
 
Joint Collaborative Team on Video Coding (JCT-VC) 
of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 
11th Meeting: Shanghai, CN, 10–19 October 2012 

Document: JCTVC-K1003_v13 

 
Title: High Efficiency Video Coding (HEVC) text specification draft 9 

Status: Output Document of JCT-VC 

Purpose: Draft of HEVC 

Author(s) or 
Contact(s): 

Benjamin Bross 
Fraunhofer HHI 
Woo-Jin Han 
Gachon University 
Jens-Rainer Ohm 
RWTH Aachen 
Gary J. Sullivan 
Microsoft 
Thomas Wiegand 
Fraunhofer HHI / TU Berlin 

Email: 
 
Email: 
 
Email: 
 
Email: 
 
Email: 
 

benjamin.bross@hhi.fraunhofer.de  
 
hurumi@gmail.com 
 
ohm@ient.rwth-aachen.de 
 
garysull@microsoft.com 
 
thomas.wiegand@hhi.fraunhofer.de 

Source: Editor 

_____________________________ 

Abstract 
Draft 9 of High efficiency video coding. 

Ed. Notes (D9): 
• General editorial cleanup and consistency improvements (including some section restructuring) 
• Cleanup and correction of colour space specification aspects (e.g. w.r.t. UHDTV) 
• Improvement of Annex A examples for level limits on picture sizes and frame rates 
• Correction of missing condition on LongTermRefPic in spatial MVP derivation relative to action recorded for 

JCTVC-J0071 and JCTVC-J0121 (#647) 
• Improved definition of "inter prediction" (#342) 
• Correcting usage of "disable_deblocking_filter_flag" (#654) 
• Corrected use of Log2CtbSize versus Log2CtbSizeY in Annex A (#655) 
• Corrected use of I_PCM mode (#634) 
• Removed apparently-unnecessary checks for "&&  NumPocTotalCurr > 1" in ref_pic_list_modification( ) syntax, as 

it does not seem to make sense for the encoder to set ref_pic_list_modification_flag_lX to 1 when 
NumPocTotalCurr is equal to 1 

• Modifying cbf_cb[ x0 ][ y0 ][ trafoDepth ] and cbf_cr[ x0 ][ y0 ][ trafoDepth ] semantics in regard to luma versus 
chroma (TB versus TU) location specification (Dzung Hoang JCT-VC experts reflector email 3 Aug 2012) 

• Fixed typos/trivial issues #697, #667, #658, #652, #726, #725, #722, #694, #688, #682, #674, #721, #719, #718, 
#708, #705, #695, #693, #691, #689, #683, #677, #672, #663, #706, #668, #656, #653 

• Fixed spatial merge candidate horizontal position xBk modification (#702) 
• Fixed 8 bit WP chroma offset (#699) 
• Fixed scaling_list_dc_coef_minus8 has no default value (#679) 
• Fixed missing condition on constrained_intra_pred_flag (#665) 
• Fixed typos/trivial issues #698, #741, #752, #469, #764, #765, #766, #767, #769, #773, #774, #775 
• Renamed ref_pic_list_modification( ) to ref_pic_lists_modification( ) 
• Replaced Sign2( ) by Sign3( ) and renamed Sign3( ) to Sign( ) 
• Fixed NOTE formating by using Note 2 style for notes in definitions and Note 1 style for all other notes 
• Renamed CtbAddrRS and CtbAddrTS in CtbAddrInRS and CtbAddrInTS to not be prefix of the arrays 

CtbAddrRStoTS and CtbAddrTStoRS anymore. 
• Added default values for num_tile_columns_minus1, num_tile_rows_minus1 and added tiles_enable_flag to the 

constraint (#649) 
• video_format table added to VUI parameters semantics (#730) 
• fixed chroma deblocking grid (#711) 

http://hevc.kw.bbc.co.uk/trac/ticket/647
http://hevc.kw.bbc.co.uk/trac/ticket/342
http://hevc.kw.bbc.co.uk/trac/ticket/654
http://hevc.kw.bbc.co.uk/trac/ticket/655
http://hevc.kw.bbc.co.uk/trac/ticket/634
http://hevc.kw.bbc.co.uk/trac/ticket/697
http://hevc.kw.bbc.co.uk/trac/ticket/667
http://hevc.kw.bbc.co.uk/trac/ticket/658
http://hevc.kw.bbc.co.uk/trac/ticket/652
http://hevc.kw.bbc.co.uk/trac/ticket/726
http://hevc.kw.bbc.co.uk/trac/ticket/725
http://hevc.kw.bbc.co.uk/trac/ticket/722
http://hevc.kw.bbc.co.uk/trac/ticket/694
http://hevc.kw.bbc.co.uk/trac/ticket/688
http://hevc.kw.bbc.co.uk/trac/ticket/682
http://hevc.kw.bbc.co.uk/trac/ticket/674
http://hevc.kw.bbc.co.uk/trac/ticket/721
http://hevc.kw.bbc.co.uk/trac/ticket/719
http://hevc.kw.bbc.co.uk/trac/ticket/718
http://hevc.kw.bbc.co.uk/trac/ticket/708
http://hevc.kw.bbc.co.uk/trac/ticket/705
http://hevc.kw.bbc.co.uk/trac/ticket/695
http://hevc.kw.bbc.co.uk/trac/ticket/693
http://hevc.kw.bbc.co.uk/trac/ticket/691
http://hevc.kw.bbc.co.uk/trac/ticket/689
http://hevc.kw.bbc.co.uk/trac/ticket/683
http://hevc.kw.bbc.co.uk/trac/ticket/677
http://hevc.kw.bbc.co.uk/trac/ticket/672
http://hevc.kw.bbc.co.uk/trac/ticket/663
http://hevc.kw.bbc.co.uk/trac/ticket/706
http://hevc.kw.bbc.co.uk/trac/ticket/668
http://hevc.kw.bbc.co.uk/trac/ticket/656
http://hevc.kw.bbc.co.uk/trac/ticket/653
http://hevc.kw.bbc.co.uk/trac/ticket/702
http://hevc.kw.bbc.co.uk/trac/ticket/699
http://hevc.kw.bbc.co.uk/trac/ticket/679
http://hevc.kw.bbc.co.uk/trac/ticket/665
http://hevc.kw.bbc.co.uk/trac/ticket/698
http://hevc.kw.bbc.co.uk/trac/ticket/741
http://hevc.kw.bbc.co.uk/trac/ticket/752
http://hevc.kw.bbc.co.uk/trac/ticket/469
http://hevc.kw.bbc.co.uk/trac/ticket/764
http://hevc.kw.bbc.co.uk/trac/ticket/765
http://hevc.kw.bbc.co.uk/trac/ticket/766
http://hevc.kw.bbc.co.uk/trac/ticket/767
http://hevc.kw.bbc.co.uk/trac/ticket/769
http://hevc.kw.bbc.co.uk/trac/ticket/773
http://hevc.kw.bbc.co.uk/trac/ticket/774
http://hevc.kw.bbc.co.uk/trac/ticket/775
http://hevc.kw.bbc.co.uk/trac/ticket/649
http://hevc.kw.bbc.co.uk/trac/ticket/730
http://hevc.kw.bbc.co.uk/trac/ticket/711


   Draft ISO/IEC 23008-2 : 201x (E) 

ii Draft Rec. ITU-T H.HEVC (201x E) 

• Clarified binarization of cu_qp_delta_abs with prefix and suffix (#759) 
• Fixed part_mode ctx derivation for binIdx equal to 2 (#720) 
• Improved chroma_weight_l1_flag parsing (#779) 
• Fixed default scaling list data issue (#762) 
• Fixed using chroma bit depth in chroma edge deblocking (#744) 
• Improved semantics of loop_filter_across_slices_enabled_flag and slice_loop_filter_across_slices_enabled_flag 

(#772) 
• Added description of quantization group (#736) 
• Fixed qPY_PREV derivation (#742) 
• Replaced abs(⋅) with Abs(⋅) 
• Added editorial comments to parts that need to be updated from AVC spec. 
• Insert line breaks in the nal_unit_type table to align the number and the names. 
• Fix for RPS restriction of TSA to reflect the original intent. 
• Fixed the problem with the precedence in the derivation / usage of NumPocTotalCurr. 
• Editorial fix for the marking process of the bumping decoder in Annex C. 
• Renamed TFD and DLP pictures as random access skipped leading (RASL) picture and random access decodable 

leading (RADL) picture, respectively. 
• Incorporated cleanup and complexity reduction for spatial merge candidate derivation according to JCTVC-K0197. 
• Incorporated MV line buffer cleanup (JCTVC-K0101). 
• Incorporated the contouring artefact fix (JCTVC-K0139) 
• Incorporated inverse ctb raster scan fix and grouping of pcm sps syntax elements (JCTVC-K0217) 
• Changed Table A1, A3 and A4 for Level limits in Level 6, 6.1 and 6.2 (JCTVC-K0377) 
• Modified number of slice constraints (JCTVC-K0201) 
• Added number of tiles constraints (JCTVC-K0202) 
• Incorporated CTU bit size limit (JCTVC-K0176) 
• Delete the 2/3 case of MaxDpbSize derivation (JCTVC-K0189) 
• Incorporated Main 10 profile (JCTVC-K0109) 
• Removed num_subsequent_pcm (JCTVC-K0258) 
• Remove entropy slices (JCTVC-K0288) 
• Add Main Still Picture profile (as agreed jointly in VCEG+MPEG+JPEG discussion). 
• Incorporated 4x4 default scaling matrix as flat (JCTVC-K0203) 
• Incorporated CABAC termination for the end of tile/WPP (JCTVC-K0182) 
• Incorporated CABAC cleanup and fixes 
• Fixed PCM mode definition (#796) 
• Fixed infinite loop in intra mode parsing (#793) 
• Disabled luma DC, hor. and ver. intra filtering for 32x32 blocks (JCTVC-K0380) 
• Incorporated use of picture-level chroma QP offsets in deblocking (JCTVC-K0220) 
• Dependent slices clarification, including the use of the term "slice segment" (JCTVC-K0314) 
• Replaced the chroma subsampling figures, fixed and added CABAC decoding flowcharts 
• Removed the slice (segment) extension data (JCTVC-K0361) 
• Integrated re-allocation of NAL unit types per decisions noted under JCTVC-K0159 
• Integrated the following decisions noted under JCTVC-K0120: 

o Move sps_temporal_nesting_flag to an earlier place to replace sps_reserved_zero_bit (later cleanup #864) 
o Clarification of semantics of end of sequence RBSP 
o Specify activation of VPS and SPS by APS SEI message and not specify SPS activation by the SPS ID in 

the BP SEI message 
o 2^24 constraint on POC difference for LTRP per BoG report (JCTVC-K0339) 
o Alignment of the range restriction on SPS ID (make it 16) and PPS ID (make it 64) for semantics and 

profile specification. We can simply remove this constraint in the profile specification 
o Removal of constraint on position of persistent SEI messages from 7.4.1.4.2 
o Specify a suffix SEI message NUT – with payloadType = 132 for the decoded picture hash SEI message 
o Added an informative table describing the scope of each type of SEI message 
o POC temporal relationship syntax based on JCTVC-K0343. timing_info_present_flag should have an 

inferred value of 0 when not present. 
• Integrated SEI payload extension mechanism noted under JCTVC-K0371 
• Integrated changes related to CRA and BLA pictures noted under JCTVC-K0122 
• Integrated RPS changes noted under JCTVC-K0123 
• Integrated VPS changes noted under JCTVC-K0125 
• Integrated operation-point changes relating to JCTVC-K0204 
• Integrated TL0 index SEI message under JCTVC-K0205 

http://hevc.kw.bbc.co.uk/trac/ticket/759
http://hevc.kw.bbc.co.uk/trac/ticket/720
http://hevc.kw.bbc.co.uk/trac/ticket/779
http://hevc.kw.bbc.co.uk/trac/ticket/762
http://hevc.kw.bbc.co.uk/trac/ticket/744
http://hevc.kw.bbc.co.uk/trac/ticket/772
http://hevc.kw.bbc.co.uk/trac/ticket/736
http://hevc.kw.bbc.co.uk/trac/ticket/742
http://hevc.kw.bbc.co.uk/trac/ticket/796
http://hevc.kw.bbc.co.uk/trac/ticket/793


Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) iii 

• Integrated addition of extra reserved slice header bits relating to JCTVC-K0210 
• Integrated changes relating to temporal ID nesting (vps_temporal_id_nesting_flag) relating to JCTVC-K0173 

(w/ later cleanup) 
• Integrated VPS reserved bits changes relating to JCTVC-K0254 
• Integrated sub-layering presence change for VPS and SPS and note on VPS discarding relating to JCTVC-K0330 
• Integrated change of dependent slice segments flag locations relating to JCTVC-K0184 
• Integrated moving of restricted_ref_pic_lists_flag and lists_modification_present_flag relating to JCTVC-K0170 
• Integrated changes to ref_pic_list_modification( ) relating to proposal #1 of JCTVC-K0224 
• Integrated change to not send inter_ref_pic_set_prediction_flag for index 0 relating to JCTVC-K0136 
• Integrated change to slice_temporal_mvp_enable_flag in slice header noted under JCTVC-K0251 (w/ later cleanup) 
• Fixed several issues (#808, #809, #811, #812, #814, #815, #823, #825, #839, #842, #844, #846). 
• Fixed several issues (#802, #685, #847, #849, #850, #851, #852, #853, #855, #856, #857, #783). 
• Integrated decisions on FPA SEI messages and display/crop windows relating to JCTVC-K0382 (w/ later cleanup). 
• Fixed several issues (#858, #859, #860, #863). 
• Integrated decoder parallelism indication relating to JCTVC-K0236. 
• Added 8192x4096 and 4*HD example resolutions in Annex A (#824). 
• Integrated frame/field coding indication changes relating to JCTVC-K0165. 
• Fixed TMVP process to match HM and fixed several minor issues in that process (#733, #757, #771). 
• Fixed 2D matrix notation and several issues (#687, #868, #873, #876). 
• Integrated VPS changes, scalable nesting SEI message, and HRD changes relating to JCTVC-K0180 and JCTVC-

K0126. 
• Integrated sub-picture CPB size noted under JCTVC-K0221 (w/ later cleanup). 
• Integrated fixed_pic_rate_within_cvs_flag[ i ] as noted under JCTVC-K0140. 
• Integrated region refresh information SEI message under JCTVC-K0128. 
• Updating UHDTV with reference to BT.2020 and aligning number assignment with CICP and JPEG XR. 
• Fixed several issues (#893, #897, #898, #899, #902, #905, #908). 
• Fixed several issues (#896, #915, #916, #917, #918, #686). 

Draft 8 of High efficiency video coding. 

Ed. Notes (D8): 
• prev_intra_pred_flag should be prev_intra_luma_pred_flag (#624) 
• fixed level 2 MaxBR and Max CPB Size (#625) 
• Revised the Annex A tables based on JCTVC-J0558, JCTVC-J0154, JCTVC-J0151. 
• Renamed no_residual_data_flag to no_residual_syntax_flag (editorial only). (JCTVC-J0336) 
• Added limit to the minimum CTB size to 32x32 for level 5 and higher while still requiring decoding of lower level 

bitstreams (JCTVC-J0334)  
• Integrated step wise increase of MaxDpbSize in spirit of JCTVC-J0496 
• Bug fix for recovery point SEI so that it can point to a point before the recovery point 
• Remove rap_pic_id and move no_output_of_prior_pic_flag to the top before any ue(v) (JCTVC-J0108) 
• Added editorial suggestions from JCTVC-J0345 
• Added picture timing SEI message syntax changes and corresponding text to Annex C CPB operation (JCTVC-

J0306 and JCTVC-J0136) 
• Added text for sub-picture based CPB removal timing (JCTVC-J0569) 
• Added GTLA (STSA) related text (JCTVC-J0305) 
• Added TFD related constraints on the RPS that are missing (JCTVC-J0229) 
• Integrated RAP NUT according to (JCTVC-J0344) and GTLA (STSA) NUT according to (JCTVC-J0305) 
• Remove nal_ref_flag and related text, added 3 new non-reference NUT and the RPS constraint (JCTVC-J0549) 
• prev_intra_pred_flag should be prev_intra_luma_pred_flag (#624) 
• Fixed level 2 MaxBR and Max CPB Size (#625) 
• Integrated Inter-RPS complexity reduction (JCTVC-J0234) and restriction on delta_idx_minus1 (JCTVC-J0185r2) 
• Reverted definition of prevRefPic to have TemporalId equal to 0 (JCTVC-J0248) 
• Integrated changes of NAL unit header, VPS, HRD parameters and other changes per adoptions noted under 

JCTVC-J0550, JCTVC-J0548, and JCTVC-J0562 (JCTVC-J0550, JCTVC-J0548, and JCTVC-J0562) 
• Incorporated removal of zigzag scan from scaling list coding (JCTVC-J0150) 
• Incorporated removal of the 8x2/2x8 coefficient groups (JCTVC-J0256) 
• Incorporated SAO syntax changes (JCTVC-J0563) 
• Incorporated greater1 and greater2 counter removal (JCTVC-J0408) 
• Incorporated split_transform_flag ctx derivation cleanup (JCTVC-J0133) 
• Incorporated bypass bins for reference index coding (JCTVC-J0098) 
• Incorporated bin reduction for delta QP coding (JCTVC-J0089) 

http://hevc.kw.bbc.co.uk/trac/ticket/808
http://hevc.kw.bbc.co.uk/trac/ticket/809
http://hevc.kw.bbc.co.uk/trac/ticket/811
http://hevc.kw.bbc.co.uk/trac/ticket/812
http://hevc.kw.bbc.co.uk/trac/ticket/814
http://hevc.kw.bbc.co.uk/trac/ticket/815
http://hevc.kw.bbc.co.uk/trac/ticket/823
http://hevc.kw.bbc.co.uk/trac/ticket/823
http://hevc.kw.bbc.co.uk/trac/ticket/839
http://hevc.kw.bbc.co.uk/trac/ticket/842
http://hevc.kw.bbc.co.uk/trac/ticket/844
http://hevc.kw.bbc.co.uk/trac/ticket/846
http://hevc.kw.bbc.co.uk/trac/ticket/802
http://hevc.kw.bbc.co.uk/trac/ticket/685
http://hevc.kw.bbc.co.uk/trac/ticket/847
http://hevc.kw.bbc.co.uk/trac/ticket/849
http://hevc.kw.bbc.co.uk/trac/ticket/850
http://hevc.kw.bbc.co.uk/trac/ticket/851
http://hevc.kw.bbc.co.uk/trac/ticket/852
http://hevc.kw.bbc.co.uk/trac/ticket/853
http://hevc.kw.bbc.co.uk/trac/ticket/855
http://hevc.kw.bbc.co.uk/trac/ticket/856
http://hevc.kw.bbc.co.uk/trac/ticket/857
http://hevc.kw.bbc.co.uk/trac/ticket/783
http://hevc.kw.bbc.co.uk/trac/ticket/858
http://hevc.kw.bbc.co.uk/trac/ticket/859
http://hevc.kw.bbc.co.uk/trac/ticket/860
http://hevc.kw.bbc.co.uk/trac/ticket/863
http://hevc.kw.bbc.co.uk/trac/ticket/824
http://hevc.kw.bbc.co.uk/trac/ticket/733
http://hevc.kw.bbc.co.uk/trac/ticket/757
http://hevc.kw.bbc.co.uk/trac/ticket/771
http://hevc.kw.bbc.co.uk/trac/ticket/687
http://hevc.kw.bbc.co.uk/trac/ticket/868
http://hevc.kw.bbc.co.uk/trac/ticket/873
http://hevc.kw.bbc.co.uk/trac/ticket/876
http://hevc.kw.bbc.co.uk/trac/ticket/893
http://hevc.kw.bbc.co.uk/trac/ticket/897
http://hevc.kw.bbc.co.uk/trac/ticket/898
http://hevc.kw.bbc.co.uk/trac/ticket/899
http://hevc.kw.bbc.co.uk/trac/ticket/902
http://hevc.kw.bbc.co.uk/trac/ticket/905
http://hevc.kw.bbc.co.uk/trac/ticket/908
http://hevc.kw.bbc.co.uk/trac/ticket/896
http://hevc.kw.bbc.co.uk/trac/ticket/915
http://hevc.kw.bbc.co.uk/trac/ticket/916
http://hevc.kw.bbc.co.uk/trac/ticket/917
http://hevc.kw.bbc.co.uk/trac/ticket/918
http://hevc.kw.bbc.co.uk/trac/ticket/686
http://hevc.kw.bbc.co.uk/trac/ticket/624
http://hevc.kw.bbc.co.uk/trac/ticket/625


   Draft ISO/IEC 23008-2 : 201x (E) 

iv Draft Rec. ITU-T H.HEVC (201x E) 

• Incorporated coeff_abs_level_remaining bin reduction (JCTVC-J0142) 
• Incorporated simplification on context derivation of cbf_luma syntax element (JCTVC-J0303) 
• Incorporated chroma QP range extension (JCTVC-J0342) 
• More flexible syntax for tile and WPP combination using tiles_enabled_flag, entropy_coding_sync_enabled_flag, 

and entropy_slice_enabled_flag (JCTVC-J0558). 
• Incorporated end of bitstream and end of sequence NUTs, with end of bitstream indicating HRD discontinuity 

(response to JCTVC-J0290 and JCTVC-J0347) 
• Removed ALF 
• Removed LM Chroma 
• Removed fine-granularity slices 
• Removed NSRQT 
• Incorporated transform simplification for 4x4 luma intra transform block (JCTVC-J0021) 
• Moved transform_skip_enabled_flag to PPS (JCTVC-J0184) 
• Moved seq_loop_filter_across_slices_enabled_flag to PPS (JCTVC-J0288) 
• Incorporated inter transform skipping changes (JCTVC-J0237) 
• Use of one bit from profile_space for indication of the level tier 
• A clarification of intended tolerance of decoders for reserved values (JCTVC-J0112) 
• POC value range to 32 bits (JCTVC-J0084) 
• Modification of POC definition in Clause 3 and the POC constraint in Annex C.4 (JCTVC-J0110) 
• Changing SEI NAL unit to be allowed to follow the first VCL NAL unit in an AU, added sub-picture timing SEI 

message, and clarified hat existing SEI messages that have whole-picture scope shall appear before the first slice in 
the picture (JCTVC-J0255) 

• Modification of the definitions of reference pictures and related (related to JCTVC-J0118) 
• Clarification of semantics of vps_temporal_id_nesting_flag and sps_temporal_id_nesting_flag (JCTVC-J0183) 
• Slice header syntax clean-up (JCTVC-J0300) 
• Change of definitions of slice and tile scan (JCTVC-J0209) 
• Integrated long-term reference pictures in SPS (JCTVC-J0116) 
• Support of UHDTV colorimetry (JCTVC-J0577, JCTVC-J0477) 
• Change on signalling of luminance dynamic range in tone mapping information SEI (JCTVC-J0149) 
• Change on CU QP delta enabling syntax (JCTVC-J0220) 
• Inclusion of motion related hooks (JCTVC-J0568, JCTVC-J0071, JCTVC-J0121) 
• Modified sub-bitstream extraction process (JCTVC-J0074) 
• Modified prediction weight table syntax and semantics for slice header parsing overhead reduction and improved 

value range for chroma weight offset (JCTVC-J0571 and JCTVC-J0221) 
• Changed example time interval for tc to a frame-based example rather than a field coding example (JCTVC-J0136) 
• Changed semantics of restricted_ref_pic_lists_flag (JCTVC-J0290) 
• Incorporated disallow bi-predictive mode for 8x4 and 4x8 inter PUs (JCTVC-J0086) 
• Incorporated various limits and modulo MV interpretation (response to JCTVC-J0579 BoG report) 

Draft 7 of High efficiency video coding. 

Ed. Notes (D7): 
• RQT related issues (#459) 
• Log2MaxTrafoSize constraint (#348) 
• log2TrafoWidth1 and log2TrafoHeight1 calculation for NSQT (#458) 
• non_square_quadtree_enabled_flag (#403) 
• Wrong 'else if...' for 'if (skip_flag)' in CU syntax (#452) 
• use_delta_flag[ j ] is not decoded when used_by_curr_pic_flag[ j ] is 1 (#451) 
• combined_inter_pred_ref_idx does not exist anymore (#448) 
• Typos in reference picture list combination (#446) 
• Text cleanup of QP prediction / derivation (#492) 
• Equation (7-59) and (7-60) for RPS derivation do not match HM6.0 (#445) 
• Chroma NSRQT fixes (#505,#506) 
• Missing decoding process for AMP fixed (#361) 
• Deblocking processing order fixed (#412) 
• Derivation of coefficient group scan fixed (#372) 
• Phrase "one of the following conditions is true" fixed (#540) 
• Non-normative aspects in scaling process removed (#544) 
• scaling_list_present_flag issues fixed (#407) 
• CTB,CB,PB,TB/CTU,CU,PU,TU defined 
• beta_offset_div2 and tc_offset_div2 semantics fixed (#353) 

http://hevc.kw.bbc.co.uk/trac/ticket/459
http://hevc.kw.bbc.co.uk/trac/ticket/348
http://hevc.kw.bbc.co.uk/trac/ticket/458
http://hevc.kw.bbc.co.uk/trac/ticket/403
http://hevc.kw.bbc.co.uk/trac/ticket/452
http://hevc.kw.bbc.co.uk/trac/ticket/451
http://hevc.kw.bbc.co.uk/trac/ticket/448
http://hevc.kw.bbc.co.uk/trac/ticket/446
http://hevc.kw.bbc.co.uk/trac/ticket/492
http://hevc.kw.bbc.co.uk/trac/ticket/445
http://hevc.kw.bbc.co.uk/trac/ticket/505
http://hevc.kw.bbc.co.uk/trac/ticket/506
http://hevc.kw.bbc.co.uk/trac/ticket/361
http://hevc.kw.bbc.co.uk/trac/ticket/412
http://hevc.kw.bbc.co.uk/trac/ticket/372
http://hevc.kw.bbc.co.uk/trac/ticket/540
http://hevc.kw.bbc.co.uk/trac/ticket/544
http://hevc.kw.bbc.co.uk/trac/ticket/407
http://hevc.kw.bbc.co.uk/trac/ticket/353


Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) v 

• pixel replaced by sample (#406) 
• references in HRD Annex C fixed (#557) 
• sao_type_idx binarization fixed (#367) 
• raster scan to tile scan order fixed (#376) 
• error in tileId[] derivation loop fixed (#558) 
• CtbAddrRS update in slice data syntax fixed (#345) 
• SAO process issues fixed (#504) 
• SAO clipping added (#517) 
• fixed-length (FL) binarization process fixed (#518) 
• intra transform skipping shift with high bit-depth fixed (#560) 
• missing syntax element sao_type_idx added in sao_param syntax table (#576) 
• residual coding semantics typo fixed (#333) 
• PCM alignment at PU syntax fixed (#346) 
• non-break hyphen and minus fixed (#347) 
• uneccessary shared_pps_info_enabled_flag semantics removed (#351) 
• skip_flag semantics fixed (#355) 
• POC usage description fixed (#359) 
• replaced coding tree depth variables cuDepth and cbDepth with ctDepth (#385) 
• PicWidthInSamples fixed (#443) 
• RefPicList naming fixed (#478) 
• References to StCurr0/1 changed to StCurrBefore/After (#482) 
• two references in 8.1 fixed (#479) 
• one reference in 8.1 fixed (#509) 
• replaced 'nal_ref_idc' by 'nal_ref_flag' in subclause 8.3.6 (#510) 
• removed non-breaking space between log2_min_coding_block_size_minus and 3 (#386) 
• removed the "+1" in clause C in description of DPB size (#522) 
• moved the restriction on the relationship between tiles and slices to subclause 6.3 (#331) 
• Subclause 0.7 text reference issue fixed (#572) 
• cu_qp_delta binarization fixed (#588) 
• typo fixed (#480) 
• indices of nonsquare scaling matrix fixed (#535) 
• intra_chroma_pred_mode bypass-coded bin fixed (#570) 
• typos fixed and definition of picture added (#378) 
• uneccesary input paramter in luma block edge deblocking removed (#583) 
• missing index i for sao_offset_abs in sao_param syntax added (#592) 
• fixed the Sign( ) function for SAO edgeIdx calculation (#591) 
• picture constrution process added and embedded properly (#364) 
• removed SignalledAsChromaDC because it not used anymore (#371) 
• CABAC cross references fixed (#462) 
• recovery_frame_cnt semantics removed (#600) 
• nal_unit_type values updated in temporal_id semantics (#601) 
• bugs, wordings, typos fixed in inter prediction process (#433) 
• removed redundant equations in WP process (#416) 
• fixed clipping values in MV scaling (#341) 
• fixed 14-bit issues in WP (#594) 
• fixed significant_coeff_group_flag for 2x8 and 8x2 CGs (#609) 
• fixed inter_pred_idc binarization (#585) 
• clarified condition in "6.4.5 Up-right diagonal scanning array initialization process" (#612) 
• revision of weighted prediction process (#606) 
• added transform_skip_enabled_flag semantics (#613) 
• removed old alf aps syntax (#615) 
• fixed decoding process for intra blocks for chroma (#330) 
• fixed filtering process for neighbouring samples for Intra_FromLuma (#404) 
• IntraPredMode derivation improvement (#360) 
• vui_parameters_present_flag semantics added (#477) 
• fixed Cr pcm_sample_chroma location in PCM intra decoding (#526) 
• renamed unused intraPreModeN to candIntraPreModeN (#581) 
• fixed sig flag semantics for 8x2 / 2x8 coefficient groups (#617) 
• fixed out of bounds index computation in Angular Intra prediction (#339) 

http://hevc.kw.bbc.co.uk/trac/ticket/406
http://hevc.kw.bbc.co.uk/trac/ticket/557
http://hevc.kw.bbc.co.uk/trac/ticket/367
http://hevc.kw.bbc.co.uk/trac/ticket/376
http://hevc.kw.bbc.co.uk/trac/ticket/558
http://hevc.kw.bbc.co.uk/trac/ticket/345
http://hevc.kw.bbc.co.uk/trac/ticket/504
http://hevc.kw.bbc.co.uk/trac/ticket/517
http://hevc.kw.bbc.co.uk/trac/ticket/518
http://hevc.kw.bbc.co.uk/trac/ticket/560
http://hevc.kw.bbc.co.uk/trac/ticket/576
http://hevc.kw.bbc.co.uk/trac/ticket/333
http://hevc.kw.bbc.co.uk/trac/ticket/346
http://hevc.kw.bbc.co.uk/trac/ticket/347
http://hevc.kw.bbc.co.uk/trac/ticket/351
http://hevc.kw.bbc.co.uk/trac/ticket/355
http://hevc.kw.bbc.co.uk/trac/ticket/359
http://hevc.kw.bbc.co.uk/trac/ticket/385
http://hevc.kw.bbc.co.uk/trac/ticket/443
http://hevc.kw.bbc.co.uk/trac/ticket/478
http://hevc.kw.bbc.co.uk/trac/ticket/482
http://hevc.kw.bbc.co.uk/trac/ticket/479
http://hevc.kw.bbc.co.uk/trac/ticket/509
http://hevc.kw.bbc.co.uk/trac/ticket/510
http://hevc.kw.bbc.co.uk/trac/ticket/386
http://hevc.kw.bbc.co.uk/trac/ticket/522
http://hevc.kw.bbc.co.uk/trac/ticket/331
http://hevc.kw.bbc.co.uk/trac/ticket/572
http://hevc.kw.bbc.co.uk/trac/ticket/588
http://hevc.kw.bbc.co.uk/trac/ticket/480
http://hevc.kw.bbc.co.uk/trac/ticket/535
http://hevc.kw.bbc.co.uk/trac/ticket/570
http://hevc.kw.bbc.co.uk/trac/ticket/378
http://hevc.kw.bbc.co.uk/trac/ticket/583
http://hevc.kw.bbc.co.uk/trac/ticket/592
http://hevc.kw.bbc.co.uk/trac/ticket/591
http://hevc.kw.bbc.co.uk/trac/ticket/364
http://hevc.kw.bbc.co.uk/trac/ticket/371
http://hevc.kw.bbc.co.uk/trac/ticket/462
http://hevc.kw.bbc.co.uk/trac/ticket/600
http://hevc.kw.bbc.co.uk/trac/ticket/601
http://hevc.kw.bbc.co.uk/trac/ticket/433
http://hevc.kw.bbc.co.uk/trac/ticket/416
http://hevc.kw.bbc.co.uk/trac/ticket/341
http://hevc.kw.bbc.co.uk/trac/ticket/594
http://hevc.kw.bbc.co.uk/trac/ticket/609
http://hevc.kw.bbc.co.uk/trac/ticket/585
http://hevc.kw.bbc.co.uk/trac/ticket/612
http://hevc.kw.bbc.co.uk/trac/ticket/612
http://hevc.kw.bbc.co.uk/trac/ticket/613
http://hevc.kw.bbc.co.uk/trac/ticket/615
http://hevc.kw.bbc.co.uk/trac/ticket/330
http://hevc.kw.bbc.co.uk/trac/ticket/404
http://hevc.kw.bbc.co.uk/trac/ticket/360
http://hevc.kw.bbc.co.uk/trac/ticket/477
http://hevc.kw.bbc.co.uk/trac/ticket/526
http://hevc.kw.bbc.co.uk/trac/ticket/581
http://hevc.kw.bbc.co.uk/trac/ticket/617
http://hevc.kw.bbc.co.uk/trac/ticket/339


