABT block sizes 8x8, 8x4
and 4x8

Scanning
position

8x8 Scanning
position

8x8 Scanning
position

8x4 and 4x8

Map_sig Map_last Map_sig Map_last Map_sig Map_last

0 0 0 32 7 3 0 0 0

1 1 1 33 6 3 1 1 1

2 2 1 34 11 3 2 2 1

3 3 1 35 12 3 3 3 1

4 4 1 36 13 3 4 4 1

5 5 1 37 11 3 5 5 1

6 5 1 38 6 3 6 7 1

7 4 1 39 7 3 7 8 1

8 4 1 40 8 4 8 9 2

9 3 1 41 9 4 9 10 2

10 3 1 42 14 4 10 11 2

11 4 1 43 10 4 11 9 2

12 4 1 44 9 4 12 8 2

13 4 1 45 8 4 13 6 2

14 5 1 46 6 4 14 7 2

15 5 1 47 11 4 15 8 2

16 4 2 48 12 5 16 9 3

17 4 2 49 13 5 17 10 3

18 4 2 50 11 5 18 11 3

19 4 2 51 6 5 19 9 3

20 3 2 52 9 6 20 8 4

21 3 2 53 14 6 21 6 4

22 6 2 54 10 6 22 12 4

23 7 2 55 9 6 23 8 4

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 149

24 7 2 56 11 7 24 9 5

25 7 2 57 12 7 25 10 5

26 8 2 58 13 7 26 11 6

27 9 2 59 11 7 27 9 6

28 10 2 60 14 8 28 13 7

29 9 2 61 10 8 29 13 7

30 8 2 62 12 8 30 14 8

31 7 2 63 31

Table 12-16 – Map_sig and Map_last for field-based scanning order used for the additional ABT block sizes 8x8,
8x4 and 4x8

Scanning
position

8x8 Scanning
position

8x8 Scanning
position

8x4 and 4x8

Map_sig Map_last Map_sig Map_last Map_sig Map_last

0 0 0 32 9 3 0 0 0

1 1 1 33 9 3 1 1 1

2 1 1 34 10 3 2 2 1

3 2 1 35 10 3 3 3 1

4 2 1 36 8 3 4 4 1

5 3 1 37 11 3 5 5 1

6 3 1 38 12 3 6 6 1

7 4 1 39 11 3 7 3 1

8 5 1 40 9 4 8 4 2

9 6 1 41 9 4 9 5 2

10 7 1 42 10 4 10 6 2

11 7 1 43 10 4 11 3 2

12 7 1 44 8 4 12 4 2

13 8 1 45 13 4 13 7 2

14 4 1 46 13 4 14 6 2

15 5 1 47 9 4 15 8 2

16 6 2 48 9 5 16 9 3

17 9 2 49 10 5 17 7 3

18 10 2 50 10 5 18 6 3

19 10 2 51 8 5 19 8 3

20 8 2 52 13 6 20 9 4

21 11 2 53 13 6 21 10 4

22 12 2 54 9 6 22 11 4

23 11 2 55 9 6 23 12 4

150 DRAFT ITU-T Rec. H.264 (2002 E)

24 9 2 56 10 7 24 12 5

25 9 2 57 10 7 25 10 5

26 10 2 58 14 7 26 11 6

27 10 2 59 14 7 27 13 6

28 8 2 60 14 8 28 13 7

29 11 2 61 14 8 29 14 7

30 12 2 62 14 8 30 14 8

31 11 2 63 31

12.5.2.3 Initialisation of context models

The initialization procedure for the context models is specified in subclause 9.2.3. In this subclause, the initialization
parameters for the additional context models in subclause 12.4.2 are specified.

Table 12-17 – Initialisation parameters for context identifier ctx_mb_type_I_ABT

Context
label

ctx_mb_type_I_ABT

m n

0 -8 53

1 2 50

2 17 20

3 2 50

4 2 50

Table 12-18 – Initialisation parameters for context identifiers ctx_cbp4, ctx_sig, ctx_last, ctx_abs_level for context
category 5 – 7

Context
label

Context category 5

Context
label

Context category 6

Context
label

Context category 7

I-slices P,B-slices I-slices P,B-
slices

I-slices P,B-slices

m n m n m n m n m n m n

ctx_cbp4

 267 -4 63 -2 61 271 -1 63 -3 63

 268 -1 70 -7 75 272 -7 74 -15 75

 269 -7 68 -12 70 273 -1 70 -13 80

 270 -5 76 -20 86 274 -5 76 -21 88

ctx_sig

275 -1 59 -4 44 290 -8 69 -3 48 305 -8 68 -3 49

276 -7 55 -3 34 291 -12 67 -5 47 306 -11 68 -6 47

277 -6 58 -2 35 292 -11 68 -3 47 307 -11 64 -3 48

278 -7 53 -4 33 293 -12 63 -7 47 308 -11 56 -7 46

279 -9 52 -5 31 294 -12 66 -7 48 309 -13 63 -6 47

280 -5 48 -2 31 295 -12 66 -3 46 310 -11 67 -3 45

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 151

281 -14 59 -7 36 296 -7 60 -7 48 311 -8 63 -8 49

282 -8 53 -1 31 297 -12 63 -4 45 312 -12 65 -6 46

283 -10 54 -4 33 298 -11 64 -2 45 313 -11 63 -3 46

284 -5 47 4 29 299 -14 64 -5 46 314 -13 60 -2 45

285 -4 43 0 29 300 -12 57 -8 43 315 -11 53 -7 45

286 -13 56 2 31 301 -16 57 0 35 316 -13 52 -2 37

287 -9 49 0 31 302 -9 53 5 40 317 -8 50 0 38

288 -8 47 5 23 303 7 54 -3 57 318 8 52 -3 54

289 3 44 15 28 304 2 67 5 63 319 1 67 7 64

ctx_last

320 12 29 17 27 329 9 25 24 10 338 8 25 25 9

321 5 29 23 17 330 7 25 25 7 339 8 24 25 7

322 9 28 24 21 331 13 22 27 12 340 15 21 26 13

323 18 22 22 28 332 18 19 24 19 341 21 17 25 19

324 19 23 23 31 333 20 22 24 24 342 25 22 21 29

325 23 23 23 36 334 25 23 25 32 343 28 23 25 33

326 26 22 17 43 335 21 30 22 36 344 22 31 13 44

327 14 41 17 49 336 22 38 22 45 345 15 46 13 50

328 40 31 2 58 337 13 55 -3 61 346 10 59 2 57

ctx_abs_level

347 -9 55 -3 43 357 -11 63 -6 51 367 -11 63 -6 51

348 -1 30 -1 14 358 -3 34 -4 21 368 -3 34 -4 21

349 -2 34 0 16 359 -5 39 -6 28 369 -5 39 -6 28

350 -2 36 2 18 360 -5 41 -4 31 370 -5 41 -4 31

351 -1 37 1 23 361 -4 44 -5 37 371 -4 44 -5 37

352 -4 40 -7 36 362 -7 46 -10 41 372 -7 46 -10 41

353 -1 45 -2 43 363 -7 54 -9 49 373 -7 54 -9 49

354 -6 53 -4 47 364 -5 56 -7 51 374 -5 56 -7 51

355 -8 55 -5 49 365 -6 58 -8 53 375 -6 58 -8 53

356 -11 64 1 52 366 -11 69 -11 60 376 -11 69 -11 60

Annex A
Profile and level definitions

(This annex forms an integral part of this Recommendation | International Standard)

152 DRAFT ITU-T Rec. H.264 (2002 E)

A.1 Introduction

Profiles and Levels specify the capabilities needed to decode the coded data, and may be used to indicate interoperability
points between individual decoder implementations.

NOTE - This Recommendation | International Standard does not include individually selectable “options” at the decoder, as this
would increase interoperability difficulties.

Each Profile defines a set of algorithmic features and limits which shall be supported by all decoders conforming to that
Profile. Note that encoders are not required to make use of any particular set of features supported in a Profile.

Each Level defines a set of limits on the values which may be taken by the parameters of this Recommendation |
International Standard. The same set of Level definitions is used with all Profiles, but individual implementations may
support a different Level for each supported Profile. For any given Profile, Levels generally correspond to decoder
processing and memory capability, in units based on video decoding, rather than on specific implementation platforms.

A.2 Requirements on video decoder capability
Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to constraints Profiles and Levels specified in this Annex. For each such
Profile, the Level supported for that Profile shall also be expressed. Such expression may be in the form of coded values
equivalent to a specific Profile and specific Level from this Annex.

Specific values are defined in this annex for the syntax elements profile_idc and level_idc. All other values of
profile_idc and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE: Decoders should not infer that if a reserved value of profile_idc or level_idc falls between the values specified in this
Recommendation | International Standard this indicates intermediate capabilities between the specified profiles or levels, as there
are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.3 Baseline profile

A.3.1 Features

All decoders supporting the Baseline Profile shall be capable of decoding bitstreams which use the following features:

a) I and P picture types
b) In-loop deblocking filter
c) Frame pictures with mb_level_aff = 0
d) 1/4-sample motion compensation
e) Tree-structured motion segmentation down to 4x4 block size
f) VLC-based entropy coding
g) Arbitrary slice order (ASO): In Baseline profile, the decoding order of slices within a picture may not follow the

constraint that first_mb_in_slice is monotonically increasing within the NAL unit stream for a picture.
h) Flexible macroblock ordering (FMO, maximum 8 slice groups): In Baseline profile,

num_slice_groups_minus1<8.
i) Redundant slices
j) 4:2:0 Chrominance format

Decoders supporting the Baseline Profile Level 2.1 and above shall also be capable of decoding bitstreams using:

k) Field pictures.

Conformance to the Baseline Profile is indicated by setting the syntax element profile_idc equal to 66.

A.3.2 Limits

All decoders supporting this Profile shall be capable of decoding bitstreams which:
a) use 15 or fewer Reference Frames,
b) have a compression ratio per picture of 4:1 or greater,
c) use 64 or fewer Picture Parameter Sets, and,
d) use 16 or fewer Independent Sequence Parameter Sets.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 153

A.4 X profile

A.4.1 Features

All decoders supporting the X Profile shall be capable of decoding bitstreams which use the following features:

a) Bi-predictive slices
b) SP and SI slices
c) Data partitioned slices
d) Weighted prediction
e) All features included in the Baseline Profile

All video decoders supporting the X Profile shall also support the Baseline Profile. The Level number supported for the
Baseline Profile shall not be less than the Level number supported for the X Profile.

Conformance to the X Profile is indicated by setting the syntax element profile_idc equal to 88.

A.4.2 Limits

All decoders supporting this Profile shall be capable of decoding bitstreams which:
a) use 15 or fewer Reference Frames,
b) have a compression ratio per picture of 4:1 or greater,
c) use 64 or fewer Picture Parameter Sets, and,
d) use 16 or fewer Sequence Parameter Sets.

A.5 Main profile

A.5.1 Features

All decoders supporting the Main Profile shall be capable of decoding bitstreams which use the following features:

a) Bi-predictive slices
b) CABAC
c) Weighted prediction
d) Adaptive block-size transforms (ABT)
e) All features included in the Baseline Profile except:

1. Arbitrary Slice Order (ASO): In Main profile, the decoding order of slices within a picture shall follow the
constraint that first_mb_in_slice shall be monotonically increasing within the NAL unit stream for a
picture.

2. Flexible Macroblock Order (FMO): In Main profile, num_slice_groups_minus1 shall be zero.
3. Redundant Slices

Decoders supporting Level 2.1 and above shall also be capable of decoding bitstreams using:

f) Interlaced pictures, frame/field adaptive at picture level and macroblock level.

Conformance to the Main profile is indicated by setting the syntax element profile_idc equal to 77.

A.5.2 Limits

All decoders supporting this Profile shall be capable of decoding bitstreams which:
a) use 15 or fewer Reference Frames,
b) have a compression ratio per picture of 4:1 or greater,
c) use 64 or fewer Picture Parameter Sets, and,
d) use 16 or fewer Sequence Parameter Sets.

A.6 Level definitions

A.6.1 General

Level limits are expressed in units of whole luma macroblocks. If a particular picture height or width is not an exact
multiple of a whole macroblock, that dimension shall be considered as rounded up to the next whole macroblock for the
purposes of conformance with this subclause.

The definition of support for a given Level is that any picture size/frame rate combination shall be decoded where the:

154 DRAFT ITU-T Rec. H.264 (2002 E)

a) sample processing rate (in whole macroblocks/second) is <= the Level limit given, and,

b) picture size (Height * Width, in whole macroblocks) is <= the Level limit given, and,

c) required reference memory is <= the Level limit given, and,

d) maximum video bit rate of the bitstream is <= the Level limit given, and,

e) required HRD/VBV buffer size is <= the Level limit given, and,

f) horizontal and vertical motion vector range does not exceed the Level limits given, and,

g) picture Height and picture Width (in whole macroblocks) are <= sqrt(LevelLimitMaxPictureSize * 8), and,

h) frame rate is not greater than 172 Hz.

The definition of each Level includes the requirements of all lower numbered Levels in Table A-1. Decoders supporting
a given Level shall also be capable of decoding bitstreams using all lower numbered Levels.

Note that display of decoded video is outside the scope of this Recommendation | International Standard; some decoder
implementations may not include displays at all, and display limitations do not necessarily cause interoperability failures.

 “Picture size” means the total number of macroblocks in the complete picture (both even and odd fields if interlaced).

A.6.2 Level limits
Table A-1 below gives the parameter limits for each Level. Conformance to a particular Level shall be indicated by
setting the syntax element level_idc equal to a value of ten times the level number specified in Table A-1.

Table A-1 – Level Limits

Level

Max
Sample

Processing
Rate

(MB/s)

Max
Picture

Size
(MBs)

Reference
Memory

(1024
bytes)

Max
Video

Bitrate
(1000

bits/sec)

Max
HRD/VBV

Buffer
Size

(bits)

Horizontal MV
Range

(full pels)

Vertical MV
Range

(full pels)

Minimum
luma Bi-

predictive
block size

1 1 485 99 148.5 64 163 840 [-2048, 2047.75] [-64,+63.75] 8x8

1.1 2 970 396 891.0 128 327 680 [-2048, 2047.75] [-128,+127.75] 8x8

1.2 5 940 396 891.0 768 1 966 080 [-2048, 2047.75] [-128,+127.75] 8x8

2 11 880 396 891.0 2 000 2 000 000 [-2048, 2047.75] [-128,+127.75] 8x8

2.1 19 800 792 1 782.0 4 000 4 000 000 [-2048, 2047.75] [-256,+255.75] 8x8

2.2 20 250 1 620 3 037.5 4 000 4 000 000 [-2048, 2047.75] [-256,+255.75] 8x8

3 40 500 1 620 3 037.5 8 000 8 000 000 [-2048, 2047.75] [-256,+255.75] 8x8

3.1 108 000 3 600 6 750.0 20 000 20 000 000 [-2048, 2047.75] [-512,+511.75] 8x8

3.2 216 000 5 120 7 680.0 20 000 20 000 000 [-2048, 2047.75] [-512,+511.75] 8x8

4 245 760 8 192 12 288.0 20 000 20 000 000 [-2048, 2047.75] [-512,+511.75] 8x8

5 491 520 19 200 28 800.0 TBD (1s @ max bps) [-2048, 2047.75] TBD 8x8

Levels with non-integer Level numbers in Table A-1 are refered to as “intermediate Levels”. All Levels have the same
status, but note that some applications may choose to use only the integer-numbered Levels.

Informative subclause A.7 shows the effect of these limits on frame rates for several example picture formats.

A.6.3 Reference memory constraints on modes

“Reference Memory” means the decoder memory pool which is used to store reference frames and post-decoder frame
buffers. Note that P pictures require one reference frame, and B pictures require two reference frames; any remaining
reference memory may be used either for multiple reference frames or for post-decoder frame buffers.

Decoders shall support all bitstreams within a given Profile and Level where the required reference memory does not
exceed the limit given for the Level.

The reference memory required for a given mode shall be calculated as:

bytes = PictureSize * NumberOfReferenceFrames * ChromaFormatParameter * 256

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 155

The PictureSize parameter is in units of whole macroblocks.

The parameter ChromaFormatParameter shall take values according to Table A-2:

Table A-2 – ChromaFormatParameter values

Chrominance
Format

ChromaFormatParameter

monochrome 1

4:2:0 1.5

4:2:2 2

4:4:4 3

A.7 Effect of level limits on frame rate (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Level number: 1 1.1 1.2 2 2.1 2.2 3 3.1 3.2 4 5
Max picture size (macroblocks): 99 396 396 396 792 1,620 1,620 3,600 5,120 8,192 19,200
Max macroblocks/second: 1,485 2,970 5,940 11,880 19,800 20,250 40,500 108,000 216,000 245,760 491,520

Max picture size (samples): 25,344 101,376 101,376 101,376 202,752 414,720 414,720 921,600 1,310,720 2,097,152 4,915,200
Max samples/second (1000s): 380 760 1,521 3,041 5,069 5,184 10,368 27,648 55,296 62,915 125,829

 Sample MB MB
Format Width Height Wide High
SQCIF 128 96 8 6 30.9 61.9 123.8 172.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 11 9 15.0 30.0 60.0 120.0 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 20 15 - 9.9 19.8 39.6 66.0 67.5 135.0 172.0 172.0 172.0 172.0
SIF 352 240 22 15 - 9.0 18.0 36.0 60.0 61.4 122.7 172.0 172.0 172.0 172.0
CIF 352 288 22 18 - 7.5 15.0 30.0 50.0 51.1 102.3 172.0 172.0 172.0 172.0
2SIF 352 480 22 30 - - - - 30.0 30.7 61.4 163.6 172.0 172.0 172.0
HHR 352 576 22 36 - - - - 25.0 25.6 51.1 136.4 172.0 172.0 172.0
VGA 640 480 40 30 - - - - - 16.9 33.8 90.0 172.0 172.0 172.0
4SIF 704 480 44 30 - - - - - 15.3 30.7 81.8 163.6 172.0 172.0
NTSC SD 720 480 45 30 - - - - - 15.0 30.0 80.0 160.0 172.0 172.0
4CIF 704 576 44 36 - - - - - 12.8 25.6 68.2 136.4 155.2 172.0
PAL SD 720 576 45 36 - - - - - 12.5 25.0 66.7 133.3 151.7 172.0
SVGA 800 600 50 38 - - - - - - - 56.8 113.7 129.3 172.0
XGA 1024 768 64 48 - - - - - - - 35.2 70.3 80.0 160.0
720p 1280 720 80 45 - - - - - - - 30.0 60.0 68.3 136.5
4VGA 1280 960 80 60 - - - - - - - - 45.0 51.2 102.4
SXGA 1280 1024 80 64 - - - - - - - - 42.2 48.0 96.0
16SIF 1408 960 88 60 - - - - - - - - - 46.5 93.1
16CIF 1408 1152 88 72 - - - - - - - - - 38.8 77.6
4SVGA 1600 1200 100 75 - - - - - - - - - 32.8 65.5
1080i 1920 1080 120 68 - - - - - - - - - 30.1 60.2
2Kx1K 2048 1024 128 64 - - - - - - - - - 30.0 60.0
4XGA 2048 1536 128 96 - - - - - - - - - - 40.0
16VGA 2560 1920 160 120 - - - - - - - - - - 25.6

Note 1 This is a variable-picture-size specification. The specific picture sizes in this table are illustrative examples only.

Note 2 XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, HHR aka 2CIF aka 1/2 D1, aka
1/2 ITU-R BT.601.

Note 3 Frame rates given are correct for progressive scan modes, and for interlaced if "MB High" column value is
even.

Annex B
Byte stream format

(This annex forms an integral part of this Recommendation | International Standard)

156 DRAFT ITU-T Rec. H.264 (2002 E)

B.1 Introduction

This annex defines a byte stream format specified for use by systems that transmit some or all of the NAL unit stream as
an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from
patterns in the data, such as ITU-T Recommendation H.222.0 | ISO/IEC 13818-1 systems or ITU-T Recommendation
H.320 systems. For bit-oriented transmission, the network bit order for the byte stream format is defined to start with the
MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte_stream_unit() structures. Each byte_stream_unit() contains one
start code prefix (SCP) and one nal_unit(). Optionally, at the discretion of the encoder, the byte_stream_unit() may also
contain additional "stuffing" zero-valued bytes as specified in this clause.

There are two types of start code prefixes:
– A short SCP, consisting of one byte having the value zero (0x00) followed by one byte having the value

one (0x01), and
– A long SCP, consisting of two bytes having the value zero (0x00) followed by one byte having the value

one (0x01).

The long SCP provides a mechanism for decoder byte-alignment recovery in the event of loss of decoder
synchronization.

B.2 Byte stream NAL unit syntax

byte_stream_unit() { Category Mnemonic
 while (next_bits(16) != 0x0001 && next_bits(24) != 0x000001)
 zero_byte f(8) = 0x00
 if(next_bits() = = 0x000001)
 zero_byte f(8) = 0x00
 zero_byte f(8) = 0x00
 one_byte f(8) = 0x01
 nal_unit()
}

B.3 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the
byte stream NAL units.

zero_byte is a single byte (8 bits) having the value zero (0x00). Optionally, at the discretion of the encoder, the
beginning of a byte_stream_unit() may contain more zero_byte syntax elements than required in this subclause.

The minimum required number of zero_byte syntax elements depends on the nal_unit_type as defined in Table 7-1, in
order to ensure the use of the long SCP for certain nal_unit_type values. This ensures use of the long SCP in the
byte_stream_unit() for these nal_unit() structures. The use of the long SCP for nal_unit() structures with other values of
nal_unit_type is optional. At least two zero_byte syntax elements shall be present in each byte_stream_unit() for the
following values of nal_unit_type:

– 0x06: Supplemental enhancement information,
– 0x07: Sequence parameter set,
– 0x08: Picture parameter set, and
– 0x09: Picture delimiter.

one_byte is a single byte (8 bits) having the value one (0x01). A sequence of two zero_byte syntax elements followed
by a one_byte is a long SCP, and one zero_byte followed by a one_byte is a short SCP.

The use of the byte sequence 0x00 0x02 is reserved for future use by ITU-T | ISO/IEC.

B.4 Decoder byte-alignment recovery (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 157

If the decoder does not have byte alignment with the encoder’s byte stream, the decoder can examine the incoming bit
stream for the binary pattern '00000000 00000000 00000001' (23 consecutive zero-valued bits followed by a non-zero
bit). The bit immediately following this pattern is the first bit of a whole byte. Upon detecting this pattern, the decoder
will be byte aligned with the encoder.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for the byte sequences 0x00
0x01 and 0x00 0x03.

If the byte sequence 0x00 0x01 is detected, this represents a SCP. If the previous byte was 0x00, the SCP is a long SCP.
Otherwise, it is a short SCP.

If the byte sequence 0x00 0x03 is detected, the decoder discards the byte 0x03 as shown in the rbsp_extraction() syntax
diagram.

NOTE - Many systems are inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection
procedure described in this subclause.

NOTE - The byte alignment detection procedure described in this subclause is equivalent to searching a byte sequence
for 0x00 0x00, starting at any alignment position. Detecting this pattern indicates that the next non-zero byte contains
the end of a SCP, and the first non-zero bit in that next non-zero byte is the last bit of an aligned byte.

Annex C
Hypothetical Reference Decoder

(This annex forms an integral part of this Recommendation | International Standard)

C.1 Hypothetical reference decoder and buffering verifiers

The hypothetical reference decoder (HRD) represents a set of normative requirements on coded bitstreams or packet
streams. These constraints must be enforced by an encoder, and can be assumed by a decoder or multiplexor to be true.
It is possible to verify the conformance of a bitstream or packet stream to the requirements of this subclause by
examining the bitstream or packet stream only.

This subclause defines the normative requirements of the HRD. Subclause C.2 provides additional information that is
important for a full understanding of the HRD operation.

Two types of streams may be subject to the HRD requirements of this Recommendation | International Standard; a
stream of VCL NAL Units and a bitstream. Figure C-1 shows how each of these is constructed from the RBSP. In other
words, a given set of HRD parameters may pertain to the VCL data only or to the multiplexed combination of VCL and
NAL. This is signalled through video usability information (subclauses E.2 and E.3).

.

158 DRAFT ITU-T Rec. H.264 (2002 E)

SEI Message RBSP (7.3.2.3, Annex D)

EBSP Encapsulation
Start Code Emulation Prevention

NAL Unitization
NAL Unitizer

Parameter Set RBSP (7.3.2.1-2) Slice Layer RBSP (7.3.2.6)

Data Partition RBSP (7.3.2.7)

Filler Data RBSP (7.3.2.5)

VCL NAL Units (7.3.1, 8.1)NAL NAL Units (7.3.1, 8.1)

EBSP Encapsulation
Start Code Emulation Prevention
NAL Unitization

NAL Unitizer

Bitstream
Adaptation
(Annex B)

H.264 | MPEG-4 Part 10 Bitstream

Legend

xxx

xxx

NAL HRD Conformance Point

VCL HRD Conformance Point

RBSP Trailing Bits (7.3.2.8)
Picture Delimiter RBSP (7.3.2.4)

Video Usability Information (Annex E)

Figure C-1 – Structure of Byte streams and NAL unit streams and HRD Conformance Points

The HRD can contain any combination of the following buffering verifiers, as shown in Figure C-2:

• One or more pre-decoder buffers, each of which is either variable bit rate (VBR) or constant bit rate (CBR)

• At most one reference and post-decoder buffer attached to the output of one of the pre-decoder buffers

Pre-decoder
Buffer (0)

Conformant
Stream

Coded
Pictures

Reordering
Buffer

Pre-decoder
Buffer (N-1)

Pre-decoder
Buffer (1)

Instantaneous
Decoder

Decoded
Fields
and/or

Frames

Coded
Pictures

Coded
Pictures

Output
Fields
and/or

Frames
Reference

Buffer

Figure C-2 – HRD Buffer Verifiers

The multiple buffering verifiers exist because a bit stream or packet stream may conform to multiple pre-decoder buffers,
as detailed in subclause C.2.2.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the
number of bits in a pre-decoder buffer just prior to or after removal of a transmitted picture is not necessarily an integer.
Furthermore, while conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the
bitstream match exactly the values signalled in the bitstream, each of these may vary from the signalled or defined value.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 159

This hypothetical reference decoder uses two time bases. One time base is a 90 kHz clock, and is only in operation for a
short time after the reception of a Buffering Period SEI message. The second time base uses the num_units_in_tick and
time_scale syntax in the Sequence Parameter Set to derive the time interval between picture removals from the buffers
(and in some cases between picture arrivals to the pre-decoder buffer).

In the following description, let tc = num_units_in_tick ÷ time_scale be the clock tick associated with the second clock.
The clock tick is a time interval no larger than the shortest possible inter-picture capture interval in seconds. Also let
be[t] and te[b] be the bit equivalent of a time t and the time equivalent of a number of bits b, with the conversion factor
being the buffer arrival bit rate.

The following statements are normative requirements on the composition of a conforming bitstream. If multiple
sequence parameter sets pertain to the bit stream or packet stream, they must contain consistent HRD information. In the
case that any HRD buffers are signalled in the sequence parameter set(s), then the following rules dictate the insertion of
SEI messages in the bit stream or packet stream.

1. At each decoder refresh point (IDR, ODR or GDR), a buffering period SEI message shall follow the last
NAL Unit of the last picture before a decoder refresh and precede the first NAL Unit of the first picture
after the decoder refresh. Note that in the case of an IDR, this SEI message will precede the indication of
the decoder refresh point.

2. An HRD picture SEI message must follow the last NAL Unit of each picture and precede the first NAL
Unit of the next picture. Each of these SEI messages pertains to the picture that follows it.

C.1.1 Operation of VCL video buffering verifier (VBV) pre-decoder buffer

This specification applies independently to each pre-decoder buffer VUI sequence parameters within the sequence
parameter set.

C.1.1.1 Timing of bitstream or packet stream arrival

The buffer is initially empty. The first bit of the first transmitted picture begins to enter the buffer at initial arrival time
tai(0)=0 at the bit rate bit_rate[k] associated with the pre-decoder buffer (see subclause 8.3.3). The last bit of the first
transmitted picture finishes arriving at final arrival time

taf(0) = b(0) ÷ bit_rate[k], (C-1)

where b(n) is the size in bits of the n-th transmitted picture. The final arrival time for each picture is always the sum of
the initial arrival time and the time required for the bits associated with that picture to enter the pre-decoder buffer:

taf(n) = tai(n) + b(n) ÷ bit_rate[k]. (C-2)

For each subsequent picture, the initial arrival time of picture n is the later of taf(n-1) and the sum of all preceding
pre_dec_removal_delay times, as indicated in Equation C-3.

tai(n)= max{ taf(n-1), tc × ∑
−

=

1

0

n

m
pre_dec_removal_delay(m) } (C-3)

See subclauses C.2.5 and C.3.5 for the syntax and semantics of the pre_dec_removal_delay times. When the encoder is
producing a bit rate lower than the bit rate associated with a pre-decoder buffer, this rule may delay the entry of some
pictures into the pre-decoder buffer, producing periods during which no data enters.

C.1.1.2 Timing of coded picture removal

For the first picture and all pictures that are the first complete picture after receiving a buffering period SEI message, the
coded data associated with the picture is removed from the pre-decoder buffer at a removal time equal to the following:

tr(0) = initial_pre_dec_removal_delay ÷ 90000 (C-4)

where initial_pre_dec_removal_delay is the pre-decoder removal delay in the buffering period SEI message.

After the first picture is removed, the buffer is examined at subsequent points of time, each of which is delayed from the
previous one by an integer multiple of the clock tick tc.

The removal time tr(n) of coded data for picture n is delayed with respect to that of picture n-1; the delay is equal to the
time indicated in the pre_dec_removal_delay syntax element present in the HRD picture SEI message.

160 DRAFT ITU-T Rec. H.264 (2002 E)

tr(n) = tr(n-1) + tc × pre_dec_removal_delay(n) (C-5)

At this time, the coded data for the next transmitted picture is removed from the pre-decoder buffer.

In the case that the amount of coded data for picture n, b(n), is so large that it prevents removal at the computed removal
time, the coded data is removed at the delayed removal time, tr,ld(n, m*), given by

tr,d(n,m*) = tr(0) + tc × m*, (C-6)

where m* is such that tr,d(n, m*-1) < taf(n) ≤ tr,ld(n, m*). This is an aspect of low-delay operation (see subclause C.2.1.2).
This delayed removal time is the next time instant after the final arrival time taf(n) which is delayed with respect to tr(0)
by an integer multiple of tc.