   Draft ISO/IEC 23008-2 : 201x (E) 

vi Draft Rec. ITU-T H.HEVC (201x E) 

• fixed table for invAngle (#363) 
• intra decoding process cleanup and fixes (#417) 
• fixed %32 error for luma intra prediction mode derivation process (#493) 
• generalized angular prediction process (#537) 
• fixed aps_extension_flag semantics (#621) 
• fixed ctxIdxInc for cbf_cb and cbf_cr overflow (#619) 
• fixed mismatch between WD and HM on end_of_slice_flag (#598) 
• fixed typo in 8.3.2 Decoding process for reference picture set (#622) 
• fixed coeff_abs_level_greater1/2_flag ctx derivation (#384) 
• updated CABAC init values to match HM (#473) 
• fixed cRiceParam mismatch (#636) 
• fixed transform issues (#524) 
• fixed typos in 9.3 CABAC parsing process (#637) 
• fixed hor and ver intra filtering (#639) 

 
• Incorporated CBF coding without derivation process (JCTVC-I0152) 
• Incorporated Unified CBFU and CBFV Coding in RQT (JCTVC-I0332) 
• Incorporated BoG on I_PCM / lossless deblocking unification (JCTVC-I0586) 
• Incorporated transform and quantization bypass (JCTVC-I0529) 
• Incorporated intra 4x4 transform skipping (JCTVC-I0408) 
• Incorporated modifed deblocking threshold derivation table (JCTVC-I0258) 
• Incorporated constrained motion data compression (JCTVC-I0182) 
• Removed SAO parameters from APS (JCTVC-I0021) 
• Incorporated SAO offset signaling with magnitude and sign (JCTVC-I0168) 
• Incorporated SAO offset magnitude TU binarization (JCTVC-I0066) 
• Incorporated no SAO merge at tile boundaries (JCTVC-I0172) 
• Incorporated reordering of slice type values (JCTVC-I0500) 
• Incorporated having tile syntax only in PPS and reordering of pic_parameter_set_id in slice header to solve the slice 

header parsing issue (JCTVC-I0113) 
• Incorporated moving list scaling syntax as well as deblocking filter parameters from APS to SPS and PPS (JCTVC-

I0465) 
• Incorporated a note on the presense of required parameter sets for random access (JCTVC-I0067) 
• Incorporated an additional constraint on RPS for TLA (TSA) pictures (JCTVC-I0236) 
• Incorporated changing the derivation of the variable prevRefPic used in derivation of picture order count (JCTVC-

I0345) 
• Incorporated high-level syntax clean-ups on TMVP enabling as well as signalling of collocated picture, CU QP 

delta, entropy slice header, and slice header syntax (JCTVC-I0127, JCTVC-I0266, and JCTVC-I0420) 
• Incorporated mandating nal_ref_flag to be 1 for CRA pictures (JCTVC-I0143) 
• Incorporated broken link access (BLA) pictures, signaling of leading/TFD pictures, signalling of presence of 

leading/TFD pictures, and allocation of NAL unit types (JCTVC-I0275, JCTVC-I0278, JCTVC-I0404 and JCTVC-
I0607) 

• Incorporated removal of combined list (JCTVC-I0125) 
• Incorporated entropy slice enabling in PPS, support of dependent slice, a constraint on prevRefPic, slice header byte 

alignment, entropy slice header, relationship between TLA (TSA) and temporal_id_nesting_flag, tile and WPP byte 
alginment, semantics of num_reorder_pics[ i ], and semantics of temporal_id (JCTVC-I0138, JCTVC-I0229, 
JCTVC-I0330 and JCTVC-I0600) 

• Incorporated WPP simplification and a restriction on coexistence of WPP and slices (JCTVC-I0360 and JCTVC-
I0361) 

• Incorporated removal of entry point markers, addition of VUI flag tiles_fixed_structure_flag, mandating entry point 
signalling for each tile and WPP sub-stream, and entry point offsets being relative to end of slice header (JCTVC-
I0159, JCTVC-I0233, JCTVC-I0237 and JCTVC-I0357) 

• Incorporated a fix for an unhandled LTRP case, a fix to the POC MSB cycle coding, coding of LTRP POC LSB 
directly as u(v), and no MVP scaling for LTRPs (JCTVC-I0234, JCTVC-I0340, JCTVC-I0422) 

• Incorporated HRD buffering for CRA/BLA pictures and sub-picture based CPB operation (JCTVC-I0277 and 
JCTVC-I0588) 

• Incorporated introduction of video parameter set, and extension mechanisms for slice header and slice layer RBSP 
(JCTVC-I0230 and JCTVC-I0235) 

• Incorporated increasing of POC range to 64 bits, a limit of POC difference between the current picture and a long-
term reference picture, changes to scaling list syntax, and changed signalling for profile and level (JCTVC-I0045, 
JCTVC-I0059, and JCTVC-I0499) 

http://hevc.kw.bbc.co.uk/trac/ticket/363
http://hevc.kw.bbc.co.uk/trac/ticket/417
http://hevc.kw.bbc.co.uk/trac/ticket/493
http://hevc.kw.bbc.co.uk/trac/ticket/537
http://hevc.kw.bbc.co.uk/trac/ticket/621
http://hevc.kw.bbc.co.uk/trac/ticket/619
http://hevc.kw.bbc.co.uk/trac/ticket/598
http://hevc.kw.bbc.co.uk/trac/ticket/622
http://hevc.kw.bbc.co.uk/trac/ticket/384
http://hevc.kw.bbc.co.uk/trac/ticket/473
http://hevc.kw.bbc.co.uk/trac/ticket/636
http://hevc.kw.bbc.co.uk/trac/ticket/524
http://hevc.kw.bbc.co.uk/trac/ticket/637
http://hevc.kw.bbc.co.uk/trac/ticket/639


Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) vii 

• Incorporated a bug fix for the recovery point SEI message and a change to the decoded picture hash SEI message 
(JCTVC-I0044 and JCTVC-I0218) 

• Incorporated a change to the field indication SEI message (JCTVC-I0393) 
• Incorporated adaptive loop filter text (JCTVC-I0603) 
• Removed implicit weighted prediction (JCTVC-I0589) 
• Incorporated simplified merge TMVP refIdx derivation (JCTVC-I0116) 
• Incorporated AMVP and merge zero MV candidate list completing (JCTVC-I0314/JCTVC-I0134) 
• Incorporated removal of number of combined merge candidate restriction (JCTVC-I0414) 
• Removed inter 4x4 partitions 
• Incorporated maxNumMergeCand signaling fix (JCTVC-I0256) 
• Incorporated no bi-prediction for luma prediction blocks smaller than 8x8 (JCTVC-I0297) 
• Incorporated cu_qp_delta parsing to enable CU-level processing (JCTVC-I0219) 
• Incorporated simplification for multiple sign bit hiding  (JCTVC-I0156) 
• Incorporated restricting the range of coeff_abs_level_remaining (JCTVC-I0254) 
• Incorporated table removal in contexts assignment of last significant position coding (JCTVC-I0331) 
• Incorporated simplified context derivation for significance map (JCTVC-I0296) 
• Incorporated context derivation clean-up for significance map (JCTVC-I0373) 
• Incorporated simplified coeff_abs_level_remaining binarization (JCTVC-I0487/I0124) 
• Incorporated a maximum bound on slices per picture  (JCTVC-I0238) 
• Incorporated Main Profile coding tool decisions 
• Incorporated LM (intra chroma prediction based on luma) mode clean-up (JCTVC-I0148) 
• Incorporated LM mode with uniform bit-width multipliers (JCTVC-I0151) 
• Incorporated LM mode with uniform bit-width multipliers and reduced look-up table for division approximation 

(JCTVC-I0166) 
• Incorporated LM mode with simplified alpha bit-depth restriction (JCTVC-I0178) 
• Incorporated grouping of intra mode bypass bins for NxN intra prediction blocks (JCTVC-I0302) 
• Incorporated level 2.1 and modified level 3 and 3.1 (JCTVC-I0472/I0455) 

 

Ed. Notes (D6): 
• Incorporated limiting dynamic range when qmatrix is used (JCTVC-H0541) 
• Incorporated simplified intra horizontal and vertical modes (JCTVC-H0238) 
• Incorporated DC mode as a default mode (JCTVC-H0242) 
• Incorporated compatible QP prediction with RC and AQ (JCTVC-H0204) 
• Incorporated burst transmission of I_PCM (JCTVC-H0051) 
• SAO syntax fix (Ticket #308) 
• Unused semantics removal related to reference picture list modification (Ticket #293) 
• hPos and vPos table fix in SAO EO (Ticket #300) 
• Typo in weighted prediction fix (Ticket #309) 
• Incorporated clipping operation in strong deblocking (JCTVC-H0275) 
• Incorporated removing sign of SAO offset (JCTVC-H0434) 
• Fix QP’Cb and QP’Cr to consider QpBdOffsetC (Ticket #313) 
• Fix padding issue of LM mode 
• Incorporated deblocking filter simplification (JCTVC-H0473) 
• Fix ALF syntax mismatch 
• Incorporated ALF with single filter type (JCTVC-H0068) 
• Incorporated intra mode coding clean-up and simplification (JCTVC-H0712) 
• Fix clipping in DST (Ticket #307) 
• Considering pcm_loop_filter_disable_flag in SAO (Ticket #301) 
• Fix wrong geometry of sub-pel interpolation filter (Ticket #318) 
• Fix max value of num_ref_idx_l0/l1_default_active_minus1 (Ticket #281) 
• Fix 16x16 and 32x32 quantization matrices (Ticket #320) 
• Incorporated quantization matrix signalling (JCTVC-H0237) 
• Incorporated deblocking parameter signalling (JCTVC-H0424/H0398) 
• Incorporated chroma mode signalling (JCTVC-H0475/H0326) 
• Incorporated 4x4 and 8x8 default quantization matrices (JCTVC-H0461) 
• Incorporated lossless mode (JCTVC-H0530) 
• Incorporated downsampling of q-matrix (JCTVC-H0230) 
• Fix ALF chroma coefficients prediction (Ticket #321)  
• Incorporated two stage design ALF with LCU-based syntax (JCTVC-H0274) 



   Draft ISO/IEC 23008-2 : 201x (E) 

viii Draft Rec. ITU-T H.HEVC (201x E) 

• Incorporated SAO with LCU-based syntax (JCTVC-H0273) 
• Incorporated change to add a condition for presence of ref_idx_list_curr (JCTVC-H0137 proposal #1) 
• Incorporated unification of reference picture list modification processes (JCTVC-H0138) 
• Incorporated change to NAL unit header and output flag (part of JCTVC-H0388) 
• Incorporated coding treeblock and coding block scanning and address derivation. 
• Incorporated changes relating to allowing the bitstream to start with a CRA picture (JCTVC-H0496) 
• Incorporated multiple sign bits hiding (JCTVC-H0481) 
• Incorporated 8x8 diagonal scan by 4x4 diagonal sub-scans (JCTVC-H0526/H0399) 
• Incorporated abs_greater1 and abs_greater2 context reduction (JCTVC-H0130) 
• Incorporated 8 bit codeword, change the Rice parameter to 4 (JCTVC-H0498) 
• Incorporated high throughput binarization for CABAC (JCTVC-H0554) 
• Incorporated sharing sig_coeff_flag cxtCnt=0 at high frequency area (JCTVC-H0095) 
• Incorporated unified sig_coeff_flag context selection for 16x16 and 32x32 (JCTVC-H0290) 
• Incorporated simplification on sig_coeff_group_flag coding (JCTVC-H0131) 
• Incorporated Profiles and Levels (JCTVC-H0738) 
• Incorporated CABAC initialization process (JCTVC-H0535) 
• Incorporated part_mode context reduction (JCTVC-H0545) 
• Incorporated merge index context reduction (JCTVC-H0251) 
• Incorporated CABAC bit to bin expantion ratio limit (JCTVC-H0450) 
• Incorporated CABAC_init_flag (JCTVC-H0540) 
• Incorporated last_sig_coeff_position_prefix for luma context reduction (JCTVC-H0537) 
• Incorporated last_sig_coeff_position_prefix for chroma context reduction (JCTVC-H0514) 
• Incorporated unified transform and coefficient tree (JCTVC-H0123) 
• Fix chroma cbf syntax mismatch (Ticket #295) 
• Incorporated decisions relating to picture size and cropping parameters (response to JCTVC-H0485) 
• Incorported adoptions on tiles, WPP and entropy slices documented in JCTVC-H0737 (response to JCTVC-H0439, 

H0463, H0513, H0517, and H0556 ) 
• Incorported decisions on long-term reference picture signalling (response to JCTVC-H0200 and JCTVC-H0531) and 

a resriction on POC values (response to JCTVC-H0449) 
• Merge estimation region syntax (JCTVC-H0082) 
• Setting the merge TMVP refidx to 0 for the non-first partition (JCTVC-H0278 / JCTVC-H0199) 
• One merge candidate list for all partitions inside a 8x8 CU (JCTVC-H0240 Variant 2 conditioned on 

log2_parallel_merge_level_minus2 > 0 as described in H0082 section 6) 
• Removing non-scaled bi-predictive merging candidates (JCTVC-H0250 /JCTVC-H0164) 
• Removing the list empty check and the duplicate check in AMVP for zero motion vector (JCTVC-H0239) 
• Removing redundant spatial candidates check in AMVP (JCTVC-H0316 first part) 
• Clipping scaled MV to 16 bit and adjust it according to profile/level decisions (JCTVC-H0216 / JCTVC-H0555) 
• Fix AMVP non-scaled/scaled candidate WD/HM mismatch by correcting the WD (JCTVC-H0462) 
• Motion prediction at entropy slice boundary (JCTVC-H0362)  
• Limiting collocated temporal reference to one per picture (JCTVC-H0442) 
• Modification of bi-prediction syntax CE9 BP08 (JCTVC-H0111) 
• CE9 SP (JCTVC-H0252) 
• Incorported adoptions related to reference picture set, SPS syntax and HRD (JCTVC-H0568, H0566, H0567, H0423 

and H0412). 
• Rewrote SAO and ALF syntax and semantics and part of the processes. 
• Incorporated harmonization of number of ALF classes between RA and BA modes  (JCTVC-H0409) 
• Incorporated harmonization of ALF luma and chroma center coefficient prediction (JCTVC-H0483)  
• Incorporated JCTVC-H0174-B with modification of number of bands and coding of the offset band according to 

JCTVC-H0406 (5b FLC/bypass coding).. 
• Imported VUI from AVC with HEVC modifications (based upon JCTVC-F289) 
• Imported SEI messages from AVC with HEVC semantic restrictions (based upon JCTVC-E346) 
• Incorporated display orientation SEI (VCEG-AR12_r2) 
• Incorporated temporal structure SEI (JCTVC-H0423) 
• Incorporated decoded picture hash SEI (JCTVC-E490) 
• Incorporated field indication SEI and VUI (JCTVC- H0720) 
• Incorporated inheriting the QP prediction value at the left edge from the slice header in which the LCU belongs 

(JCTVC-H0226) 
• Fixed missing definition of "cu_qp_delta_enabled_flag" (Ticket #310) 
• Incorporated start-code based markers for signalling of tile entry points (JCTVC-F594) 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) ix 

• Made the following clean-up changes: 
o Addressing editing notes and cross references in subclauses 0.2, 0.3, 0.6, 0.7 and Clause 3 
o Various changes to the definitions, including 

 Correcting of the definition of "IDR picture", as marking all reference pictures as "unused for 
reference" is not anymore immediately after the decoding of the IDR picture due to the reference 
picture set based picture buffering mechanism 

 Resolving editing notes related to the definitions of "leading picture" and "output order" 
 Resolving editing notes related to the definitions of "reference picture list (X)" (X being 0 or 1) 
 Correcting for the indention of some bullet items in subclause 8.3.3 (Decoding process for 

generating unavailable reference pictures) 
 Improving definitions of "tile", "tree" 
 Added a definition of "z-scan" 

o Removing mentioning of redundant pictures and changing "primary (coded) picture" to "(coded) picture", 
auxiliary (coded) picture, and data partitioning 

o Moving of the sentence "The first coded picture in a bitstream shall be an IDR picture or a CRA picture." 
from the decoder conformance subclause to the bitstream conformance subclause 

• Incorporated the ability, at the slice level, to disable loop filtering across slice boundaries (in response to JCTVC-
H0391) 

Working Draft 5 of High Efficiency Video Coding. 

Ed. Notes (WD5): 
• Incorporated weighted prediction (JCTVC-F265) 
• Removed CAVLC 
• Incorporated wavefront parallel processing (JCTVC-F274) 
• Incorporated wavefront CABAC flush (JCTVC-F275) 
• Incorporated tiles (JCTVC-F335) 
• Removed ClipMv (JCTVC-G134) 
• Removed merge partition redundancy check (JCTVC-G681) 
• Incorporated simplified merge pruning (JCTVC-G1006) 
• Incorporated extend scaling factor clipping to 16 (JCTVC-G223) 
• Incorporated amvp position dependency removal (JCTVC-G542) 
• Incorporated simplified TMVP refidx derivation (JCTVC-G163) 
• Incorporated MaxNumMergeCand signalling in slice header (JCTVC-G091) 
• Incorporated modified H and center TMVP positions (JCTVC-G082) 
• Incorporated intra smoothing for horizontal and vertical directions (G457) 
• Incorporated removal of ALF DC offset (JCTVC-G445) 
• Incorporated line buffer elimination (JCTVC-G145) 
• Incorporated simplified intra mode mapping (JCTVC-G418/G109/G144) 
• Incorporated modified intra mode coding (JCTVC-G119) 
• Incorporated luma interpolation filter (JCTVC-G778) 
• Incorporated chroma interpolation filter (JCTVC-G778) 
• Incorporated simplified intra padding (JCTVC-G812) 
• Incorporated modified cRiceParam update (JCTVC-G700) 
• Incorporated 8bit init values for CABAC (JCTVC-G633) 
• Incorporated harmonized pred and part mode binarization (JCTVC-G1042) 
• Incorporated significant map context reduction (JCTVC-G1015) 
• Incorporated level chroma context reduction (JCTVC-G783) 
• Incorporated diagonal sub-block scan for residual coding (JCTVC-G323) 
• Removed NSQT remapping and transform reordering (JCTVC-G1038) 
• Incorporated modified last_significant_coeff_x/y coding (JCTVC-G201/G704) 
• Incorporated shared chroma CBF contexts (JCTVC-G718) 
• Incorporated luma intra mode bypass coding (JCTVC-G767) 
• Incorporated multi-level significant map (JCTVC-G644) 
• Incorporated WD and HM mismatch for LM prediction (JCTVC-G1034) 
• Revert the slice boundary padding for adaptive loop filter to WD4 
• Incorporated 4x4 BA classification (JCTVC-G609) 
• Incorporated virtual boundary processing (JCTVC-G212) 
• Incorporated fixed K-table for ALF (JCTVC-G610) 
• Incorporated removing 15th merge flag for BA mode in ALF (JCTVC-G216) 
• Incorporated prediction of ALF coefficients (JCTVC-G665) 



   Draft ISO/IEC 23008-2 : 201x (E) 

x Draft Rec. ITU-T H.HEVC (201x E) 

• Incorporated deblocking clean-up (JCTVC-G1035/G620) 
• Revert the deblocking decision to HM3 (JCTVC-G088) 
• Incorporated support of varying QP in deblocking (JCTVC-G1031) 
• Incorporated reducing motion data line buffers (JCTVC-G229) 
• Incorporated reference picture set (RPS) (JCTVC-G1002) 
• Incorporated reference picture set prediction (JCTVC-G198) 
• Incorporated separate decisions for each half (4 lines) of a length 8 block boundaries (JCTVC-G590) 
• Incorporated BoG on deblocking fix (JCTVC-G1035) 
• Incorporated core transform (JCTVC-G495) 
• Incorporated clipping at the output of the first inverse transform (JCTVC-G782) 
• Incorporated forbidding level values outside of 16b (JCTVC-G719) 
• Incorporated reducing cbf flag signalling redundancy (JCTVC-G444) 
• Incorporated changing luma/chroma coefficient interleaving from CU to TU level (JCTVC-G381) 
• Incorporated defining MaxIPCMCUSize, MinChromaTrafoSize (JCTVC-G112) 
• Incorporated harmonization of implicit TU, AMP and NSQT (JCTVC-G519) 
• Incorporated improved weighted prediction (JCTVC-G065) 
• Incorporated redundancy removal of explicit weighted prediction syntax (JCTVC-G441) 
• Incorporated non-cross-tiles loop filtering for independent tiles (JCTVC-G194) 
• Incorporated low latency CABAC initialization for dependent tiles (JCTVC-G197) 
• Incorporated AVC-based quantization matrices syntax (JCTVC-G434) 
• Incorporated HVS-based quantization matrices (JCTVC-G880) 
• Incorporated APS quantization matrices and parameter set extension syntax (JCTVC-G1016) 
• Incorporated nal_unit_type value of 14 for APS 
• Incorporated SPS syntax for chroma_format_idc from AVC 
• Incorporated pure VLC for SAO and ALF (JCTVC-G220) 
• Moved slice address and put slice_type and cabac_init_idc into slice and entropy slice header. (JCTVC-G1025) 
• Incorporated picture width and height coding using ue(v) rather than u(16) (JCTVC-G325) 
• Incorporated ALF and SAO flags in slice header (JCTVC-G566) 
• Incorporated marking process for non-TMVP pictures (JCTVC-G398) 
• Incorporated max_dec_frame_buffering, num_reorder_frames, and use max_latency_increase (JCTVC-G546) 
• Incorporated high level syntax clean up (JCTVC-G507) 
• Incorporated chroma QP offset (JCTVC-G509) 

Working Draft 4 of High Efficiency Video Coding. 

Ed. Notes (WD4): 
• Removed inferred merge (JCTVC-F082) 
• Incorporated slice header flag to disable 4x4 inter partitions (JCTVC-F744) 
• Incorporated modified rounding in MV scaling (JCTVC-F142) 
• Removed intermediate amvp spatial candidates redundancy check (JCTVC-F050) 
• Incorporated reducing the number of spatial mv scalings to 1 (JCTVC-F088) 
• Incorporated spatial merge candidate positions unification (JCTVC-F419) 
• Incorporated one reference list check for temporal mvp (JCTVC-F587) 
• Incorporated AMVP/merge parsing robustness with simplifications (JCTVC-F470) 
• Incorporated unified availability check for intra (JCTVC-F477) 
• Incorporated generic interpolation filter (JCTVC-F537) 
• Incorporated non-square quadtree transform NSQT (JCTVC-F412) 
• Incorporated asymmetric motion partitions AMP (JCTVC-F379) 
• Incorporated CBF redundancy reduction (JCTVC-C277) 
• Incorporated modified delta QP binarization (JCTVC-F745) 
• Incorporated diagonal coefficient scanning in CABAC (JCTVC-F129) 
• Incorporated parallel context processing for coefficient levels in CABAC (JCTVC-F130) 
• Incorporated context sharing for significant_coeff_flag of 16x16 and 32x32 transforms (JCTVC-F132) 
• Incorporated unified scans (JCTVC-F288) 
• Incorporated sample adaptive offset (JCTVC-E049) 
• Incorporated sample adaptive offset for chroma (JCTVC-F057) 
• Incorporated sample adaptive offset offset accuracy (JCTVC-F396) 
• Incorporated updated ALF slice padding (JCTVC-D128) 
• Incorporated updated ALF slice padding due to ALF filter shape change (JCTVC-F303/F042) 
• Incorporated updated ALF slice padding due to unified luma and chroma filter shapes (JCTVC-F157) 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xi 

• Incorporated ALF filter using subset of pixels (JCTVC-F301) 
• Incorporated modified deblocking process for luma (JCTVC-F118) 
• Incorporated modified tc_offset in deblocking process (JCTVC-F143) 
• Incorporated MDIS and pixel position change of planar (JCTVC-F483) 
• Incorporated availability check removal for intra DC filtering (JCTVC-F178) 
• Incorporated size-independent intra DC filtering (JCTVC-F252) 
• Incorporated modified MDIS table (JCTVC-F126) 
• Incorporated simplified intra_FromLuma prediction (JCTVC-F760) 
• Incorporated fixed number of MPM (JCTVC-F765) 
• Incorporated SAO boundary processing (JCTVC-F232) 
• Minor bug in deriving sample positions in SAO process was fixed 
• Bug in coding tree syntax table related to the initialization of variable IsCuQpDeltaCoded was fixed 
• Incorporated modified last significant coefficient position coding in CABAC (JCTVC-F375) 
• Incorporated modified mvd coding in CABAC (JCTVC-F455) 
• Incorporated reduced number of contexts in CABAC (JCTVC-F746) 
• Incorporated high-level syntax cleanup (JCTVC-F714) 
• Incorporated NAL unit type and CDR (CRA) (JCTVC-F462/464) 
• Incorporated adaptation parameter set (APS) (JCTVC-F747) 

 

Ed. Notes (WD3): 
• Added Residual coding CABAC syntax and semantics 
• Added Zig-zag scanning process 
• Added CABAC Binarization processes 
• Incorporated MV coding (JCTVC-E481) 
• Incorporated Compression of reference indices (JCTVC-E059) 
• Incorporated Zero merge candidate (JCTVC-E146) 
• Incorporated Intra mode coding (JCTVC-E088/E131) (Inserted by TK 31/3/2011 with notes) 
• Fixed the CABAC coefficients syntax, semantics and inverse scanning process 
• Incorporated CABAC coeffs (JCTVC-E253) 
• Moved the EGk binarization from the UEGk subclause in a separate subclause 
• Added text representing CABAC entropy coding context initialization  
• Added text representing CABAC entropy coding context derivation. 
• Mode-dependent 3- scan for intra (JCTVC-D393) 
• Incorporated CABAC: Context size reduction (JCTVC-E227/E489) 
• Incorporated CABAC: significance map coding simplification (JCTVC-E227/E338/E344/E494) 
• Incorporated CABAC: Contexts for MVD (JCTVC-E324) 
• Incorporated initial draft of CAVLC text 
• CAVLC for 16x16 & 32x32 (JCTVC-E383) 
• CAVLC table size reduction (JCTVC-E384) 
• CAVLC for RQT  (JCTVC-E404) 
• CAVLC: counters (JCTVC-E143) 
• CAVLC: Intra prediction mode coding in LCEC (JCTVC-D366) 
• CAVLC: Inter prediction mode coding in LCEC (JCTVC- D370) 
• CAVLC: 4x4 and 8x8 transform coefficient coding in LCEC (JCTVC- D374) 
• Block-based ALF (JCTVC-E046/E323) 
• ALF parameters to PPS (JCTVC-E045) 
• Parallel deblocking (JCTVC-E496/E181/E224) 
• Clipping for bi-pred averaging (JCTVC-E242) 
• Reference sample padding (JCTVC-E488) 
• Transformation processes are replaced by [TBD] mark (meeting note, JCTVC-E243) 
• Sub-LCU-level dQP (JCTVC-E051/E220) 
• Temporal layer switching and reference list management based on temporal_id (JCTVC-E279/D081/D200) 
• Improved text of entropy slice (JCTVC-D070) 
• Slice independent deblocking and adaptive loop filtering (JCTVC-D128) 
• Fine-granularity slices (JCTVC-E483) 
• PCM mode (JCTVC-E057 and JCTVC-E192) 
• CAVLC: Inter pred coding (JCTVC-E381) 
• CAVLC: Combined coding of inter prediction direction and reference frame index (JCTVC-D141) 



   Draft ISO/IEC 23008-2 : 201x (E) 

xii Draft Rec. ITU-T H.HEVC (201x E) 

• 4x4 DST (JCTVC-E125) 
• Planar mode (JCTVC-E321) 
• Luma-based chroma intra prediction (JCTVC-E266) 
• Modification of DC predictor (JCTVC-E069) 
• Bug in mapping table and the corresponding text for mostProbableIntra was fixed. (64x64 uses 3-directions, but the 

table was specified for 5-directions) 
• Non-existing cases of Intra_DC, Intra_Planar and Intra_FromLuma are removed (due to reference sample padding, 

JCTVC-E488) 

 
Ed. Notes (WD2):  
• Incorporated Partial Merging according to JCTVC-D441 

o removed direct mode 
o moved merge to prediction_unit and added candidates 
o added partial merge restrictions 
o inter NxN partitioning only for smallest coding_unit 

• Updated transform_tree and transform_coeff syntax 
• Added transform_coeff to coding_unit syntax (Fix) 
• Incorporated intra NxN partitioning only for smallest coding_unit according to JCTVC-D432 
• Incorporated modified temporal motion vector predition according to JCTVC-D164 
• Incorporated simplified motion vector prediction according to JCTVC-D231 

o removed median 
o removed pruning process 
o changed the selection manner of left/top predictor 

• 8-tap luma interpolation filter according to JCTVC-D344 
• 4-tap chroma interpolation filter according to JCTVC-D347 
• Improved deblocking filter text according to JCTVC-D395 
• IBDI syntax is removed 
• Updated syntax and semantics 

o Two tool-enabling flags (adaptive_loop_filter_enabled_flag and cu_qp_delta_enabled_flag) are added in 
SPS according to software. However, low_delay_coding_enabled_flag is not added – it could be handled 
by more general reference management scheme. merging_enabled_flag is not added – partial merging 
(JCTVC-D441) was adopted thus merging cannot be turned off any more. amvp_mode[] is not added since 
amvp cannot be turned off any more due to absence of median predictor (JCTVC-D231). Note that software 
has all switches. 

o cu_qp_delta (coding unit layer), syntax and semantics are added. (JCTVC-D258) 
o collocated_from_l0 (slice header), syntax and semantics are added. 

• Clean decoding refresh (CDR) (JCTVC-D234). 
• Temporal motion vector memory compression (JCTVC-D072) 
• Constrained intra prediction (JCTVC-D086) 
• Mode-dependent intra smoothing (JCTVC-D282) 
• Merging chroma intra prediction process into luma intra prediction process 
• Combined reference list (JCTVC-D421) 
• Chroma intra prediction mode reordering (JCTVC-D255/D278/D166) 
• Adaptive loop filter text is added 
• Entropy slice is added (JCTVC-D070) 
• High precision bi-directional averaging (JCTVC-D321) 
• Reduction of number of intra prediction modes for 64x64 blocks (JCTVC-D100) 
• Misc. 

o TPE bits are reduced from 4 to 2 
o Clipping is applied to (temporally) scaled mv – revisit 

 
Ed. Notes (WD1):  
• Incorporated the decisions on high-level syntax according to JCTVC-B121 
• Incorporated text from JCTVC-B205revision7 
• Incorporated text from JCTVC-C319 (as found to be stable) 
• Revised coding tree, coding unit and prediction unit syntaxes (coding tree syntax is newly added. needs to be 

confirmed) 
• Initial drafting of decoding process of coding units in intra prediction mode (luma part, JCTVC-B100 and JCTVC-

C042) 
• Initial drafting of decoding process of coding units in inter prediction mode 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xiii 

• Initial drafting of scaling and transformation process 
• Added text, transform 16T and 32T 
• Initial drafting of deblocking process 
• Improving the text, derivation process for motion vector components and reference indices 
• Added text, boundary filtering strength 

 
Open issues: 
• Should support for monochrome, 4:2:2 and 4:4:4 (with and w/o separate colour planes) be included from the start? 

Currently, it has been left in the text as it doesn't seem to affect much text. 
• Use of bin string and bit string should be consistent. 
• Improve text quality by considering: strict use of terms "unit" and "block" – block = a rectangular 2D array (one 

component), unit = collective term for specifying information for both luma and chroma. Don’t use ther term ‘unit’ 
by itself – always use the term ‘unit’ with prefix – coding unit, prediction unit or transform unit. 

• Both variables IntraPredMode and IntraPredModeC are used in the syntax table but the actual derivations are 
specified in the decoding process. Maybe it’s better to move them to the semantics section. 

• Binarization of intra_chroma_pred_mode reflecting codeword switching and luma-based chroma intra prediction 
(JCTVC-E266) is missing. 

• Clarification on the use of intra_chroma_pred_mode and IntraPredModeC is needed. The former specifies the syntax 
item to indicate how to determine the chroma intra prediction mode (IntraPredModeC) as 0 (to Intra_FromLuma), 1 
(to Intra_Vertical), 2 (to Intra_Horizontal), 3 (Intra_DC or Intra_Planar) or 4 (re-use luma mode). The latter 
specifies chroma intra prediction mode, which is actually mapped to the specific prediction process. 

• Software-text mismatch of JCTVC-F252: SW applies DC filtering to 64x64 intra block but WD does not. 
• There are input/output parameter inconsistencies between function call and actual functions of intra prediction. 

Function call uses sample position, block, size and chroma index while some functions do not use some parameters. 



   Draft ISO/IEC 23008-2 : 201x (E) 

xiv Draft Rec. ITU-T H.HEVC (201x E) 

 

CONTENTS 

 Page 
Abstract ......................................................................................................................................................................................... i 
0 Introduction ......................................................................................................................................................................... 1 

0.1 Prologue ...................................................................................................................................................................... 1 
0.2 Purpose ........................................................................................................................................................................ 1 
0.3 Applications ................................................................................................................................................................ 1 
0.4 Publication and versions of this Specification .......................................................................................................... 1 
0.5 Profiles, tiers and levels ............................................................................................................................................. 2 
0.6 Overview of the design characteristics ..................................................................................................................... 2 
0.7 How to read this Specification ................................................................................................................................... 2 

1 Scope ................................................................................................................................................................................... 3 
2 Normative references .......................................................................................................................................................... 3 

2.1 General ........................................................................................................................................................................ 3 
2.2 Identical Recommendations | International Standards ............................................................................................. 3 
2.3 Paired Recommendations | International Standards equivalent in technical content ............................................. 3 
2.4 Additional references ................................................................................................................................................. 3 

3 Definitions ........................................................................................................................................................................... 3 
4 Abbreviations .................................................................................................................................................................... 11 
5 Conventions....................................................................................................................................................................... 13 

5.1 General ...................................................................................................................................................................... 13 
5.2 Arithmetic operators ................................................................................................................................................. 13 
5.3 Logical operators ...................................................................................................................................................... 13 
5.4 Relational operators .................................................................................................................................................. 13 
5.5 Bit-wise operators ..................................................................................................................................................... 13 
5.6 Assignment operators ............................................................................................................................................... 14 
5.7 Range notation .......................................................................................................................................................... 14 
5.8 Mathematical functions ............................................................................................................................................ 14 
5.9 Order of operation precedence................................................................................................................................. 15 
5.10 Variables, syntax elements, and tables .................................................................................................................... 15 
5.11 Text description of logical operations ..................................................................................................................... 16 
5.12 Processes ................................................................................................................................................................... 17 

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships .................... 18 
6.1 Bitstream formats ..................................................................................................................................................... 18 
6.2 Source, decoded, and output picture formats .......................................................................................................... 18 
6.3 Spatial subdivision of pictures, slices, slice segments, and tiles ........................................................................... 20 
6.4 Availability processes .............................................................................................................................................. 22 

6.4.1 Derivation process for z-scan order block availability .................................................................................. 22 
6.4.2 Derivation process for prediction block availability ...................................................................................... 23 

6.5 Scanning processes ................................................................................................................................................... 24 
6.5.1 Coding tree block raster and tile scanning conversion process ..................................................................... 24 
6.5.2 Z-scan order array initialization process ......................................................................................................... 25 
6.5.3 Up-right diagonal scan order array initialization process .............................................................................. 25 
6.5.4 Horizontal scan order array initialization process .......................................................................................... 26 
6.5.5 Vertical scan order array initialization process .............................................................................................. 26 

7 Syntax and semantics ....................................................................................................................................................... 26 
7.1 Method of specifying syntax in tabular form ......................................................................................................... 26 
7.2 Specification of syntax functions and descriptors .................................................................................................. 27 
7.3 Syntax in tabular form .............................................................................................................................................. 29 

7.3.1 NAL unit syntax ............................................................................................................................................... 29 
7.3.1.1 General NAL unit syntax .......................................................................................................................... 29 
7.3.1.2 NAL unit header syntax ............................................................................................................................ 29 

7.3.2 Raw byte sequence payloads, trailing bits, and byte alignment syntax ........................................................ 30 
7.3.2.1 Video parameter set RBSP syntax ............................................................................................................ 30 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xv 

7.3.2.2 Sequence parameter set RBSP syntax ...................................................................................................... 31 
7.3.2.3 Picture parameter set RBSP syntax .......................................................................................................... 32 
7.3.2.4 Supplemental enhancement information RBSP syntax ........................................................................... 34 
7.3.2.5 Access unit delimiter RBSP syntax .......................................................................................................... 34 
7.3.2.6 End of sequence RBSP syntax .................................................................................................................. 34 
7.3.2.7 End of bitstream RBSP syntax .................................................................................................................. 34 
7.3.2.8 Filler data RBSP syntax ............................................................................................................................ 34 
7.3.2.9 Slice segment layer RBSP syntax ............................................................................................................. 34 
7.3.2.10 RBSP slice segment trailing bits syntax ................................................................................................... 35 
7.3.2.11 RBSP trailing bits syntax .......................................................................................................................... 35 
7.3.2.12 Byte alignment syntax ............................................................................................................................... 35 

7.3.3 Profile, tier and level syntax ............................................................................................................................ 36 
7.3.4 Bit rate and picture rate information syntax ................................................................................................... 36 
7.3.5 Operation point set syntax ............................................................................................................................... 37 
7.3.6 Scaling list data syntax .................................................................................................................................... 37 
7.3.7 Supplemental enhancement information message syntax ............................................................................. 38 
7.3.8 Slice segment header syntax ............................................................................................................................ 39 

7.3.8.1 General slice segment header syntax ........................................................................................................ 39 
7.3.8.2 Short-term reference picture set syntax .................................................................................................... 41 
7.3.8.3 Reference picture list modification syntax ............................................................................................... 42 
7.3.8.4 Weighted prediction parameters syntax ................................................................................................... 43 

7.3.9 Slice segment data syntax ................................................................................................................................ 44 
7.3.9.1 General slice segment data syntax ............................................................................................................ 44 
7.3.9.2 Coding tree unit syntax.............................................................................................................................. 44 
7.3.9.3 Sample adaptive offset syntax .................................................................................................................. 45 
7.3.9.4 Coding quadtree syntax ............................................................................................................................. 46 
7.3.9.5 Coding unit syntax ..................................................................................................................................... 47 
7.3.9.6 Prediction unit syntax ................................................................................................................................ 49 
7.3.9.7 PCM sample syntax ................................................................................................................................... 49 
7.3.9.8 Transform tree syntax ................................................................................................................................ 50 
7.3.9.9 Motion vector difference syntax ............................................................................................................... 50 
7.3.9.10 Transform unit syntax ............................................................................................................................... 51 
7.3.9.11 Residual coding syntax .............................................................................................................................. 52 

7.4 Semantics .................................................................................................................................................................. 54 
7.4.1 NAL unit semantics ......................................................................................................................................... 54 

7.4.1.1 General NAL unit semantics ..................................................................................................................... 54 
7.4.1.2 NAL unit header semantics ....................................................................................................................... 55 
7.4.1.3 Encapsulation of an SODB within an RBSP (informative) .................................................................... 58 
7.4.1.4 Order of NAL units and association to coded pictures, access units, and video sequences ................. 59 

7.4.2 Raw byte sequence payloads, trailing bits, and byte alignment semantics .................................................. 62 
7.4.2.1 Video parameter set RBSP semantics ...................................................................................................... 62 
7.4.2.2 Sequence parameter set RBSP semantics................................................................................................. 64 
7.4.2.3 Picture parameter set RBSP semantics ..................................................................................................... 69 
7.4.2.4 Supplemental enhancement information RBSP semantics ..................................................................... 72 
7.4.2.5 Access unit delimiter RBSP semantics .................................................................................................... 72 
7.4.2.6 End of sequence RBSP semantics ............................................................................................................ 72 
7.4.2.7 End of bitstream RBSP semantics ............................................................................................................ 72 
7.4.2.8 Filler data RBSP semantics ....................................................................................................................... 72 
7.4.2.9 Slice segment layer RBSP semantics ....................................................................................................... 72 
7.4.2.10 RBSP slice segment trailing bits semantics ............................................................................................. 72 
7.4.2.11 RBSP trailing bits semantics ..................................................................................................................... 73 
7.4.2.12 Byte alignment semantics ......................................................................................................................... 73 

7.4.3 Profile, tier and level semantics ...................................................................................................................... 73 
7.4.4 Bit rate and picture rate information semantics ............................................................................................. 74 
7.4.5 Operation point layer set semantics ................................................................................................................ 75 
7.4.6 Scaling list data semantics ............................................................................................................................... 75 
7.4.7 Supplemental enhancement information message semantics ........................................................................ 78 
7.4.8 Slice segment header semantics ...................................................................................................................... 78 

7.4.8.1 General slice segment header semantics .................................................................................................. 78 
7.4.8.2 Short-term reference picture set semantics .............................................................................................. 82 
7.4.8.3 Reference picture list modification semantics ......................................................................................... 84 
7.4.8.4 Weighted prediction parameters semantics .............................................................................................. 85 

7.4.9 Slice segment data semantics .......................................................................................................................... 86 



   Draft ISO/IEC 23008-2 : 201x (E) 

xvi Draft Rec. ITU-T H.HEVC (201x E) 

7.4.9.1 General slice segment data semantics ...................................................................................................... 86 
7.4.9.2 Coding tree unit semantics ........................................................................................................................ 86 
7.4.9.3 Sample adaptive offset semantics ............................................................................................................. 86 
7.4.9.4 Coding quadtree semantics ....................................................................................................................... 88 
7.4.9.5 Coding unit semantics ............................................................................................................................... 88 
7.4.9.6 Prediction unit semantics .......................................................................................................................... 90 
7.4.9.7 PCM sample semantics ............................................................................................................................. 91 
7.4.9.8 Transform tree semantics .......................................................................................................................... 91 
7.4.9.9 Motion vector difference semantics ......................................................................................................... 92 
7.4.9.10 Transform unit semantics .......................................................................................................................... 92 
7.4.9.11 Residual coding semantics ........................................................................................................................ 93 

8 Decoding process .............................................................................................................................................................. 95 
8.1 General decoding process ........................................................................................................................................ 95 
8.2 NAL unit decoding process ..................................................................................................................................... 97 
8.3 Slice decoding process ............................................................................................................................................. 97 

8.3.1 Decoding process for picture order count ....................................................................................................... 97 
8.3.2 Decoding process for reference picture set..................................................................................................... 98 
8.3.3 Decoding process for generating unavailable reference pictures ................................................................ 102 

8.3.3.1 General decoding process for generating unavailable reference pictures ............................................ 102 
8.3.3.2 Generation of one unavailable picture .................................................................................................... 103 

8.3.4 Decoding process for reference picture lists construction ........................................................................... 103 
8.4 Decoding process for coding units coded in intra prediction mode .................................................................... 104 

8.4.1 General decoding process for coding units coded in intra prediction mode .............................................. 104 
8.4.2 Derivation process for luma intra prediction mode ..................................................................................... 105 
8.4.3 Derivation process for chroma intra prediction mode ................................................................................. 107 
8.4.4 Decoding process for intra blocks ................................................................................................................. 107 

8.4.4.1 General decoding process for intra blocks ............................................................................................. 107 
8.4.4.2 Intra sample prediction ............................................................................................................................ 108 

8.5 Decoding process for coding units coded in inter prediction mode .................................................................... 114 
8.5.1 General decoding process for coding units coded in inter prediction mode .............................................. 114 
8.5.2 Inter prediction process .................................................................................................................................. 115 
8.5.3 Decoding process for prediction units in inter prediction mode ................................................................. 117 

8.5.3.1 Derivation process for motion vector components and reference indices ........................................... 118 
8.5.3.2 Decoding process for inter prediction samples ...................................................................................... 132 

8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode ........................ 141 
8.5.4.1 Decoding process for luma residual blocks ........................................................................................... 142 
8.5.4.2 Decoding process for chroma residual blocks ....................................................................................... 142 

8.6 Scaling, transformation and array construction process prior to deblocking filter process ............................... 143 
8.6.1 Derivation process for quantization parameters ........................................................................................... 143 
8.6.2 Scaling and transformation process .............................................................................................................. 145 
8.6.3 Scaling process for transform coefficients ................................................................................................... 146 
8.6.4 Transformation process for scaled transform coefficients........................................................................... 146 

8.6.4.1 Transformation process ........................................................................................................................... 147 
8.6.5 Picture construction process prior to in-loop filter process ......................................................................... 149 

8.7 In-loop filter process .............................................................................................................................................. 149 
8.7.1 General ............................................................................................................................................................ 149 
8.7.2 Deblocking filter process ............................................................................................................................... 149 

8.7.2.1 Derivation process of transform block boundary .................................................................................. 151 
8.7.2.2 Derivation process of prediction block boundary .................................................................................. 152 
8.7.2.3 Derivation process of boundary filtering strength ................................................................................. 152 
8.7.2.4 Edge filtering process .............................................................................................................................. 154 

8.7.3 Sample adaptive offset process ..................................................................................................................... 162 
8.7.3.1 General ..................................................................................................................................................... 162 
8.7.3.2 Coding tree block modification process ................................................................................................. 162 

9 Parsing process................................................................................................................................................................ 164 
9.1 Parsing process for 0-th order Exp-Golomb codes .............................................................................................. 164 

9.1.1 Mapping process for signed Exp-Golomb codes ......................................................................................... 165 
9.2 CABAC parsing process for slice segment data ................................................................................................... 167 

9.2.1 Initialization process ...................................................................................................................................... 168 
9.2.1.1 Initialization process for context variables ............................................................................................ 170 
9.2.1.2 Memorization process for context variables .......................................................................................... 177 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xvii 

9.2.1.3 Synchronization process for context variables ...................................................................................... 178 
9.2.1.4 Initialization process for the arithmetic decoding engine ..................................................................... 178 

9.2.2 Binarization process ....................................................................................................................................... 178 
9.2.2.1 Unary (U) binarization process ............................................................................................................... 183 
9.2.2.2 Truncated unary (TU) binarization process ........................................................................................... 183 
9.2.2.3 Truncated Rice (TR) binarization process ............................................................................................. 183 
9.2.2.4 k-th order Exp-Golomb (EGk) binarization process ............................................................................. 184 
9.2.2.5 Fixed-length (FL) binarization process .................................................................................................. 184 
9.2.2.6 Binarization process for cu_qp_delta_abs ............................................................................................. 184 
9.2.2.7 Binarization process for part_mode ........................................................................................................ 184 
9.2.2.8 Binarization process for coeff_abs_level_remaining ............................................................................ 185 
9.2.2.9 Binarization process for intra_chroma_pred_mode .............................................................................. 185 
9.2.2.10 Binarization process for inter_pred_idc ................................................................................................. 186 

9.2.3 Decoding process flow ................................................................................................................................... 186 
9.2.3.1 Derivation process for ctxIdx .................................................................................................................. 187 
9.2.3.2 Arithmetic decoding process ................................................................................................................... 192 

9.2.4 Arithmetic encoding process (informative) .................................................................................................. 199 
9.2.4.1 Initialization process for the arithmetic encoding engine (informative) .............................................. 199 
9.2.4.2 Encoding process for a binary decision (informative) .......................................................................... 200 
9.2.4.3 Renormalization process in the arithmetic encoding engine (informative) ......................................... 201 
9.2.4.4 Bypass encoding process for binary decisions (informative) ............................................................... 203 
9.2.4.5 Encoding process for a binary decision before termination (informative) .......................................... 204 
9.2.4.6 Byte stuffing process (informative) ........................................................................................................ 206 

10 Specification of bitstream subsets ................................................................................................................................. 206 
10.1 Sub-bitstream extraction process ........................................................................................................................... 206 

 Annex A  Profiles, tiers and levels........................................................................................................................................ 207 
A.1 Overview of profiles, tiers and levels.................................................................................................................... 207 
A.2 Requirements on video decoder capability ........................................................................................................... 207 
A.3 Profiles .................................................................................................................................................................... 207 

A.3.1 General ............................................................................................................................................................ 207 
A.3.2 Main profile .................................................................................................................................................... 207 
A.3.3 Main 10 profile ............................................................................................................................................... 208 
A.3.4 Main Still Picture profile ............................................................................................................................... 208 

A.4 Tiers and levels ....................................................................................................................................................... 209 
A.4.1 General tier and level limits........................................................................................................................... 209 
A.4.2 Profile-specific level limits for the Main and Main 10 profiles .................................................................. 211 
A.4.3 Effect of level limits on picture rate for the Main and Main 10 profiles (informative)............................. 212 

 Annex B  Byte stream format ................................................................................................................................................ 216 
B.1 Byte stream NAL unit syntax and semantics ........................................................................................................ 216 

B.1.1 Byte stream NAL unit syntax ........................................................................................................................ 216 
B.1.2 Byte stream NAL unit semantics .................................................................................................................. 216 

B.2 Byte stream NAL unit decoding process .............................................................................................................. 217 
B.3 Decoder byte-alignment recovery (informative) .................................................................................................. 217 

 Annex C  Hypothetical reference decoder ........................................................................................................................... 218 
C.1 General .................................................................................................................................................................... 218 
C.2 Operation of coded picture buffer (CPB) .............................................................................................................. 222 

C.2.1 General ............................................................................................................................................................ 222 
C.2.2 Timing of decoding unit  arrival ................................................................................................................... 222 
C.2.3 Timing of decoding unit removal and decoding of decoding unit .............................................................. 224 

C.3 Operation of the decoded picture buffer (DPB) ................................................................................................... 226 
C.3.1 General ............................................................................................................................................................ 226 
C.3.2 Removal of pictures from the DPB ............................................................................................................... 226 
C.3.3 Picture output.................................................................................................................................................. 226 
C.3.4 Current decoded picture marking and storage .............................................................................................. 227 

C.4 Bitstream conformance .......................................................................................................................................... 227 
C.5 Decoder conformance ............................................................................................................................................ 228 

C.5.1 General ............................................................................................................................................................ 228 
C.5.2 Operation of the output order DPB ............................................................................................................... 229 
C.5.3 Output and removal of pictures from the DPB............................................................................................. 229 

C.5.3.1 "Bumping" process .................................................................................................................................. 230 



   Draft ISO/IEC 23008-2 : 201x (E) 

xviii Draft Rec. ITU-T H.HEVC (201x E) 

C.5.4 Picture decoding, marking and storage ......................................................................................................... 230 
 Annex D  Supplemental enhancement information ............................................................................................................. 231 

D.1 SEI payload syntax ................................................................................................................................................. 232 
D.1.1 General SEI message syntax ......................................................................................................................... 232 
D.1.2 Buffering period SEI message syntax ........................................................................................................... 233 
D.1.3 Picture timing SEI message syntax ............................................................................................................... 234 
D.1.4 Pan-scan rectangle SEI message syntax ....................................................................................................... 234 
D.1.5 Filler payload SEI message syntax ............................................................................................................... 234 
D.1.6 User data registered by Rec. ITU-T T.35 SEI message syntax ................................................................... 234 
D.1.7 User data unregistered SEI message syntax ................................................................................................. 234 
D.1.8 Recovery point SEI message syntax ............................................................................................................. 234 
D.1.9 Scene information SEI message syntax ........................................................................................................ 235 
D.1.10 Full-frame snapshot SEI message syntax ..................................................................................................... 235 
D.1.11 Progressive refinement segment start SEI message syntax ......................................................................... 235 
D.1.12 Progressive refinement segment end SEI message syntax .......................................................................... 235 
D.1.13 Film grain characteristics SEI message syntax ............................................................................................ 235 
D.1.14 Post-filter hint SEI message syntax .............................................................................................................. 235 
D.1.15 Tone mapping information SEI message syntax .......................................................................................... 236 
D.1.16 Frame packing arrangement SEI message syntax ........................................................................................ 237 
D.1.17 Display orientation SEI message syntax ....................................................................................................... 237 
D.1.18 SOP description SEI message syntax ........................................................................................................... 238 
D.1.19 Decoded picture hash SEI message syntax................................................................................................... 238 
D.1.20 Active parameter sets SEI message syntax................................................................................................... 238 
D.1.21 Decoding unit information SEI message syntax .......................................................................................... 238 
D.1.22 Temporal level zero index SEI message syntax ........................................................................................... 239 
D.1.23 Scalable nesting SEI message syntax ........................................................................................................... 239 
D.1.24 Region refresh information SEI message syntax ......................................................................................... 239 
D.1.25 Reserved SEI message syntax ....................................................................................................................... 240 

D.2 SEI payload semantics ........................................................................................................................................... 240 
D.2.1 General SEI payload semantics ..................................................................................................................... 240 
D.2.2 Buffering period SEI message semantics ..................................................................................................... 241 
D.2.3 Picture timing SEI message semantics ......................................................................................................... 243 
D.2.4 Pan-scan rectangle SEI message semantics .................................................................................................. 247 
D.2.5 Filler payload SEI message semantics .......................................................................................................... 247 
D.2.6 User data registered by ITU-T Rec. T.35 SEI message semantics ............................................................. 247 
D.2.7 User data unregistered SEI message semantics ............................................................................................ 247 
D.2.8 Recovery point SEI message semantics........................................................................................................ 247 
D.2.9 Scene information SEI message semantics .................................................................................................. 248 
D.2.10 Full-frame snapshot SEI message semantics ................................................................................................ 248 
D.2.11 Progressive refinement segment start SEI message semantics ................................................................... 248 
D.2.12 Progressive refinement segment end SEI message semantics ..................................................................... 248 
D.2.13 Film grain characteristics SEI message semantics ....................................................................................... 249 
D.2.14 Post-filter hint SEI message semantics ......................................................................................................... 249 
D.2.15 Tone mapping information SEI message semantics .................................................................................... 249 
D.2.16 Frame packing arrangement SEI message semantics .................................................................................. 252 
D.2.17 Display orientation SEI message semantics ................................................................................................. 263 
D.2.18 SOP description SEI message semantics ...................................................................................................... 264 
D.2.19 Decoded picture hash SEI message semantics ............................................................................................. 265 
D.2.20 Active parameter sets SEI message semantics ............................................................................................. 267 
D.2.21 Decoding unit information SEI message semantics ..................................................................................... 267 
D.2.22 Temporal level zero index SEI message semantics ..................................................................................... 268 
D.2.23 Scalable nesting SEI message semantics ...................................................................................................... 268 
D.2.24 Region refresh information SEI message semantics .................................................................................... 269 
D.2.25 Reserved SEI message semantics .................................................................................................................. 270 

 Annex E  Video usability information .................................................................................................................................. 271 
E.1 VUI syntax .............................................................................................................................................................. 272 

E.1.1 VUI parameters syntax .................................................................................................................................. 272 
E.1.2 HRD parameters syntax ................................................................................................................................. 274 
E.1.3 Sub-layer HRD parameters syntax ................................................................................................................ 275 

E.2 VUI semantics ........................................................................................................................................................ 275 
E.2.1 VUI parameters semantics ............................................................................................................................. 275 
E.2.2 HRD parameters semantics ........................................................................................................................... 287 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xix 

E.2.3 Sub-layer HRD parameters semantics .......................................................................................................... 290 
Bibliography ............................................................................................................................................................................ 292 
 

LIST OF FIGURES 

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture ............................. 19 

Figure 6-2 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture ............................. 19 

Figure 6-3 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture ............................. 20 

Figure 6-4 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two slices, the first of which is 
partitioned into three slice segments (informative) .......................................................................................................... 21 

Figure 6-5 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two tiles and one slice (left) or is 
partitioned into two tiles and three slices (right) (informative) ....................................................................................... 21 

Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT, 
SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, or in the ranges of RSV_RAP_VCL22..
RSV_RAP_VCL23, RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47, or UNSPEC48..UNSPEC63 .. 62 

Figure 8-1 – Intra prediction mode directions (informative) ................................................................................................ 105 

Figure 8-2 – Intra prediction angle definition (informative) ................................................................................................. 112 

Figure 8-3 – Spatial motion vector neighbours (informative) .............................................................................................. 127 

Figure 8-4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks 
with lower-case letters) for quarter sample luma interpolation .................................................................................... 135 

Figure 8-5 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks 
with lower-case letters) for eighth sample chroma interpolation ................................................................................. 137 

Figure 9-1 – Illustration of CABAC parsing process for a syntax element SE (informative) ............................................ 168 

Figure 9-2 – Spatial neighbour T that is used to invoke the coding tree block availability derivation process relative to the 
current coding tree block (informative) ......................................................................................................................... 169 

Figure 9-3 – Illustration of CABAC initialization process (informative) ............................................................................ 170 

Figure 9-4 – Illustration of CABAC memorization process (informative) .......................................................................... 178 

Figure 9-5 – Overview of the arithmetic decoding process for a single bin (informative) ................................................. 193 

Figure 9-6 – Flowchart for decoding a decision .................................................................................................................... 195 

Figure 9-7 – Flowchart of renormalization ............................................................................................................................ 198 

Figure 9-8 – Flowchart of bypass decoding process.............................................................................................................. 198 

Figure 9-9 – Flowchart of decoding a decision before termination ...................................................................................... 199 

Figure 9-10 – Flowchart for encoding a decision .................................................................................................................. 201 

Figure 9-11 – Flowchart of renormalization in the encoder .................................................................................................. 202 

Figure 9-12 – Flowchart of PutBit(B) .................................................................................................................................... 203 

Figure 9-13 – Flowchart of encoding bypass ......................................................................................................................... 204 

Figure 9-14 – Flowchart of encoding a decision before termination .................................................................................... 205 

Figure 9-15 – Flowchart of flushing at termination ............................................................................................................... 206 

Figure C-1 – Structure of byte streams and NAL unit streams for HRD conformance checks [Ed. (KJS): Text renders 
poorly on screen – redraw the figure. (BB): change filter data NAL units to filler data NAL units when redrawing.]
 .......................................................................................................................................................................................... 218 

Figure C-2 – HRD buffer model ............................................................................................................................................. 221 

Figure D-3 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields ................. 245 

Figure D-4 – Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields ................. 245 



   Draft ISO/IEC 23008-2 : 201x (E) 

xx Draft Rec. ITU-T H.HEVC (201x E) 

Figure D-5 – Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields ................. 246 

Figure D-1 – Rearrangement and upconversion of checkerboard interleaving  (frame_packing_arrangement_type equal to 
0) ....................................................................................................................................................................................... 258 

Figure D-2 – Rearrangement and upconversion of column interleaving  with frame_packing_arrangement_type equal to 
1, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8) for both constituent frames .................... 258 

Figure D-3 – Rearrangement and upconversion of column interleaving with frame_packing_arrangement_type equal to 
1, quincunx_sampling_flag equal to 0,  (x, y) equal to (0, 0) or (4, 8) for constituent frame 0 and (x, y) equal to 
(12, 8) for constituent frame 1 ........................................................................................................................................ 259 

Figure D-4 – Rearrangement and upconversion of row interleaving with frame_packing_arrangement_type equal to 2, 
quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4) for both constituent frames ........................ 259 

Figure D-5 – Rearrangement and upconversion of row interleaving with frame_packing_arrangement_type equal to 2, 
quincunx_sampling_flag equal to 0,  (x, y) equal to (0, 0) or (8, 4) for constituent frame 0, and (x, y) equal to (8, 12) 
for constituent frame 1 .................................................................................................................................................... 260 

Figure D-6 – Rearrangement and upconversion of side-by-side packing arrangement with 
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8) 
for both constituent frames ............................................................................................................................................. 260 

Figure D-7 – Rearrangement and upconversion of side-by-side packing arrangement with 
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, (x, y) equal to (12, 8) for 
constituent frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1 .......................................................... 261 

Figure D-8 – Rearrangement and upconversion of top-bottom packing arrangement with 
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4) 
for both constituent frames ............................................................................................................................................. 261 

Figure D-9 – Rearrangement and upconversion of top-bottom packing arrangement with 
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, (x, y) equal to (8, 12) for 
constituent frame 0, and (x, y) equal to (0, 0) or (8, 4) for constituent frame 1 .......................................................... 262 

Figure D-10 – Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling 
(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1) ......................................... 262 

Figure D-11 – Rearrangement of a temporal interleaving frame arrangement  (frame_packing_arrangement_type equal to 
5) ....................................................................................................................................................................................... 263 

Figure D-12 – Rearrangement and upconversion of rectangular region frame packing arrangement 
(frame_packing_arrangement_type equal to 7) ............................................................................................................. 263 

Figure E-1 – Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0 chroma 
format) as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field ............ 284 

 

LIST OF TABLES 
Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)........................................... 15 

Table 6-1 – SubWidthC, and SubHeightC values derived from  chroma_format_idc and separate_colour_plane_flag ..... 18 

Table 7-1 – NAL unit type codes and NAL unit type classes .................................................................................................. 56 

Table 7-2 – Interpretation of pic_type ....................................................................................................................................... 72 

Table 7-3 – Specification of sizeId ............................................................................................................................................ 76 

Table 7-4 – Specification of matrixId according to sizeId, prediction mode and colour component ................................... 76 

Table 7-5 – Specification of default values of ScalingList[ 0 ][ matrixId ][ i ] with i = 0..15 ............................................... 76 

Table 7-6 – Specification of default values of ScalingList[ 1..3 ][ matrixId ][ i ] with i = 0..63 ........................................... 77 

Table 7-7 – Name association to slice_type .............................................................................................................................. 79 

Table 7-8 – Specification of the SAO type ............................................................................................................................... 87 

Table 7-9 – Specification of the SAO edge offset class ........................................................................................................... 88 

Table 7-10 – Name association to prediction mode and partitioning type .............................................................................. 90 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xxi 

Table 7-11 – Name association to inter prediction mode ......................................................................................................... 90 

Table 8-1 – Specification of intra prediction mode and associated names .......................................................................... 105 

Table 8-2 – Specification of IntraPredModeC ....................................................................................................................... 107 