C.1.1.3 Conformance constraints on coded bitstreams or packet streams

A transmitted or stored stream of coded data conforming to this Recommendation | International Standard fulfils the
following requirements.

• Removal time consistency. For each picture, the removal times tr(n) computed using different buffering periods
as starting points for conformance verification shall be consistent to within the accuracy of the two clocks used
(90 kHz clock used for initial removal time and tc clock used for subsequent removal time calculations). This
can be ensured at the encoder by computing the pre-decoder removal delay (initial_pre_dec_removal_delay) for
a buffering period SEI message from the arrival and removal times computed using Equations C-3 and C-5.
Any small deviations between the values computed in the different ways shall not cause violation of any of the
following constraints.

• Underflow and Overflow Prevention. The buffer must never overflow or underflow.
NOTE - In terms of the arrival and removal schedules, this means that, with the exception of some pictures in low-delay mode that
are described below, all bits from a picture must be in the pre-decoder buffer at the picture's computed removal time tr(n). In other
words, its final arrival time must be no later than its removal time: taf(n) ≤ tr(n). Further, the removal time tr(n) must be no later
than the time-equivalent of the buffer size te[pre_dec_buffer_size[k]]. Note that this prevents overflow.

• Big Picture Removal Time, Overflow Prevention and Resynchronisation of Underflow Prevention. If the
final arrival time taf(n) of picture n exceeds its computed removal time tr(n), its size must be such that it can be
removed from the buffer without overflow at tr,d(n,m*) as defined above.

• Constant Bit Rate Constraint. If vbr_cbr_flag[k] = = 1, data shall arrive continuously at the input to the pre-

decoder buffer. This is equivalent to ensuring that taf(n-1) ≥ tc × ∑
−

=

1

0

n

m
pre_dec_removal_delay(m).

• Time Duration Constraint. For each picture immediately preceding a Buffering Period SEI message, the sum
of pre-decoder removal delays from the start of the sequence up to that point of time shall be no further from the
accumulated sequence duration as represented by the sum of prev_buf_period_duration than the
removal_time_tolerance in the relevant sequence parameter set.

If the picture immediately preceding the Buffering Period SEI message is the n-th picture in transmitted order,
and the buffering period SEI message is the k-th such message, then this constraint amounts to the following:

| ∑
−

=

1

0

n

m

pre_dec_removal_delay(m) - ∑
−

=

1

0

k

m

prev_buf_period_duration(m) | ≤ removal_time_tolerance (C-7)

• Maximum Decoder Frame Rate. The interval between consecutive removal times shall not be lower than the
minimum picture interval, defined as the inverse of the maximum picture rate (See A.5.1).

C.1.2 Operation of the post-decoder buffer verifier

C.1.2.1 Arrival timing

A reconstructed picture is added to the post-decoder buffer at the same time when the corresponding coded picture is
removed from the pre-decoder buffer.

C.1.2.2 Removal timing

Data is not removed from the post-decoder buffer during a period called the initial post-decoder buffering period. The
period starts when the first picture is added to the post-decoder buffer.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 161

When the initial post-decoder buffering period has expired, the playback timer is started from the earliest display time of
the pictures residing in the post-decoder buffer at that time.

A picture is virtually displayed when the playback timer reaches the scheduled presentation time of the picture.

A picture memory is marked unused in the post-decoder buffer when it is virtually displayed and when it is no longer
needed as a reference picture.

C.1.2.3 Conformance constraints

The occupancy of the post-decoder buffer shall not exceed the default or signalled buffer size.

Each picture shall be available in the post-decoder buffer before or on its presentation time.

C.2 Informative description of the HRD

Subclause C.1 contains the normative requirements imposed by a set of buffering verifiers. This subclause provides
explanatory text describing in more detail the operation and capabilities of these buffers.

An HRD represents a means to communicate how the bit rate is controlled in the process of compression. The HRD
contains a pre-decoder buffer (or VBV Buffer) through which compressed data flows with a precisely specified arrival
and removal timing, as shown in Figure C-3. An HRD may be designed for variable or constant bit rate operation, and
for low-delay or delay-tolerant behavior. The HRD described in this document handles all cases.

Pre-decoder
Buffer

Compressed

Bit stream

Coded

Pictures

Instantaneous
Decoder

Decoded

Pictures

Figure C-3 – A Hypothetical Reference Decoder

Compressed data representing a sequence of coded pictures flows into the pre-decoder buffer according to a specified
arrival schedule. All compressed bits associated with a given coded picture are removed from the pre-decoder buffer by
the instantaneous decoder at the specified removal time of the picture.

The pre-decoder buffer overflows if the buffer becomes full and more bits are arriving. The buffer underflows if the
removal time for a picture occurs before all compressed bits representing the picture have arrived.

C.2.1 Constrained arrival time leaky bucket (CAT-LB) model

The hypothetical reference decoder (HRD) is a mathematical model of a decoder and its input buffer. The k-th pre-
decoder buffer of the HRD is characterized by the pre-decoder peak rate bit_rate[k] (in bits per second), the buffer size
pre_dec_buffer_size[k] (in bits), the sequence initial pre-decoder buffer removal delay (in seconds), as well as picture
removal delays for each picture. The first three of these parameters represent levels of resources (transmission capacity,
buffer capacity, and delay) used to decode a bitstream.

The term "leaky bucket" arises from the analogy of the encoder as a system that "dumps" water in discrete chunks into a
bucket that has a hole in it. The departure of bits from the encoder buffer corresponds to water leaking out of the bucket.
Here, the decoder buffer is described, which has an inverse behaviour where bits flow in at a constant rate, and are
removed in chunks.

The leaky bucket described here is called a constrained arrival time leaky bucket because the arrival times of all pictures
after the first are constrained to arrive at the buffer input no earlier than the difference in hypothetical encoder processing
times between that picture and the first picture. In other words, if a picture is encoded exactly seven seconds after the
first picture was encoded, then its bits are guaranteed not to start arriving in the buffer prior to seven seconds after the
bits of the first picture started arriving. It is possible to know this encoding time difference because it is sent in the
bitstream as the picture removal delay.

162 DRAFT ITU-T Rec. H.264 (2002 E)

C.2.1.1 Operation of the CAT-LB HRD

The HRD input buffer has capacity pre_dec_buffer_size[k] bits. Initially, the buffer begins empty. The lifetime in the
buffer of the coded bits associated with picture n is characterized by the arrival interval {tai(n), taf(n)} and the removal
time tr(n). The end-points of the arrival interval are known as the initial arrival time and the final arrival time.

At time tai(0) = 0, the buffer begins to receive bits at the rate bit_rate[k]. The removal time tr(0) for the first picture is
computed from the pre-decoder removal delay initial_pre_dec_removal_delay (see Buffering Period SEI Message)
associated with the buffer by the following:

tr(0) = 90,000 × initial_pre_dec_removal_delay. (C-8)

Removal times tr(1), tr(2), tr(3), …, for subsequent pictures (in transmitted order) are computed with respect to tr(0), as
follows. Let the clock tick tc be defined by

tc = num_units_in_tick ÷ time_scale (C-9)

For instance, if time_scale = 60,000 and num_units_in_tick = 1,001, then

tc = 1,001 ÷ 60,000 = 16.68333… milliseconds. (C-10)

In the HRD picture SEI message for each picture, there is a pre_dec_removal_delay syntax element. This indicates the
number of clock ticks to delay the removal of picture n after removing picture n-1. Thus, the removal time is simply

tr(n) = tr(n-1) + tc × pre_dec_removal_delay(n)(C-11)

Note that this recursion can be used to show that

tr(n) = tr(0) + tc ×∑
=

n

m 1

[pre_dec_removal_delay(m)], (C-12)

The calculation of arrival times is more complex, because of the arrival time constraint. The initial arrival time of
picture n is equal to the final arrival time of picture n-1, unless that time precedes the earliest arrival time, computed by

tai,earliest(n) = tc ×∑
=

n

m 1

[pre_dec_removal_delay(m)] (C-13)

Let b(n) be the number of bits associated with picture n. The duration of the picture arrival interval is always the time-
equivalent of the picture size in bits, at the rate bit_rate[k].

taf(n) - tai(n) ≡ te[b(n)] = b(n) ÷ bit_rate[k] (C-14)

Figure C-4 demonstrates a segment of the pre-decoder buffer fullness plot for a CAT-LB with the parameters given in
Table C-1 and picture sizes given by the first column of Table C-2. Note that Table C-2 lists for each picture the values
for many times of interest in the buffering process. In addition to quantities defined above, the second column of Table
C-2 contains te, which represents a hypothetical encoding time equal to the earliest possible initial arrival time of the
picture.

Table C-1 - Attributes of an example CAT-LB HRD

Attribute Value Units

time_scale 1 units per second

num_units_in_tick 1 units per tick

bit_rate 1000 bits per second

pre_dec_buffer_size 10 bits

initial_delay 10 seconds

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 163

Table C-2 - Picture sizes, and encoding, arrival and removal times for the example CAT-LB HRD

b te tai taf tai-te tr tr - tai tr - te

5,000 0 0 5 0 10 10 10

1,000 1 5 6 4 11 6 10

1,000 2 6 7 4 12 6 10

1,000 3 7 8 4 13 6 10

1,000 4 8 9 4 14 6 10

1,000 5 9 10 4 15 6 10

500 6 10 10.5 4 16 6 10

500 7 10.5 11 3.5 17 6.5 10

500 8 11 11.5 3 18 7 10

500 9 11.5 12 2.5 19 7.5 10

500 10 12 12.5 2 20 8 10

500 11 12.5 13 1.5 21 8.5 10

500 12 13 13.5 1 22 9 10

500 13 13.5 14 0.5 23 9.5 10

500 14 14 14.5 0 24 10 10

500 15 15 15.5 0 25 10 10

500 16 16 16.5 0 26 10 10

500 17 17 17.5 0 27 10 10

3,000 18 18 21 0 28 10 10

3,000 19 21 24 2 29 8 10

3,000 20 24 27 4 30 6 10

3,000 21 27 30 6 31 4 10

2,000 22 30 32 8 32 2 10

300 23 32 32.3 9 33 1 10

300 24 32.3 32.6 8.3 34 1.7 10

300 25 32.6 32.9 7.6 35 2.4 10

300 26 32.9 33.2 6.9 36 3.1 10

300 27 33.2 33.5 6.2 37 3.8 10

300 28 33.5 33.8 5.5 38 4.5 10

300 29 33.8 34.1 4.8 39 5.2 10

300 30 34.1 34.4 4.1 40 5.9 10

300 31 34.4 34.7 3.4 41 6.6 10

300 32 34.7 35 2.7 42 7.3 10

300 33 35 35.3 2 43 8 10

300 34 35.3 35.6 1.3 44 8.7 10

300 35 35.6 35.9 0.6 45 9.4 10

300 36 36 36.3 0 46 10 10

300 37 37 37.3 0 47 10 10

300 38 38 38.3 0 48 10 10

300 39 39 39.3 0 49 10 10

300 40 40 40.3 0 50 10 10

300 41 41 41.3 0 51 10 10

300 42 42 42.3 0 52 10 10

500 43 43 43.5 0 53 10 10

500 44 44 44.5 0 54 10 10

164 DRAFT ITU-T Rec. H.264 (2002 E)

500 45 45 45.5 0 55 10 10

500 46 46 46.5 0 56 10 10

500 47 47 47.5 0 57 10 10

500 48 48 48.5 0 58 10 10

500 49 49 49.5 0 59 10 10

500 50 50 50.5 0 60 10 10

500 51 51 51.5 0 61 10 10

500 52 52 52.5 0 62 10 10

Legend:
te Encoding time
tai Initial arrival time
taf Final arrival time
tr Removal time

Figure C-4 – Buffer fullness plot for example HRD in Table C-2 with picture sizes given in Table C-3

As can be seen from Table C-2, the initial picture is large, and is followed by five pictures at exactly the buffer arrival
rate R. This is followed by twelve pictures at half the rate, four pictures at three times the rate and one picture at twice
the rate. Following this are two segments with pictures at 30% and 50% of the rate, respectively. In Figure C-4, the time
interval from 10 seconds to 18 seconds illustrates the behaviour when the bit rate is constant and at or below the rate R.
In fact, whenever the arrival bit rate remains less than R for a time, the lower points of the fullness curve will not change.
Further, the fullness at the peak in such a segment will be proportional to the fraction of the peak rate being consumed by
the pictures. From seconds 18 to 28, we see the temporary effect of an increase in arrival rate to above R. Once those
large pictures start to exit the buffer, the bit rate of pictures leaving the buffer exceeds R, and the fullness decreases. This
process terminates at second 32, when the big pictures have exited and the series of smaller pictures starts entering the
buffer. During seconds 36-43, the 30% peak rate pictures are entering and leaving the buffer, and during seconds 43-52,
30% peak rate pictures are leaving while 50% peal rate pictures are entering. Hence the buffer fullness rises. Once 50%
peak rate pictures begin to leave, the fullness stabilizes at 50% full. Note that this pre-decoder buffer stabilizes at a
fullness that is proportional to the ratio of the short-term average bit rate to the arrival bit rate, rather than at 100%..

In general, the curve of buffer fullness vs. time is given by the following expression:

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30 35 40 45 50 55

B
its

 (/
10

00
)

Seconds

Buffer Fullness vs. Time

300% peak rate starts to enter

300% peak rate
finishes entering
and leaving

100% peak rate
entering and leaving

30% peak rate
entering
and leaving

50% peak rate entering
30% peak rate leaving

300% peak rate starts to leave

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 165

BF(t) = ∑
n

[I(taf(n) ≤ t < tr(n))×b(n) + I(tai(n) < t < taf(n))×be(t-tai(n))] (C-15)

This expression uses indicator functions I(·) with time-related logical assertions as arguments to sum only those pictures
that are completely in the buffer at time t, plus the appropriate portion of the picture currently entering the buffer, if one
is. The indicator function I(x) is ‘1’ if x is true and ‘0’ otherwise.

C.2.1.2 Low-delay operation

Low-delay operation is obtained by selecting a low value for the initial pre-decoder removal delay. This results in true
low delay through the buffer because, under normal operation, no removal delay (tr(n)-tai(n)) can exceed the initial
removal delay tr(0). To see this, consider that the maximum removal delay for picture n occurs when the initial arrival
time is equal to the earliest arrival time. Therefore, the maximum removal delay is given by tr(n) - tai,earliest(n). But,

tr(n) = tr(0) + tc ×∑
=

n

m 1

[pre_dec_removal_delay(m)],

and

tai,earliest(n) = tc ×∑
=

n

m 1

[pre_dec_removal_delay(m)],

so

tr(n) - tai,earliest(n) = tr(0). (C-16)

Thus setting an initial low delay creates a steady-state low-delay condition.

However, in low-delay operation, it is useful to be able to process the occasional large picture whose size is so large than
that it cannot be removed by its indicated removal time. Such a large picture can arise at a scene change, for example.
This would ordinarily lead to an "underflow" condition. When a large picture is encountered, the rules for removal are
relaxed to prevent this. The picture is removed at the delayed removal time, tr,ld(n, m*), given by

tr,ld(n,m*) = tr(0) + tc × m*, (C-17)

where m* is such that tr,ld(n, m*-1) < tai(n) + te[b(n)] ≤ tr,ld(n, m*). Note that the buffer must be large enough that this
large picture can be accommodated without overflow. Immediately after such a picture is received the removal time of
the next picture must be such that low-delay operation is resumed. An encoder can facilitate this by skipping a number
of pictures immediately after the large picture, if necessary.