Table 8-3 – Specification of intraHorVerDistThres[ nT ] for various transform block sizes ............................................. 110 

Table 8-4 – Specification of intraPredAngle .......................................................................................................................... 112 

Table 8-5 – Specification of invAngle.................................................................................................................................... 113 

Table 8-6 – Specification of l0CandIdx and l1CandIdx ........................................................................................................ 124 

Table 8-7 – Assignment of the luma prediction sample predSampleLXL[ xL, yL ] ............................................................. 136 

Table 8-8 – Assignment of the chroma prediction sample predSampleLXC[ xC, yC ] for ( X, Y ) being replaced by ( 1, b ), 
( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ), and ( 7, h ), respectively ................................................................................. 138 

Table 8-9 – Specification of QPC as a function of qPi .......................................................................................................... 145 

Table 8-10 – Derivation of threshold variables β′ and tC′ from input Q ............................................................................... 158 

Table 8-11 – Specification of hPos and vPos according to the sample adaptive offset class ............................................. 164 

Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) ....................... 165 

Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative) ............................... 165 

Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v) .............. 166 

Table 9-4 – Association of ctxIdx and syntax elements for each initializationType in the initialization process ............. 172 

Table 9-5 – Values of variable initValue for sao_merge_left_flag and sao_merge_up_flagctxIdx ................................... 173 

Table 9-6 – Values of variable initValue for sao_type_idx_luma and sao_type_idx_chroma ctxIdx ............................... 173 

Table 9-7 – Values of variable initValue for split_cu_flag ctxIdx ....................................................................................... 173 

Table 9-8 – Values of variable initValue for cu_transquant_bypass_flag ctxIdx ............................................................... 173 

Table 9-9 – Values of variable initValue for cu_skip_flag ctxIdx ....................................................................................... 173 

Table 9-10 – Values of variable initValue for cu_qp_delta_abs ctxIdx ............................................................................... 173 

Table 9-11 – Values of variable initValue for pred_mode_flag ........................................................................................... 174 

Table 9-12 – Values of variable initValue for part_mode ..................................................................................................... 174 

Table 9-13 – Values of variable initValue for prev_intra_luma_pred_flag ctxIdx ............................................................. 174 

Table 9-14 – Values of variable initValue for intra_chroma_pred_mode ctxIdx ................................................................ 174 

Table 9-15 – Value of variable initValue for merge_flag ctxIdx ......................................................................................... 174 

Table 9-16 – Values of variable initValue for merge_idx ctxIdx ......................................................................................... 174 

Table 9-17 – Values of variable initValue for inter_pred_idc ctxIdx .................................................................................. 175 

Table 9-18 – Values of variable initValue for ref_idx_l0, ref_idx_l1 ctxIdx ...................................................................... 175 

Table 9-19 – Values of variable initValue for abs_mvd_greater0_flag and abs_mvd_greater1_flag ctxIdx .................... 175 

Table 9-20 – Values of variable initValue for mvp_l0_flag, mvp_l1_flag ctxIdx .............................................................. 175 

Table 9-21 – Values of variable initValue for rqt_root_cbf ctxIdx ...................................................................................... 175 

Table 9-22 – Values of variable initValue for split_transform_flag ctxIdx ......................................................................... 175 

Table 9-23 – Values of variable initValue for cbf_luma ctxIdx ........................................................................................... 176 

Table 9-24 – Values of variable initValue for cbf_cb and cbf_cr ctxIdx ............................................................................. 176 

Table 9-25 – Values of variable initValue for transform_skip_flag ctxIdx ......................................................................... 176 

Table 9-26 – Values of variable initValue for last_significant_coeff_x_prefix ctxIdx ...................................................... 176 

Table 9-27 – Values of variable initValue for last_significant_coeff_y_prefix ctxIdx ...................................................... 176 



   Draft ISO/IEC 23008-2 : 201x (E) 

xxii Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-28 – Values of variable initValue for coded_sub_block_flag ctxIdx ..................................................................... 176 

Table 9-29 – Values of variable initValue for significant_coeff_flag ctxIdx ...................................................................... 177 

Table 9-30 – Values of variable initValue for coeff_abs_level_greater1_flag ctxIdx ........................................................ 177 

Table 9-31 – Values of variable initValue for coeff_abs_level_greater2_flag ctxIdx ........................................................ 177 

Table 9-32 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset ..... 180 

Table 9-33 – Bin string of the unary binarization (informative) ........................................................................................... 183 

Table 9-34 – Binarization for part_mode ............................................................................................................................... 185 

Table 9-35 – Specification of prefix and suffix part for intra_chroma_pred_mode binarization ....................................... 186 

Table 9-36 – Binarization for inter_pred_idc ......................................................................................................................... 186 

Table 9-37 – Assignment of ctxIdxInc to syntax elements with context coded bins .......................................................... 188 

Table 9-38 – Specification of ctxIdxInc using left and above syntax elements................................................................... 189 

Table 9-39 – Specification of ctxIdxMap[ i ] ......................................................................................................................... 191 

Table 9-40 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx ............................................... 196 

Table 9-41 – State transition table .......................................................................................................................................... 197 

Table A-1 – General tier and level limits ............................................................................................................................... 210 

Table A-2 – Tier and level limits for the Main and Main 10 profiles .................................................................................. 212 

Table A-3 – Maximum picture rates (pictures per second) at level 1 to 4.3 for some example picture sizes when 
MinCbSizeY is equal to 64 ............................................................................................................................................. 213 

Table A-4 – Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes when 
MinCbSizeY is equal to 64 ............................................................................................................................................. 214 

Table D-1 – Persistence scope of prefix SEI messages (informative).................................................................................. 241 

Table D-2 – Persistence scope of suffix SEI messages (informative) .................................................................................. 241 

Table D-3 – Interpretation of pic_struct ................................................................................................................................. 244 

Table D-4 – Mapping of camera_iso_sensitivity_idc and exposure_index_idc to ISO numbers ....................................... 251 

Table D-8 – Definition of frame_packing_arrangement_type .............................................................................................. 253 

Table D-9 – Definition of content_interpretation_type ......................................................................................................... 255 

Table D-10 – Interpretation of hash_type .............................................................................................................................. 266 

Table E-1 – Interpretation of sample aspect ratio indicator .................................................................................................. 276 

Table E-2 – Meaning of video_format ................................................................................................................................... 277 

Table E-3 – Colour primaries .................................................................................................................................................. 278 

Table E-4 – Transfer characteristics ....................................................................................................................................... 279 

Table E-5 – Matrix coefficients .............................................................................................................................................. 283 

Table E-6 – Divisor for computation of ∆te,dpb( n ) ................................................................................................................ 290 



Draft ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) xxiii 

Foreword 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T 
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to 
standardising telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly 
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce 
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in 
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards 
are prepared on a collaborative basis with ISO and IEC. 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form 
the specialized system for world-wide standardization. National Bodies that are members of ISO and IEC participate in 
the development of International Standards through technical committees established by the respective organization to 
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. 
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. 
Publication as an International Standard requires approval by at least 75% of the national bodies casting a vote. 

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video 
Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group). 
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s) 
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish 
standards for coding of moving pictures and associated audio for various applications such as digital storage media, 
distribution, and communication. 

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an 
integral part of this Recommendation | International Standard. 

 





   ISO/IEC 23008-2 : 201x (E) 

1 Draft Rec. ITU-T H.HEVC (201x E) 

INTERNATIONAL  STANDARD 
 
ITU-T  RECOMMENDATION 

High efficiency video coding 

0 Introduction 
This clause does not form an integral part of this Recommendation | International Standard. 

0.1 Prologue 
This subclause does not form an integral part of this Recommendation | International Standard. 

As the costs for both processing power and memory have reduced, network support for coded video data has diversified, 
and advances in video coding technology have progressed, the need has arisen for an industry standard for compressed 
video representation with substantially increased coding efficiency and enhanced robustness to network environments. 
Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group 
(MPEG) formed a Joint Collaborative Team on Video Coding (JCT-VC) in 2010 for development of a new 
Recommendation | International Standard. This Recommendation | International Standard was developed in the JCT-VC. 

0.2 Purpose 
This subclause does not form an integral part of this Recommendation | International Standard. 

This Recommendation | International Standard was developed in response to the growing need for higher compression of 
moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting, 
internet streaming, and communications. It is also designed to enable the use of the coded video representation in a 
flexible manner for a wide variety of network environments as well as to enable the use of multi-core parallel encoding 
and decoding devices. The use of this Recommendation | International Standard allows motion video to be manipulated 
as a form of computer data and to be stored on various storage media, transmitted and received over existing and future 
networks and distributed on existing and future broadcasting channels. 

0.3 Applications 
This subclause does not form an integral part of this Recommendation | International Standard. 

This Recommendation | International Standard is designed to cover a broad range of applications for video content 
including but not limited to the following: 

CATV Cable TV on optical networks, copper, etc. 
DBS Direct broadcast satellite video services 
DSL  Digital subscriber line video services 
DTTB Digital terrestrial television broadcasting 
ISM Interactive storage media (optical disks, etc.) 
MMM Multimedia mailing 
MSPN Multimedia services over packet networks (video streaming, etc.) 
RTC Real-time conversational services (videoconferencing, videophone, etc.) 
RVS Remote video surveillance 
SSM Serial storage media (digital VTR, etc.) 
[Ed. (TK): Should we update this list of application areas? Perhaps with the list from the Requirements 

document? (GJS): Probably a good idea. Which Requirements document?] 

0.4 Publication and versions of this Specification 
This subclause does not form an integral part of this Recommendation | International Standard. 

This Specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving 
Picture Experts Group (MPEG). It is published as technically-aligned twin text in both ITU-T and ISO/IEC. As the basis 
text has been drafted to become both an ITU-T Recommendation and an ISO/IEC International Standard, the term 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 2 

"Specification" (with capitalization to indicate that it refers to the whole of the text) is used herein when the text refers to 
itself. 

This is the first version of this Specification. Additional versions are anticipated. 

0.5 Profiles, tiers and levels 
This subclause does not form an integral part of this Recommendation | International Standard. 

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of 
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage 
media, television broadcasting and real-time communications. In the course of creating this Specification, various 
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and 
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among 
different applications. 

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets 
of the syntax are also stipulated by means of "profiles", "tiers", and "levels". These and other related terms are formally 
defined in clause 3. 

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard. 
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the 
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the 
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement a 
decoder capable of dealing with all hypothetical uses of the syntax within a particular profile. 

In order to deal with this problem, "tiers" and "levels" are specified within each profile. A level of a tier is a specified set 
of constraints imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on 
values. Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width 
multiplied by picture height multiplied by number of pictures decoded per second). A level specified for a lower tier is 
more constrained than a level specified for a higher tier. 

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to 
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that 
signal the presence or absence of syntactic elements that occur later in the bitstream. 

0.6 Overview of the design characteristics 
This subclause does not form an integral part of this Recommendation | International Standard. 

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image 
or video quality. The algorithm is typically not lossless, as the exact source sample values are typically not preserved 
through the encoding and decoding processes. A number of techniques may be used to achieve highly efficient 
compression. Encoding algorithms (not specified in this Recommendation | International Standard) may select between 
inter and intra coding for block-shaped regions of each picture. Inter coding uses motion vectors for block-based inter 
prediction to exploit temporal statistical dependencies between different pictures. Intra coding uses various spatial 
prediction modes to exploit spatial statistical dependencies in the source signal for a single picture. Motion vectors and 
intra prediction modes may be specified for a variety of block sizes in the picture. The prediction residual is then further 
compressed using a transform to remove spatial correlation inside the transform block before it is quantized, producing 
an irreversible process that typically discards less important visual information while forming a close approximation to 
the source samples. Finally, the motion vectors or intra prediction modes are combined with the quantized transform 
coefficient information and encoded using arithmetic coding. 

0.7 How to read this Specification 
This subclause does not form an integral part of this Recommendation | International Standard. 

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be 
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics) 
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1–7.3 for syntactical order and see 
subclause 7.4 for semantics; e.g. the scope, restrictions, and conditions that are imposed on the syntax elements. The 
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process) 
specifies how the syntax elements are mapped into decoded samples. Throughout reading this Specification, the reader 
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A 
through E also form an integral part of this Recommendation | International Standard. 



   ISO/IEC 23008-2 : 201x (E) 

3 Draft Rec. ITU-T H.HEVC (201x E) 

Annex A specifies profiles each being tailored to certain application domains, and defines the so-called tiers and levels of 
the profiles. Annex B specifies syntax and semantics of a byte stream format for delivery of coded video as an ordered 
stream of bytes. Annex C specifies the hypothetical reference decoder, bitstream conformance, decoder conformance, 
and the use of the hypothetical reference decoder to check bitstream and decoder conformance. Annex D specifies syntax 
and semantics for supplemental enhancement information message payloads. Annex E specifies syntax and semantics of 
the video usability information parameters of the sequence parameter set. 

Throughout this Specification, statements appearing with the preamble "NOTE –" are informative and are not an integral 
part of this Recommendation | International Standard. 

1 Scope 
This document specifies High efficiency video coding. 

2 Normative references 

2.1 General 
The following Recommendations and International Standards contain provisions which, through reference in this text, 
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated 
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this 
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent 
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently 
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently 
valid ITU-T Recommendations. 

2.2 Identical Recommendations | International Standards 
– None. 

2.3 Paired Recommendations | International Standards equivalent in technical content 
– Rec. ITU-T H.264 (in force), Advanced video coding for generic audiovisual services. 
 ISO/IEC 14496-10: in force, Information technology – Coding of audio-visual objects – Part 10: 

Advanced Video Coding. 
[Ed. (GJS): Delete this note. This section is for normative references. We reference AVC here in order to refer 

to it to specify aspects such as SEI messages that are referred to here rather than being copied as text here. 
There is no need to include self-references here.] 

2.4 Additional references 
– ISO 11664-1, Colorimetry  — Part 1: CIE standard colorimetric observers. 

3 Definitions 
[Ed. (TW) Needs more work including turning them into 1 sentence each.] 

For the purposes of this Recommendation | International Standard, the following definitions apply: 

3.1 access unit: A set of NAL units that are associated with each other according to a specified classification rule, 
are consecutive in decoding order, and contain exactly one coded picture. 

NOTE 1 – In addition to containing the coded slice segment NAL units of the coded picture, an access unit may also 
contain other NAL units not containing slice segments of the coded picture. The decoding of an access unit always 
results in a decoded picture. 

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both dimensions 
is non-zero. 

3.3 associated non-VCL NAL unit: A non-VCL NAL unit for which a particular VCL NAL unit is the associated 
VCL NAL unit of the non-VCL NAL unit. 

3.4 associated RAP picture: The previous RAP picture in decoding order (if present). 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 4 

3.5 associated VCL NAL unit: For non-VCL NAL units with nal_unit_type equal to EOS_NUT, EOB_NUT, 
FD_NUT, or SUFFIX_SEI_NUT, or in the range of RSV_NVCL45..RSV_NVCL47, or in the range of 
UNSPEC48..UNSPEC63, the preceding VCL NAL unit in decoding order; and for non-VCL NAL units with 
nal_unit_type equal to other values, the next VCL NAL unit in decoding order. 

3.6 bin: One bit of a bin string. 

3.7 binarization: A set of bin strings for all possible values of a syntax element. 

3.8 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin 
strings. 

3.9 bin string: An intermediate binary representation of values of syntax elements from the binarization of the 
syntax element. 

3.10 bi-predictive (B) slice: A slice that may be decoded using intra prediction or inter prediction using at most 
two motion vectors and reference indices to predict the sample values of each block. 

3.11 bitstream: A sequence of bits, in the form of a NAL unit stream or a byte stream, that forms the representation 
of coded pictures and associated data forming one or more coded video sequences. 

3.12 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients. 

3.13 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding order 
may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream. 

3.14 broken link access (BLA) access unit: An access unit in which the coded picture is a BLA picture. 

3.15 broken link access (BLA) picture: A RAP picture for which each slice segment has nal_unit_type equal to 
BLA_W_LP, BLA_W_DLP or BLA_N_LP. 

NOTE 2 – A BLA picture contains only I slices, and may be the first picture in the bitstream in decoding order, or may 
appear later in the bitstream. Each BLA picture begins a new coded video sequence, and has the same effect on the 
decoding process as an IDR picture. However, a BLA picture contains syntax elements that specify a non-empty 
reference picture set. When a BLA picture has nal_unit_type equal to BLA_W_LP, it may have associated RASL 
pictures, which are not output by the decoder and may not be decodable, as they may contain references to pictures that 
are not present in the bitstream. When a BLA picture has nal_unit_type equal to BLA_W_LP, it may also have 
associated RADL pictures, which are specified to be decoded. When a BLA picture has nal_unit_type equal to 
BLA_W_DLP, it does not have associated RASL pictures but may have associated RADL pictures, which are specified 
to be decoded. When a BLA picture has nal_unit_type equal to BLA_N_LP, it does not have any associated leading 
pictures. 

3.16 buffering period: The set of access units starting with an access unit that contains a buffering period SEI 
message and containing all subsequent access units in decoding order up to but not including the next access 
unit (when present) that contains a buffering period SEI message. 

3.17 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant bit 
on the right. When represented in a sequence of data bits, the most significant bit of a byte is first. 

3.18 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from 
the position of the first bit in the bitstream, and a bit or byte or syntax element is said to be byte-aligned when 
the position at which it appears in a bitstream is byte-aligned. 

3.19 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified 
in Annex B. 

3.20 can: A term used to refer to behaviour that is allowed, but not necessarily required. 

3.21 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour 
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and 
Cr. 

NOTE 3 – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of 
linear light transfer characteristics that is often associated with the term chrominance. 

3.22 clean random access (CRA) access unit: An access unit in which the coded picture is a CRA picture. 

3.23 clean random access (CRA) picture: A RAP picture for which each slice segment has nal_unit_type equal to 
CRA_NUT. 

NOTE 4 – A CRA picture contains only I slices, and may be the first picture in the bitstream in decoding order, or may 
appear later in the bitstream. A CRA picture may have associated RADL or RASL pictures. When a CRA picture is the 
first picture in the bitstream in decoding order, the CRA picture is the first picture of a coded video sequence in 
decoding order, and any associated RASL pictures are not output by the decoder and may not be decodable, as they 
may contain references to pictures that are not present in the bitstream. 



   ISO/IEC 23008-2 : 201x (E) 

5 Draft Rec. ITU-T H.HEVC (201x E) 

3.24 coded picture: A coded representation of a picture containing all coding tree units of the picture. 

3.25 coded picture buffer (CPB): A first-in first-out buffer containing decoding units in decoding order specified 
in the hypothetical reference decoder in Annex C. 

3.26 coded representation: A data element as represented in its coded form. 

3.27 coded slice segment NAL unit: A NAL unit that has nal_unit_type in the range of 1 to 14, inclusive, which 
indicates that the NAL unit contains a coded slice segment. 

3.28 coded video sequence: A sequence of access units that consists, in decoding order, of a CRA access unit that is 
the first access unit in the bitstream, an IDR access unit or a BLA access unit, followed by zero or more non-
IDR and non-BLA access units including all subsequent access units up to but not including any subsequent 
IDR or BLA access unit. 

3.29 coding block: An NxN block of samples for some value of N such that the division of a coding tree block into 
coding blocks is a partitioning. 

3.30 coding tree block: An NxN block of samples for some value of N. The division of one of the arrays that 
compose a picture that has three sample arrays or of the array that compose a picture in monochrome format or 
a picture that is coded using three separate colour planes into coding tree blocks is a partitioning. [Ed. (GJS): 
Multi-sentence.] 

3.31 coding tree unit: A coding tree block of luma samples, two corresponding coding tree blocks of chroma 
samples of a picture that has three sample arrays, or a coding tree block of samples of a monochrome picture 
or a picture that is coded using three separate colour planes and syntax structures used to code the samples. 
The division of a slice into coding tree units is a partitioning. [Ed. (YK): Multi-sentence.] 

3.32 coding unit: A coding block of luma samples, two corresponding coding blocks of chroma samples of a 
picture that has three sample arrays, or a coding block of samples of a monochrome picture or a picture that is 
coded using three separate colour planes and syntax structures used to code the samples. The division of a 
coding tree unit into coding units is a partitioning. [Ed. (YK): Multi-sentence.] 

3.33 column: An integer number of coding tree blocks. Columns are delineated from one another by vertical 
boundaries that extend from the top boundary to the bottom boundary of the picture and are ordered 
consecutively from left to right in the picture. The division of each picture into columns is a partitioning. 
[Ed. (YK): Multi-sentence. (GJS): Also, I believe we also use the term in the ordinary sense of a column of 
entries in an array. If we need a special term, it should be something like CTB column.] 

3.34 component: An array or single sample from one of the three arrays (luma and two chroma) that compose a 
picture in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that compose a picture 
in monochrome format. 

3.35 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an 
equation containing recently decoded bins. 

3.36 decoded picture: A decoded picture is derived by decoding a coded picture. 

3.37 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output 
delay specified for the hypothetical reference decoder in Annex C. 

3.38 decoder: An embodiment of a decoding process. 

3.39 decoder under test (DUT): A decoder that is tested for conformance to this Specification by operating the 
hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the hypothetical 
reference decoder and comparing the values and timing or order of the output of the two decoders. 

3.40 decoding order: The order in which syntax elements are processed by the decoding process. 

3.41 decoding process: The process specified in this Specification that reads a bitstream and derives decoded 
pictures from it. 

3.42 decoding unit: An access unit if SubPicCpbFlag is equal to 0 or a subset of an access unit otherwise, 
consisting of one or more VCL NAL units in an access unit and the associated non-VCL NAL units. 

3.43 dependent slice segment: A slice segment for which the values of some syntax elements of the slice segment 
header are inferred from the values for the preceding independent slice segment in decoding order. 

3.44 display process: A process not specified in this Specification having, as its input, the cropped decoded pictures 
that are the output of the decoding process. 

3.45 elementary stream: A sequence of one or more bitstreams. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 6 

NOTE 5 – An elementary stream that consists of two or more bitstreams would typically have been formed by splicing 
together two or more bitstreams (or parts thereof). 

3.46 emulation prevention byte: A byte equal to 0x03 that is present within a NAL unit when the syntax elements 
of the bitstream form certain patterns of byte values in a manner that ensures that no sequence of consecutive 
byte-aligned bytes in the NAL unit can contain a start code prefix. 

3.47 encoder: An embodiment of an encoding process. 

3.48 encoding process: A process not specified in this Specification that produces a bitstream conforming to this 
Specification. 

3.49 filler data NAL units: NAL units with nal_unit_type equal to FD_NUT. 

3.50 flag: A variable that can take one of the two possible values 0 and 1. 

3.51 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior to 
an inverse transform part of the decoding process. 

3.52 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the 
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce. 

3.53 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of the 
input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of 
a bitstream or a decoder. 

3.54 independent slice segment: A slice segment for which the values of the syntax elements of the slice segment 
header are not inferred from the values for a preceding slice segment. 

3.55 informative: A term used to refer to content provided in this Specification that does not establish any 
mandatory requirements for conformance to this Specification and thus is not considered an integral part of this 
Specification. 

3.56 instantaneous decoding refresh (IDR) access unit: An access unit in which the coded picture is an IDR 
picture. 

3.57 instantaneous decoding refresh (IDR) picture: A RAP picture for which each slice segment has 
nal_unit_type equal to IDR_W_DLP or IDR_N_LP. 

NOTE 6 – An IDR picture contains only I slices, and may be the first picture in the bitstream in decoding order, or may 
appear later in the bitstream. Each IDR picture is the first picture of a coded video sequence in decoding order. When 
an IDR picture has nal_unit_type equal to IDR_W_DLP, it may have associated RADL pictures. When an IDR picture 
has nal_unit_type equal to IDR_N_LP, it does not have any associated leading pictures. An IDR picture does not have 
associated RASL pictures. 

3.58 inter coding: Coding of a coding block, slice, or picture that uses inter prediction. 

3.59 inter prediction: A prediction derived in a manner that is dependent on data elements (e.g. sample values or 
motion vectors) of reference pictures other than the current decoded picture. 

3.60 intra coding: Coding of a coding block, slice, or picture that uses intra prediction. 

3.61 intra prediction: A prediction derived from only data elements (e.g. sample values) of the same decoded slice. 

3.62 intra (I) slice: A slice that is decoded using intra prediction only. 

3.63 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into 
spatial-domain values. 

3.64 layer: A set of VCL NAL units that all have a particular value of nuh_reserved_zero_6bits and the associated 
non-VCL NAL units, or one of a set of syntactical structures in a non-branching hierarchical relationship. 

NOTE 7 – Depending on the context, either the first layer concept or the second layer concept applies. The first layer 
concept is also referred to as a scalable layer, wherein a layer may be a spatial scalable layer, a quality scalable layer, a 
view, etc. A temporal true subset of a scalable layer, or a sub-layer, is not a layer. The second layer concept is also 
referred to as a coding layer, wherein higher layers contain lower layers, and the coding layers are the coded video 
sequence, picture, slice, slice segment, and coding tree unit layers. 

3.65 leading picture: A picture that precedes the associated RAP picture in output order. 

3.66 leaf: A terminating node of a tree that is a root node of a tree of depth 0. 

3.67 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this 
Specification. The same set of levels is defined for all profiles, with most aspects of the definition of each level 
being in common across different profiles. Individual implementations may, within specified constraints, 



   ISO/IEC 23008-2 : 201x (E) 

7 Draft Rec. ITU-T H.HEVC (201x E) 

support a different level for each supported profile. In a different context, level is the value of a transform 
coefficient prior to scaling. [Ed. (YK): Multi-sentence.] 

3.68 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture 
list 0 (list 1). 

3.69 list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into 
reference picture list 0 (list 1). 

3.70 long-term reference picture: A picture that is marked as "used for long-term reference". 

3.71 long-term reference picture set: The two reference picture set lists that may contain long-term reference 
pictures. 

3.72 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal 
related to the primary colours. The symbol or subscript used for luma is Y or L. 

NOTE 8 – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear 
light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead 
of the symbol Y to avoid confusion with the symbol y as used for vertical location. 

3.73 may: A term that is used to refer to behaviour that is allowed, but not necessarily required. 
NOTE 9 – In some places where the optional nature of the described behaviour is intended to be emphasized, the 
phrase "may or may not" is used to provide emphasis. 

3.74 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the coordinates 
in the decoded picture to the coordinates in a reference picture. 

3.75 must: A term that is used in expressing an observation about a requirement or an implication of a requirement 
that is specified elsewhere in this Specification (used exclusively in an informative context). 

3.76 network abstraction layer (NAL) unit: A syntax structure containing an indication of the type of data to 
follow and bytes containing that data in the form of an RBSP interspersed as necessary with emulation 
prevention bytes. 

3.77 network abstraction layer (NAL) unit stream: A sequence of NAL units. 

3.78 non-reference picture: A picture that is marked as "unused for reference". 
NOTE 10 – A non-reference picture contains samples that cannot be used for inter prediction in the decoding process of 
subsequent pictures in decoding order. 

3.79 non-VCL NAL unit: A NAL unit that is not a VCL NAL unit. 

3.80 note: A term that is used to prefix informative remarks (used exclusively in an informative context). 

3.81 operation point: A bitstream created from another bitstream by operation of the sub-bitstream extraction 
process. 

3.82 operation point set: A set of operation points that have the same set of nuh_reserved_zero_6bits values in the 
corresponding bitstreams. 

3.83 output order: The order in which the decoded pictures are output from the decoded picture buffer (for the 
decoded pictures that are to be output from the decoded picture buffer). 

3.84 parameter: A syntax element of a video parameter set, sequence parameter set or picture parameter set, or the 
second word of the defined term quantization parameter. 

3.85 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the 
subsets. 

3.86 picture: An array of luma samples in monochrome format or an array of luma samples and two corresponding 
arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. 

3.87 picture parameter set (PPS): A syntax structure containing syntax elements that apply to zero or more entire 
coded pictures as determined by a syntax element found in each slice segment header. 

3.88 picture order count: A variable that is associated with each picture to be output from the decoded picture 
buffer that indicates the position of the associated picture in output order relative to the output order positions 
of the other pictures to be output from the decoded picture buffer in the same coded video sequence. 

3.89 prediction: An embodiment of the prediction process. 

3.90 prediction block: A rectangular MxN block of samples on which the same prediction is applied. The division 
of a coding block into prediction blocks is a partitioning. [Ed. (YK): Multi-sentence.] 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 8 

3.91 prediction process: The use of a predictor to provide an estimate of the data element (e.g. sample value or 
motion vector) currently being decoded. 

3.92 prediction unit: A prediction block of luma samples, two corresponding prediction blocks of chroma samples 
of a picture that has three sample arrays, or a prediction block of samples of a monochrome picture or a picture 
that is coded using three separate colour planes and syntax structures used to predict the prediction block 
samples. 

3.93 predictive (P) slice: A slice that may be decoded using intra prediction or inter prediction using at most one 
motion vector and reference index to predict the sample values of each block. 

3.94 predictor: A combination of specified values or previously decoded data elements (e.g. sample value or 
motion vector) used in the decoding process of subsequent data elements. 

3.95 prefix SEI NAL unit: An SEI NAL unit that has nal_unit_type equal to PREFIX_SEI_NUT. 

3.96 profile: A specified subset of the syntax of this Specification. 

3.97 quadtree: A tree in which a parent node can be split into four child nodes. A child node may become parent 
node for another split into four child nodes. [Ed. (YK): Multi-sentence.] 

3.98 quantization parameter: A variable used by the decoding process for scaling of transform coefficient levels. 

3.99 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of 
the stream. 

3.100 random access decodable leading (RADL) access unit: An access unit in which the coded picture is a RADL 
picture. 

3.101 random access decodable leading (RADL) picture: A coded picture for which each slice segment has 
nal_unit_type equal to RADL_NUT. 

NOTE 11 – All RADL pictures are leading pictures. RADL pictures are not used as reference pictures for the decoding 
process of trailing pictures of the same associated RAP picture. When present, all RADL pictures precede, in decoding 
order, all trailing pictures of the same associated RAP picture. 

3.102 random access point (RAP) access unit: An access unit in which the coded picture is a RAP picture. 

3.103 random access point (RAP) picture: A coded picture for which each slice segment has nal_unit_type in the 
range of 7 to 12, inclusive. 

NOTE 12 – A RAP picture contains only I slices, and may be a BLA picture, a CRA picture or an IDR picture. The 
first picture in the bitstream must be a RAP picture. Provided the necessary parameter sets are available when they need 
to be activated, the RAP picture and all subsequent non-RASL pictures in decoding order can be correctly decoded 
without performing the decoding process of any pictures that precede the RAP picture in decoding order. There may be 
pictures in a bitstream that contain only I slices that are not RAP pictures. 

3.104 random access skipped leading (RASL) access unit: An access unit in which the coded picture is a RASL 
picture. 

3.105 random access skipped leading (RASL) picture: A coded picture for which each slice segment has 
nal_unit_type equal to RASL_NUT. 

NOTE 13 – All RASL pictures are leading pictures of an associated BLA or CRA picture. When the associated RAP 
picture is a BLA picture or is the first coded picture in the bitstream, the RASL picture is not output and may not be 
correctly decodable, as the RASL picture may contain references to pictures that are not present in the bitstream. RASL 
pictures are not used as reference pictures for the decoding process of non-RASL pictures. When present, all RASL 
pictures precede, in decoding order, all trailing pictures of the same associated RAP picture. 

3.106 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the 
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned 
from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned 
from left to right. 

3.107 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is 
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax 
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0. [Ed. (GJS): 
Multi-sentence definition.] 

3.108 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload 
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be 
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the 
RBSP. [Ed. (GJS): Multi-sentence definition.] 



   ISO/IEC 23008-2 : 201x (E) 

9 Draft Rec. ITU-T H.HEVC (201x E) 

3.109 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation of 
the decoded pictures represented by the bitstream is achieved after a random access or broken link. 

3.110 reference index: An index into a reference picture list. 

3.111 reference picture: A picture that is a short-term reference picture or a long-term reference picture. 
NOTE 14 – A reference picture contains samples that may be used for inter prediction in the decoding process of 
subsequent pictures in decoding order. 

3.112 reference picture list: A list of reference pictures that is used for inter prediction of a P or B slice. For the 
decoding process of a P slice, there is one reference picture list – reference picture list 0. For the decoding 
process of a B slice, there are two reference picture lists  – reference picture list 0 and reference picture list 1. 
[Ed. (GJS): Multi-sentence definition.] 

3.113 reference picture list 0: A reference picture list used for inter prediction of a P or B slice. All inter prediction 
used for P slices uses reference picture list 0. Reference picture list 0 is one of two reference picture lists used 
for bi-prediction for a B slice, with the other being reference picture list 1. [Ed. (GJS): This definition refers to 
bi-prediction in italics, but there is no definition of that term.] [Ed. (GJS): It may be beneficial to add a 
definition of "uni-prediction" or "single-list prediction" to refer to inter prediction that is not bi-prediction.] 
[Ed. (GJS): The definition should avoid giving the impression that all inter prediction in a B slice is bi-
prediction.] [Ed. (GJS): Multi-sentence definition.] 

3.114 reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1 
is one of two reference picture lists used for bi-prediction for a B slice, with the other being reference picture 
list 0. [Ed. (GJS): This definition refers to bi-prediction in italics, but there is no definition of that term.] [Ed. 
(GJS): It may be beneficial to add a definition of "uni-prediction" or "single-list prediction" to refer to inter 
prediction that is not bi-prediction.] [Ed. (GJS): The definition should avoid giving the impression that all inter 
prediction in a B slice is bi-prediction.] [Ed. (GJS): The definition should avoid giving the impression that 
reference picture list 1 is only used for bi-prediction.] [Ed. (GJS): Multi-sentence definition.] 

3.115 reference picture set: A set of reference pictures associated with a picture, consisting of all reference pictures 
that are prior to the associated picture in decoding order, that may be used for inter prediction of the associated 
picture or any picture following the associated picture in decoding order. 

3.116 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element, 
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this version 
of this Specification, but may be used in future extensions of this Specification by ITU-T | ISO/IEC. [Ed. 
(GJS): Multi-sentence definition.] 

3.117 residual: The decoded difference between a prediction of a sample or data element and its decoded value. 

3.118 row: An integer number of coding tree blocks. Rows are delineated from one another by horizontal boundaries 
that extend from the left boundary to the right boundary of the picture and are ordered consecutively from top 
to bottom in the picture. The division of each picture into rows is a partitioning. [Ed. (GJS): Multi-sentence. 
(GJS): Also, I believe we also use the term in the ordinary sense of a row of entries in an array. If we need a 
special term, it should be something like CTB column.] 

3.119 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this Specification, 
the ratio between the intended horizontal distance between the columns and the intended vertical distance 
between the rows of the luma sample array in a picture. Sample aspect ratio is expressed as h:v, where h is 
horizontal width and v is vertical height (in arbitrary units of spatial distance). [Ed. (GJS): Multi-sentence.] 

3.120 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients. 

3.121 sequence parameter set (SPS): A syntax structure containing syntax elements that apply to zero or more 
entire coded video sequences as determined by the content of a syntax element found in the picture parameter 
set referred to by a syntax element found in each slice segment header. 

3.122 shall: A term used to express mandatory requirements for conformance to this Specification. When used to 
express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the 
specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When 
used in reference to operations performed by the decoding process, any decoding process that produces 
identical cropped output pictures to those output from the decoding process described herein conforms to the 
decoding process requirements of this Specification. [Ed. (GJS): Multi-sentence definition.] 

3.123 short-term reference picture: A picture that is marked as "used for short-term reference". 

3.124 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under 
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Specification. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 10 

3.125 slice: An integer number of coding tree units contained in one independent slice segment and all subsequent 
dependent slice segments (if any) that precede the next independent slice segment (if any) within the same 
access unit. 

3.126 slice header: The slice segment header of the independent slice segment that is a current slice segment or is the 
independent slice segment that precedes a current dependent slice segment. 

3.127 slice segment: An integer number of coding tree units ordered consecutively in the tile scan and contained in a 
single NAL unit; the division of each picture into slice segments is a partitioning. 

3.128 slice segment header: A part of a coded slice segment containing the data elements pertaining to the first or all 
coding tree units represented in the slice segment. 

3.129 source: Term used to describe the video material or some of its attributes before encoding. 

3.130 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a prefix 
to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a 
new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL 
units by the inclusion of emulation prevention bytes. [Ed. (GJS): Multi-sentence definition – just move the 2nd 
and 3rd sentences somewhere else.] 

3.131 step-wise temporal sub-layer access (STSA) access unit: An access unit in which the coded picture is an 
STSA picture. 

3.132 step-wise temporal sub-layer access (STSA) picture: A coded picture for which each slice segment has 
nal_unit_type equal to STSA_R or STSA_N. 

NOTE 15 – An STSA picture does not use pictures with the same TemporalId as the STSA picture for inter prediction 
reference. Pictures following an STSA picture in decoding order with the same TemporalId as the STSA picture do not 
use pictures prior to the STSA picture in decoding order with the same TemporalId as the STSA picture for inter 
prediction reference. An STSA picture enables up-switching, at the STSA picture, to the sub-layer containing the STSA 
picture, from the immediately lower sub-layer. STSA pictures must have TemporalId greater than 0. 

3.133 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within a 
raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit 
is considered to be the first and most significant bit, and the right-most bit is considered to be the last and least 
significant bit. [Ed. (YK): Multi-sentence.] 

3.134 sub-bitstream extraction process: A specified process by which a set of NAL units is selected from a 
bitstream based on the associated TemporalId variable and nuh_reserved_zero_6bits syntax element values. 

3.135 sub-layer: A temporal scalable layer of a temporal scalable bitstream consisting of VCL NAL units with a 
particular value of the TemporalId variable, and the associated non-VCL NAL units. 

3.136 sub-layer non-reference picture: A picture that contains samples that cannot be used for inter prediction in 
the decoding process of subsequent pictures of the same and lower sub-layers in decoding order. 

3.137 sub-layer representation: A subset of the bitstream consisting of NAL units of a particular sub-layer and the 
lower sub-layers. 

3.138 suffix SEI NAL unit: An SEI NAL unit that has nal_unit_type equal to SUFFIX_SEI_NUT. 

3.139 supplemental enhancement information (SEI) NAL unit: A NAL unit that has nal_unit_type equal to 
PREFIX_SEI_NUT or SUFFIX_SEI_NUT. 

3.140 syntax element: An element of data represented in the bitstream. 

3.141 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order. 

3.142 temporal sub-layer access (TSA) access unit: An access unit in which the coded picture is a TSA picture. 

3.143 temporal sub-layer access (TSA) picture: A coded picture for which each slice segment has nal_unit_type 
equal to TSA_R or TSA_N. 

NOTE 16 – A TSA picture and pictures following the TSA picture in decoding do not use pictures with TemporalId 
equal to or greater than that of the TSA picture for inter prediction reference. A TSA picture enables up-switching, at 
the TSA picture, to the sub-layer containing the TSA picture or any higher sub-layer, from the immediately lower sub-
layer. TSA pictures must have TemporalId greater than 0. 

3.144 temporal sub-layer: A temporal scalable layer of a temporal scalable bitstream consisting of VCL NAL units 
with a particular value of TemporalId and the associated non-VCL NAL units. [Ed. (GJS): I don't like having a 
variable name in a definition.] 

3.145 tier: [Ed. (YK): Add a definition of "tier", which was mentioned in subclause 0.5.] 



   ISO/IEC 23008-2 : 201x (E) 

11 Draft Rec. ITU-T H.HEVC (201x E) 

3.146 tile: An integer number of coding tree blocks co-occurring in one column and one row, ordered consecutively 
in coding tree block raster scan of the tile. The division of each picture into tiles is a partitioning. Tiles in a 
picture are ordered consecutively in tile raster scan of the picture. [Ed. (YK): Multi-sentence.] 

3.147 tile scan: A specific sequential ordering of coding tree blocks partitioning a picture. The tile scan traverses the 
coding tree blocks in coding tree block raster scan within a tile and traverses tiles in tile raster scan within a 
picture. Although a slice contains coding tree blocks that are consecutive in coding tree block raster scan of a 
tile, these coding tree blocks are not necessarily consecutive in coding tree block raster scan of the picture. 
[Ed. (YK): Multi-sentence.] 

3.148 trailing picture: A picture that follows the associated RAP picture in output order. 

3.149 transform block: A rectangular MxN block of samples on which the same transform is applied. The division 
of a coding block into transform blocks is a partitioning. [Ed. (YK): Multi-sentence.] 

3.150 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a 
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding 
process. 

3.151 transform coefficient level: An integer quantity representing the value associated with a particular 
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform 
coefficient value. 

3.152 transform unit: A transform block of luma samples of size 8x8, 16x16, or 32x22 or four transform blocks of 
luma samples of size 4x4, two corresponding transform blocks of chroma samples of a picture that has three 
sample arrays, or a transform block of luma samples of size 8x8, 16x16, or 32x22 or four transform blocks of 
luma samples of size 4x4 of a monochrome picture or a picture that is coded using three separate colour planes 
and syntax structures used to transform the transform block samples. 

3.153 tree: A tree is a finite set of nodes with a unique root node. A terminating node is called a leaf. 

3.154 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal 
unique identifiers. 

3.155 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax 
element, indicates that the values have no specified meaning in this Specification and will not have a specified 
meaning in the future as an integral part of future versions of this Specification. [Ed. (YK): Add a note saying 
that unspecified values of syntax elements, e.g. nal_unit_type, may be used by external systems specifications 
that reference this Specification.] 

3.156 video coding layer (VCL) NAL unit: A collective term for coded slice segment NAL units and the subset of 
NAL units that have reserved values of nal_unit_type that are classified as VCL NAL units in this 
Specification. 

3.157 video parameter set (VPS): A syntax structure containing syntax elements that apply to zero or more entire 
coded video sequences as determined by the content of a syntax element found in the sequence parameter set 
referred to by a syntax element found in the picture parameter set referred to by a syntax element found in each 
slice segment header. 

3.158 z-scan order: A specific sequential ordering of blocks partitioning a picture. When the blocks are of the same 
size as coding tree blocks, the z-scan order is identical to coding tree block raster scan of the picture. When the 
blocks are of a smaller size than coding tree blocks, i.e. coding tree blocks are further partitioned into smaller 
coding blocks, the z-scan order traverses from coding tree block to coding tree block in coding tree block 
raster scan of the picture, and inside each coding tree block, which may be divided into quadtrees 
hierachically to lower levels, the z-scan order traverses from quadree to quadree of a particular level in 
quadtree-of-the-particular-level raster scan of the quadtree of the immediately higher level. [Ed. (YK): Multi-
sentence definition.] 

4 Abbreviations 
For the purposes of this Recommendation | International Standard, the following abbreviations apply: 

B Bi-predictive 

BLA Broken Link Access 

CABAC Context-based Adaptive Binary Arithmetic Coding 

CB Coding Block 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 12 

CBR Constant Bit Rate 

CRA Clean Random Access 

CPB Coded Picture Buffer 

CTB Coding Tree Block 

CTU Coding Tree Unit 

CU Coding Unit 

DPB Decoded Picture Buffer 

DUT Decoder Under Test 

FIFO First-In, First-Out 

GDR Gradual Decoding Refresh 

HRD Hypothetical Reference Decoder 

HSS Hypothetical Stream Scheduler 

I Intra 

IDR Instantaneous Decoding Refresh 

LSB Least Significant Bit 

MSB Most Significant Bit 

NAL Network Abstraction Layer 

P Predictive 

PB Prediction Block 

PPS Picture Parameter Set 

PU Prediction Unit 

RADL Random Access Decodable Leading (Picture) 

RAP Random Access Point 

RASL Random Access Skipped Leading (Picture) 

RBSP Raw Byte Sequence Payload 

SEI Supplemental Enhancement Information 

SODB String Of Data Bits 

SPS Sequence Parameter Set 

STSA Step-wise Temporal Sub-layer Access 

TB Transform Block 

TSA Temporal Sub-layer Access 

TU Transform Unit 

UUID Universal Unique Identifier 

VBR Variable Bit Rate 

VCL Video Coding Layer 

VPS Video Parameter Set 

VUI Video Usability Information 



   ISO/IEC 23008-2 : 201x (E) 

13 Draft Rec. ITU-T H.HEVC (201x E) 

5 Conventions 

5.1 General 
NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language. 
However, the results of integer division and arithmetic shift operations are defined more precisely, and additional operations are 
defined, such as exponentiation and real-valued division. Numbering and counting conventions generally begin from 0. 

5.2 Arithmetic operators 
The following arithmetic operators are defined as follows: 

+ Addition 
− Subtraction (as a two-argument operator) or negation (as a unary prefix operator) 
* Multiplication, including matrix multiplication 
x y Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for superscripting 

not intended for interpretation as exponentiation. 
/ Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated to 1 

and −7/4 and 7/−4 are truncated to −1. 

÷ Used to denote division in mathematical equations where no truncation or rounding is intended. 

y
x

 Used to denote division in mathematical equations where no truncation or rounding is intended. 

∑
=

y

xi
if )(  The summation of f( i ) with i taking all integer values from x up to and including y. 

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0. 

5.3 Logical operators 
The following logical operators are defined as follows: 

x  &&  y Boolean logical "and" of x and y. 
x  | |  y Boolean logical "or" of x and y. 
! Boolean logical "not". 
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z. 

5.4 Relational operators 
The following relational operators are defined as follows: 

> Greater than. 

>= Greater than or equal to. 

< Less than. 

<= Less than or equal to. 

= = Equal to. 

!= Not equal to. 

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not 
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered 
not to be equal to any other value. 

5.5 Bit-wise operators 
The following bit-wise operators are defined as follows: 

& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation 
of the integer value. When operating on a binary argument that contains fewer bits than another 
argument, the shorter argument is extended by adding more significant bits equal to 0. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 14 

| Bit-wise "or". When operating on integer arguments, operates on a two's complement representation of 
the integer value. When operating on a binary argument that contains fewer bits than another argument, 
the shorter argument is extended by adding more significant bits equal to 0. 

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement 
representation of the integer value. When operating on a binary argument that contains fewer bits than 
another argument, the shorter argument is extended by adding more significant bits equal to 0. 

x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This 
function is defined only for non-negative integer values of y. Bits shifted into the MSBs as a result of 
the right shift have a value equal to the MSB of x prior to the shift operation. 

x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This function 
is defined only for non-negative integer values of y. Bits shifted into the LSBs as a result of the left 
shift have a value equal to 0. 

5.6 Assignment operators 
The following arithmetic operators are defined as follows: 

= Assignment operator. 

+ + Increment, i.e. x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of the 
variable prior to the increment operation. 

− − Decrement, i.e. x−  − is equivalent to x = x − 1; when used in an array index, evaluates to the value of 
the variable prior to the decrement operation. 

+= Increment by amount specified, i.e. x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent 
to x = x + (−3). 

−= Decrement by amount specified, i.e. x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent 
to x = x − (−3). 

5.7 Range notation 
The following notation is used to specify a range of values: 

x = y..z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers. 

5.8 Mathematical functions 
The following mathematical functions are defined as follows: 

Abs( x ) = 




<−
>=

0x;x
0x;x

  (5-1) 

Ceil( x )  the smallest integer greater than or equal to x. (5-2) 

Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1, x )  (5-3) 

Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1, x )  (5-4) 

Clip3( x, y, z ) = 







>
<

otherwise;
;
;

z
yzy
xzx

  (5-5) 

Floor( x ) the largest integer less than or equal to x. (5-6) 

Log2( x ) the base-2 logarithm of x.  (5-7) 

Log10( x ) the base-10 logarithm of x.  (5-8) 

Min( x, y ) = 




>
<=

yxy
yxx

;
;

  (5-9) 



   ISO/IEC 23008-2 : 201x (E) 

15 Draft Rec. ITU-T H.HEVC (201x E) 

Max( x, y ) = 




<
>=

yx;y
yx;x

  (5-10) 

Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 )  (5-11) 

Sign( x ) = 








<−
=
>

0;1
0;0
0;1

x
x
x

  (5-12) 

Sqrt( x ) = x   (5-13) 

Swap( x, y ) = ( y, x )  (5-14) 

5.9 Order of operation precedence 
When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply: 
– operations of a higher precedence are evaluated before any operation of a lower precedence, 
– operations of the same precedence are evaluated sequentially from left to right. 

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher 
precedence. 

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification 
is the same as used in the C programming language. 

Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table) 

operations (with operands x, y, and z) 

"x++", "x− −" 

"!x", "−x" (as a unary prefix operator) 

xy 

"x * y", "x / y", "x ÷ y", "
y
x

", "x % y" 

"x + y", "x − y" (as a two-argument operator), "∑
=

y

xi
if )( " 

"x << y", "x >> y" 

"x < y", "x <= y", "x > y", "x >= y" 

"x = = y", "x != y" 

"x & y" 

"x | y" 

"x && y" 

"x | | y" 

"x ? y : z" 

"x..y" 

"x = y", "x += y", "x −= y" 

5.10 Variables, syntax elements, and tables 
Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower 
case letters with underscore characters), and one descriptor for its method of coded representation. The decoding process 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 16 

behaves according to the value of the syntax element and to the values of previously decoded syntax elements. When a 
value of a syntax element is used in the syntax tables or the text, it appears in regular (i.e. not bold) type.  

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such 
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any 
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax 
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding 
process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting 
with a lower case letter are only used within the subclause in which they are derived.  

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their 
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of 
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an 
underscore character. Each group starts with an upper case letter and may contain more upper case letters. 

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.  

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These 
functions are specified in subclause 7.2 and assume the existence of a bitstream pointer with an indication of the position 
of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their names, 
which are constructed as syntax element names and end with left and right round parentheses including zero or more 
variable names (for definition) or values (for usage), separated by commas (if more than one variable). 

Functions that are not syntax functions (including mathematical functions specified in subclause 5.8) are described by 
their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any 
underscore character, and end with left and right parentheses including zero or more variable names (for definition) or 
values (for usage) separated by commas (if more than one variable). 

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be 
syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a visual 
depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a column 
(horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for indexing. 
Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as s[ x ][ y ] or as 
syx. An array construction is denoted by { {...} {...} }, where each inner pair of brackets denote a row of an array in the 
increasing order of rows. Each inner bracket contains elements of the corresponsing row of an array in the increasing 
order of columns. [Ed. (GJS): Try to improve the phrasing of this paragraph.] 

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001' 
represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit) 
equal to 1. 

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation 
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its 
second and its last bits (counted from the most to the least significant bit) equal to 1. 

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values. 

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value 
different from zero. 

5.11 Text description of logical operations 
In the text, a statement of logical operations as would be described mathematically in the following form: 

if( condition 0 ) 
  statement 0 
else if( condition 1 ) 
  statement 1 
… 
else /* informative remark on remaining condition */ 
  statement n 

may be described in the following manner: 
... as follows / ... the following applies. 
– If condition 0, statement 0 
– Otherwise, if condition 1, statement 1 



   ISO/IEC 23008-2 : 201x (E) 

17 Draft Rec. ITU-T H.HEVC (201x E) 

– … 
– Otherwise (informative remark on remaining condition), statement n 

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following 
applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an 
"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as 
follows" or "... the following applies" with the ending "Otherwise, ...". 

In the text, a statement of logical operations as would be described mathematically in the following form 

if( condition 0a  &&  condition 0b ) 
  statement 0 
else if( condition 1a  | |  condition 1b ) 
  statement 1 
… 
else 
  statement n 

may be described in the following manner: 

... as follows / ... the following applies. 
– If all of the following conditions are true, statement 0 

– condition 0a 
– condition 0b 

– Otherwise, if one or more of the following conditions are true, statement 1 
– condition 1a 
– condition 1b 

– … 
– Otherwise, statement n 

In the text, a statement of logical operations as would be described mathematically in the following form: 

if( condition 0 ) 
  statement 0 
if( condition 1 ) 
  statement 1 

may be described in the following manner: 
When condition 0, statement 0 
When condition 1, statement 1 

5.12 Processes 
Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All 
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are 
available in the process specification and invoking. A process specification may also have a lower case variable 
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable 
that can either be an upper case variable or a lower case variable. 

When invoking a process, the assignment of variables is specified as follows. 
– If the variables at the invoking and the process specification do not have the same name, the variables are explicitly 

assigned to lower case input or output variables of the process specification. 
– Otherwise (the variables at the invoking and the process specification have the same name), assignment is implied. 

In the specification of a process, a specific coding block may be referred to by the variable name having a value equal to 
the address of the specific coding block. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 18 

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring 
relationships 

6.1 Bitstream formats 
This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to as 
the bitstream. 

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit stream 
format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units. This 
sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the NAL 
units in the NAL unit stream. 

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding 
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of bytes. 
The NAL unit stream format can be extracted from the byte stream format by searching for the location of the unique 
start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than use of the 
byte stream format are outside the scope of this Specification. The byte stream format is specified in Annex B.  

6.2 Source, decoded, and output picture formats 
This subclause specifies the relationship between source and decoded pictures that is given via the bitstream. 

The video source that is represented by the bitstream is a sequence of pictures in decoding order. 

The source and decoded pictures are each comprised of one or more sample arrays: 
– Luma (Y) only (monochrome). 
– Luma and two chroma (YCbCr or YCgCo). 
– Green, Blue and Red (GBR, also known as RGB). 
– Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX, also 

known as XYZ). 

For convenience of notation and terminology in this Specification, the variables and terms associated with these arrays 
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of 
the actual colour representation method in use. The actual colour representation method in use can be indicated in syntax 
that is specified in Annex E.  

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling 
structure, which is specified through chroma_format_idc and separate_colour_plane_flag. Other values of 
chroma_format_idc, SubWidthC, and SubHeightC may be specified in the future by ITU-T | ISO/IEC. 

Table 6-1 – SubWidthC, and SubHeightC values derived from  
chroma_format_idc and separate_colour_plane_flag 

 

chroma_format_idc separate_colour_plane_flag Chroma format SubWidthC SubHeightC 

0 0 monochrome 1 1 
1 0 4:2:0 2 2 
2 0 4:2:2 2 1 
3 0 4:4:4 1 1 
3 1 4:4:4 1 1 

In monochrome sampling there is only one sample array, which is nominally considered the luma array. 

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array. 

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array. 

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies. 
– If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the 

luma array. 
– Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as 

monochrome sampled pictures. 



   ISO/IEC 23008-2 : 201x (E) 

19 Draft Rec. ITU-T H.HEVC (201x E) 

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video 
sequence is in the range of 8 to 14, inclusive, and the number of bits used in the luma array may differ from the number 
of bits used in the chroma arrays. 

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and 
chroma samples in pictures are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in 
video usability information (see Annex E). 

...

... ...

= Location of luma sample
= Location of chroma sample

Guide:

 

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a picture 

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma 
samples and the nominal locations in a picture are as shown in Figure 6-2. 

...

... ...

= Location of luma sample
= Location of chroma sample

Guide:

 

Figure 6-2 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a picture 

When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of pictures and the 
nominal locations in a picture are as shown in Figure 6-3.  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 20 

...

... ...

= Location of luma sample
= Location of chroma sample

Guide:

 

Figure 6-3 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a picture 

6.3 Spatial subdivision of pictures, slices, slice segments, and tiles 
This subclause specifies how a picture is partitioned into slices, slice segments, tiles and coding tree blocks. Pictures are 
divided into slices and tiles. A slice is a sequence of one or more slice segments starting with an independent slice 
segment and containing all subsequent dependent slice segments (if any) that precede the next independent slice segment 
(if any) within the same access unit. A slice segment is a sequence of coding tree units. [Ed. (GJS): Clarify w.r.t. coding 
tree blocks vs. coding tree units vs. luma coding tree blocks vs. Cb or Cr coding tree blocks.] Likewise, a tile is a 
sequence of coding tree units. 

For example, a picture may be divided into two slices as shown in Figure 6-4. In this example, the first slice is composed 
of an independent slice segment containing 4 coding tree units, a dependent slice segment containing 32 coding tree 
units, and another dependent slice segment containing 24 coding tree units; and the second slice consists of a single 
indpendent slice segment containing the remaining 39 coding tree units of the picture. 

As another example, a picture may be divided into two tiles separated by a horizontal tile boundary as shown in 
Figure 6-5. The left side of the figure illustrates a case in which the picture only contains one slice, starting with an 
independent slice segment and followed by four dependent slice segments. The right side of the figure illustrates an 
alternative case in which the picture contains two slices in the first tile and one slice in the second tile. 

Unlike slices, tiles are always rectangular. A tile always contains an integer number of coding tree units, and may consist 
of coding tree units contained in more than one slice. Similarly, a slice may consist of coding tree units contained in 
more than one tile. 

One or both of the following conditions shall be fulfilled for each slice and tile: 
– All coding tree units in a slice belong to the same tile. 
– All coding tree units in a tile belong to the same slice. 

NOTE 1 – Within the same picture, there may be both slices that contain multiple tiles and tiles that contain multiple slices. 

One or both of the following conditions shall be fulfilled for each slice segment and tile: 
– All coding tree units in a slice segment belong to the same tile. 
– All coding tree units in a tile belong to the same slice segment. 

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains 
only coding tree blocks of one colour component being identified by the corresponding value of colour_plane_id, and 
each colour component array of a picture consists of slices having the same colour_plane_id value. Coded slices with 
different values of colour_plane_id within an access unit can be interleaved with each other under the constraint that for 
each value of colour_plane_id, the coded slice segment NAL units with that value of colour_plane_id shall be in the 
order of increasing coding tree block address in tile scan order for the first coding tree block of each coded slice segment 
NAL unit. 



   ISO/IEC 23008-2 : 201x (E) 

21 Draft Rec. ITU-T H.HEVC (201x E) 

NOTE 2 – When separate_colour_plane_flag is equal to 0, each coding tree block of a picture is contained in exactly one slice. 
When separate_colour_plane_flag is equal to 1, each coding tree block of a colour component is contained in exactly one slice 
(i.e. information for each coding tree block of a picture is present in exactly three slices and these three slices have different values 
of colour_plane_id). 

slice segment 
boundary

slice boundary

independent
slice segment

dependent
slice segment

 

Figure 6-4 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two slices, the first of which is 
partitioned into three slice segments (informative) 

tile 
boundary

 

Figure 6-5 – A picture with 11 by 9 luma coding tree blocks that is partitioned into two tiles and one slice (left) or 
is partitioned into two tiles and three slices (right) (informative) 

[Ed. (BB): Consider adding a new section for the following text describing the block and quadtree structures.] 

The samples are processed in units of coding tree blocks. The array size for each luma coding tree block in both width 
and height is CtbSizeY in units of samples. The width and height of the array for each chroma coding tree block are 
CtbWidthC and CtbHeightC, respectively, in units of samples. 

Each coding tree block is assigned a partition signalling to identify the block sizes for intra or inter prediction and for 
transform coding. The partitioning is a recursive quadtree partitioning. The root of the quadtree is associated with the 
coding tree block. The quadtree is split until a leaf is reached, which is referred to as the coding block. When the picture 
width is not an integer number of coding tree block sizes, the coding tree blocks at the right picture boundary are 
incomplete. When the picture height is not an integer number of coding tree block sizes, the coding tree blocks at the 
bottom picture boundary are incomplete. 

The coding block is the root node of two trees, the prediction tree and the transform tree. The prediction tree specifies the 
position and size of prediction blocks. The transform tree specifies the position and size of transform blocks. The 
splitting information for luma and chroma is identical for the prediction tree and may or may not be identical for the 
transform tree. 

The blocks and associated syntax structures are encapsulated in a "unit" as follows. 

– One prediction block (monochrome picture or separate_colour_plane_flag is equal to 1) or three prediction blocks 
(luma and chroma) and associated prediction syntax structures units are encapsulated in a prediction unit. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 22 

– One transform block (monochrome picture or separate_colour_plane_flag is equal to 1) or three transform blocks 
(luma and chroma) and associated transform syntax structures units are encapsulated in a transform unit. 

– One coding block (monochrome picture or separate_colour_plane_flag is equal to 1) or three coding blocks (luma 
and chroma), the associated coding syntax structures and the associated prediction and transform units are 
encapsulated in a coding unit. 

– One coding tree block (monochrome picture or separate_colour_plane_flag is equal to 1) or three coding tree blocks 
(luma and chroma), the associated coding tree syntax structures and the associated coding units are encapsulated in a 
coding tree unit. 

The following divisions of processing elements of this Specification form spatial or component-wise partitionings: 

– The division of each picture into components. 

– The division of each picture into tiles. 

– The division of each picture into slices. 

– The division of each component into coding tree blocks. 

– The division of each slice into slice segments. 

– The division of each slice segment into coding tree units. 

– The division of each tile into coding tree units. 

– The division of each coding tree unit into coding tree blocks. 

– The division of each coding tree block into coding blocks. 

– The division of each coding tree unit into coding units. 

– The division of each coding unit into prediction units. 

– The division of each coding unit into transform units. 

– The division of each coding unit into coding blocks. 

– The division of each coding block into prediction blocks. 

– The division of each coding block into transform blocks. 

– The division of each prediction unit into prediction blocks. 

– The division of each transform unit into transform blocks. 

 

6.4 Availability processes 

6.4.1 Derivation process for z-scan order block availability 

Inputs to this process are: 

– the luma location ( xCurr, yCurr ) of the top-left sample of the current block relative to the top-left luma sample of 
the current picture, 

– the luma location ( xN, yN ) covered by a neighbouring block relative to the top-left luma sample of the current 
picture. 

Output of this process is the availability of the neighbouring block covering the location ( xN, yN ), denoted as 
availableN. 

The minimum luma block address in z-scan order minBlockAddrCurr of the current block is derived as follows. 

minBlockAddrCurr = MinTbAddrZS[ xCurr >> Log2MinTrafoSize ][ yCurr >> Log2MinTrafoSize ] (6-1) 

The minimum luma block address in z-scan order minBlockAddrN of the neighbouring block covering the location 
( xN,  yN ) is derived as follows. 

– If one or more of the following conditions are true, minBlockAddrN is set to −1. 

– xN is less than 0 



   ISO/IEC 23008-2 : 201x (E) 

23 Draft Rec. ITU-T H.HEVC (201x E) 

– yN is less than 0 

– xN is greater than pic_width_in_luma_samples 

– yN is greater than pic_height_in_luma_samples 

– Otherwise (xN and yN are inside picture boundaries), 

minBlockAddrN = MinTbAddrZS[ xN >> Log2MinTrafoSize ][ yN >> Log2MinTrafoSize ] (6-2) 

The neighbouring block availability availableN is derived as follows. 

– If one or more of the following conditions are true, availableN is set to FALSE: 

– minBlockAddrN is less than 0, 

– minBlockAddrN is greater than minBlockAddrCurr, 

– the variable SliceAddrRS associated with the slice segment containing the neighbouring block with the 
minimum luma block address minBlockAddrN differs in value from the variable SliceAddrRS associated with 
the slice segment containing the current block with the minimum luma block address minBlockAddrCurr. 

– the neighbouring block with the minimum luma block address minBlockAddrN is contained in a different tile 
than the current block with the minimum luma block address minBlockAddrCurr. 

– Otherwise, availableN is set to TRUE. 

6.4.2 Derivation process for prediction block availability 

Inputs to this process are: 

– the luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable nCbS specifying the size of the current luma coding block, 

– the luma location ( xP, yP ) of the top-left sample of the current luma prediction block relative to the top-left luma 
sample of the current picture, 

– variables nPbW and nPbH specifying the width and the height of the current luma prediction block, 

– a variable partIdx specifying the partition index of the current prediction unit within the current coding unit. 