C.2.1.3 Bitstream / packet stream constraints

The buffer must not be allowed to underflow or overflow. Furthermore, all pictures except the isolated big pictures must
be completely in the buffer before their computed removal times. Isolated big pictures are allowed to arrive later than
their computed removal times, but must still obey the overflow constraint. In CBR mode, there must be no gaps in bit
arrival.

C.2.1.3.1 Underflow

The underflow constraint, BF(t) ≥ 0 for all t, is satisfied if the final arrival time of each picture precedes its removal
time.

taf(n) ≤ tr(n) (C-18)

This puts an upper bound on the size of picture n. The picture size can be no larger than the bit-equivalent of the time
interval from the start of arrival to the removal time.

b(n) ≤ be[tr(n) - tai(n)] (C-19)

Since the initial arrival time tai(n) is in general a function of the sizes and removal delays of previous pictures, the
constraint on b(n) will vary over time as well.

166 DRAFT ITU-T Rec. H.264 (2002 E)

C.2.1.3.2 Overflow

Overflow is avoided provided the buffer fullness curve BF(t) never exceeds the buffer size B.

The constraints that the initial pre-decoder removal delay must be no larger than the time-equivalent of the buffer size,
tr(0) ≤ te(B), and that under normal operation no removal delay can exceed the initial one guarantee that no overflow
occurs in normal operation. To avoid overflow of an isolated big picture, the picture size is constrained by

b(n) ≤ be[B - tai(n)] (C-20)

C.2.1.3.3 Constant bitrate (CBR) operation

The CAT-LB model operates in constant bit rate mode if one further constraint is applied - that data must constantly
arrive at the input of the buffer. This ensures that the average rate is equal to the buffer rate R. This model behaves like
an MPEG-1 CBR model with variable frame rate. This condition is ensured if the final arrival time of picture n is no
earlier than the earliest initial arrival time of picture n+1.

taf(n) ≥ tai,earliest(n+1) = tc ×∑
=

n

m 1

[pre_dec_removal_delay(m)] (C-21)

This time constraint puts a lower bound on b(n).

C.2.1.4 Rate control considerations

An encoder employs rate control as a means to constrain the varying bit rate characteristics of the coded bitstream or
packet stream in order to produce high quality coded pictures at the target bit rate(s). A rate control algorithm may target
a variable bit rate (VBR) or a constant bit rate (CBR). It may even target both a high peak rate using a VBR scheme and
an average rate using a CBR scheme. Further, as shown in subclause C.2.2, multiple VBR rates can be targeted.

Rate control must ensure conformance with the pre-decoder buffers. This is related to the first goal of rate control, but is
not necessarily the same. In this subclause, the way the pre-decoder buffers influences rate control is discussed. In a
VBR pre-decoder buffers, the buffer must not overflow or underflow, but gaps may appear in the arrival rate. In order to
meet these constraints, the encoder must ensure that for all t, the following inequalities remain true:

0 ≤ BF(t) ≤ B, for all t. (C-22)

Using Equation D-14, this becomes:

0 ≤ ∑
n

[I(taf(n) ≤ t < tr(n))×b(n) + I(tai(n) < t < taf(n))×be(t-tai(n))] ≤ B, for all t. (C-23)

The buffer fullness B(t) is a piecewise non-decreasing function of time, with each non-decreasing interval bounded by
two consecutive removal times. Therefore, it is sufficient to guarantee the conformance at the interval endpoints; i.e. at
the removal times. In particular, if underflow is prevented at the start of an interval (just after removal of a picture), it is
completely prevented. The same holds for overflow at the end of the interval, just prior to picture removal. Therefore,
the points of interest are the removal times. In the buffer at tr

-(n) and contributing to Equation C.22 are picture n and
possibly some additional pictures up to picture m>n (with the last picture possibly only partially in the buffer). All
pictures earlier than picture n have been removed. At tr

+(n), picture n has been removed.

Thus when encoding picture n, one rate control task is to allocate bits to picture n and the others in the immediate future
in such a way that overflow is prevented at tr

-(n), and underflow is prevented at tr
+(n). Most immediately, as long as b(n)

is small enough so that te[b(n)] ≤ tr(n) - tai(n), both overflow at tr
-(n) and underflow at tr

+(n) are prevented. This is
usually a very high limit, and a rate control method will most likely further limit b(n) through its bit allocation process.

C.2.2 Multiple leaky bucket description

C.2.2.1 Schedule of a bitstream

The sequence of removal time and picture size pairs {(tr(n), b(n)), n=0,1,…} is called the schedule of a bitstream. The
schedule of a bitstream is intrinsic to the bitstream, and completely characterizes the instantaneous coding rate of the
bitstream over its lifetime. Although a bitstream may conform to VBVs with different peak bit rates and different pre-
decoded buffer sizes, the schedule of the bitstream is independent of the VBV.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 167

C.2.2.2 Containment in a leaky bucket

A leaky bucket with leak rate R1, bucket size B1, and initial bucket fullness B1–F1
 is said to contain a bitstream with

schedule {(tr(n), b(n)), n=0,1,…} if the bucket does not overflow under the following conditions. At t0, d0 bits are
inserted into the leaky bucket on top of the B1–F1 bits already in the bucket, and the bucket begins to drain at rate R1 bits
per second. If the bucket empties, it remains empty until the next insertion. At time ti, i ≥ 1, di, bits are inserted into the
bucket, and the bucket continues to drain at rate R1 bits per second. In other words, for i ≥ 0, the state of the bucket just
prior to time ti is

b0 = B1–F1 (C-24)

bi+1 = max{0, bi + di – R1(ti+1–ti)}. (C-25)

The leaky bucket does not overflow if bi + di ≤ B1 for all i ≥ 0.

Equivalently, the leaky bucket contains the bitstream if the graph of the schedule of the bitstream lies between two
parallel lines with slope R1, separated vertically by B1 bits, possibly sheared horizontally, such that the upper line begins
at F1 at time t0, as illustrated in Figure C-5. Note from Figure C-5 that the same bitstream is containable in more than
one leaky bucket. Indeed, a bitstream is containable in an infinite number of leaky buckets.

Figure C-5 – Illustration of the leaky bucket concept

If a bitstream is contained in a leaky bucket with parameters (R1,B1,F1), then when it is input with peak rate R1 to a
hypothetical reference decoder with parameters R=R1, B=B1, and F=F1, then the HRD buffer does not overflow or
underflow.

C.2.2.3 Minimum buffer size and minimum peak rate

If a bitstream is contained in two leaky buckets with parameters (R1,B1,F1) and (R2,B2,F2), then it is also contained in any
leaky bucket with parameters (R,B,F) where a) R1 ≤ R ≤ R2, b) B ≥ Bmin(R), and c) F ≥ Fmin(R) and Bmin(R) and Fmin(R) are
defined by

Bmin(R) = αBn + (1 – α)Bn+1, (C-26)

Fmin(R) = αFn + (1 – α)Fn+1, (C-27)

and

α = (Rn+1 – R) ÷ (Rn+1 – Rn). (C-28)

For R ≤ R1,

Bmin(R) = B1 + (R1 – R)T (C-29)

Fmin(R) = F1, (C-30)

t0 t1 t2
t3 t0 t1 t2

t3

B1 B2
F2
B2

0

F1
B1

0

bits bits

time time

slope R1 Q A B

168 DRAFT ITU-T Rec. H.264 (2002 E)

where T = tL-1 – t0 is the duration of the bitstream (i.e., the difference between the decoding times for the first and last
pictures in the bitstream). And for R ≥ RN,

Bmin(R) = BN (C-31)

Fmin(R) = FN . (C-32)

Thus, the leaky bucket parameters can be linearly interpolated and extrapolated.

Alternatively, when the bitstream is communicated to a decoder with buffer size B, it is decodable provided ≥ Rmin(B)
and F ≥ Fmin(B), where for Bn ≥ B ≥ Bn+1,

Rmin(B) = αRn + (1 – α)Rn+1 (C-33)

Fmin(B) = αFn + (1 – α)Fn+1 (C-34)

α = (B – Bn+1) ÷ (Bn – Bn+1). (C-35)

For B ≥ B1,

Rmin(B) = R1 – (B – B1) ÷T (C-36)

Fmin(B) = F1. (C-37)

For B ≤ BN, the stream may not be decodable.

In summary, the bitstream is guaranteed to be decodable in the sense that the HRD buffer does not overflow or
underflow, provided that the point (R,B) lies on or above the lower convex hull of the set of points (0,B1+R1T), (R1,B1),
…, (RN,BN), as illustrated in Figure C-6. The minimum start-up delay necessary to maintain this guarantee is Fmin(R) ÷ R.

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)
(RN,BN)

B
(bits)

B (bits)

TRRBB)(11 −+=

R (bits/sec)

Figure C-6 – Further illustration of the leaky bucket concept

An HRD with buffer size B and initial decoder buffer fullness F with peak input rate R shall perform the tests B ≥ Bmin(R)
and F ≥ Fmin(R), as defined above, for any conforming bitstream with LB parameters (R1,B1,F1),…,(RN,BN,FN), and shall
decode the bitstream provided that B ≥ Bmin(R) and F ≥ Fmin(R).

C.2.2.4 Encoder considerations

The encoder can create a bitstream that is contained by some given N leaky buckets, or it can simply compute N sets of
leaky bucket parameters after the bitstream is generated, or a combination of these. In the former, the encoder enforces
the N leaky bucket constraints during rate control. Conventional rate control algorithms enforce only a single leaky
bucket constraint. A rate control algorithm that simultaneously enforces N leaky bucket constraints can be obtained by
running a conventional rate control algorithm for each of the N leaky bucket constraints, and using as the current
quantisation parameter (QP) the maximum of the QP’s recommended by the N rate control algorithms.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 169

Additional sets of leaky bucket parameters can always be computed after the fact (whether rate controlled or not), from
the bitstream schedule for any given Rn, from the iteration specified in subclause C.2.2.2.

Annex D
Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard)

D.1 Introduction

This annex defines supplemental enhancement information that provides data constructs that are synchronous with the
video data content. Each sei_payload() defines PayloadType and PayloadSize parameters. This annex defines
supplemental enhancement information (SEI) that provides a data delivery mechanism construct that is delivered
synchronous with the video data content. SEI assists in the processes related to decoding or display of video. SEI is not
required for reconstructing the luma or chroma samples by a video decoder, and decoders are not required to process this
information for conformance to this Recommendation | International Standard.

170 DRAFT ITU-T Rec. H.264 (2002 E)

D.2 SEI payload syntax

sei_payload(PayloadType, PayloadSize) { Category Descriptor

if(PayloadType = = 1)
temporal_reference(PayloadSize) 7

else if(PayloadType = = 2)
clock_timestamp(PayloadSize) 7

else if(PayloadType = = 3)
panscan_rect(PayloadSize) 7

else if(PayloadType = = 4)
 buffering_period(PayloadSize) 7
else if(PayloadType = = 5)
 hrd_picture(PayloadSize) 7
else if(PayloadType = = 6)
 filler_payload(PayloadSize) 7
else if(PayloadType = = 7)
 user_data_registered_itu_t_t35(PayloadSize) 7
else if(PayloadType = = 8)
 user_data_unregistered(PayloadSize) 7
else if(PayloadType = = 9)
 random_access_point(PayloadSize) 7
else if(PayloadType = = 10)
 ref_pic_buffer_management_repetition(PayloadSize) 7
else if(PayloadType = = 11)
 spare_picture(PayloadSize) 7
else if(PayloadType = = 12)
 scene_information(PayloadSize) 7
else if(PayloadType = = 13)
 subseq_information(PayloadSize) 7
else if(PayloadType = = 14)
 subseq_layer_characteristics(PayloadSize) 7
else if(PayloadType = = 15)
 subseq_characteristics(PayloadSize) 7
else
 reserved_sei_message(PayloadSize) 7
if(!byte_aligned()) {

bit_equal_to_one 7 f(1)
while(!byte_aligned())

bit_equal_to_zero 7 f(1)
}

}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 171

D.2.1 Temporal reference SEI message syntax

temporal_reference(PayloadSize) { Category Descriptor

progressive_scan 7 u(1)
bottom_field_flag /* zero if progressive_scan is 1 */ 7 u(1)
six_reserved_one_bits 7 f(6)
temporal_ref_value 7 u(v)

}

172 DRAFT ITU-T Rec. H.264 (2002 E)

D.2.2 Clock timestamp SEI message syntax

clock_timestamp(PayloadSize) { Category Descriptor

progressive_scan 7 u(1)
bottom_field_flag /* zero if progressive_scan is 1 */ 7 u(1)
six_reserved_one_bits 7 f(6)
counting_type 7 u(5)
full_timestamp_flag 7 u(1)
discontinuity_flag 7 u(1)
count_dropped 7 u(1)
nframes 7 u(8)
if(full_timestamp_flag) {

seconds_value /* 0,…,59 */ 7 u(6)
minutes_value /* 0,…,59 */ 7 u(6)
hours_value /* 0,…,23 */ 7 u(5)
bit_count = 41

} else {
seconds_flag 7 u(1)
bit_count = 25
if(seconds_flag) {

seconds_value /* range 0,…,59 */ 7 u(6)
minutes_flag 7 u(1)
bit_count += 7
if(minutes_flag) {

minutes_value /* 0,…,59 */ 7 u(6)
hours_flag 7 u(1)
bit_count += 7
if(hours_flag) {

hours_value /* 0,…,23 */ 7 u(5)
bit_count += 5

}
}

}
while(!byte_aligned()) {

bit_equal_to_one 7 f(1)
bit_count++

}
if(PayloadSize–(bit_count>>3) > 0)

time_offset 7 i(v)
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 173

D.2.3 Pan-scan rectangle SEI message syntax

pan_scan_rect(PayloadSize) { Category Descriptor

pan_scan_rect_id 7 e(v)
pan_scan_rect_left_offset 7 e(v)
pan_scan_rect_right_offset 7 e(v)
pan_scan_rect_top_offset 7 e(v)
pan_scan_rect_bottom_offset 7 e(v)

}

D.2.4 Buffering period SEI message syntax

buffering_period(PayloadSize) { Category Mnemonic
 seq_parameter_set_id 7 ue(v)
 if(nal_hrd_flag = = 1) {
 for(k = 0; k <= pdb_count; k++)
 initial_pre_dec_removal_delay[k] 7 u(16)
 }
 if(vcl_hrd_flag = = 1) {
 for(k = 0; k <= pdb_count; k++)
 initial_pre_dec_removal_delay[k] 7 u(16)
 }
 prev_buf_period_duration 7 ue(v)
}

D.2.5 HRD picture SEI message syntax

hrd_picture(PayloadSize) Category Descriptor
 pre_dec_removal_delay 7 ue(v)

D.2.6 Filler payload SEI message syntax

filler_payload(PayloadSize) { Category Descriptor
 for(k = 0; k < PayloadSize; k++)
 filler_byte 7 f(8) = 0xFF
}

174 DRAFT ITU-T Rec. H.264 (2002 E)

D.2.7 User data registered by ITU-T Recommendation T.35 SEI message syntax

user_data_registered_itu_t_t35(PayloadSize) { Category Descriptor
 itu_t_t35_country_code 7 b(8)
 if(country_code != 0xFF)
 i = 1;
 else {
 itu_t_t35_country_code_extension_byte 7 b(8)
 i = 2;
 }
 do {
 itu_t_t35_payload_byte 7 b(8)
 i++
 } while(i < PayloadSize)
}

D.2.8 User data unregistered SEI message syntax

user_data_arbitrary(PayloadSize) { Category Descriptor
 i = 0
 do {
 user_data_arbitrary_payload_byte 7 b(8)
 i++
 } while(i < PayloadSize)
}

D.2.9 Random access point SEI message syntax

random_access_point(PayloadSize) { Category Descriptor
 preroll_count 7 ue(v)
 postroll_count 7 ue(v)
 exact_match_flag 7 u(1)
 broken_link_flag 7 u(1)
}

D.2.10 Reference picture buffer management Repetition SEI message syntax

ref_pic_buffer_management_repetition(PayloadSize) { Category Descriptor
 original_frame_num 7 u(v)
 ref_pic_buffer_management()
}

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 175

D.2.11 Spare picture SEI message syntax

spare_picture(PayloadSize) { Category Descriptor
 delta_frame_num 7 ue(v)
 num_spare_pics_minus1 7 ue(v)
 for(i = 0; i < num_spare_pics_minus1+1; i++) {
 delta_spare_frame_num 7 ue(v)
 ref_area_indicator 7 ue(v)
 if(ref_area_indicator = = 1)
 for(j = 0; j < number_of_mbs_in_pic; j++)
 ref_mb_indicator 7 u(1)
 else if(ref_area_indicator = = 2) {
 MbCnt = 0
 do {
 zero_run_length 7 ue(v)
 MbCnt = MbCnt + zero_run_length + 1
 } while(MbCnt <= MAX_MB_ADDRESS)
 }
}

D.2.12 Scene information SEI message syntax

scene_information(PayloadSize) { Category Descriptor
 scene_id 7 u(8)
 scene_transition_type 7 ue(v)
 if(scene_transition_type > 3)
 second_scene_id 7 u(8)
}

D.2.13 Sub-sequence information SEI message syntax

subseq_information(PayloadSize) { Category Descriptor
 subseq_layer_num 7 ue(v)
 subseq_id 7 ue(v)
 last_picture_flag 7 u(1)
 if(more_sei_payload_data())
 stored_frame_cnt 7 ue(v)
}

176 DRAFT ITU-T Rec. H.264 (2002 E)

D.2.14 Sub-sequence layer characteristics SEI message syntax

subseq_layer_characteristics(PayloadSize) { Category Descriptor
 do {
 average_bit_rate 7 u(16)
 average_frame_rate 7 u(16)
 } while(more_sei_payload_data())
}

D.2.15 Sub-sequence characteristics SEI message syntax

subseq_characteristics(PayloadSize) { Category Descriptor
 subseq_layer_num 7 ue(v)
 subseq_id 7 ue(v)
 duration_flag 7 u(1)
 if (duration_flag)
 subseq_duration 7 u(32)
 average_rate_flag 7 u(1)
 if (average_rate_flag) {
 average_bit_rate 7 u(16)
 average_frame_rate 7 u(16)
 }
 num_referenced_subseqs 7 ue(v)
 for (n = 0; n < num_referenced_subseqs; n++) {
 ref_subseq_layer_num 7 ue(v)
 ref_subseq_id 7 ue(v)
 }
}

D.2.16 Reserved SEI message syntax

reserved_sei_message(PayloadSize) { Category Descriptor
 for(i=0; i<PayloadSize; i++)
 reserved_sei_message_payload_byte 7 b(8)
}

D.3 SEI payload semantics

D.3.1 Temporal reference SEI message semantics

progressive_scan: This parameter indicates whether the current picture has progressive or interlaced scan timing.

bottom_field_flag: When progressive_scan is 0, this parameter indicates whether the temporal reference is for the top
(0) or bottom (1) field. Shall be 0 if progressive_scan is 1.

six_reserved_one_bits: Reserved for future backward-compatible use by ITU-T | ISO/IEC. Shall be equal to the binary
string '111111' unless and until specified otherwise by ITU-T | ISO/IEC. A decoder conforming to this Recommendation
| International Standard shall ignore the value of these bits.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 177

temporal_ref_value: This parameter indicates a number of clock ticks as a multiplier of num_units_in_tick for the
current time_scale. It is used for conveying local relative timing information.

The number of bytes used by temporal_ref_value shall remain constant for the video stream and shall be equal to
PayloadSize – 1 bytes. For a temporal_ref_value encoded using n bytes, the temporal_reference contains the remainder
of a clock tick counter modulo 256n.

D.3.2 Clock timestamp SEI message semantics

The contents of the clock timestamp SEI message specify a time_offset which indicates the display or capture time
computed as

equivalent_timestamp = ((HH * 60 + MM) * 60 + SS) * time_scale + NF * num_units_in_tick + TO, (D-1)

in units of ticks of a clock with clock frequency equal to time_scale Hz.

progressive_scan: This parameter indicates whether the current picture is in progressive or interlaced scan format.

bottom_field_flag: When progressive_scan is 0, this parameter indicates whether the temporal reference is for the top
(0) or bottom (1) field. Shall be 0 if progressive_scan is 1.

six_reserved_one_bits: Reserved for future use by ITU-T | ISO/IEC. Shall be equal to the binary string '111111'. A
decoder conforming to this Recommendation | International Standard shall ignore the value of these bits.

counting_type: A 5-bit parameter that specifies the method of dropping values of the nframes parameter as defined in
Table D-1.

Table D-1 – Definition of counting_type values

Value (binary) Interpretation

00000 no dropping of nframes count values and no use of
time_offset

00001 no dropping of nframes count values

00010 dropping of individual zero values of nframes count

00011 dropping of individual max_pps values of npictures
count

00100 dropping of the two lowest (value 0 and 1) nframes
counts when seconds_value is zero and minutes_value is
not an integer multiple of ten

00101 dropping of unspecified individual nframes count values

00110 dropping of unspecified numbers of unspecified nframes
count values

00111 - 11111 reserved

full_timestamp_flag indicates whether the nframes parameter is followed by seconds_value or seconds_flag.

discontinuity_flag indicates whether the time difference between the current value of equivalent_timestamp and the
value of equivalent_timestamp computed from the last previously-transmitted clock timestamp can be interpreted as a
true time difference. A value of 0 indicates that the difference represents a true time difference.

count_dropped indicates the skipping of a count using the counting method specified by counting_type.

nframes indicates the value of NF used to compute the equivalent_timestamp. Shall be less than

max_fps = Ceil (time_scale ÷ num_units_in_tick) (D-2)

If counting_type is '00010' and count_dropped is 1, nframes shall be 1 and the value of nframes for the last previous
picture in display order shall not be equal to 0 unless discontinuity_flag is equal to 1.

If counting_type is '00011' and count_dropped is 1, nframes shall be 0 and the value of nframes for the last previous
picture in display order shall not be equal to max_fps – 1 unless discontinuity_flag is equal to 1.

178 DRAFT ITU-T Rec. H.264 (2002 E)

If counting_type is '00100' and count_dropped is 1, nframes shall be 2 and the indicated value of SS shall be zero and the
indicated value of MM shall not be an integer multiple of ten and nframes for the last previous picture in display order
shall not be equal to 0 or 1 unless discontinuity_flag is equal to 1.

If counting_type is '00101' or '110' and count_dropped is 1, nframes shall not be equal to one plus the value of nframes
for the last previous picture in display order modulo max_fps unless discontinuity_flag is equal to 1.

seconds_flag indicates whether seconds_value is present when full_timestamp_flag is 0.

seconds_value indicates the value of SS used to compute the equivalent_timestamp. Shall not exceed 59. If not present,
the last previously-transmitted seconds_value shall be used as SS to compute the equivalent_timestamp.

minutes_flag indicates whether seconds_value is present when full_timestamp_flag is 0 and seconds_flag is 1.

minutes_value indicates the value of MM used to compute the equivalent_timestamp. Shall not exceed 59. If not
present, the last previously-transmitted minutes_value shall be used as MM to compute the equivalent_timestamp.

hours_flag indicates whether seconds_value is present when full_timestamp_flag is 0 and seconds_flag is 1 and
minutes_flag is 1.

hours_value indicates the value of HH used to compute the equivalent_timestamp. Shall not exceed 23. If not present,
the last previously-transmitted hours_value shall be used as HH to compute the equivalent_timestamp.

bit_equal_to_one is a single bit which shall be equal to 1.

time_offset indicates the value of TO used to compute the equivalent_timestamp. The number of bytes used to represent
time_offset shall be equal to PayloadSize – (bit_count >> 3), where bit_count is computed as specified in subclause
D.2.2. If time_offset is not present, the value 0 shall be used as TO to compute the equivalent_timestamp.

D.3.3 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message parameters define the coordinates of a rectangle relative to the cropping rectangle of
the picture parameter set. Each coordinate of this rectangle is defined in units of 1/16th sample spacing relative to the
luma sampling grid.

pan_scan_rect_id contains an identifying number which may be used as specified externally to identify the purpose of
the pan-scan rectangle (for example, to identify the rectangle as the area to be shown on a particular display device or as
the area that contains a particular actor in the scene).

pan_scan_rect_left_offset, pan_scan_rect_right_offset, pan_scan_rect_top_offset, and
pan_scan_rect_bottom_offset specify, as signed integer quantities in units of 1/16th sample spacing relative to the luma
sampling grid, the location of the pan-scan rectangle.

The pan-scan rectangle is defined, in units of 1/16th sample spacing relative to the luma sampling grid, as the area of the
rectangle with horizontal coordinates from 16 * cropping_rect_left + pan_scan_rect_left_offset to 16 * [16 *
(pic_width_in_mbs_minus1 + 1) – cropping_rect_right] + pan_scan_rect_right_offset – 1 and with vertical coordinates
from 16 * cropping_rect_top + pan_scan_rect_top_offset to 16 * [16 * (pic_height_in_mbs_minus1 + 1) –
cropping_rect_bottom] + pan_scan_rect_bottom_offset – 1, inclusive. If this rectangular area includes samples outside
of the cropping rectangle, the region outside of the cropping rectangle may be filled with synthesized content (such as
black video content or neutral grey video content) for display.

D.3.4 Buffering period SEI message semantics

A Buffering Period is defined as the set of pictures between two instances of the Buffering Period SEI message. The
seq_parameter_set_id indicates the sequence parameter set that contains the sequence level HRD attributes.

seq_parameter_set_id indicates the sequence parameter set that contains the sequence level HRD attributes.

initial_pre_dec_removal_delay: This syntax element represents the delay between the time of arrival in the pre-decoder
buffer of the first bit of the coded data associated with the first picture following the Buffering Period SEI message
(including all NAL data in the case that the HRD pertains to the NAL) and the time of removal of the coded data
associated with the picture from the pre-decoder buffer. It is in units of a 90 kHz clock. The
initial_pre_dec_removal_delay syntax element is used in conjunction with the pre-decoder buffers as specified in Annex
C. A value of zero is forbidden.

prev_buf_period_duration: This syntax element represents the duration of the subset of the video sequence contained
in the previous Buffering Period. The interpretation of the syntax element is as a number of clock ticks (see Annex D).
The prev_buf_period_duration syntax element is used in conjunction with the pre-decoder buffers as specified in Annex
C. A value of zero is forbidden.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 179

D.3.5 HRD picture SEI message semantics

pre_dec_removal_delay: This syntax element indicates how many clock ticks (see Annex C) to wait after removal from
the HRD pre-decoder buffer of the previous picture before removing from the buffer the picture data immediately
following the SEI message which contains the element. This value is also used to calculate an earliest possible time of
arrival of picture data into the pre-decoder buffer, as defined in Annex C.

D.3.6 Filler payload SEI message semantics

This message contains a series of PayloadSize bytes of value 0xFF, which can be discarded.

filler_byte shall be a byte having the value 0xFF.

D.3.7 User data registered by ITU-T Recommendation T.35 SEI message semantics

This message contains registered user data as specified by ITU-T Recommendation T.35.

itu_t_t35_country_code shall be a byte having a value specified as a country code by ITU-T Recommendation T.35.

itu_t_t35_country_code_extension_byte shall be a byte having a value specified as an extended country code by ITU-T
Recommendation T.35.

itu_t_t35_payload_byte shall be a byte containing user data registered as specified by ITU-T Recommendation T.35.

D.3.8 User data arbitrary SEI message semantics

This message contains arbitrary user data, the contents of which are not specified by this Recommendation | International
Standard.

user_data_arbitrary_payload_byte shall be a byte having a value not specified by this Recommendation | International
Standard.

NOTE - Users of this Recommendation | International Standard should exercise care in the use of the user data arbitrary SEI
message to avoid the carriage of data content in a form likely to conflict with the data content format of other users (e.g., avoiding
conflict by using a fixed multi-byte prefix identifier within the payload content).

D.3.9 Random access point SEI message semantics

The random access point SEI message indicates the recovery point of decoder output after starting decoding from a
random access entry point. All decoded pictures at or subsequent to the recovery point in output order are indicated to be
correct or approximately correct in content. Decoded pictures produced by starting the decoding process at the entry
point may not be correct in content until the indicated recovery point, and the decoding process starting at the entry point
and ending at the recovery point may contain references to pictures not available in the multi-picture buffer.

The entry point is indicated as a pre-roll count relative to the position of the SEI message in units of coded frame
numbers prior to the frame number of the current picture. The recovery point is indicated as a post-roll count in units of
coded pictures subsequent to the current picture at the position of the SEI message.

preroll_count indicates the entry point for the decoding process. Decoding should have started at or prior to the stored
picture having the frame number equal to the frame number of the next slice minus the preroll_count in modulo
MAX_FN arithmetic.

postroll_count indicates the recovery point of output. All decoded pictures in output order are indicated to be correct or
approximately correct in content after the stored picture having the frame number equal to the frame number of the next
slice incremented by postroll_count in modulo MAX_FN arithmetic.

exact_match_flag indicates whether decoded pictures at and subsequent to the recovery point in output order obtained
by starting the decoding process at the specified entry point shall be an exact match to the pictures that would be
produced by a decoder starting at the last prior IDR point in the NAL unit stream. The value 0 indicates that the match
may not be exact and the value 1 indicates that the match shall be exact.

If decoding starts from an entry point indicated in a random access point SEI message, all references to unavailable
stored pictures shall be inferred as references to sample values given by Y=Cb=Cr=128 (mid-level grey) for purposes of
determining the conformance of the value of exact_match_flag.

broken_link_flag indicates the presence or absence of a splicing point in the NAL unit stream at the location of the
random access point SEI message. If broken_link_flag is equal to 1, pictures produced by starting the decoding process
at the last previous IDR point may contain undesirable visual artifacts due to splicing operations and should not be

180 DRAFT ITU-T Rec. H.264 (2002 E)

displayed until the indicated random access recovery point in output order. If broken_link_flag is equal to 0, no
indication is given regarding any potential presence of visual artifacts.

If a sub-sequence information SEI message is transmitted in conjunction with a random access point SEI message in
which broken_link_flag is equal to 1 and if subseq_layer_num is 0, subseq_id should be different from the latest
subseq_id for subseq_layer_num equal to 0 that was decoded prior to the entry point. If broken_link_flag is equal to 0,
the subseq_id in sub-sequence layer 0 should remain unchanged.

A buffering period SEI message should be transmitted at the location of the random access entry point indicated in the
random access point SEI message in order to establish initialisation of the HRD buffer model.