– the luma location ( xN, yN ) covered by a neighbouring prediction block relative to the top-left luma sample of the 
current picture. 

Output of this process is the availability of the neighbouring prediction block covering the location ( xN, yN ), denoted 
as availableN is derived as follows. 

The variable sameCb specifying whether the current luma prediction block and the neighbouring luma prediction block 
cover the same luma coding block. 

– If all of the following conditions are true, sameCb is set equal to TRUE. 

– xC is less than or equal than xN, 

– yC is less than or equal than yN, 

– ( xC + nCbS ) is greater than xN, 

– ( yC + nCbS ) is greater than yN. 

– Otherwise, sameCb is set equal to FALSE. 

The neighbouring prediction block availability availableN is derived as follows. 

– If sameCb is equal to FALSE, the derivation process for z-scan order block availability as specified in 
subclause 6.4.1 is invoked with ( xCurr, yCurr ) set equal to ( xP, yP ) and the luma location ( xN, yN ) as the input 
and the output is assigned to availableN. 

– Otherwise, if all of the following conditions are true, availableN is set equal to FALSE. 

– ( nPbW << 1 ) is equal to nCbS, 

– ( nPbH << 1 ) is equal to nCbS, 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 24 

– partIdx is equal to 1, 

– (yC + nPbH) is less than or equal to yN, 

– (xC + nPbW) is greater than xN. 

– Otherwise, availableN is set equal to TRUE. 

When availableN is equal to TRUE and CuPredMode[ xN ][ yN ] is equal to MODE_INTRA, availableN is set equal to 
FALSE. 

6.5 Scanning processes 

6.5.1 Coding tree block raster and tile scanning conversion process 

The list colWidth[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, specifying the width of the i-th tile 
column in units of CTBs, is derived as follows. 

if( uniform_spacing_flag ) 
 for( i = 0; i <= num_tile_columns_minus1; i++ ) 
  colWidth[ i ] = ( ( i + 1 ) * PicWidthInCtbsY ) / ( num_tile_columns_minus1 + 1 ) −  
      ( i * PicWidthInCtbsY ) / ( num_tile_columns_minus1 + 1 ) 
else { 
 colWidth[ num_tile_columns_minus1 ] = PicWidthInCtbsY 
 for( i = 0; i < num_tile_columns_minus1; i++ ) { 
  colWidth[ i ] = column_width_minus1[ i ] + 1 
  colWidth[ num_tile_columns_minus1 ] −= colWidth[ i ] 
 } 
} 

The list rowHeight[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, specifying the height of the j-th tile row 
in units of CTBs, is derived as follows. 

if( uniform_spacing_flag ) 
 for( j = 0; j <= num_tile_rows_minus1; j++ ) 
  rowHeight[ j ]  = ( ( j + 1 ) * PicHeightInCtbsY ) / ( num_tile_rows_minus1 + 1 ) −  
      ( j * PicHeightInCtbsY ) / ( num_tile_rows_minus1 + 1)  
else { 
 rowHeight[ num_tile_rows_minus1 ] = PicHeightInCtbsY 
 for( j = 0; j < num_tile_rows_minus1; j++ ) { 
  rowHeight[ j ] = row_height_minus1[ j ] + 1 
  rowHeight[ num_tile_rows_minus1 ] −= rowHeight[ j ] 
 } 
} 

The list colBd[ i ] for i ranging from 0 to num_tile_columns_minus1 + 1, inclusive, specifying the location of the i-th 
column boundary in units of coding tree blocks, is derived as follows. 

for( colBd[ 0 ] = 0, i = 0; i <= num_tile_columns_minus1; i++ ) 
  colBd[ i + 1 ] = colBd[ i ] + colWidth[ i ] 

The list rowBd[ j ] for j ranging from 0 to num_tile_rows_minus1 + 1, inclusive, specifying the location of the j-th row 
boundary in units of coding tree blocks, is derived as follows. 

for( rowBd[ 0 ] = 0, j = 0; j <= num_tile_rows_minus1; j++ ) 
 rowBd[ j + 1 ] = rowBd[ j ] + rowHeight[ j ] 

The list CtbAddrRStoTS[ ctbAddrRS ] for ctbAddrRS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying the 
conversion from a CTB address in CTB raster scan of a picture to a CTB address in tile scan, is derived as follows. 

 for( ctbAddrRS = 0; ctbAddrRS < PicSizeInCtbsY; ctbAddrRS++ ) { 
  tbX = ctbAddrRS % PicWidthInCtbsY 
  tbY = ctbAddrRS / PicWidthInCtbsY 
  for( i = 0; i <= num_tile_columns_minus1; i++ ) 
   if( tbX >= colBd[ i ] ) 
    tileX = i 



   ISO/IEC 23008-2 : 201x (E) 

25 Draft Rec. ITU-T H.HEVC (201x E) 

  for( j = 0; j <= num_tile_rows_minus1; j++ ) 
   if( tbY >= rowBd[ j ] ) 
    tileY = j 
  CtbAddrRStoTS[ ctbAddrRS ] = 0 
  for( i = 0; i < tileX; i++ ) 
   CtbAddrRStoTS[ ctbAddrRS ] += rowHeight[ tileY ] * colWidth[ i ] 
  for( j = 0; j < tileY; j++ ) 
   CtbAddrRStoTS[ ctbAddrRS ] += PicWidthInCtbsY * rowHeight[ j ] 
  CtbAddrRStoTS[ ctbAddrRS ] += ( tbY − rowBd[ tileY ] ) * colWidth[ tileX ] + tbX − colBd[ tileX ] 
 } 

The list CtbAddrTStoRS[ ctbAddrTS ] for ctbAddrTS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying the 
conversion from a CTB address in tile scan to a CTB address in CTB raster scan of a picture, is derived as follows. 

 for( ctbAddrRS = 0; ctbAddrRS < PicSizeInCtbsY; ctbAddrRS++ ) 
  CtbAddrTStoRS[ CtbAddrRStoTS[ ctbAddrRS ] ] = ctbAddrRS 

The list TileId[ ctbAddrTS ] for ctbAddrTS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying the conversion 
from a CTB address in tile scan to a tile ID, is derived as follows. 

 for( j = 0, tIdx = 0; j <= num_tile_rows_minus1; j++ ) 
  for( i = 0; i <= num_tile_columns_minus1; i++, tIdx++ ) 
   for( y = rowBd[ j ]; y < rowBd[ j + 1 ]; y++ ) 
    for( x = colBd[ i ]; x < colBd[ i + 1 ]; x++ ) 
      TileId[ CtbAddrRStoTS[ y*PicWidthInCtbsY+ x ] ] = tIdx 

The values of ColumnWidthInLumaSamples[ i ], specifying the width of the i-th tile column in units of luma samples, 
are set equal to colWidth[ i ] << Log2CtbSizeY for i ranging from 0 to num_tile_columns_minus1, inclusive. 

The values of RowHeightInLumaSamples[ j ], specifying the height of the j-th tile row in units of luma samples, are set 
equal to rowHeight[ j ] << Log2CtbSizeY for j ranging from 0 to num_tile_rows_minus1, inclusive. 

 

6.5.2 Z-scan order array initialization process 

The array MinTbAddrZS with elements MinTbAddrZS[ x ][ y ] for x ranging from 0 to 
( PicWidthInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ) − 1, inclusive, and y ranging from 0 to 
( PicHeightInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ) − 1, specifying the conversion from a location ( x, y ) 
in units of minimum blocks to a minimum block address in z-scan order, inclusive is derived as follows. 

 for( y = 0; y < ( PicHeightInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ); y++ ) 
  for( x = 0; x < ( PicWidthInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ); x++) { 
   tbX = ( x << Log2MinTrafoSize ) >> Log2CtbSizeY 
   tbY = ( y << Log2MinTrafoSize ) >> Log2CtbSizeY 
   ctbAddrRS = PicWidthInCtbsY * tbY + tbX 
   MinTbAddrZS[ x ][ y ] = CtbAddrRStoTS[ ctbAddrRS ] << (( Log2CtbSizeY − Log2MinTrafoSize ) * 2) 
   for( i = 0, p = 0; i < ( Log2CtbSizeY − Log2MinTrafoSize ); i++ ) { 
    m = 1 << i 
    p += ( m & x ? m * m : 0 ) + ( m & y ? 2 * m * m : 0 ) 
   } 
   MinTbAddrZS[ x ][ y ] += p 
  } 

6.5.3 Up-right diagonal scan order array initialization process 

Inputs to this process is a block size blkSize. 

Output of this process is the array diagScan[ sPos ][ sComp ]. The array index sPos specify the scan position ranging 
from 0 to ( blkSize * blkSize ) − 1. The array index sComp equal to 0 specifies the horizontal component and the array 
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array diagScan is 
derived as follows. 

i  =  0 
x  =  0 
y  =  0 
stopLoop  =  FALSE 
while( !stopLoop ) { 
 while( y  >=  0 ) { 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 26 

  if( x  <  blkSize  &&  y  <  blkSize ) { 
   diagScan[ i ][ 0 ]  =  x 
   diagScan[ i ][ 1 ]  =  y 
   i++ 
  } 
  y− − 
  x++ 
 } 
 y  =  x 
 x  =  0 
 if( i  >=  blkSize  *  blkSize )  
  stopLoop  =  TRUE 
} 

6.5.4 Horizontal scan order array initialization process 

Inputs to this process is a block size blkSize. 

Output of this process is the array horScan[ sPos ][ sComp ]. The array index sPos specifies the scan position ranging 
from 0 to ( blkSize * blkSize ) − 1. The array index sComp equal to 0 specifies the horizontal component and the array 
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array horScan is 
derived as follows. 

i  =  0 
for( y = 0; y  < blkSize; y++ ) 
 for( x = 0; x  <  blkSize; x++ ) { 
  horScan[ i ][ 0 ]  = x 
  horScan[ i ][ 1 ]  = y 
  i++ 
 } 

6.5.5 Vertical scan order array initialization process 

Inputs to this process is a block size blkSize. 

Output of this process is the array verScan[ sPos ][ sComp ]. The array index sPos specifies the scan position ranging 
from 0 to ( blkSize * blkSize ) − 1. The array index sComp equal to 0 specifies the horizontal component and the array 
index sComp equal to 1 specifies the vertical component. Depending on the value of blkSize, the array verScan is 
derived as follows. 

i  =  0 
for( x = 0; x  < blkSize; x++ ) 
 for( y = 0; y  <  blkSize; y++ ) { 
  verScan[ i ][ 0 ]  = x 
  verScan[ i ][ 1 ]  = y 
  i++ 
 } 

7 Syntax and semantics 
7.1 Method of specifying syntax in tabular form 
The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be 
specified, either directly or indirectly, in other clauses. 

NOTE – An actual decoder should implement some means for identifying entry points into the bitstream and some means to 
identify and handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not 
specified in this Specification. 

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it 
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position 
beyond the syntax element in the bitstream parsing process. 

 
 Descriptor 



   ISO/IEC 23008-2 : 201x (E) 

27 Draft Rec. ITU-T H.HEVC (201x E) 

/* A statement can be a syntax element with an associated descriptor or can be an 
expression used to specify conditions for the existence, type, and quantity of 
syntax elements, as in the following two examples */ 

 

syntax_element ue(v) 
conditioning statement  
  
/* A group of statements enclosed in curly brackets is a compound statement and 
is treated functionally as a single statement. */ 

 

{  
 statement  
 statement  
 …  
}  
  
/* A "while" structure specifies a test of whether a condition is true, and if true, 
specifies evaluation of a statement (or compound statement) repeatedly until the 
condition is no longer true */ 

 

while( condition )  
 statement  
  
/* A "do … while" structure specifies evaluation of a statement once, followed by 
a test of whether a condition is true, and if true, specifies repeated evaluation of 
the statement until the condition is no longer true */ 

 

do  
 statement  
while( condition )  
  
/* An "if … else" structure specifies a test of whether a condition is true, and if 
the condition is true, specifies evaluation of a primary statement, otherwise, 
specifies evaluation of an alternative statement. The "else" part of the structure 
and the associated alternative statement is omitted if no alternative statement 
evaluation is needed */ 

 

if( condition )  
 primary statement  
else  
 alternative statement  
  
/* A "for" structure specifies evaluation of an initial statement, followed by a test 
of a condition, and if the condition is true, specifies repeated evaluation of a 
primary statement followed by a subsequent statement until the condition is no 
longer true. */ 

 

for( initial statement; condition; subsequent statement )  
 primary statement  

 

7.2 Specification of syntax functions and descriptors 
The functions presented here are used in the syntactical description. These functions are expressed in terms of the value 
of a bitstream pointer that indicates the position of the next bit to be read by the decoding process from the bitstream.  

byte_aligned( ) is specified as follows: 

– If the current position in the bitstream is on a byte boundary, i.e. the next bit in the bitstream is the first bit in a 
byte, the return value of byte_aligned( ) is equal to TRUE.  

– Otherwise, the return value of byte_aligned( ) is equal to FALSE. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 28 

more_data_in_byte_stream( ), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is 
specified as follows: 

– If more data follow in the byte stream, the return value of more_data_in_byte_stream( ) is equal to TRUE.  

– Otherwise, the return value of more_data_in_byte_stream( ) is equal to FALSE. 

more_data_in_payload( ) is specified as follows: 

– If byte_aligned( ) is equal to TRUE and the current position in the sei_payload( ) syntax structure is 
8 * payloadSize bits from the beginning of the sei_payload( ) syntax structure, the return value of 
more_data_in_payload( ) is equal to FALSE. 

– Otherwise, the return value of more_data_in_payload( ) is equal to TRUE. 

more_rbsp_data( ) is specified as follows: 

– If there is no more data in the RBSP, the return value of more_rbsp_data( ) is equal to FALSE. 

– Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in 
the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits( ) 
syntax structure, the following applies. 

– If there is more data in an RBSP before the rbsp_trailing_bits( ) syntax structure, the return value of 
more_rbsp_data( ) is equal to TRUE.  

– Otherwise, the return value of more_rbsp_data( ) is equal to FALSE.  

The method for enabling determination of whether there is more data in the RBSP is specified by the application (or 
in Annex B for applications that use the byte stream format). 

more_rbsp_trailing_data( ) is specified as follows. 

– If there is more data in an RBSP, the return value of more_rbsp_trailing_data( ) is equal to TRUE. 

– Otherwise, the return value of more_rbsp_trailing_data( ) is equal to FALSE. 

payload_extension_present( ) is specified as follows: 

– If the current position in the sei_payload( ) syntax structure is not the position of the last (least significant, right-
most) bit that is equal to 1 that is less than 8 * payloadSize bits from the beginning of the syntax structure (i.e. 
the position of the bit_equal_to_one syntax element), the return value of payload_extension_present( ) is equal 
to TRUE. 

– Otherwise, the return value of payload_extension_present( ) is equal to FALSE. 

next_bits( n ) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer. 
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream format as 
specified in Annex B and fewer than n bits remain within the byte stream, next_bits( n ) returns a value of 0. 

read_bits( n ) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is 
equal to 0, read_bits( n ) is specified to return a value equal to 0 and to not advance the bitstream pointer. 

The following descriptors specify the parsing process of each syntax element. 

– ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is 
specified in subclause 9.2. 

– b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the 
return value of the function read_bits( 8 ). 

– f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process for 
this descriptor is specified by the return value of the function read_bits( n ). 

– se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process for 
this descriptor is specified in subclause 9.1. 

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner 
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the 
return value of the function read_bits( n ) interpreted as a binary representation of an unsigned integer with most 
significant bit written first. 

– ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing process 
for this descriptor is specified in subclause 9.1. 



   ISO/IEC 23008-2 : 201x (E) 

29 Draft Rec. ITU-T H.HEVC (201x E) 

7.3 Syntax in tabular form 

7.3.1 NAL unit syntax 

7.3.1.1 General NAL unit syntax 

 
nal_unit( NumBytesInNALunit ) { Descriptor 
 nal_unit_header( )  
 NumBytesInRBSP = 0  
 for( i = 2; i < NumBytesInNALunit; i++ )  
  if( i + 2 < NumBytesInNALunit && next_bits( 24 )  = =  0x000003 ) {  
   rbsp_byte[ NumBytesInRBSP++ ] b(8) 
   rbsp_byte[ NumBytesInRBSP++ ] b(8) 
   i += 2  
   emulation_prevention_three_byte  /* equal to 0x03 */ f(8) 
  } else  
   rbsp_byte[ NumBytesInRBSP++ ] b(8) 
}  

 

7.3.1.2 NAL unit header syntax 

 
nal_unit_header( ) { Descriptor 
 forbidden_zero_bit f(1) 
 nal_unit_type u(6) 
 nuh_reserved_zero_6bits u(6) 
 nuh_temporal_id_plus1 u(3) 
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 30 

7.3.2 Raw byte sequence payloads, trailing bits, and byte alignment syntax 

7.3.2.1 Video parameter set RBSP syntax 

 
video_parameter_set_rbsp( ) { Descriptor 
 vps_video_parameter_set_id u(4) 
 vps_reserved_three_2bits u(2) 
 vps_reserved_zero_6bits u(6) 
 vps_max_sub_layers_minus1 u(3) 
 vps_temporal_id_nesting_flag u(1) 
 vps_reserved_0xffff_16bits u(16) 
 profile_tier_level( 1, vps_max_sub_layers_minus1 )  
 bit_rate_pic_rate_info( 0, vps_max_sub_layers_minus1 )  
 vps_sub_layer_ordering_info_present_flag u(1) 
 for( i = ( vps_sub_layer_ordering_info_present_flag ? 
  0 : vps_max_sub_layers_minus1 ); 
  i <= vps_max_sub_layers_minus1; i++ ) { 

 

  vps_max_dec_pic_buffering[ i ] ue(v) 
  vps_max_num_reorder_pics[ i ] ue(v) 
  vps_max_latency_increase[ i ] ue(v) 
 }  
 vps_max_nuh_reserved_zero_layer_id u(6) 
 vps_num_op_sets_minus1 ue(v) 
 for( i = 1; i <= vps_num_op_sets_minus1; i++ )  
  operation_point_set( i )  
 vps_num_hrd_parameters ue(v) 
 for( i = 0; i < vps_num_hrd_parameters; i++ ) {  
  hrd_op_set_idx[ i ] ue(v) 
  if( i > 0 )  
   cprms_present_flag[ i ] u(1) 
  hrd_parameters( cprms_present_flag[ i ], vps_max_sub_layers_minus1 )  
 }  
 vps_extension_flag u(1) 
 if( vps_extension_flag )  
  while( more_rbsp_data( ) )  
   vps_extension_data_flag u(1) 
 rbsp_trailing_bits( )  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

31 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.2.2 Sequence parameter set RBSP syntax 

 
seq_parameter_set_rbsp( ) { Descriptor 
 sps_video_parameter_set_id u(4) 
 sps_max_sub_layers_minus1 u(3) 
 sps_temporal_id_nesting_flag u(1) 
 profile_tier_level( 1, sps_max_sub_layers_minus1 )  
 sps_seq_parameter_set_id ue(v) 
 chroma_format_idc ue(v) 
 if( chroma_format_idc  = =  3 )  
  separate_colour_plane_flag u(1) 
 pic_width_in_luma_samples ue(v) 
 pic_height_in_luma_samples ue(v) 
 conformance_window_flag u(1) 
 if( conformance_window_flag ) {  
  conf_win_left_offset ue(v) 
  conf_win_right_offset ue(v) 
  conf_win_top_offset ue(v) 
  conf_win_bottom_offset ue(v) 
 }  
 bit_depth_luma_minus8 ue(v) 
 bit_depth_chroma_minus8 ue(v) 
 log2_max_pic_order_cnt_lsb_minus4 ue(v) 
 sps_sub_layer_ordering_info_present_flag u(1) 
 for( i = ( sps_sub_layer_ordering_info_present_flag ? 
   0 : sps_max_sub_layers_minus1 ); 
   i <= sps_max_sub_layers_minus1; i++ ) { 

 

  sps_max_dec_pic_buffering[ i ] ue(v) 
  sps_max_num_reorder_pics[ i ] ue(v) 
  sps_max_latency_increase[ i ] ue(v) 
 }  
 log2_min_luma_coding_block_size_minus3 ue(v) 
 log2_diff_max_min_luma_coding_block_size ue(v) 
 log2_min_transform_block_size_minus2 ue(v) 
 log2_diff_max_min_transform_block_size ue(v) 
 max_transform_hierarchy_depth_inter ue(v) 
 max_transform_hierarchy_depth_intra ue(v) 
 scaling_list_enable_flag u(1) 
 if( scaling_list_enable_flag ) {  
  sps_scaling_list_data_present_flag u(1) 
  if( sps_scaling_list_data_present_flag )  
   scaling_list_data( )  
 }  
 amp_enabled_flag u(1) 
 sample_adaptive_offset_enabled_flag u(1) 
 pcm_enabled_flag u(1) 
 if( pcm_enabled_flag ) {  
  pcm_sample_bit_depth_luma_minus1 u(4) 
  pcm_sample_bit_depth_chroma_minus1 u(4) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 32 

  log2_min_pcm_luma_coding_block_size_minus3 ue(v) 
  log2_diff_max_min_pcm_luma_coding_block_size ue(v) 
  pcm_loop_filter_disable_flag u(1) 
 }  
 num_short_term_ref_pic_sets ue(v) 
 for( i = 0; i < num_short_term_ref_pic_sets; i++)  
  short_term_ref_pic_set( i )  
 long_term_ref_pics_present_flag u(1) 
 if( long_term_ref_pics_present_flag ) {  
  num_long_term_ref_pics_sps ue(v) 
  for( i = 0; i < num_long_term_ref_pics_sps; i++ ) {  
   lt_ref_pic_poc_lsb_sps[ i ] u(v) 
   used_by_curr_pic_lt_sps_flag[ i ] u(1) 
  }  
 }  
 sps_temporal_mvp_enable_flag u(1) 
 strong_intra_smoothing_enable_flag u(1) 
 vui_parameters_present_flag u(1) 
 if( vui_parameters_present_flag )  
  vui_parameters( )  
 sps_extension_flag u(1) 
 if( sps_extension_flag )  
  while( more_rbsp_data( ) )  
   sps_extension_data_flag u(1) 
 rbsp_trailing_bits( )  
}  

 

7.3.2.3 Picture parameter set RBSP syntax 

 
pic_parameter_set_rbsp( ) { Descriptor 
 pps_pic_parameter_set_id ue(v) 
 pps_seq_parameter_set_id ue(v) 
 dependent_slice_segments_enabled_flag u(1) 
 sign_data_hiding_flag u(1) 
 cabac_init_present_flag u(1) 
 num_ref_idx_l0_default_active_minus1 ue(v) 
 num_ref_idx_l1_default_active_minus1 ue(v) 
 init_qp_minus26 se(v) 
 constrained_intra_pred_flag u(1) 
 transform_skip_enabled_flag u(1) 
 cu_qp_delta_enabled_flag u(1) 
 if ( cu_qp_delta_enabled_flag )  
  diff_cu_qp_delta_depth ue(v) 
 pps_cb_qp_offset se(v) 
 pps_cr_qp_offset se(v) 
 pps_slice_chroma_qp_offsets_present_flag u(1) 
 weighted_pred_flag u(1) 



   ISO/IEC 23008-2 : 201x (E) 

33 Draft Rec. ITU-T H.HEVC (201x E) 

 weighted_bipred_flag u(1) 
 output_flag_present_flag u(1) 
 transquant_bypass_enable_flag u(1) 
 tiles_enabled_flag u(1) 
 entropy_coding_sync_enabled_flag u(1) 
 if( tiles_enabled_flag ) {  
  num_tile_columns_minus1 ue(v) 
  num_tile_rows_minus1 ue(v) 
  uniform_spacing_flag u(1) 
  if( !uniform_spacing_flag ) {  
   for( i = 0; i < num_tile_columns_minus1; i++ )  
    column_width_minus1[ i ] ue(v) 
   for( i = 0; i < num_tile_rows_minus1; i++ )  
    row_height_minus1[ i ] ue(v) 
  }  
  loop_filter_across_tiles_enabled_flag u(1) 
 }  
 loop_filter_across_slices_enabled_flag u(1) 
 deblocking_filter_control_present_flag u(1) 
 if( deblocking_filter_control_present_flag ) {  
  deblocking_filter_override_enabled_flag u(1) 
  pps_disable_deblocking_filter_flag u(1) 
  if( !pps_disable_deblocking_filter_flag ) {  
   pps_beta_offset_div2 se(v) 
   pps_tc_offset_div2 se(v) 
  }  
 }  
 pps_scaling_list_data_present_flag u(1) 
 if( pps_scaling_list_data_present_flag )  
  scaling_list_data( )  
 lists_modification_present_flag u(1) 
 log2_parallel_merge_level_minus2 ue(v) 
 num_extra_slice_header_bits u(3) 
 slice_segment_header_extension_present_flag u(1) 
 pps_extension_flag u(1) 
 if( pps_extension_flag )  
  while( more_rbsp_data( ) )  
   pps_extension_data_flag u(1) 
 rbsp_trailing_bits( )  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 34 

7.3.2.4 Supplemental enhancement information RBSP syntax 

 
sei_rbsp( ) { Descriptor 

do  
sei_message( )  

while( more_rbsp_data( ) )  
rbsp_trailing_bits( )  

}  

 

7.3.2.5 Access unit delimiter RBSP syntax 

 
access_unit_delimiter_rbsp( ) { Descriptor 
 pic_type u(3) 
 rbsp_trailing_bits( )  
}  

 

7.3.2.6 End of sequence RBSP syntax 

 
end_of_seq_rbsp( ) { Descriptor 
}  

 

7.3.2.7 End of bitstream RBSP syntax 

 
end_of_bitstream_rbsp( ) { Descriptor 
}  

 

7.3.2.8 Filler data RBSP syntax 

 
filler_data_rbsp( ) { Descriptor 
 while( next_bits( 8 )  = =  0xFF )  
  ff_byte  /* equal to 0xFF */ f(8) 
 rbsp_trailing_bits( )  
}  

 

7.3.2.9 Slice segment layer RBSP syntax 

 
slice_segment_layer_rbsp( ) { Descriptor 
 slice_segment_header( )  
 slice_segment_data( )  
 rbsp_slice_segment_trailing_bits( )  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

35 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.2.10 RBSP slice segment trailing bits syntax 

 
rbsp_slice_segment_trailing_bits( ) { Descriptor 
 rbsp_trailing_bits( )  
 while( more_rbsp_trailing_data( ) )  
  cabac_zero_word  /* equal to 0x0000 */ f(16) 
}  

 

7.3.2.11 RBSP trailing bits syntax 

 
rbsp_trailing_bits( ) { Descriptor 
 rbsp_stop_one_bit  /* equal to 1 */ f(1) 
 while( !byte_aligned( ) )  
  rbsp_alignment_zero_bit  /* equal to 0 */ f(1) 
}  

 

7.3.2.12 Byte alignment syntax 

 
byte_alignment( ) { Descriptor 
 alignment_bit_equal_to_one  /* equal to 1 */ f(1) 
 while( !byte_aligned( ) )  
  alignment_bit_equal_to_zero  /* equal to 0 */ f(1) 
}  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 36 

7.3.3 Profile, tier and level syntax 

 
profile_tier_level( profilePresentFlag, maxNumSubLayersMinus1 ) { Descriptor 
 if( profilePresentFlag ) {  
  general_profile_space u(2) 
  general_tier_flag u(1) 
  general_profile_idc u(5) 
  for( i = 0; i < 32; i++ )  
   general_profile_compatibility_flag[ i ] u(1) 
  general_reserved_zero_16bits [Ed. (GJS): Adjust semantics accordingly.] u(16) 
 }  
 general_level_idc u(8) 
 for( i = 0; i < maxNumSubLayersMinus1; i++ ) {  
  if( profilePresentFlag )  
   sub_layer_profile_present_flag[ i ] u(1) 
  sub_layer_level_present_flag[ i ] u(1) 
  if( profilePresentFlag  &&  sub_layer_profile_present_flag[ i ] ) {  
   sub_layer_profile_space[ i ] u(2) 
   sub_layer_tier_flag[ i ] u(1) 
   sub_layer_profile_idc[ i ] u(5) 
   for( j = 0; j < 32; j++ )  
    sub_layer_profile_compatibility_flag[ i ][ j ] u(1) 
   sub_layer_reserved_zero_16bits[ i ] u(16) 
  }  
  if( sub_layer_level_present_flag[ i ] )  
   sub_layer_level_idc[ i ] u(8) 
 }  
}  

 

7.3.4 Bit rate and picture rate information syntax 

 
bit_rate_pic_rate_info( TempLevelLow, TempLevelHigh ) { Descriptor 
 for( i = TempLevelLow; i <= TempLevelHigh; i++ ) {  
  bit_rate_info_present_flag[ i ] u(1) 
  pic_rate_info_present_flag[ i ] u(1) 
  if( bit_rate_info_present_flag[ i ] ) {  
   avg_bit_rate[ i ] u(16) 
   max_bit_rate [ i ] u(16) 
  }  
  if( pic_rate_info_present_flag[ i ] ) {  
   constant_pic_rate_idc[ i ] u(2) 
   avg_pic_rate[ i ] u(16) 
  }  
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

37 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.5 Operation point set syntax 

 
operation_point_set( opsIdx ) { Descriptor 
 for( i = 0; i <= vps_max_nuh_reserved_zero_layer_id; i++ )  
  layer_id_included_flag[ opsIdx ][ i ] u(1) 
}  

 

7.3.6 Scaling list data syntax 

 
scaling_list_data( ) { Descriptor 
 for( sizeId = 0; sizeId < 4; sizeId++ )  
  for( matrixId = 0; matrixId < ( ( sizeId = = 3 ) ? 2 : 6 ); matrixId++ ) {  
   scaling_list_pred_mode_flag[ sizeId ][ matrixId ] u(1) 
   if( !scaling_list_pred_mode_flag[ sizeId ][ matrixId ] )  
    scaling_list_pred_matrix_id_delta[ sizeId ][ matrixId ] ue(v) 
   else {  
    nextCoef = 8  
    coefNum = Min( 64, ( 1 << ( 4 + ( sizeId << 1) ) ) )  
    if( sizeId > 1 ) {  
     scaling_list_dc_coef_minus8[ sizeId − 2 ][ matrixId ] se(v) 
     nextCoef = 
       scaling_list_dc_coef_minus8[ sizeId − 2 ][ matrixId ] + 8 

 

    }  
    for( i = 0; i < coefNum; i++) {  
     scaling_list_delta_coef se(v) 
     nextCoef = ( nextCoef + scaling_list_delta_coef + 256 ) % 256  
     ScalingList[ sizeId ][ matrixId ][ i ] = nextCoef  
    }  
   }  
  }  
}   

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 38 

7.3.7 Supplemental enhancement information message syntax 

 
sei_message( ) { Descriptor 
 payloadType = 0  
 while( next_bits( 8 )  = =  0xFF ) {  
  ff_byte  /* equal to 0xFF */ f(8) 
  payloadType += 255  
 }  
 last_payload_type_byte u(8) 
 payloadType += last_payload_type_byte  
 payloadSize = 0  
 while( next_bits( 8 )  = =  0xFF ) {  
  ff_byte  /* equal to 0xFF */ f(8) 
  payloadSize += 255  
 }  
 last_payload_size_byte u(8) 
 payloadSize += last_payload_size_byte  
 sei_payload( payloadType, payloadSize )  
}   

 



   ISO/IEC 23008-2 : 201x (E) 

39 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.8 Slice segment header syntax 

7.3.8.1 General slice segment header syntax 

 
slice_segment_header( ) { Descriptor 
 first_slice_segment_in_pic_flag u(1) 
 if( RapPicFlag )  
  no_output_of_prior_pics_flag u(1) 
 slice_pic_parameter_set_id ue(v) 
 if( !first_slice_segment_in_pic_flag ) {  
  if(dependent_slice_segments_enabled_flag )  
   dependent_slice_segment_flag u(1) 
  slice_segment_address u(v) 
 }  
 if( !dependent_slice_segment_flag ) {  
  for ( i = 0; i < num_extra_slice_header_bits; i++ )  
   slice_reserved_undetermined_flag[ i ] u(1) 
  slice_type ue(v) 
  if( output_flag_present_flag )  
   pic_output_flag u(1) 
  if( separate_colour_plane_flag  = =  1 )  
   colour_plane_id u(2) 
  if( !IdrPicFlag ) {  
   pic_order_cnt_lsb u(v) 
   short_term_ref_pic_set_sps_flag u(1) 
   if( !short_term_ref_pic_set_sps_flag )  
    short_term_ref_pic_set( num_short_term_ref_pic_sets )  
   else  
    short_term_ref_pic_set_idx u(v) 
   if( long_term_ref_pics_present_flag ) {  
    if( num_long_term_ref_pics_sps > 0 )  
     num_long_term_sps ue(v) 
    num_long_term_pics ue(v) 
    for( i = 0; i < num_long_term_sps + num_long_term_pics; i++ ) {  
     if( i < num_long_term_sps )  
      lt_idx_sps[ i ] u(v) 
     else {  
      poc_lsb_lt[ i ] u(v) 
      used_by_curr_pic_lt_flag[ i ] u(1) 
     }  
     delta_poc_msb_present_flag[ i ] u(1) 
     if( delta_poc_msb_present_flag[ i ] )  
      delta_poc_msb_cycle_lt[ i ] ue(v) 
    }  
   }  
   if( sps_temporal_mvp_enable_flag )  
    slice_temporal_mvp_enable_flag u(1) 
  }  
  if( sample_adaptive_offset_enabled_flag ) {  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 40 

   slice_sao_luma_flag u(1) 
   slice_sao_chroma_flag u(1) 
  }  
  if( slice_type  = =  P  | |  slice_type  = =  B ) {  
   num_ref_idx_active_override_flag u(1) 
   if( num_ref_idx_active_override_flag ) {  
    num_ref_idx_l0_active_minus1 ue(v) 
    if( slice_type  = =  B )  
     num_ref_idx_l1_active_minus1 ue(v) 
   }  
   if( lists_modification_present_flag  &&  NumPocTotalCurr > 1 )  
    ref_pic_lists_modification( )  
   if( slice_type = = B )  
    mvd_l1_zero_flag u(1) 
   if( cabac_init_present_flag )  
    cabac_init_flag u(1) 
   if( slice_temporal_mvp_enable_flag ) {  
    if( slice_type  = =  B )  
     collocated_from_l0_flag u(1) 
    if( ( collocated_from_l0_flag  &&  num_ref_idx_l0_active_minus1 > 0 ) 
     | |  ( !collocated_from_l0_flag  && 
       num_ref_idx_l1_active_minus1 > 0 ) ) 
[Ed. (GJS): Does the logic of this condition check make sense when the slice is not a 
B slice?] 