D.3.10 Reference picture buffer management Repetition SEI message semantics

The Reference picture buffer management repetition SEI message is used to repeat memory management control
operation commands that were located earlier in decoding order.

original_frame_num identifies the picture were the repeated memory management control operation originally
occurred.

ref_pic_buffer_managament() shall contain a copy of the reference picture buffer management syntax elements of the
picture whose frame_num was original_frame_num.

D.3.11 Spare picture SEI message semantics

The spare picture SEI message indicates that certain macroblocks, called spare decoded macroblocks, in one or more
decoded stored pictures resemble the co-located macroblocks in a certain decoded picture, called the target picture, so
much that any of these spare decoded macroblocks can be used to replace a co-located incorrect decoded macroblock in
the target picture in the multi-frame buffer and in decoder output. Decoded pictures that contain spare macroblocks are
called spare pictures.

The picture that contains the next slice or data partition in decoding order is herein referred to as the current picture. The
frame_num of the current picture is herein denoted as CurrFrameNum.

delta_frame_num identifies the target picture whose spare pictures and macroblocks are specified later in the message.
Let TargetFrameNum be the frame_num of the target picture, and the target picture is the stored picture having the
TargetFrameNum. TargetFrameNum is calculated as follows

TargetFrameNum = CurrFrameNum – delta_frame_num
if(TargetFrameNum < 0)
 TargetFrameNum = MAX_FN + TargetFrameNum (D-3)

num_spare_pics_minus1 specifies the number of pictures which contain spare picture or macroblocks for the target
picture.

delta_spare_frame_num specifies to which spare picture the following spare picture information in the current loop
count belongs. For the first spare picture of the message, CandidateSpareFrameNum is equal to TargetFrameNum – 1 if
TargetFrameNum is greater than 0 and MAX_FN – 1 otherwise. For later spare pictures, CandidateSpareFrameNum is
the SpareFrameNum of the previous loop round minus 1 if SpareFrameNum is greater than 0 and MAX_FN – 1
otherwise. For each loop round, SpareFrameNum is calculated as follows:

SpareFrameNum = CandidateSpareFrameNum – delta_spare_frame_num
if(SpareFrameNum < 0)
 SpareFrameNum = MAX_FN + SpareFrameNum (D-4)

ref_area_indicator specifies how the locations of spare macroblocks are coded. ref_area_indicator 0 indicates that all
macroblocks of the spare picture are spare macroblocks.. ref_area_indicator 1 indicates an uncompressed spare
macroblock map. ref_area_indicator 2 indicates a compressed spare macroblock map. A spare macroblock map consists
of flags for each macroblock location of a picture. A flag shall be 0 if the macroblock location in the spare picture is a
spare macroblock and 1 otherwise.

If ref_area_indicator is 1, there is a ref_mb_indicator for each macroblock address of the spare macroblock map in
raster scan order. ref_mb_indicator 0 indicates that the macroblock is a spare macroblock, and ref_mb_indicator 1
indicates that the macroblock is not a spare macroblock.

If ref_area_indicator is 2, a spare macroblock map between a spare picture and the target picture is compressed. The
coded macroblock map for loop_count equal to 0 is the spare macroblock map between the target picture and the first
spare picture. A coded macroblock map for loop_count greater than 0 is generated by applying an exclusive or operation
between the previous spare macroblock map and the current spare macroblock map. The coded macroblock map is

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 181

scanned in counter-clockwise box-out order as specified in subclause 8.3.4.1. The number of consecutive zeros in the
scanning order is indicated in zero_run_length.

D.3.12 Scene information SEI message semantics

A scene is herein defined as a set of pictures in decoding order captured with one camera. The scene information SEI
message is used to label scenes with identifiers. The message concerns the next slice or data partition in decoding order.

scene_id: Pictures in a scene shall share the same value of scene_id. Consecutive scenes in decoding order should not
have the same value of scene_id. If the next slice or data partition in decoding order belongs to a picture that includes
contents from two scenes, scene_id is the scene identifier of the former scene in decoding order.

The following values of scene_transition_type are valid:

Table D-2 – Scene transition types.

Value Description
0 No transition
1 Fade-out
2 Fade-in
3 Unspecified transition from or to constant color
4 Dissolve
5 Wipe
6 Unspecified mixture of two scenes
Other values Reserved

If scene_transition_type is greater than 3, the next slice or data partition in decoding order belongs to a picture that
includes contents from two scenes.

second_scene_id is present if the next slice or data partition in decoding order belongs to a picture that includes contents
from two scenes. second_scene_id is the scene identifier of the latter scene in decoding order.

D.3.13 Sub-sequence information SEI message semantics

The sub-sequence information SEI message is used to indicate the position of a picture in data dependency hierarchy that
consists of sub-sequence layers and sub-sequences.

A sub-sequence layer contains a subset of the coded pictures in a coded data stream. Sub-sequence layers are numbered
with non-negative integers. A layer having a larger layer number is a higher layer than a layer having a smaller layer
number. The layers are ordered hierarchically based on their dependency on each other so that a layer does not depend on
any higher layer and may depend on lower layers. In other words, layer 0 is independently decodable, pictures in layer 1
may be predicted from layer 0, pictures in layer 2 may be predicted from layers 0 and 1, etc. The subjective quality
increases along with the number of decoded layers.

A sub-sequence is a set of coded pictures within a sub-sequence layer. A picture shall reside in one sub-sequence layer
and in one sub-sequence only. A sub-sequence shall not depend on any other sub-sequence in the same or in a higher
sub-sequence layer. A sub-sequence in layer 0 can be decoded independently of any other sub-sequences and previous
long-term reference pictures.

The sub-sequence information SEI message concerns the next slice or data partition in decoding order. The picture which
the next slice or data partition belongs to is herein referred to as the target picture.

subseq_layer_num indicates the sub-sequence layer number of the target picture.

subseq_id identifies the sub-sequence within a layer. Consecutive sub-sequences within a particular layer in decoding
order shall have a different subseq_id from each other.

last_picture_flag equal to 1 signals that the target picture is the last picture of the sub-sequence (in decoding order).

stored_frame_cnt is 0 for the first stored picture of the sub-sequence. For each coded frame belonging to the sub-
sequence in decoding order, stored_frame_cnt shall be incremented by 1, in modulo MAX_FN operation, relative to the
previous stored frame that belongs to the sub-sequence.

D.3.14 Sub-sequence layer characteristics SEI message semantics

The sub-sequence layer characteristics SEI message indicates the characteristics of sub-sequence layers.

182 DRAFT ITU-T Rec. H.264 (2002 E)

A pair of average bit rate and average frame rate characterizes each sub-sequence layer. The first pair of average bit rate
and average frame rate signals the characteristics of sub-sequence layer 0. The second pair, if present, signals the
characteristics of sub-sequence layers 0 and 1 jointly. Each pair in decoding order signals the characteristics for a range
of sub-sequence layers from layer number 0 to the layer number that is incremented by one from the previous upper limit
of layer numbers. The values are in effect from the point they are decoded until an update of the values is decoded.

average_bit_rate gives the average bit rate in units of 1000 bits per second. All NAL units in the range of sub-sequence
layers specified above are taken into account in the calculation. The average bit rate is calculated according to the
decoding time of the NAL units. Value zero means an undefined bit rate.

average_frame_rate gives the average frame rate in frames/(256 seconds) of the sub-sequence layer. Value zero
indicates an undefined frame rate.

D.3.15 Sub-sequence characteristics SEI message semantics

The sub-sequence characteristics SEI message indicates the characteristics of a sub-sequence. It also indicates inter
prediction dependencies between sub-sequences.

This message applies to the next sub-sequence in decoding order having the indicated subseq_layer_num and
subseq_id. This sub-sequence is herein called the target sub-sequence.

duration_flag equal to zero indicates that the duration of the target sub-sequence is not specified.

subseq_duration indicates the duration of the target sub-sequence in clock ticks of a 90-kHz clock.

average_rate_flag equal to zero indicates that the average bit rate and the average frame rate of the target sub-sequence
are unspecified.

average_bit_rate gives the average bit rate in (1000 bits)/second of the target sub-sequence. All NAL units of the target
sub-sequence are taken into account in the calculation. The average bit rate is calculated according to the decoding time
of the NAL units.

average_frame_rate gives the average frame rate in frames/(256 seconds) of the current sub-sequence.

num_referenced_subseqs gives the number of sub-sequences which contain pictures that are used as reference pictures
for inter prediction in the pictures of the target sub-sequence.

ref_subseq_layer_num and ref_subseq_id identify a sub-sequence that contains pictures that are used as reference
pictures for inter prediction in the pictures of the target sub-sequence.

D.3.16 Reserved SEI message semantics

This message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. Encoders conforming
to this Recommendation | International Standard shall not send reserved SEI messages until and unless the use of such
messages has been specified by ITU-T | ISO/IEC. Decoders conforming to this Recommendation | International
Standard that encounter reserved SEI messages shall discard their content without effect on the decoding process, except
as specified in future Recommendations | International Standards defined by ITU-T | ISO/IEC.

reserved_sei_message_payload_byte is a byte reserved for future use by ITU-T | ISO/IEC.

Annex E
Video usability information

(This annex forms an integral part of this Recommendation | International Standard)

E.1 Introduction

This Annex specifies those parts of the sequence parameter set and the picture parameter set that are not required for
determining the decoded values of samples. The parameters specified in this annex can be used to facilitate the use of
the decoded pictures or facilitate the resource allocation of a decoder by restricting certain video parameters beyond
those limits specified by Annex A. Decoders are not required to process VUI sequence parameters for conformance to
this Recommendation | International Standard.

For each of the parameters of this Annex, default values are defined in the semantics subclause. The syntax includes
flags that allow avoiding the signalling of groups of parameters. If a specific group of parameters is not coded, the
default values for the parameters become effective.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 183

E.2 VUI syntax

E.2.1 VUI sequence parameters syntax

vui_seq_parameters() { Category Descriptor
 aspect_ratio_info_flag 0 u(1)
 if(aspect_ratio_info_flag) {
 aspect_ratio_info 0 b(8)
 if(aspect_ratio_info = = “Extended SAR”) {
 sar_width 0 u(8)
 sar_height 0 u(8)
 }
 }
 video_signal_type_flag 0 u(1)
 if(video_signal_type_flag) {
 video_format 0 u(3)
 video_range_flag 0 u(1)
 colour_description_flag 0 u(1)
 if(colour_description_flag) {
 colour_primaries 0 b(8)
 transfer_characteristics 0 b(8)
 matrix_coefficients 0 b(8)
 }
 }
 chroma_location_flag 0 u(1)
 if (chroma_location_flag) {
 chroma_location_frame 0 e(v)
 chroma_location_field 0 e(v)
 }
 timing_information_flag
 if(timing_information_flag) {
 num_units_in_tick 0 u(32)
 time_scale 0 u(32)
 fixed_frame_rate_flag 0 u(1)
 }
 nal_hrd_flag 0 u(1)
 if(nal_hrd_flag = = 1)
 hrd_parameters()
 vcl_hrd_flag 0 u(1)
 if(vcl_hrd_flag = = 1)
 hrd_parameters()
 if((nal_hrd_flag = = 1 | | (vcl_hrd_flag = = 1)) {
 low_delay_hrd 0 u(1)
 removal_time_tolerance 0 ue(v)
 }
 bitstream_restriction_flag 0 u(1)
 if(bitstream_restriction_flag) { 0 u(1)
 motion_vectors_over_pic_boundaries_flag 0 u(1)
 minimum_compression_per_pic_reversed 0 e(v)

184 DRAFT ITU-T Rec. H.264 (2002 E)

 minimum_compression_per_macroblock_reversed 0 e(v)
 log2_maximum_mv_length_vertical 0 e(v)
 log2_maximum_mv_length_horizontal 0 e(v)
 }
}

E.2.2 HRD parameters syntax

hrd_parameters() { /* coded picture buffer parameters */
 pdb_cnt 0 ue(v)
 bit_rate_scale 0 u(4)
 coded_pic_buffer_size_scale 0 u(4)
 for(k=1; k<=pdb_cnt; k++) {
 bit_rate_value[k] 0 ue(v)
 coded_pic_buffer_size_value[k] 0 ue(v)
 vbr_cbr_flag[k] 0 u(1)
 }
}

E.2.3 VUI picture parameters syntax

vui_pic_parameters() { Category Descriptor
 frame_cropping_flag 1 ue(v)
 if(frame_cropping_flag) {
 frame_cropping_rect_left_offset 1 ue(v)
 frame_cropping_rect_right_offset 1 ue(v)
 frame_cropping_rect_top_offset 1 ue(v)
 frame_cropping_rect_bottom_offset 1 ue(v)
 }
}

E.3 VUI semantics

E.3.1 VUI sequence parameters semantics

aspect_ratio_info_flag: A flag that, when 1, signals the presence of the aspect_ratio_info. If the flag is 0, then the
following default values shall apply: aspect_ratio_info = 0.

aspect_ratio_info is an eight-bit integer which defines the value of sample aspect ratio. Table E-1 shows the meaning of
the code. If aspect_ratio_info indicates Extended SAR, sample_aspect_ratio is represented by sar_width and sar_height.
The sar_width and sar_height shall be relatively prime. If aspect_ratio_info is zero or if either sar_width or sar_height
are zero, the sample aspect ratio shall be considered unspecified or specified externally.

Table E-1 – Meaning of sample aspect ratio

aspect_ratio_info Sample aspect ratio

0000 0000 Undefined or specified externally
0000 0001 1:1 (“Square”)
0000 0010 12:11 (625-type for 4:3 picture)
0000 0011 10:11 (525-type for 4:3 picture)
0000 0100 16:11 (625-type stretched for 16:9 picture)
0000 0101 40:33 (525-type stretched for 16:9 picture)

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 185

0000 0110 24:11 (Half-wide 4:3 for 625)
0000 0111 20:11 (Half-wide 4:3 for 525)
0000 1000 32:11 (Half-wide 16:9 for 625)
0000 1001 80:33 (Half-wide 16:9 for 525)
0000 1010 18:11 (2/3-wide 4:3 for 625)
0000 1011 15:11 (2/3-wide 4:3 for 525)
0000 1100 24:11 (2/3-wide 16:9 for 625)
0000 1101 20:11 (2/3-wide 16:9 for 525)
0000 1110 16:11 (3/4-wide 4:3 for 625)
0000 1111 40:33 (3/4-wide 4:3 for 525)
0001 0000 64:33 (3/4-wide 16:9 for 625)
0001 0001 160:99 (3/4-wide 16:9 for 525)

0001 0010 to 1111 1110 Reserved
1111 1111 Extended SAR

sar_width is an 8-bit unsigned integer which indicates the horizontal size of sample aspect ratio. A zero value is
forbidden.

sar_height is an 8-bit unsigned integer which indicates the vertical size of sample aspect ratio. A zero value is forbidden.

video_signal_type_flag: A flag that, when 1, signals the presence of video signal information. If
video_signal_type_flag is 0, then the following default values shall apply: video_format = ‘101’, video_range = 0,
colour_description = 0.

video_format: This is a three bit integer indicating the representation of the pictures before being coded in accordance
with this Recommendation | International Standard. Its meaning is defined in Table E-2. If the video_signal_type() is not
present in the bitstream then the video format may be assumed to be “Unspecified video format”.

Table E-2 – Meaning of video_format

video_format Meaning

000 Component
001 PAL
010 NTSC
011 SECAM
100 MAC
101 Unspecified video format
110 Reserved
111 Reserved

video_range_flag indicates the nominal black level and range of the luminance and chrominance signals as derived from
E’Y, E’PB, and E’PR analogue component signals as follows:

If video_range_flag=0:
 Y = round(219 * E’Y + 16)
 Cb = round(224 * E’PB + 128)
 Cr = round(224 * E’PR + 128)

If video_range_flag=1:
 Y = round(255 * E’Y)
 Cb = round(255 * E’PB + 128)
 Cr = round(255 * E’PR + 128)

If video_signal_type_flag is zero, video_range shall be inferred to have value 0 (a nominal range of Y from 16 to 235).

186 DRAFT ITU-T Rec. H.264 (2002 E)

colour_description_flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics and
matrix_coefficients in the bitstream.

colour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined in
Table E-3.

Table E-3 – Colour Primaries

Value Primaries

0 Reserved
1 ITU-R Recommendation BT.709

primary x y
green 0,300 0,600
blue 0,150 0,060
red 0,640 0,330
white D65 0,3127 0,3290

2 Unspecified video
Image characteristics are unknown.

3 Reserved
4 ITU-R Recommendation BT.470-2 System M

primary x y
green 0,21 0,71
blue 0,14 0,08
red 0,67 0,33
white C 0,310 0,316

5 ITU-R Recommendation BT.470-2 System B, G
primary x y
green 0,29 0,60
blue 0,15 0,06
red 0,64 0,33
white D65 0,3127 0,3290

6 SMPTE 170M
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

7 SMPTE 240M (1987)
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

8 Generic film (colour filters using Illuminant C)
primary x y
green 0,243 0,692 (Wratten 58)
blue 0,145 0,049 (Wratten 47)
red 0,681 0,319 (Wratten 25)

9-255 Reserved

If video_signal_type_flag is zero or colour_description is zero, the chromaticity is unspecified or specified externally.

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source picture,
and is defined in Table E-4.

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 187

Table E-4 – Transfer Characteristics

Value Transfer Characteristic

0 Reserved
1 ITU-R Recommendation BT.709

V = 1,099 Lc0,45 - 0,099
 for 1 ≥ Lc ≥ 0,018
V = 4,500 Lc
 for 0,018 > Lc ≥ 0

2 Unspecified video
Image characteristics are unknown.

3 Reserved
4 ITU-R Recommendation BT.470-2 System M

Assumed display gamma 2,2
5 ITU-R Recommendation BT.470-2 System B, G

Assumed display gamma 2,8
6 SMPTE 170M

V = 1,099 Lc0,45 - 0,099
 for 1 ≥ Lc ≥ 0,018
V = 4,500 Lc
 for 0,018 > Lc ≥ 0

7 SMPTE 240M (1987)
V = 1,1115 Lc0,45 - 0,1115
 for Lc≥ 0,0228
V = 4,0 Lc
 for 0,0228> Lc

8 Linear transfer characteristics
i.e. V = Lc

9 Logarithmic transfer characteristic (100:1 range)
V = 1.0 - log10(Lc)/2
 for 1= Lc = 0.01
V = 0.0
 for 0.01> Lc

10 Logarithmic transfer characteristic (316.22777:1 range)
V = 1.0 - log10(Lc)/2.5
 for 1 = Lc = 0.0031622777
V = 0.0
 for 0.0031622777 > Lc

11-255 Reserved

If video_signal_type_flag is zero or colour_description is zero, the transfer characteristics are unspecified or are
specified externally.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and chrominance
signals from the green, blue, and red primaries, as specified in Table E-5.

Using this table:

E’Y is analogue with values between 0 and 1
E’R, E’G, and E’B are analogue with values between 0 and 1

188 DRAFT ITU-T Rec. H.264 (2002 E)

E’PB and E’PR are analogue between the values -0,5 and 0,5
White is defined as E’R = E’G = E’B = 1
White equivalently given by E’Y = 1, E’PB = 0, E’PR = 0
E’Y = KR * E’R + (1 – KR – KB) * E’G + KB * E’B
E’PB = 0.5(E’R – E’Y)÷(1-KR)
E’PB = 0.5 (E’B – E’Y)÷(1-KB)

Table E-5 – Matrix Coefficients

Value Matrix

0 Reserved
1 ITU-R Recommendation BT.709

KG = 0,7152; KR = 0,2126
2 Unspecified video

Image characteristics are unknown.
3 Reserved
4 FCC

KG = 0,59; KR =0,30
5 ITU-R Recommendation BT.470-2 System B, G:

KG = 0,587; KR = 0,299
6 SMPTE 170M

KG = 0,587; KR = 0,299
7 SMPTE 240M (1987)

KG = 0,701; KR = 0,212
8-255 Reserved

If video_signal_type_flag is zero or colour_description is zero, the matrix coefficients are assumed to be undefined or
specified externally.

chroma_location_flag: A flag that, when 1, signals the presence of the chroma location information. If the flag is 0,
then the following default values shall apply: chroma_location_frame = 0, chroma_location_field = 0.

chroma_location_frame specifies the 4:2:0 sampling structure according to Table E-6 and Figure E-1.

Table E-6 – Chroma Sampling Structure Frame

Value Sampling Structure

0 undefined
1 Frame according to Figure E-1 Chroma Sample Mode 1

2 Frame according to Figure E-1 Chroma Sample Mode 2

3 Frame according to Figure E-1 Chroma Sample Mode 3

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 189

Luma Sample

Chroma Sample Mode 1

Chroma Sample Mode 2

Chroma Sample Mode 3,
co-located with Luma

Figure E-1 – Luma and chroma sample types

chroma_location_field specifies the 4:2:0 sampling structure according to table E-7 and Figure E-2.

Table E-7 – Chroma Sampling Structure Frame

Value Sampling Structure

0 undefined
1 Frame according to Figure E-2 Chroma Sample Mode 1

2 Frame according to Figure E-2 Chroma Sample Mode 2

3 Frame according to Figure E-2 Chroma Sample Mode 3

Top Field Bottom Field Luma Sample

Chroma Sample Mode 1

Chroma Sample Mode 2 in bottom field,
 co-located with Luma

Chroma Sample Mode 3 in top field,
co-located with Luma

Chroma Sample Mode 2 in top field

Chroma Sample Mode 3 in bottom field

Figure E-2 – Luma and chroma association

190 DRAFT ITU-T Rec. H.264 (2002 E)

timing_information_flag: A flag that, when 1, signals the presence of time unit information. If
timing_information_flag is set to 0, then the following default values shall apply: num_units_in_tick = 0, time_scale = 0,
fixed_frame_rate = 0.

num_units_in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to
one increment of a clock tick counter. A clock tick is the minimum interval of time that can be represented in the coded
data. For example, if the clock frequency of a video signal is (30 000) ÷ 1001 Hz, time_scale may be 30 000 and
num_units_in_tick may be 1001. If num_units_in_tick is 0, the duration of the clock tick is unspecified.

time_scale is the number of time units which pass in one second. For example, a time coordinate system that measures
time using a 27 MHz clock has a time_scale of 27 000 000. If time_scale is 0, the duration of the clock tick specified
above is unspecified.

fixed_frame_rate_flag: A bit that, if equal to 1, indicates that the temporal distance between the HRD output times of
any two consecutive frames or fields in output order as defined in Annex C is a constant. If equal to 0, the temporal
distances between HRD output times of consecutive frames or fields in output order as defined in Annex C may not be
constant.

nal_hrd_flag: If nal_hrd_flag == ‘1’, the multiplexed NAL and VCL stream complies with a hypothetical reference
decoder (HRD) as specified in Annex C. In this case, the HRD parameters follow the nal_hrd_flag in the sequence
parameter set syntax. If nal_hrd_flag == ‘0’, the multiplexed NAL and VCL stream is not guaranteed to comply with an
HRD. No default values are specified.

NOTE - If nal_hrd_flag == 0 the maximum buffer sizes and bit rates specified in Annex A apply.

vcl_hrd_flag: If vcl_hrd_flag == ‘1’, the VCL bitstream complies with a hypothetical reference decoder (HRD) as
specified in Annex C. In this case, the HRD parameters follow the vcl_hrd_flag in the sequence parameter set syntax. If
vcl_hrd_flag == ‘0’, the VCL bitstream is not guaranteed to comply with an HRD.

NOTE - If vcl_hrd_flag == 0 the maximum buffer sizes and bit rates specified in Annex A apply.

removal_time_tolerance: This syntax element indicates the number of clock ticks (see Annex C) of deviation allowed
between the pre-decoder buffer removal times (see subclauses C.2.5 and C.3.5) and the accumulated Buffering Period
capture time (see subclauses C.2.4 and C.3.4). It is encoded as a universal VLC, with all values allowed. A value of ‘0’
implies that, at each measurement point (i.e. each picture preceding a Buffering Period SEI message), the removal time
shall exactly match the capture time.

bitstream_restriction_flag: A flag that, when 1, signals the presence of bitstream restriction information. If
bitstream_restriction_flag is set to 0, then the following default values shall apply:
motion_vectors_over_pic_boundaries_flag = 1, minimum_compression_per_pic_reversed = 4,
minimum_compression_per_macroblock_reversed = 1, log2_maximum_mv_length_vertical = 16,
log2_maximum_mv_length_horizontal = 16.

motion_vectors_over_pic_boundaries_flag equal to 0 indicates that no motion vector refers to samples outside the
picture boundaries. motion_vectors_over_pic_boundaries_flag equal to 1 indicates that motion vectors may refer to
samples outside the picture boundaries.

minimum_compression_per_pic_reversed and minimum_compression_per_macroblock_reversed advise the
decoder about the minimum compression ratio (corresponding to a maximum coded picture or macroblock size
respectively). A value of n for either of the two indicates a minimum compression ratio of 1:n. Annex A defines the
numbering range for both values.

log2_maximum_mv_length_vertical and log2_maximum_mv_length_horizontal indicate the maximum value of the
absolute of a non-predicted vertical or horizontal motion vector component, in units of either ¼ or 1/8 sample, depending
on the value of motion_vector_resolution. A value of n asserts that no absolute value of a motion vector component is
bigger than 2**n ¼ pel or 1/8th pel units. Note: the high default value is restricted in Annex A for some profile/level
combinations. Furthermore, the maximum vector length is restricted by the picture size.

E.3.2 HRD parameters semantics

pdb_cnt: This syntax element indicates the number of pre-decoder buffers (PBDs) in the HRD. A value of pdb_cnt
equal to '0' is not allowed.

bit_rate_scale: Together with bit_rate_value[k], this syntax element defines the maximum input bit rate of the k-th PDB
in an HRD.

bit_rate_value[k]: Together with bit_rate_scale, this syntax element defines the maximum input bit rate of the k-th PDB
in an HRD. The actual bit rate in bits per second is given by:

bit_rate[k] = bit_rate_value[k] * 2(6 + bit_rate_scale). (E-1)

 DRAFT ISO/IEC 14496-10 : 2002 (E)

 DRAFT ITU-T Rec. H.264 (2002 E) 191

coded_pic_buffer_size_value is used together with coded_pic_buffer_size_scale[k] to define the maximum input bit
rate of the k-th PDB in an HRD.

coded_pic_buffer_size_scale[k] is used together with coded_pic_buffer_size_value to define the pre-decoder buffer size
of the k-th PDB in an HRD. The actual buffer size in bits is given by

coded_pic_buffer_size[k] = coded_pic_buffer_size_value[k] * 2(4 + coded_pic_buffer_size_scale). (E-2)

vbr_cbr_flag: If equal to ‘0’, this syntax element indicates that the pre-decoder buffer operates in variable bit rate
(VBR) mode. If equal to ‘1’, it indicates constant bit rate (CBR) operation.

low_delay_hrd: If low_delay_hrd is equal to ‘0’, the HRD operates in delay-tolerant mode. If low_delay_hrd is equal to
‘1’, the HRD operates in low-delay mode. In low-delay mode, only one HRD buffer may be selected and big pictures
which violate the HRD removal time rules at the pre-decoder buffer are permitted. It is expected that such big pictures
occur only occasionally, but not mandatory.

E.3.3 VUI picture parameters semantics

frame_cropping_flag when 1, signals the presence of bitstream restriction information. If frame_cropping_flag is set to
0, then the following default values shall apply frame_cropping_rect_left = 0, frame_cropping_rect_right = 0,
frame_cropping_rect_top = 0, frame_cropping_rect_bottom = 0.

frame_cropping_rect_left, frame_cropping_rect_right, frame_cropping_rect_top, frame_cropping_rect_bottom
define the area of the luma picture internal array which shall be the output of the decoding process. The decoded values
of these offsets consist of non-negative integer values, and the output of the decoding process is defined as the area
within the rectangle containing luma samples with horizontal coordinates from cropping_rect_left to
16*(pic_width_in_mbs_minus1 + 1)-(cropping_rect_right + 1) and with vertical coordinates from cropping_rect_top
to 16*(pic_height_in_mbs_minus1 + 1)-(cropping_rect_bottom + 1), inclusive.

	Foreword
	0 Introduction
	0.0 Prolog
	0.1 Purpose
	0.2 Application
	0.3 Profiles and levels
	0.4 Overview of the syntax
	0.4.1 Temporal processing
	0.4.2 Coding interlaced video
	0.4.3 Macroblocks and motion segmentations
	0.4.4 Spatial redundancy reduction

	1 Scope
	2 Normative references
	3 Definitions
	4 Abbreviations
	5 Conventions
	5.1 Arithmetic operators
	5.2 Logical operators
	5.3 Relational operators
	5.4 Bit-wise operators
	5.5 Assignment
	5.6 Functions

	6 Source coder
	6.1 Picture formats
	6.2 Spatial subdivision of a picture into macroblocks
	6.3 Calculation of the macroblock address
	6.4 Assignment of symbols within a macroblock

	7 Syntax and semantics
	7.1 Method of describing the syntax in tabular form
	7.2 Definitions of functions and descriptors
	7.3 Syntax in tabular form
	7.3.1 NAL unit syntax
	7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax
	7.3.2.1 Sequence parameter set RBSP syntax
	7.3.2.2 Picture parameter set RBSP syntax
	7.3.2.3 Supplemental enhancement information RBSP syntax
	7.3.2.3.1 Supplemental enhancement information message syntax

	7.3.2.4 Picture delimiter RBSP syntax
	7.3.2.5 Filler data RBSP syntax
	7.3.2.6 Slice layer RBSP syntax
	7.3.2.7 Data partition RBSP syntax
	7.3.2.7.1 Data partition A RBSP syntax
	7.3.2.7.2 Data partition B RBSP syntax
	7.3.2.7.3 Data partition C RBSP syntax

	7.3.2.8 RBSP trailing bits syntax
	7.3.2.9 RBSP slice trailing bits syntax

	7.3.3 Slice header syntax
	7.3.3.1 Reference index reordering syntax
	7.3.3.2 Prediction weight table syntax
	7.3.3.3 Reference picture buffer management syntax

	7.3.4 Slice data syntax
	7.3.5 Macroblock layer syntax
	7.3.5.1 Macroblock prediction syntax
	7.3.5.2 Sub macroblock prediction syntax
	7.3.5.3 Residual data syntax
	7.3.5.3.1 Residual 4x4 block CAVLC syntax
	7.3.5.3.2 Residual 4x4 block CABAC syntax