 

     collocated_ref_idx ue(v) 
   }  
   if( ( weighted_pred_flag  &&   slice_type = = P)  | | 
     ( weighted_bipred_flag  &&  slice_type  = =  B ) ) 

 

    pred_weight_table( )  
   five_minus_max_num_merge_cand ue(v) 
  }  
  slice_qp_delta se(v) 
  if( pps_slice_chroma_qp_offsets_present_flag ) {  
   slice_cb_qp_offset se(v) 
   slice_cr_qp_offset se(v) 
  }  
  if( deblocking_filter_control_present_flag ) {  
   if( deblocking_filter_override_enabled_flag )  
    deblocking_filter_override_flag u(1) 
   if( deblocking_filter_override_flag ) {  
    slice_disable_deblocking_filter_flag u(1) 
    if( !slice_disable_deblocking_filter_flag ) {  
     slice_beta_offset_div2 se(v) 
     slice_tc_offset_div2 se(v) 
    }  
   }  
  }  
  if( loop_filter_across_slices_enabled_flag  && 
   ( slice_sao_luma_flag  | |  slice_sao_chroma_flag  | |   
    !slice_disable_deblocking_filter_flag ) ) 

 

   slice_loop_filter_across_slices_enabled_flag u(1) 



   ISO/IEC 23008-2 : 201x (E) 

41 Draft Rec. ITU-T H.HEVC (201x E) 

 }  
 if( tiles_enabled_flag  | |  entropy_coding_sync_enabled_flag ) {  
  num_entry_point_offsets ue(v) 
  if( num_entry_point_offsets > 0 ) {  
   offset_len_minus1 ue(v) 
   for( i = 0; i < num_entry_point_offsets; i++ )  
    entry_point_offset[ i ] u(v) 
  }  
 }  
 if( slice_segment_header_extension_present_flag ) {  
  slice_segment_header_extension_length ue(v) 
  for( i = 0; i < slice_segment_header_extension_length; i++)   
   slice_segment_header_extension_data_byte[ i ] u(8) 
 }  
 byte_alignment( )  
}  

 

7.3.8.2 Short-term reference picture set syntax 

[Ed. This appears in the SPS and SH. It should probably get its own level 3 heading.] 

 
short_term_ref_pic_set( idxRps ) { Descriptor 
 if( idxRps != 0 )  
  inter_ref_pic_set_prediction_flag u(1) 
 if( inter_ref_pic_set_prediction_flag ) {  
  if( idxRps  = =  num_short_term_ref_pic_sets )  
   delta_idx_minus1 ue(v) 
  delta_rps_sign u(1) 
  abs_delta_rps_minus1 ue(v) 
  for( j = 0; j <= NumDeltaPocs[ RIdx ]; j++ ) {  
   used_by_curr_pic_flag[ j ] u(1) 
   if( !used_by_curr_pic_flag[ j ] )  
    use_delta_flag[ j ] u(1) 
  }  
 }  
 else {  
  num_negative_pics ue(v) 
  num_positive_pics ue(v) 
  for( i = 0; i < num_negative_pics; i++ ) {  
   delta_poc_s0_minus1[ i ] ue(v) 
   used_by_curr_pic_s0_flag[ i ] u(1) 
  }  
  for( i = 0; i < num_positive_pics; i++ ) {  
   delta_poc_s1_minus1[ i ] ue(v) 
   used_by_curr_pic_s1_flag[ i ] u(1) 
  }  
 }  
}  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 42 

 

7.3.8.3 Reference picture list modification syntax 

 
ref_pic_lists_modification( ) { Descriptor 
 ref_pic_list_modification_flag_l0 u(1) 
 if( ref_pic_list_modification_flag_l0 )  
  for( i = 0; i <= num_ref_idx_l0_active_minus1; i++ )  
   list_entry_l0[ i ] u(v) 
 if( slice_type   = =  B ) {   
  ref_pic_list_modification_flag_l1 u(1) 
  if( ref_pic_list_modification_flag_l1 )  
   for( i = 0; i <= num_ref_idx_l1_active_minus1; i++ )  
    list_entry_l1[ i ] u(v) 
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

43 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.8.4 Weighted prediction parameters syntax 

 
pred_weight_table( ) { Descriptor 
 luma_log2_weight_denom ue(v) 
 if( chroma_format_idc  !=  0 )  
  delta_chroma_log2_weight_denom se(v) 
 for( i = 0; i <= num_ref_idx_l0_active_minus1; i++ )  
  luma_weight_l0_flag[ i ] u(1) 
 if( chroma_format_idc  !=  0 )  
  for( i = 0; i <= num_ref_idx_l0_active_minus1; i++ )  
   chroma_weight_l0_flag[ i ] u(1) 
 for( i = 0; i <= num_ref_idx_l0_active_minus1; i++ ) {  
  if( luma_weight_l0_flag[ i ] ) {  
   delta_luma_weight_l0[ i ] se(v) 
   luma_offset_l0[ i ] se(v) 
  }  
  if( chroma_weight_l0_flag[ i ] )  
   for( j = 0; j < 2; j++ ) {  
    delta_chroma_weight_l0[ i ][ j ] se(v) 
    delta_chroma_offset_l0[ i ][ j ] se(v) 
   }  
 }  
 if( slice_type  = =  B ) {  
  for( i = 0; i <= num_ref_idx_l1_active_minus1; i++ )  
   luma_weight_l1_flag[ i ] u(1) 
  if( chroma_format_idc  !=  0 )  
   for( i = 0; i <= num_ref_idx_l1_active_minus1; i++ )  
    chroma_weight_l1_flag[ i ] u(1) 
  for( i = 0; i <= num_ref_idx_l1_active_minus1; i++ ) {  
   if( luma_weight_l1_flag[ i ] ) {  
    delta_luma_weight_l1[ i ] se(v) 
    luma_offset_l1[ i ] se(v) 
   }  
   if( chroma_weight_l1_flag[ i ] )  
    for( j = 0; j < 2; j++ ) {  
     delta_chroma_weight_l1[ i ][ j ] se(v) 
     delta_chroma_offset_l1[ i ][ j ] se(v) 
    }  
  }  
 }  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 44 

7.3.9 Slice segment data syntax 

7.3.9.1 General slice segment data syntax 

 
slice_segment_data( ) { Descriptor 
 do {  
  coding_tree_unit( )  
  end_of_slice_segment_flag ae(v) 
  CtbAddrInTS++  
  CtbAddrInRS = CtbAddrTStoRS[ CtbAddrInTS ]  
  if( !end_of_slice_segment_flag  &&   
   ( ( tiles_enabled_flag  &&  TileId[ CtbAddrInTS ]  !=  TileId[ CtbAddrInTS − 1 ] )  | | 
   ( entropy_coding_sync_enabled_flag && CtbAddrInTS % PicWidthInCtbsY = = 0 ) ) 
   ) { 

 

   end_of_sub_stream_one_bit  /* equal to 1 */ ae(v) 
   byte_alignment( )  
  }  
 } while( !end_of_slice_segment_flag )  
}  

 

7.3.9.2 Coding tree unit syntax 

 
coding_tree_unit( ) { Descriptor 
 xCtb = ( CtbAddrInRS % PicWidthInCtbsY ) << Log2CtbSizeY  
 yCtb = ( CtbAddrInRS / PicWidthInCtbsY ) << Log2CtbSizeY  
 CtbAddrInSliceSeg = CtbAddrInRS − slice_segment_address  
 if( slice_sao_luma_flag  | |  slice_sao_chroma_flag )  
  sao( xCtb >> Log2CtbSizeY, yCtb >> Log2CtbSizeY )  
 coding_quadtree( xCtb, yCtb, Log2CtbSizeY, 0 )  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

45 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.9.3 Sample adaptive offset syntax 

 
sao( rx, ry ){ Descriptor 
 if( rx > 0 ) {  
  leftCtbInSliceSeg = CtbAddrInSliceSeg > 0  
  leftCtbInTile = TileId[ CtbAddrInTS ]  = =  TileId[ CtbAddrRStoTS[ CtbAddrInRS − 1 ] ]  
  if( leftCtbInSliceSeg  &&  leftCtbInTile )  
   sao_merge_left_flag ae(v) 
 }  
 if( ry > 0  &&  !sao_merge_left_flag ) {  
  upCtbInSliceSeg = ( CtbAddrInRS − PicWidthInCtbsY ) >= slice_segment_address  
  upCtbInTile = TileId[ CtbAddrInTS ]  = =  
        TileId[ CtbAddrRStoTS[ CtbAddrInRS − PicWidthInCtbsY ] ] 

 

  if( upCtbInSliceSeg  &&  upCtbInTile )  
   sao_merge_up_flag ae(v) 
 }  
 if( !sao_merge_up_flag  &&  !sao_merge_left_flag )  
  for( cIdx = 0; cIdx < 3; cIdx++ )  
   if( ( slice_sao_luma_flag  &&  cIdx  = =  0 )  | |   
    ( slice_sao_chroma_flag  &&  cIdx > 0 ) ) { 

 

    if( cIdx = = 0 )  
     sao_type_idx_luma ae(v) 
    else if( cIdx = = 1 )  
     sao_type_idx_chroma ae(v) 
    if( SaoTypeIdx[ cIdx ][ rx ][ ry ]  !=  0 ) {  
     for( i = 0; i < 4; i++ )  
      sao_offset_abs[ cIdx ][ rx][ ry ][ i ] ae(v) 
     if( SaoTypeIdx[ cIdx ][ rx ][ ry ]  = =  1 ) {  
      for( i = 0; i < 4; i++ )  
       if( sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] != 0 )  
        sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] ae(v) 
      sao_band_position[ cIdx ][ rx ][ ry ] ae(v) 
     } else {  
      if( cIdx  = =  0 )  
       sao_eo_class_luma ae(v) 
      if( cIdx  = =  1 )  
       sao_eo_class_chroma ae(v) 
     }  
    }  
   }  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 46 

7.3.9.4 Coding quadtree syntax 

 
coding_quadtree( x0, y0, log2CbSize, cqtDepth ) { Descriptor 
 if( x0 + ( 1 << log2CbSize )  <=  pic_width_in_luma_samples  && 
  y0 + ( 1 << log2CbSize )  <=  pic_height_in_luma_samples  && 
  log2CbSize > Log2MinCbSizeY ) 

 

   split_cu_flag[ x0 ][ y0 ] ae(v) 
 if( cu_qp_delta_enabled_flag  &&  log2CbSize >= Log2MinCuQpDeltaSize ) {  
  IsCuQpDeltaCoded = 0  
  CuQpDelta = 0  
 }  
 if( split_cu_flag[ x0 ][ y0 ] ) {  
  x1 = x0 + ( ( 1 << log2CbSize ) >> 1 )  
  y1 = y0 + ( ( 1 << log2CbSize ) >> 1 )  
  coding_quadtree( x0, y0, log2CbSize − 1, cqtDepth + 1 )  
  if( x1 < pic_width_in_luma_samples )  
   coding_quadtree( x1, y0, log2CbSize − 1, cqtDepth + 1 )  
  if( y1 < pic_height_in_luma_samples )  
   coding_quadtree( x0, y1, log2CbSize − 1, cqtDepth + 1 )  
  if( x1 < pic_width_in_luma_samples  &&   
   y1 < pic_height_in_luma_samples ) 

 

   coding_quadtree( x1, y1, log2CbSize − 1, cqtDepth + 1 )  
 } else  
  coding_unit( x0, y0, log2CbSize )  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

47 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.9.5 Coding unit syntax 

 
coding_unit( x0, y0, log2CbSize ) { Descriptor 
 if( transquant_bypass_enable_flag )  
  cu_transquant_bypass_flag ae(v) 
 if( slice_type  !=  I )  
  cu_skip_flag[ x0 ][ y0 ] ae(v) 
 nCbS = ( 1 << log2CbSize )  
 if( cu_skip_flag[ x0 ][ y0 ] )  
  prediction_unit( x0, y0, nCbS, nCbS )  
 else {  
  if( slice_type != I )  
   pred_mode_flag ae(v) 
  if( CuPredMode[ x0 ][ y0 ] != MODE_INTRA  | |  log2CbSize  = =  Log2MinCbSizeY )  
   part_mode ae(v) 
  if( CuPredMode[ x0 ][ y0 ]  = =  MODE_INTRA ) {  
   if( PartMode  = =  PART_2Nx2N && pcm_enabled_flag && 
    log2CbSize >= Log2MinIpcmCbSizeY && 
    log2CbSize <= Log2MaxIpcmCbSizeY ) 

 

    pcm_flag[ x0 ][ y0 ] ae(v) 
   if( pcm_flag[ x0 ][ y0 ] ) {  
    while( !byte_aligned( ) )  
     pcm_alignment_zero_bit f(1) 
    pcm_sample( x0, y0, log2CbSize )  
   } else {  
    pbOffset = ( PartMode  = =  PART_NxN ) ? ( nCbS / 2 ) : nCbS  
    for( j = 0; j < nCbS; j = j + pbOffset )  
     for( i = 0; i < nCbS; i = i + pbOffset )  
      prev_intra_luma_pred_flag[ x0 + i ][ y0+ j ] ae(v) 
    for( j = 0; j < nCbS; j = j + pbOffset )  
     for( i = 0; i < nCbS; i = i + pbOffset )  
      if( prev_intra_luma_pred_flag[ x0 + i ][ y0+ j ] )  
       mpm_idx[ x0 + i ][ y0+ j ] ae(v) 
      else  
       rem_intra_luma_pred_mode[ x0 + i ][ y0+ j ] ae(v) 
    intra_chroma_pred_mode[ x0 ][ y0 ] ae(v) 
   }  
  } else {  
   if( PartMode  = =  PART_2Nx2N )  
    prediction_unit( x0, y0, nCbS, nCbS )  
   else if( PartMode  = =  PART_2NxN ) {  
    prediction_unit( x0, y0, nCbS, nCbS / 2 )  
    prediction_unit( x0, y0 + ( nCbS / 2 ), nCbS, nCbS / 2 )  
   } else if( PartMode  = =  PART_Nx2N ) {  
    prediction_unit( x0, y0, nCbS / 2, nCbS )  
    prediction_unit( x0 + ( nCbS / 2 ), y0, nCbS / 2, nCbS )  
   } else if( PartMode  = =  PART_2NxnU ) {  
    prediction_unit( x0, y0, nCbS, nCbS / 4 )  
    prediction_unit( x0, y0 + ( nCbS / 4 ), nCbS, nCbS *3 / 4 )  
   } else if( PartMode  = =  PART_2NxnD ) {   
    prediction_unit( x0, y0, nCbS, nCbS *3 / 4 )  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 48 

    prediction_unit( x0, y0 + ( nCbS * 3 / 4 ), nCbS, nCbS / 4 )  
   } else if( PartMode  = =  PART_nLx2N ) {   
    prediction_unit( x0, y0, nCbS /4, nCbS )  
    prediction_unit( x0 + ( nCbS / 4 ), y0, nCbS *3 / 4, nCbS)  
   } else if( PartMode  = =  PART_nRx2N ) {   
    prediction_unit( x0, y0, nCbS *3 / 4, nCbS )  
    prediction_unit( x0 + ( nCbS * 3 / 4 ), y0, nCbS / 4, nCbS )  
   } else { /* PART_NxN */  
    prediction_unit( x0, y0, nCbS / 2, nCbS / 2)  
    prediction_unit( x0 + ( nCbS / 2 ), y0, nCbS / 2, nCbS / 2 )  
    prediction_unit( x0, y0 + ( nCbS / 2 ), nCbS / 2, nCbS / 2 )  
    prediction_unit( x0 + ( nCbS / 2 ), y0 + ( nCbS / 2 ), nCbS / 2, nCbS / 2 )  
   }  
  }  
  if( !pcm_flag[ x0 ][ y0 ] ) {  
   if( CuPredMode[ x0 ][ y0 ]  !=  MODE_INTRA &&  
    !(PartMode  = =  PART_2Nx2N && merge_flag[x0][y0]) ) 

 

    rqt_root_cbf ae(v) 
   if( rqt_root_cbf ) {  
    MaxTrafoDepth = ( CuPredMode[ x0 ][ y0 ]  = =  MODE_INTRA ?   
           max_transform_hierarchy_depth_intra  +  IntraSplitFlag  :   
           max_transform_hierarchy_depth_inter ) 

 

    transform_tree( x0, y0, x0, y0, log2CbSize, 0, 0 )  
   }  
  }  
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

49 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.9.6 Prediction unit syntax 

 
prediction_unit( x0, y0, nPbW, nPbH ) { Descriptor 
 if( cu_skip_flag[ x0 ][ y0 ] ) {  
  if( MaxNumMergeCand > 1 )  
   merge_idx[ x0 ][ y0 ] ae(v) 
 } else { /* MODE_INTER */  
  merge_flag[ x0 ][ y0 ] ae(v) 
  if( merge_flag[ x0 ][ y0 ] ) {  
   if( MaxNumMergeCand > 1 )  
    merge_idx[ x0 ][ y0 ] ae(v) 
  } else {  
   if( slice_type  = =  B )  
    inter_pred_idc[ x0 ][ y0 ] ae(v) 
   if( inter_pred_idc[ x0 ][ y0 ]  !=  Pred_L1 ) {  
    if( num_ref_idx_l0_active_minus1  >  0 )  
     ref_idx_l0[ x0 ][ y0 ] ae(v) 
    mvd_coding( x0, y0, 0 )  
    mvp_l0_flag[ x0 ][ y0 ] ae(v) 
   }  
   if( inter_pred_idc[ x0 ][ y0 ]  !=  Pred_L0 ) {  
    if( num_ref_idx_l1_active_minus1  >  0 )  
     ref_idx_l1[ x0 ][ y0 ] ae(v) 
    if( mvd_l1_zero_flag  && 
      inter_pred_idc[ x0 ][ y0 ]  = =  Pred_BI) { 

 

     MvdL1[ x0 ][ y0 ][ 0 ] = 0  
     MvdL1[ x0 ][ y0 ][ 1 ] = 0  
    } else  
     mvd_coding( x0, y0, 1 )  
    mvp_l1_flag[ x0 ][ y0 ] ae(v) 
   }  
  }  
 }  
}  

 

7.3.9.7 PCM sample syntax 

 
pcm_sample( x0, y0, log2CbSize ) { Descriptor 
 for( i = 0; i < 1 << ( log2CbSize << 1 ); i++ )  
  pcm_sample_luma[ i ] u(v) 
 for( i = 0; i < ( 1 << ( log2CbSize << 1 ) ) >> 1; i++ )  
  pcm_sample_chroma[ i ] u(v) 
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 50 

7.3.9.8 Transform tree syntax 

 
transform_tree( x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx ) { Descriptor 
 if( log2TrafoSize <= Log2MaxTrafoSize  &&  
  log2TrafoSize > Log2MinTrafoSize  && 
  trafoDepth < MaxTrafoDepth  &&  !(IntraSplitFlag  &&  trafoDepth  = =  0) ) 

 

  split_transform_flag[ x0 ][ y0 ][ trafoDepth ] ae(v) 
 if( log2TrafoSize  >  2 ) {  
  if( trafoDepth  = =  0  | |  cbf_cb[ xBase ][ yBase ][ trafoDepth − 1 ] )  
   cbf_cb[ x0 ][ y0 ][ trafoDepth ] ae(v) 
  if( trafoDepth  = =  0  | |  cbf_cr[ xBase ][ yBase ][ trafoDepth − 1 ] )  
   cbf_cr[ x0 ][ y0 ][ trafoDepth ] ae(v) 
 }  
 if( split_transform_flag[ x0 ][ y0 ][ trafoDepth ] ) {  
  x1 = x0 + ( ( 1 << log2TrafoSize ) >> 1 )  
  y1 = y0 + ( ( 1 << log2TrafoSize ) >> 1 )  
  transform_tree( x0, y0, x0, y0, log2TrafoSize − 1, trafoDepth + 1, 0 )  
  transform_tree( x1, y0, x0, y0, log2TrafoSize − 1, trafoDepth + 1, 1 )  
  transform_tree( x0, y1, x0, y0, log2TrafoSize − 1, trafoDepth + 1, 2 )  
  transform_tree( x1, y1, x0, y0, log2TrafoSize − 1, trafoDepth + 1, 3 )  
 } else {  
  if( CuPredMode[ x0 ][ y0 ]  = =  MODE_INTRA  | |  trafoDepth  !=  0  | | 
    cbf_cb[ x0 ][ y0 ][ trafoDepth ]  | |  cbf_cr[ x0 ][ y0 ][ trafoDepth ] ) 

 

   cbf_luma[ x0 ][ y0 ][ trafoDepth ] ae(v) 
  transform_unit (x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx)  
 }  
}  

 

7.3.9.9 Motion vector difference syntax 

 
mvd_coding( x0, y0, refList ) { Descriptor 
 abs_mvd_greater0_flag[ 0 ] ae(v) 
 abs_mvd_greater0_flag[ 1 ] ae(v) 
 if( abs_mvd_greater0_flag[ 0 ] )  
  abs_mvd_greater1_flag[ 0 ] ae(v) 
 if( abs_mvd_greater0_flag[ 1 ] )  
  abs_mvd_greater1_flag[ 1 ] ae(v) 
 if( abs_mvd_greater0_flag[ 0 ] ) {  
  if( abs_mvd_greater1_flag[ 0 ] )  
   abs_mvd_minus2[ 0 ] ae(v) 
  mvd_sign_flag[ 0 ] ae(v) 
 }  
 if( abs_mvd_greater0_flag[ 1 ] ) {  
  if( abs_mvd_greater1_flag[ 1 ] )  
   abs_mvd_minus2[ 1 ] ae(v) 
  mvd_sign_flag[ 1 ] ae(v) 
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

51 Draft Rec. ITU-T H.HEVC (201x E) 

7.3.9.10 Transform unit syntax 

 
transform_unit( x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkIdx ) { Descriptor 
 if( cbf_luma[ x0 ][ y0 ][ trafoDepth ] | | cbf_cb[ x0 ][ y0 ][ trafoDepth ] | |  
  cbf_cr[ x0 ][ y0 ][ trafoDepth ] ) { 

 

  if( cu_qp_delta_enabled_flag  &&  !IsCuQpDeltaCoded ) {  
   cu_qp_delta_abs ae(v) 
   if( cu_qp_delta_abs )  
    cu_qp_delta_sign ae(v) 
  }  
  if( cbf_luma[ x0 ][ y0 ][ trafoDepth ] )  
   residual_coding( x0, y0, log2TrafoSize, 0 )  
  if( log2TrafoSize > 2 ) {  
   if( cbf_cb[ x0 ][ y0 ][ trafoDepth ] )  
    residual_coding( x0, y0, log2TrafoSize − 1, 1 )  
   if( cbf_cr[ x0 ][ y0 ][ trafoDepth ] )  
    residual_coding( x0, y0, log2TrafoSize − 1, 2 )  
  } else if( blkIdx  = =  3 ) {  
   if( cbf_cb[ xBase ][ yBase ][ trafoDepth ] )  
    residual_coding( xBase, yBase, log2TrafoSize, 1 )  
   if( cbf_cr[ xBase ][ yBase ][ trafoDepth ] )  
    residual_coding( xBase, yBase, log2TrafoSize, 2 )  
  }  
 }  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 52 

7.3.9.11 Residual coding syntax 

 
residual_coding( x0, y0, log2TrafoSize, cIdx ) { Descriptor 
 if( transform_skip_enabled_flag && !cu_transquant_bypass_flag && ( log2TrafoSize  = =  2 ) )   
  transform_skip_flag[ x0 ][ y0 ][ cIdx ] ae(v) 
 last_significant_coeff_x_prefix ae(v) 
 last_significant_coeff_y_prefix ae(v) 
 if( last_significant_coeff_x_prefix > 3 )  
  last_significant_coeff_x_suffix ae(v) 
 if( last_significant_coeff_y_prefix > 3 )  
  last_significant_coeff_y_suffix ae(v) 
 lastScanPos = 16  
 lastSubBlock = ( 1 << ( log2TrafoSize − 2 ) ) * ( 1 << ( log2TrafoSize − 2 ) ) − 1  
 do {  
  if( lastScanPos  = =  0 ) {  
   lastScanPos = 16  
   lastSubBlock− −  
  }  
  lastScanPos− −  
  xS = ScanOrder[ log2TrafoSize − 2 ][ scanIdx ][ lastSubBlock ][ 0 ]  
  yS = ScanOrder[ log2TrafoSize − 2 ][ scanIdx ][ lastSubBlock ][ 1 ]  
  xC = ( xS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ lastScanPos ][ 0 ]   
  yC = ( yS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ lastScanPos ][ 1 ]  
 } while( ( xC  !=  LastSignificantCoeffX ) | | ( yC  !=  LastSignificantCoeffY ) )  
 for( i = lastSubBlock; i >= 0; i− − ) {  
  xS = ScanOrder[ log2TrafoSize − 2 ][ scanIdx ][ i ][ 0 ]  
  yS = ScanOrder[ log2TrafoSize − 2 ][ scanIdx ][ i ][ 1 ]  
  inferSbDcSigCoeffFlag = 0  
  if( ( i < lastSubBlock )  && ( i > 0 ) ) {  
   coded_sub_block_flag[ xS ][ yS ] ae(v) 
   inferSbDcSigCoeffFlag = 1  
  }  
  for( n = ( i  = =  lastSubBlock ) ? lastScanPos − 1 : 15; n >= 0; n− − ) {  
   xC = ( xS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 0 ]   
   yC = ( yS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 1 ]  
   if( coded_sub_block_flag[ xS ][ yS ]  &&  ( n > 0  | |  !inferSbDcSigCoeffFlag ) ) {  
    significant_coeff_flag[ xC ][ yC ] ae(v) 
    if( significant_coeff_flag[ xC ][ yC ] )  
     inferSbDcSigCoeffFlag = 0  
   }  
  }  
  firstSigScanPos = 16  
  lastSigScanPos = −1  
  numGreater1Flag = 0  
  lastGreater1ScanPos = −1  
  for( n = 15; n >= 0; n− − ) {  
   xC = ( xS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 0 ]   
   yC = ( yS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 1 ]  
   if( significant_coeff_flag[ xC ][ yC ] ) {  



   ISO/IEC 23008-2 : 201x (E) 

53 Draft Rec. ITU-T H.HEVC (201x E) 

    if( numGreater1Flag < 8 ) {  
     coeff_abs_level_greater1_flag[ n ] ae(v) 
     numGreater1Flag++  
     if( coeff_abs_level_greater1_flag[ n ] && lastGreater1ScanPos  = =  −1 )  
      lastGreater1ScanPos = n  
    }  
    if( lastSigScanPos  = =  −1)  
     lastSigScanPos = n  
    firstSigScanPos = n  
   }  
  }  
  signHidden = ( lastSigScanPos − firstSigScanPos > 3  &&  !cu_transquant_bypass_flag )  
  if( lastGreater1ScanPos != −1 )  
   coeff_abs_level_greater2_flag[ lastGreater1ScanPos ] ae(v) 
  for( n = 15; n >= 0; n− − ) {  
   xC = ( xS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 0 ]   
   yC = ( yS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 1 ]  
   if( significant_coeff_flag[ xC ][ yC ]  && 
    ( !sign_data_hiding_flag | | !signHidden | | n != firstSigScanPos ) ) 

 

    coeff_sign_flag[ n ] ae(v) 
  }  
  numSigCoeff = 0  
  sumAbsLevel = 0  
  for( n = 15; n >= 0; n− − ) {  
   xC = ( xS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 0 ]   
   yC = ( yS << 2 ) + ScanOrder[ 2 ][ scanIdx ][ n ][ 1 ]  
   if( significant_coeff_flag[ xC ][ yC ] ) {  
    baseLevel = 1 + coeff_abs_level_greater1_flag[ n ] + coeff_abs_level_greater2_flag[ n ]  
    if( baseLevel  = =  ( ( numSigCoeff < 8 ) ? ( (n  = =  lastGreater1ScanPos) ? 3 : 2 ) : 1 ) )  
     coeff_abs_level_remaining[ n ] ae(v) 
    TransCoeffLevel[ x0 ][ y0 ][ cIdx ][ xC ][ yC ] =  
     ( coeff_abs_level_remaining[ n ] + baseLevel ) * ( 1 − 2 * coeff_sign_flag[ n ] ) 

 

    if( sign_data_hiding_flag  &&  signHidden ) {  
     sumAbsLevel += ( coeff_abs_level_remaining[ n ] + baseLevel )  
     if( n  = =  firstSigScanPos  &&  ( ( sumAbsLevel % 2 )  = =  1) )  
      TransCoeffLevel[x0][y0][cIdx][xC][yC] = −  TransCoeffLevel[x0][y0][cIdx][xC][yC]  
    }  
    numSigCoeff++  
   }  
  }  
 }  
}  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 54 

7.4 Semantics 
Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this 
subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not 
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Specification. 