	7.4 Semantics
	7.4.1 NAL unit semantics
	7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
	7.4.2.1 Sequence parameter set RBSP semantics
	7.4.2.2 Picture parameter set RBSP semantics
	7.4.2.3 Supplemental enhancement information RBSP semantics
	7.4.2.3.1 Supplemental enhancement information message semantics

	7.4.2.4 Picture delimiter RBSP semantics
	7.4.2.5 Filler data RBSP semantics
	7.4.2.6 Slice layer RBSP semantics
	7.4.2.7 Data partition RBSP semantics
	7.4.2.7.1 Data partition A RBSP semantics
	7.4.2.7.2 Data partition B RBSP semantics
	7.4.2.7.3 Data partition C RBSP semantics

	7.3.2.8 RBSP trailing bits semantics
	7.3.2.9 RBSP slice trailing bits semantics

	7.4.3 Slice header semantics
	7.4.3.1 Reference index reordering semantics
	7.4.3.2 Reference picture buffer management semantics
	7.4.3.3 Prediction weight table semantics

	7.4.4 Slice data semantics
	7.4.5 Macroblock layer semantics
	7.4.5.1 Macroblock prediction semantics
	7.4.5.2 Sub macroblock prediction semantics
	7.4.5.3 Residual data semantics
	7.4.5.3.1 Residual 4x4 block CAVLC semantics
	7.4.5.3.2 Residual 4x4 block CABAC semantics

	8 Decoding process
	8.1 Ordering of decoding process
	8.2 NAL unit decoding
	8.2.1 NAL unit delivery and decoding order
	8.2.2 Parameter set decoding

	8.3 Slice decoding
	8.3.1 Detection of coded picture boundaries
	8.3.2 Picture order count
	8.3.2.1 Picture order count type 0
	8.3.2.2 Picture order count type 1

	8.3.3 Decoder process for redundant slices
	8.3.4 Specification of macroblock allocation map
	8.3.4.1 Allocation order for box-out
	8.3.4.2 Allocation order for raster scan
	8.3.4.3 Allocation order for wipe
	8.3.4.4 Allocation order for macroblock level adaptive frame and field coding

	8.3.5 Data partitioning
	8.3.6 Decoder process for management and use of the reference picture buffer
	8.3.6.2 Picture Numbering
	8.3.6.3 Default index orders
	8.3.6.3.1 General
	8.3.6.3.2 Default index order for P and SP slices in frame-structured pictures

	8.3.6.4 Changing the default index orders
	8.3.6.4.1 General

	8.3.6.5 Overview of decoder process for reference picture buffer management
	8.3.6.6 Sliding window reference picture buffer management
	8.3.6.7 Adaptive Memory Control reference picture buffer management
	8.3.6.7.1 General

	8.3.6.8 Error resilience with reference picture buffer management

	8.3.6.9 Decoding process for macroblock level frame/field adaptive coding

	8.4 Motion compensation
	8.4.1 Prediction of vector components
	8.4.1.1 Median prediction
	8.4.1.2 Directional segmentation prediction
	8.4.1.3 Motion vector for a skip mode macroblock
	8.4.1.4 Chroma vectors

	8.4.2 Fractional sample accuracy
	8.4.2.1 Quarter sample luma interpolation
	8.4.2.2 One eighth sample luma interpolation
	8.4.2.3 Chroma interpolation

	8.5 Intra Prediction
	8.5.1 Intra Prediction for 4x4 luma block in Intra_4x4 macroblock type
	8.5.1.1 Mode 0: vertical Prediction
	8.5.1.2 Mode 1: horizontal prediction
	8.5.1.3 Mode 2: DC prediction
	8.5.1.4 Mode 3: diagonal down/left prediction
	8.5.1.5 Mode 4: diagonal down/right prediction
	8.5.1.6 Mode 5: vertical-left prediction
	8.5.1.7 Mode 6: horizontal-down prediction
	8.5.1.8 Mode 7: vertical-right prediction
	8.5.1.9 Mode 8: horizontal-up prediction

	8.5.2 Intra prediction for luma block in Intra_16x16 macroblock type
	8.5.2.1 Mode 0: vertical prediction
	8.5.2.2 Mode 1: horizontal prediction
	8.5.2.3 Mode 2: DC prediction
	8.5.2.4 Mode 3: plane prediction

	8.5.3 Prediction in intra coding of chroma blocks
	8.5.3.1 Mode 0: vertical prediction
	8.5.3.2 Mode 1: horizontal prediction
	8.5.3.3 Mode 2: DC prediction
	8.5.3.4 Mode 3: plane prediction

	8.6 Transform coefficient decoding and picture construction prior to deblocking
	8.6.1 Zig-zag scan
	8.6.2 Scaling and transformation
	8.6.2.1 Luma DC coefficients in Intra 16x16 macroblock
	8.6.2.2 Chroma DC coefficients
	8.6.2.3 Residual 4x4 blocks

	8.6.3 Adding decoded samples to prediction with clipping

	8.7 Deblocking Filter
	8.7.1 Content dependent boundary filtering strength
	8.7.2 Thresholds for each block boundary
	8.7.3 Filtering of edges with Bs < 4
	8.7.4 Filtering of edges with Bs = 4

	9 Entropy Coding
	9.1 Variable Length Coding
	9.1.1 Exp-Golomb entropy coding
	9.1.2 Unsigned Exp-Golomb entropy coding
	9.1.3 Signed Exp-Golomb entropy coding
	9.1.4 Mapped Exp-Golomb entropy coding
	9.1.5 Entropy coding for Intra
	9.1.5.1 Coding of Intra 4x4 and SIntra 4x4 prediction modes
	9.1.5.2 Coding of mode information for Intra-16x16 mode

	9.1.6 Context-based adaptive variable length coding (CAVLC) of transform coefficients
	9.1.6.1 Entropy decoding of the number of coefficients and trailing ones: coeff_token
	9.1.6.2 Table selection

	9.1.6.3 Decoding of level information: coeff_level
	9.1.6.3 Table selection

	9.1.6.4 Decoding of run information
	9.1.6.4.1 Entropy Decoding of the total number of zeros: total_zeros
	9.1.6.4.2 Run before each coefficient

	9.2 Context-based adaptive binary arithmetic coding (CABAC)
	9.2.1 Decoding flow and binarization
	9.2.1.1 Unary binarization
	9.2.1.2 Truncated unary (TU) binarization
	9.2.1.3 Concatenated unary/ kth-order Exp-Golomb (UEGk) binarization
	9.2.1.4 Fixed-length (FL) binarization
	9.2.1.5 Binarization schemes for macroblock type and sub macroblock type
	9.2.1.6 Decoding flow and assignment of binarization schemes
	9.2.1.7 Decoding flow and binarization of transform coefficients
	9.2.1.8 Decoding of sign information related to motion vector data and transform coefficients
	9.2.1.9 Decoding of macroblock skip flag and end-of-slice flag

	9.2.2 Context definition and assignment
	9.2.2.1 Overview of assignment of context labels
	9.2.2.2 Context templates using two neighbouring symbols
	9.2.2.3 Context templates using preceding bin values
	9.2.2.4 Additional context definitions for information related to transform coefficients

	9.2.3 Initialisation of context models
	9.2.3.1 Initialisation procedure
	9.2.3.2 Initialisation procedure

	9.2.4 Table-based arithmetic coding
	9.2.4.2 Probability estimation
	9.2.4.3 Description of the arithmetic decoding engine
	9.2.4.3.1 Initialisation of the decoding engine
	9.2.4.3.2 Decoding a decision
	9.2.4.3.3 Renormalization in the decoding engine (RenormD)
	9.2.4.3.4 Input of compressed bytes (GetByte)
	9.2.4.3.5 Decoder bypass for decisions with uniform pdf (Decode_eq_prob)

	10 Decoding process for B slices
	10.1 Introduction
	10.2 Decoding process for macroblock types and sub macroblock types
	10.3 Decoding process for motion vectors
	10.3.1 Differential motion vectors
	10.3.2 Motion vector decoding with scaled MV
	10.3.3 Motion vectors in direct mode
	10.3.3.1 Spatial technique of obtaining the direct mode motion parameters
	10.3.3.2 Temporal technique of obtaining the direct mode motion parameters

	10.4 Weighted prediction signal generation procedure
	10.4.1 Weighted prediction in P and SP slices
	10.4.2 Explicit weighted bi-prediction in B slices
	10.4.3 Implicit bi-predictive weighting

	11 Decoding process for SP and SI slices
	11.1 General
	11.2 SP decoding process for non-switching pictures
	11.2.1 Luma transform coefficient decoding
	11.2.2 Chroma transform coefficient decoding

	11.3 SP and SI slice decoding process for switching pictures
	11.3.1 Luma transform coefficient decoding
	11.3.1.2 Chroma transform coefficient decoding

	12 Adaptive block size transforms
	12.1 Introduction
	12.2 ABT Syntax
	12.2.1 Macroblock layer syntax
	12.2.1.1 Macroblock prediction syntax
	12.2.1.2 Sub macroblock prediction syntax
	12.2.1.3 Residual data syntax
	12.2.1.3.1 Residual sub block CAVLC syntax
	12.2.1.3.2 Residual sub block CABAC syntax

	12.3 ABT Semantics
	12.3.1 Macroblock layer semantics
	12.3.1.1 Macroblock prediction semantics
	12.3.1.2 Sub macroblock prediction semantics
	12.3.1.3 Residual data semantics
	12.3.1.3.1 Residual sub block CAVLC semantics
	12.3.1.3.2 Residual sub block CABAC semantics

	12.4 ABT decoding process
	12.4.1 Intra Prediction for 4x8, 8x4, and 8x8 luma blocks
	12.4.1.1 Mode 0: vertical prediction
	12.4.1.2 Mode 1: horizontal prediction
	12.4.1.3 Mode 2: DC prediction
	12.4.1.4 Mode 3: diagonal down/left prediction
	12.4.1.5 Mode 4: diagonal down/right prediction
	12.4.1.6 Mode 5: vertical-left prediction
	12.4.1.7 Mode 6: horizontal-down prediction
	12.4.1.8 Mode 7: vertical-right prediction
	12.4.1.9 Mode 8: horizontal-up prediction

	12.4.2 Scanning method for ABT blocks
	12.4.2.1 Zig-zag scan
	12.4.2.2 Field scan

	12.4.3 Scaling and inverse transform for ABT blocks
	12.4.4 Modifications for the deblocking filter

	12.5 ABT entropy coding
	12.5.1 ABT variable length coding
	12.5.1.1 Mapped Exp-Golomb entropy coding
	12.5.1.2 VLC entropy coding of ABT coefficients
	12.5.1.2.1 Decoding num_coeff_abt
	12.5.1.2.2 2D (level,run) symbols
	12.5.1.2.3 Assignment of level and run to code numbers
	12.5.1.2.4 escape_level and escape_run

	12.5.2 ABT CABAC
	12.5.2.1 Fixed-length (FL) binarization for mb_type
	12.5.2.2 Context definition and assignment
	12.5.2.2.1 Assignment of context labels
	12.5.2.2.2 Context definitions using preceding bin values
	12.5.2.2.3 Additional context definitions for information related to transform coefficients

	12.5.2.3 Initialisation of context models

	Annex A Profile and level definitions
	A.1 Introduction
	A.2 Requirements on video decoder capability
	A.3 Baseline profile
	A.3.1 Features
	A.3.2 Limits

	A.4 X profile
	A.4.1 Features
	A.4.2 Limits

	A.5 Main profile
	A.5.1 Features
	A.5.2 Limits

	A.6 Level definitions
	A.6.1 General
	A.6.2 Level limits
	A.6.3 Reference memory constraints on modes

	A.7 Effect of level limits on frame rate (informative)

	Annex B Byte stream format
	B.1 Introduction
	B.2 Byte stream NAL unit syntax
	B.3 Byte stream NAL unit semantics
	B.4 Decoder byte-alignment recovery (informative)

	Annex C Hypothetical Reference Decoder
	C.1 Hypothetical reference decoder and buffering verifiers
	C.1.1 Operation of VCL video buffering verifier (VBV) pre-decoder buffer
	C.1.1.1 Timing of bitstream or packet stream arrival
	C.1.1.2 Timing of coded picture removal
	C.1.1.3 Conformance constraints on coded bitstreams or packet streams

	C.1.2 Operation of the post-decoder buffer verifier
	C.1.2.1 Arrival timing
	C.1.2.2 Removal timing
	C.1.2.3 Conformance constraints

	C.2 Informative description of the HRD
	C.2.1 Constrained arrival time leaky bucket (CAT-LB) model
	C.2.1.1 Operation of the CAT-LB HRD
	C.2.1.2 Low-delay operation
	C.2.1.3 Bitstream / packet stream constraints
	C.2.1.3.1 Underflow
	C.2.1.3.2 Overflow
	C.2.1.3.3 Constant bitrate (CBR) operation

	C.2.1.4 Rate control considerations

	C.2.2 Multiple leaky bucket description
	C.2.2.1 Schedule of a bitstream
	C.2.2.2 Containment in a leaky bucket
	C.2.2.3 Minimum buffer size and minimum peak rate
	C.2.2.4 Encoder considerations

	Annex D Supplemental enhancement information
	D.1 Introduction
	D.2 SEI payload syntax
	D.2.1 Temporal reference SEI message syntax
	D.2.2 Clock timestamp SEI message syntax
	D.2.3 Pan-scan rectangle SEI message syntax
	D.2.4 Buffering period SEI message syntax
	D.2.5 HRD picture SEI message syntax
	D.2.6 Filler payload SEI message syntax
	D.2.7 User data registered by ITU-T Recommendation T.35 SEI message syntax
	D.2.8 User data unregistered SEI message syntax
	D.2.9 Random access point SEI message syntax
	D.2.10 Reference picture buffer management Repetition SEI message syntax
	D.2.11 Spare picture SEI message syntax
	D.2.12 Scene information SEI message syntax
	D.2.13 Sub-sequence information SEI message syntax
	D.2.14 Sub-sequence layer characteristics SEI message syntax
	D.2.15 Sub-sequence characteristics SEI message syntax
	D.2.16 Reserved SEI message syntax

	D.3 SEI payload semantics
	D.3.1 Temporal reference SEI message semantics
	D.3.2 Clock timestamp SEI message semantics
	D.3.3 Pan-scan rectangle SEI message semantics
	D.3.4 Buffering period SEI message semantics
	D.3.5 HRD picture SEI message semantics
	D.3.6 Filler payload SEI message semantics
	D.3.7 User data registered by ITU-T Recommendation T.35 SEI message semantics
	D.3.8 User data arbitrary SEI message semantics
	D.3.9 Random access point SEI message semantics
	D.3.10 Reference picture buffer management Repetition SEI message semantics
	D.3.11 Spare picture SEI message semantics
	D.3.12 Scene information SEI message semantics
	D.3.13 Sub-sequence information SEI message semantics
	D.3.14 Sub-sequence layer characteristics SEI message semantics
	D.3.15 Sub-sequence characteristics SEI message semantics
	D.3.16 Reserved SEI message semantics

	Annex E Video usability information
	E.1 Introduction
	E.2 VUI syntax
	E.2.1 VUI sequence parameters syntax
	E.2.2 HRD parameters syntax
	E.2.3 VUI picture parameters syntax

	E.3 VUI semantics
	E.3.1 VUI sequence parameters semantics
	E.3.2 HRD parameters semantics
	E.3.3 VUI picture parameters semantics