7.4.1 NAL unit semantics 

7.4.1.1 General NAL unit semantics 

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. 
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such 
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be specified 
outside of this Specification. 

NOTE 1 – The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data and 
provide header information in a manner appropriate for conveyance on a variety of communication channels or storage media. All 
data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic format for use 
in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and byte stream is 
identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte stream format 
specified in Annex B. 

rbsp_byte[ i ] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows. 

The RBSP contains an SODB as follows. 
– If the SODB is empty (i.e. zero bits in length), the RBSP is also empty. 
– Otherwise, the RBSP contains the SODB as follows: 

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of 
the RBSP contains the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain. [Ed. 
(GJS): Generally, there are way too many places where the word "shall" is used. If it is not a testable constraint 
on the content of a conforming bitstream and is not a testable constraint on the output behaviour of the decoder, 
it should not be expressed using a "shall".] 

2) rbsp_trailing_bits( ) are present after the SODB as follows: 
i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB 

(if any). 
ii) The next bit consists of a single rbsp_stop_one_bit equal to 1. 
iii) When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more 

rbsp_alignment_zero_bit is present to result in byte alignment. 
3) One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after 

the rbsp_trailing_bits( ) at the end of the RBSP. 

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures 
are carried within NAL units as the content of the rbsp_byte[ i ] data bytes. The association of the RBSP syntax 
structures to the NAL units is as specified in Table 7-1. 

NOTE 2 – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the 
bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1, 
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for 
the decoding process is contained in the SODB part of the RBSP. 

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the 
NAL unit, it shall be discarded by the decoding process. 

The last byte of the NAL unit shall not be equal to 0x00. 

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position: 
– 0x000000 
– 0x000001 
– 0x000002 

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not 
occur at any byte-aligned position: 
– 0x00000300 
– 0x00000301 



   ISO/IEC 23008-2 : 201x (E) 

55 Draft Rec. ITU-T H.HEVC (201x E) 

– 0x00000302 
– 0x00000303 

7.4.1.2 NAL unit header semantics 

forbidden_zero_bit shall be equal to 0. 

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. 

NAL units that use nal_unit_type in the range of UNSPEC48..UNSPEC63, inclusive, for which semantics are not 
specified, shall not affect the decoding process specified in this Specification. 

NOTE 1 – NAL unit types in the range of UNSPEC48..UNSPEC63 may be used as determined by the application. No decoding 
process for these values of nal_unit_type is specified in this Specification. Since different applications might use NAL unit types 
in the range of UNSPEC48..UNSPEC63 for different purposes, particular care must be exercised in the design of encoders that 
generate NAL units with nal_unit_type in the range of UNSPEC48..UNSPEC63, and in the design of decoders that interpret the 
content of NAL units with nal_unit_type in the range of UNSPEC48..UNSPEC63. 

For purposes other than as specified in Annex C, decoders shall ignore (remove from the bitstream and discard) the 
contents of all NAL units that use reserved values of nal_unit_type. 

NOTE 2 – This requirement allows future definition of compatible extensions to this Specification. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 56 

Table 7-1 – NAL unit type codes and NAL unit type classes 

nal_unit_type Name of nal_unit_type Content of NAL unit and RBSP syntax structure NAL 
unit 
type 
class 

0, 
1 

TRAIL_N, 
TRAIL_R 

Coded slice segment of a non-TSA, non-STSA 
trailing picture 
slice_segment_layer_rbsp( ) 

VCL 

2, 
3 

TSA_N, 
TSA_R 

Coded slice segment of a TSA picture 
slice_segment_layer_rbsp( ) 

VCL 

4, 
5 

STSA_N, 
STSA_R 

Coded slice segment of an STSA picture 
slice_layer_rbsp( ) 

VCL 

6, 
7 

RADL_N, 
RADL_R 

Coded slice segment of a RADL picture 
slice_layer_rbsp( ) 

VCL 

8, 
9 

RASL_N, 
RASL_R, 

Coded slice segment of a RASL picture 
slice_layer_rbsp( ) 

VCL 

10, 
12, 
14 

RSV_VCL_N10 
RSV_VCL_N12 
RSV_VCL_N14 

Reserved // reserved non-RAP non-reference VCL 
NAL unit types 

VCL 

11, 
13, 
15 

RSV_VCL_R11 
RSV_VCL_R13 
RSV_VCL_R15 

Reserved // reserved non-RAP reference VCL NAL 
unit types 

VCL 

16, 
17, 
18 

BLA_W_LP 
BLA_W_DLP 
BLA_N_LP 

Coded slice segment of a BLA picture 
slice_segment_layer_rbsp( ) [Ed. (YK): 
BLA_W_DLP -> BLA_W_RADL?] 

VCL 

19, 
20 

IDR_W_DLP 
IDR_N_LP 

Coded slice segment of an IDR picture 
slice_segment_layer_rbsp( ) [Ed. (YK: 
IDR_W_DLP -> IDR_W_RADL?] 

VCL 

21 CRA_NUT Coded slice segment of a CRA picture 
slice_segment_layer_rbsp( ) 

VCL 

22, 
23 

RSV_RAP_VCL22.. 
RSV_RAP_VCL23 

Reserved // reserved RAP VCL NAL unit types 
[Ed.(YK): Some RAP related restrictions need to be 
specified for these 2 NUTs] 

VCL 

24..31 RSV_VCL24.. 
RSV_VCL31 

Reserved // reserved non-RAP VCL NAL unit 
types [Ed.(YK): Some non-RAP related restrictions 
may need to be specified for these NUTs] 

VCL 

32 VPS_NUT Video parameter set 
video_parameter_set_rbsp( ) 

non-VCL 

33 SPS_NUT Sequence parameter set 
seq_parameter_set_rbsp( ) 

non-VCL 

34 PPS_NUT Picture parameter set 
pic_parameter_set_rbsp( ) 

non-VCL 

35 AUD_NUT Access unit delimiter 
access_unit_delimiter_rbsp( ) 

non-VCL 

36 EOS_NUT End of sequence 
end_of_seq_rbsp( ) 

non-VCL 

37 EOB_NUT End of bitsteam 
end_of_bitstream_rbsp( ) 

non-VCL 

38 FD_NUT Filler data 
filler_data_rbsp( ) 

non-VCL 



   ISO/IEC 23008-2 : 201x (E) 

57 Draft Rec. ITU-T H.HEVC (201x E) 

39, 
40 

PREFIX_SEI_NUT 
SUFFIX_SEI_NUT 

Supplemental enhancement information (SEI) 
sei_rbsp( ) 

non-VCL 

41..47 RSV_NVCL41.. 
RSV_NVCL47 

Reserved non-VCL 

48..63 UNSPEC48.. 
UNSPEC63 

Unspecified non-VCL 

 

 
NOTE 3 – A CRA picture may have associated RASL or RADL pictures present in the bitstream. 
NOTE 4 – A BLA picture having nal_unit_type equal to BLA_W_LP may have associated RASL or RADL pictures present in the 
bitstream. A BLA picture having nal_unit_type equal to BLA_W_DLP does not have associated RASL pictures present in the 
bitstream, but may have associated RADL pictures in the bitstream. A BLA picture having nal_unit_type equal to BLA_N_LP 
does not have associated leading pictures present in the bitstream. 
NOTE 5 – An IDR picture having nal_unit_type equal to IDR_N_LP does not have associated leading pictures present in the 
bitstream. An IDR picture having nal_unit_type equal to IDR_W_DLP does not have associated RASL pictures present in the 
bitstream, but may have associated RADL pictures in the bitstream. 
NOTE 6 – When the value of nal_unit_type is equal to TRAIL_N, TSA_N or STSA_N, the decoded picture is not included in any 
of RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr of any picture with the same value of TemporalId. A coded 
picture with nal_unit_type equal to TRAIL_N, TSA_N or STSA_N may be discarded without affecting the decodability of other 
pictures with the same value of TemporalId. 

The variable IdrPicFlag is specified as 

IdrPicFlag = ( nal_unit_type  = =  IDR_W_DLP  | |  nal_unit_type  = =  IDR_N_LP ) (7-1) 

The variable RapPicFlag is specified as 

RapPicFlag = ( nal_unit_type  >=  16  &&  nal_unit_type  <=  23 ) (7-2) 

All coded slice segment NAL units of an access unit shall have the same value of nal_unit_type. 

Each picture, other than the first picture in the bitstream, is considered to be associated with the previous RAP picture in 
decoding order. 

When a picture is a leading picture, it shall be a RADL or RASL picture. 

When a picture is a trailing picture, it shall not be a RADL or RASL picture. 

When a picture is a leading picture, it shall precede, in decoding order, all trailing pictures that are associated with the 
same RAP picture. 

No RASL pictures shall be present in the bitstream that are associated with a BLA picture having nal_unit_type equal to 
BLA_W_DLP or BLA_N_LP. 

No RASL pictures shall be present in the bitstream that are associated with an IDR picture. 

No RADL pictures shall be present in the bitstream that are associated with a BLA picture having nal_unit_type equal to 
BLA_N_LP or that are associated with an IDR picture having nal_unit_type equal to IDR_N_LP. 

NOTE 7 – It is possible to perform random access at the position of a RAP access unit by discarding all access units before the 
RAP access unit (and to correctly decode the RAP picture and all the subsequent non-RASL pictures in decoding order), provided 
each parameter set is available (either in the bitstream or by external means not specified in this Specification) when it needs to be 
activated. 

Any picture that has PicOutputFlag equal to 1 that precedes a RAP picture in decoding order shall precede the RAP 
picture in output order and shall precede any RADL picture associated with the RAP picture in output order. 

Any RASL picture associated with a CRA or BLA picture shall precede any RADL picture associated with the CRA or 
BLA picture in output order. 

Any RASL picture associated with a CRA picture shall follow, in output order, any RAP picture that precedes the CRA 
picture in decoding order. [Ed. (TK) Why do we need this restriction? (GJS): Just so that each RAP-to-RAP chunk is a 
roughly-sensible segment of the video content, I suppose. We have other such "unnecessary" constraints, such as the 
constraint that RASL's need to be leading pictures and the constraints on relative decoding order of RASL, RADL and 
trailing pictures.] 

When sps_temporal_id_nesting_flag is equal to 1 and TemporalId is greater than 0, the nal_unit_type shall be equal to 
TSA_R, TSA_N, RADL_R, RADL_N, RASL_R, or RASL_N. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 58 

nuh_reserved_zero_6bits shall be equal to 0. Other values of nuh_reserved_zero_6bits may be specified in the future by 
ITU-T | ISO/IEC. For purposes other than as specified in Annex C, decoders shall ignore (i.e. remove from the bitstream 
and discard) all NAL units with values of nuh_reserved_zero_6bits not equal to 0. 

NOTE 8 – It is anticipated that in future scalable or 3D video coding extensions of this specification, this syntax element will be 
used to identify additional layers that may be present in the coded video sequence, wherein a layer may be, e.g. a spatial scalable 
layer, a quality scalable layer, a texture view or a depth view. 

nuh_temporal_id_plus1 minus 1 specifies a temporal identifier for the NAL unit. The value of nuh_temporal_id_plus1 
shall not be equal to 0. 

The variable TemporalId is specified as 

TemporalId = nuh_temporal_id_plus1 − 1  (7-3) 

If nal_unit_type is in the range of 16 to 23 (coded slice segment of a RAP picture), inclusive, TemporalId shall be equal 
to 0; otherwise, when nal_unit_type is equal to TSA_R, TSA_N, STSA_R, or STSA_N, TemporalId shall not be equal 
to 0. 

The value of TemporalId shall be the same for all VCL NAL units of an access unit. The value of TemporalId of an 
access unit is the value of the TemporalId of the VCL NAL units of the access unit. 

The value of TemporalId for non-VCL NAL units is constrained as follows: 

– If nal_unit_type is equal to VPS_NUT, SPS_NUT, EOS_NUT, or EOB_NUT, TemporalId shall be equal to 0. 

– Otherwise, if nal_unit_type is equal to AUD_NUT or FD_NUT, TemporalId shall be equal to the TemporalId of the 
access unit containing the non-VCL NAL unit. 

– Otherwise, when nal_unit_type is equal to PREFIX_SEI_NUT or SUFFIX_SEI_NUT, TemporalId shall be greater 
than or equal to the TemporalId of the access unit containing the NAL unit. 

NOTE 9 – When the NAL unit is a non-VCL NAL unit, the value of TemporalId is equal to the minimum value of the TemporalId 
values of all access units to which the non-VCL NAL unit applies. When nal_unit_type is equal to VPS_NUT or SPS_NUT, 
TemporalId must be equal to 0, as a sequence parameter set applies at least to one RAP access unit. When nal_unit_type is equal 
to AUD_NUT or FD_NUT, TemporalId must be equal to the TemporalId of the access unit containing the non-VCL NAL unit, as 
access unit delimiter or filler data only applies to the containing access unit. When nal_unit_type is equal to PPS_NUT, 
TemporalId may be less than, equal to, or greater than the TemporalId of the containing access unit, as a picture parameter set may 
be repeated in access units not referring to the picture parameter set (for error resilience purposes), and all picture parameter sets 
may be included in the beginning of a bitstream, wherein the first coded picture has TemporalId equal to 0. When nal_unit_type is 
equal to PREFIX_SEI_NUT or SUFFIX_SEI_NUT, TemporalId may be greater than or equal to the TemporalId of the containing 
access unit, as an SEI NAL unit may contain information, e.g. in a buffering period SEI message or a picture timing SEI message 
that applies to a bitstream subset that includes access units for which the TemporalId values are greater than the TemporalId of the 
access unit containing the SEI NAL unit. 

7.4.1.3 Encapsulation of an SODB within an RBSP (informative) 

This subclause does not form an integral part of this Specification. 

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for 
encapsulation of an RBSP within a NAL unit is described for the following purposes: 
– To prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented 

within a NAL unit, 
– To enable identification of the end of the SODB within the NAL unit by searching the RBSP for the 

rbsp_stop_one_bit starting at the end of the RBSP, 
– To enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more 

cabac_zero_word syntax elements). 

The encoder can produce a NAL unit from an RBSP by the following procedure: 
1. The RBSP data is searched for byte-aligned bits of the following binary patterns: 

 '00000000 00000000 000000xx'  (where 'xx' represents any two-bit pattern: '00', '01', '10', or '11'), 

and a byte equal to 0x03 is inserted to replace the bit pattern with the pattern: 

 '00000000 00000000 00000011 000000xx', 

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in 
a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a 
byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence 



   ISO/IEC 23008-2 : 201x (E) 

59 Draft Rec. ITU-T H.HEVC (201x E) 

0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits 
with the binary patterns specified above. 

2. The resulting sequence of bytes is then prefixed as follows. 
– The sequence of bytes is prefixed with the NAL unit header, within which the nal_unit_type indicates the 

type of RBSP data structure in the NAL unit. 
The process specified above results in the construction of the entire NAL unit. 

This process can allow any SODB to be represented in a NAL unit while ensuring that 
– no byte-aligned start code prefix is emulated within the NAL unit, 
– no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within 

the NAL unit. 

7.4.1.4 Order of NAL units and association to coded pictures, access units, and video sequences 

This subclause specifies constraints on the order of NAL units in the bitstream. 

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of NAL 
units. Within a NAL unit, the syntax in subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. 
Decoders shall be capable of receiving NAL units and their syntax elements in decoding order. 

7.4.1.4.1 Order of video, sequence, and picture parameter set RBSPs and their activation 

This subclause specifies the activation process of video, sequence and picture parameter sets. 
NOTE 1 – The video, sequence, and picture parameter set mechanism decouples the transmission of infrequently changing 
information from the transmission of coded block data. Video, sequence, and picture parameter sets may, in some applications, be 
conveyed "out-of-band".  

A picture parameter set RBSP includes parameters that can be referred to by the coded slice segment NAL units of one 
or more coded pictures. Each picture parameter set RBSP is initially considered not active at the start of the operation of 
the decoding process. At most one picture parameter set RBSP is considered active at any given moment during the 
operation of the decoding process, and the activation of any particular picture parameter set RBSP results in the 
deactivation of the previously-active picture parameter set RBSP (if any). 

When a picture parameter set RBSP (with a particular value of pps_pic_parameter_set_id) is not active and it is referred 
to by a coded slice segment NAL unit (using a value of slice_pic_parameter_set_id equal to the 
pps_pic_parameter_set_id value), it is activated. This picture parameter set RBSP is called the active picture parameter 
set RBSP until it is deactivated by the activation of another picture parameter set RBSP. A picture parameter set RBSP, 
with that particular value of pps_pic_parameter_set_id, shall be available to the decoding process prior to its activation, 
included in at least one access unit with TemporalId less than or equal to the TemporalId of the picture parameter set 
NAL unit, unless the picture parameter set is provided through external means. 

Any picture parameter set NAL unit containing the value of pps_pic_parameter_set_id for the active picture parameter 
set RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded 
picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another 
coded picture. 

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set RBSPs 
or one or more SEI NAL units containing an active parameter sets SEI message. Each sequence parameter set RBSP is 
initially considered not active at the start of the operation of the decoding process. At most one sequence parameter set 
RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any 
particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set RBSP 
(if any). 

When a sequence parameter set RBSP (with a particular value of sps_seq_parameter_set_id) is not already active and it 
is referred to by activation of a picture parameter set RBSP (using a value of pps_seq_parameter_set_id equal to the 
sps_seq_parameter_set_id value) or is referred to by an SEI NAL unit containing an active parameter sets SEI message 
(using that value of sps_seq_parameter_set_id), it is activated. [Ed. (GJS): Check syntax element name usage.] This 
sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the activation of 
another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of 
sps_seq_parameter_set_id shall be available to the decoding process prior to its activation, included in at least one access 
unit with TemporalId equal to 0, unless the sequence parameter set is provided through external means. An activated 
sequence parameter set RBSP shall remain active for the entire coded video sequence. 

NOTE 2 – Because a CRA access unit that is the first access unit in the bitstream, an IDR access unit, or a BLA access unit begins 
a new coded video sequence and an activated sequence parameter set RBSP must remain active for the entire coded video 
sequence, a sequence parameter set RBSP can only be activated by an active parameter sets SEI message when the active 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 60 

parameter sets SEI message is part of a CRA access unit that is the first access unit in the bitstream, an IDR access unit, or a BLA 
access unit. 

Any sequence parameter set NAL unit containing the value of sps_seq_parameter_set_id for the active sequence 
parameter set RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set 
RBSP for the coded video sequence unless it follows the last access unit of the coded video sequence and precedes the 
first VCL NAL unit and the first SEI NAL unit containing an active parameter sets SEI message (when present) of 
another coded video sequence. 

A video parameter set RBSP includes parameters that can be referred to by one or more sequence parameter set RBSPs 
or one or more SEI NAL units containing an active parameter sets SEI message. Each video parameter set RBSP is 
initially considered not active at the start of the operation of the decoding process. At most one video parameter set 
RBSP is considered active at any given moment during the operation of the decoding process, and the activation of any 
particular video parameter set RBSP results in the deactivation of the previously-active video parameter set RBSP (if 
any). 

When a video parameter set RBSP (with a particular value of vps_video_parameter_set_id) is not already active and it is 
referred to by activation of a sequence parameter set RBSP (using a value of sps_video_parameter_set_id equal to the 
vps_video_parameter_set_id value) or is referred to by an SEI NAL unit containing an active parameter sets SEI 
message (using that value of sps_seq_parameter_set_id), it is activated. [Ed. (GJS): Check syntax element name usage.] 
This video parameter set RBSP is called the active video parameter set RBSP until it is deactivated by the activation of 
another video parameter set RBSP. A video parameter set RBSP, with that particular value of 
vps_video_parameter_set_id shall be available to the decoding process prior to its activation, included in at least one 
access unit with TemporalId equal to 0, unless the video parameter set is provided through external means. An activated 
video parameter set RBSP shall remain active for the entire coded video sequence. 

Any video parameter set NAL unit containing the value of vps_video_parameter_set_id for the active video parameter 
set RBSP for a coded video sequence shall have the same content as that of the active video parameter set RBSP for the 
coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL NAL 
unit, the first sequence parameter set NAL unit, and the first SEI NAL unit containing an active parameter sets SEI 
message (when present) of another coded video sequence. 

NOTE 3 – If video parameter set RBSP, sequence parameter set RBSP, or picture parameter set RBSP are conveyed within the 
bitstream, these constraints impose an order constraint on the NAL units that contain the video parameter set RBSP, sequence 
parameter set RBSP, or picture parameter set RBSP, respectively. Otherwise (video parameter set RBSP, sequence parameter set 
RBSP, or picture parameter set RBSP are conveyed by other means not specified in this Specification), they must be available to 
the decoding process in a timely fashion such that these constraints are obeyed. 

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of 
variables derived from those syntax elements) in video parameter sets, sequence parameter sets, and picture parameter 
sets and other syntax elements are expressions of constraints that apply only to the active video parameter set, the active 
sequence parameter set, and the active picture parameter set. If any video parameter set RBSP, sequence parameter set 
RBSP, and picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax elements shall 
have values that would conform to the specified constraints if it were activated by reference in an otherwise conforming 
bitstream. 

During operation of the decoding process (see clause 8), the values of parameters of the active video parameter set, the 
active sequence parameter set, and the active picture parameter set RBSP shall be considered in effect. For interpretation 
of SEI messages, the values of the active video parameter set, the active sequence parameter set, and the active picture 
parameter set RBSP for the operation of the decoding process for the VCL NAL units of the coded picture in the same 
access unit shall be considered in effect unless otherwise specified in the SEI message semantics. 

7.4.1.4.2 Order of access units and association to coded video sequences 

A bitstream conforming to this Specification consists of one or more coded video sequences. 

A coded video sequence consists of one or more access units. The order of NAL units and coded pictures and their 
association to access units is described in subclause 7.4.1.4.3. 

If a coded video sequence is the first coded video sequence in the bitstream, the first access unit of the coded video 
sequence is a RAP access unit, which may be an IDR, BLA or CRA access unit; otherwise, the first access unit of the 
coded video sequence is an IDR or BLA access unit. All access units in a coded video sequence that are not the first 
access unit in the coded video sequence are non-IDR and non-BLA access units. 

It is a requirement of bitstream conformance that, when present, the next access unit after an access unit that contains an 
end of sequence NAL unit shall be an IDR or BLA access unit. 

It is a requirement of bitstream conformance that, when present, the next access unit after an access unit that contains an 
end of bitstream NAL unit shall be a RAP access unit, which may be an IDR, BLA or CRA access unit. 



   ISO/IEC 23008-2 : 201x (E) 

61 Draft Rec. ITU-T H.HEVC (201x E) 

7.4.1.4.3 Order of NAL units and coded pictures and association to access units 

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video 
sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process 
specified in clauses 2–9. 

An access unit consists of one coded picture and zero or more non-VCL NAL units. The association of VCL NAL units 
to coded pictures is described in subclause 7.4.1.4.4.  

The first access unit in the bitstream starts with the first NAL unit of the bitstream. 

The first of any of the following NAL units after the last VCL NAL unit of a coded picture specifies the start of a new 
access unit: 

– access unit delimiter NAL unit (when present), 

– video parameter set NAL unit (when present), 

– sequence parameter set NAL unit (when present), 

– picture parameter set NAL unit (when present), 

– Prefix SEI NAL unit (when present), 

– NAL units with nal_unit_type in the range of RSV_NVCL41..RSV_NVCL44 (when present), 

– first VCL NAL unit of a coded picture (always present). 

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access 
unit: 

– When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access 
unit delimiter NAL unit in any access unit. 

– When any prefix SEI NAL units are present, they shall not follow the last VCL NAL unit of the access unit. 
[Ed. (GJS): Can the currently-specified prefix SEI NAL units (that have a whole-picture scope) be placed between 
the VCL NAL units of the picture?] 

– When a prefix SEI NAL unit having nuh_reserved_zero_6bits equal to 0 and containing a buffering period SEI 
message is present, the prefix SEI NAL unit shall also contain an active parameter sets SEI message, and the active 
parameter sets SEI message and the buffering period SEI message shall be the first and the second SEI message 
payloads, respectively, of the first SEI NAL unit in the access unit. [Ed. (YK): This restriction should only apply to 
SEI NAL units with nuh_reserved_zero_6bits equal to 0. Since nuh_reserved_zero_6bits is required to be equal to 0 
in this version of this Specification, now we don't have to mention nuh_reserved_zero_6bits equal to 0, but it may 
be safer if we do say it now, though it is not needed. Also, if the parsing dependency of picture timing SEI message 
and decoding unit information SEI message can be resolved, we don't need to have this restriction at all.] 

– NAL units having nal_unit_type equal to FD_NUT, SUFFIX_SEI_NUT, in the range of 
RSV_NVCL45..RSV_NVCL47, or in the range of UNSPEC48..UNSPEC63 shall not precede the first VCL NAL 
unit of the coded picture. 

– When an end of sequence NAL unit is present, it shall be the last NAL unit in the access unit other than an end of 
bitstream NAL unit (if present). 

– When an end of bitstream NAL unit is present, it shall be the last NAL unit in the access unit. 
NOTE – Video parameter set NAL units, sequence parameter set NAL units, or picture parameter set NAL units may be present in 
an access unit, but cannot follow the last VCL NAL unit of the coded picture within the access unit, as this condition would 
specify the start of a new access unit. 

The structure of access units not containing any NAL units with nal_unit_type equal to FD_NUT, VPS_NUT, 
SPS_NUT, PPS_NUT, or in the ranges of RSV_RAP_VCL22..RSV_RAP_VCL23, RSV_VCL24..RSV_VCL31, 
RSV_NVCL41..RSV_NVCL47, or UNSPEC48..UNSPEC63 is shown in Figure 7-1. 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 62 

Access unit delimiter

SEI

Coded slice segment

End of sequence

End of stream

start

end

 

Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to FD_NUT, 
SUFFIX_SEI_NUT, VPS_NUT, SPS_NUT, PPS_NUT, or in the ranges of RSV_RAP_VCL22..

RSV_RAP_VCL23, RSV_VCL24..RSV_VCL31, RSV_NVCL41..RSV_NVCL47, or UNSPEC48..UNSPEC63 

 

7.4.1.4.4 Order of VCL NAL units and association to coded pictures 

This subclause specifies the order of VCL NAL units and association to coded pictures. 

Each VCL NAL unit is part of a coded picture. 

The order of the VCL NAL units within a coded picture is constrained as follows [Ed (YK): May need to improve to 
support the case when separate_colour_plane_flag  = =  1.]: 

– The first VCL NAL unit of the coded picture shall have first_slice_segment_in_pic_flag equal to 1. 

– Let sliceSegAddrA and sliceSegAddrB be the slice_segment_address values of any two coded slice segment NAL 
units A and B within the same coded picture. When one or more of the following conditions are true, coded slice 
segment NAL unit A shall precede the coded slice segment NAL unit B. 

– TileId[ CtbAddrRStoTS[ sliceSegAddrA ] ] is less than TileId[ CtbAddrRStoTS[ sliceSegAddrB] ]. 

– TileId[ CtbAddrRStoTS[ sliceSegAddrA] ] is equal to TileId[ CtbAddrRStoTS[ sliceSegAddrB ] ] and 
CtbAddrRStoTS[ sliceSegAddrA ] is less than CtbAddrRStoTS[ sliceSegAddrB ]. 

7.4.2 Raw byte sequence payloads, trailing bits, and byte alignment semantics 

7.4.2.1 Video parameter set RBSP semantics 
NOTE 1 – Encoders conforming to this version of this Specification are required to include video parameter set NAL units in the 
bitstream, as specified in subclause 7.4.1.4.1. However, the video parameter set RBSP contains information that is not necessary 
for operation of the decoding process of this version of this Specification. Decoders conforming to this version of this 
Specification may ignore (remove from the bitstream and discard) the content of all video parameter set NAL units. 

Any two instances of the syntax structure hrd_parameters( ) included in a video parameter set RBSP shall not have the 
same content. 

Any two instances of the syntax structure operation_point_set( ) included in a video parameter set RBSP shall not have 
the same content. 



   ISO/IEC 23008-2 : 201x (E) 

63 Draft Rec. ITU-T H.HEVC (201x E) 

vps_video_parameter_set_id identifies the video parameter set for reference by other syntax elements. 

vps_reserved_three_2bits shall be equal to 3 in bitstreams conforming to this version of this Specification. Other values 
for vps_reserved_three_2bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of 
vps_reserved_three_2bits. 

vps_reserved_zero_6bits shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values 
for vps_reserved_zero_6bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value of 
vps_reserved_zero_6bits. 

NOTE 2 – It is anticipated that in future scalable or 3D video coding extensions of this Specification, this field specifies the 
maximum number of layers that may be present in the coded video sequence, wherein a layer may e.g. be a spatial scalable layer, a 
quality scalable layer, a texture view or a depth view. 

vps_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in the 
bitstream. The value of vps_max_sub_layers_minus1 shall be in the range of 0 to 6, inclusive. 

vps_temporal_id_nesting_flag, when vps_max_sub_layers_minus1 is greater than 0,  specifies whether inter prediction 
is additionally restricted for coded video sequences referring to the video parameter set. When 
vps_max_sub_layers_minus1 is equal to 0, vps_temporal_id_nesting_flag shall be equal to 1. 

NOTE 3 – The syntax element vps_temporal_id_nesting_flag is used to indicate that temporal sub-layer up-switching, i.e. 
switching from decoding of up to any TemporalId tIdN to decoding up to any TemporalId tIdM that is greater than tIdN, is always 
possible. 

vps_reserved_0xffff_16bits shall be equal to 0xFFFF in bitstreams conforming to this version of this Specification. 
Other values for vps_reserved_0xffff_16bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the 
value of vps_reserved_0xffff_16bits. 

NOTE 4 – It is anticipated that in future scalable or 3D video coding extensions of this Specification, this field specifies the byte 
offset of the next set of fixed-length coded information in the video parameter set NAL unit, starting from the beginning of the 
NAL unit. Video parameter set information for non-base layer or view starts from a byte-aligned position of the video parameter 
set NAL unit, with fixed-length coded information that is essential for session negotiation and/or capability exchange. The byte 
offset would then help to locate and access those essential information in the video parameter set NAL unit without the need of 
entropy decoding, which may not be possible for some network entities that may desire to access only the information in the video 
parameter set that is essential for session negotiation and/or capability exchange. 

vps_sub_layer_ordering_info_present_flag equal to 1 specifies that vps_max_dec_pic_buffering[ i ], 
vps_max_num_reorder_pics[ i ], and vps_max_latency_increase[ i ] are present for vps_max_sub_layers_minus1 + 1 
sub-layers, vps_sub_layer_ordering_info_present_flag equal to 0 specifies that the values of 
vps_max_dec_pic_buffering[ vps_max_sub_layers_minus1 ], 
vps_max_num_reorder_pics[ vps_max_sub_layers_minus1 ], and 
vps_max_latency_increase[ vps_max_sub_layers_minus1 ] apply to all sub-layers. 

vps_max_dec_pic_buffering[ i ] specifies the required size of the decoded picture buffer in units of picture storage 
buffers when HighestTid is equal to i. The value of vps_max_dec_pic_buffering[ i ] shall be in the range of 0 to 
MaxDpbSize (as specified in subclause A.4), inclusive. When i is greater than 0, vps_max_dec_pic_buffering[ i ] shall 
be greater than or equal to vps_max_dec_pic_buffering[ i − 1 ]. When vps_max_dec_pic_buffering[ i ] is not present for 
i in the range of 0 to vps_max_sub_layers_minus1 − 1 due to vps_sub_layer_ordering_info_present_flag being equal 
to 0, it is inferred to be equal to vps_max_dec_pic_buffering[ vps_max_sub_layers_minus1 ]. 

vps_max_num_reorder_pics[ i ] indicates the maximum allowed number of pictures preceding any picture in decoding 
order and succeeding that picture in output order when HighestTid is equal to i. The value of 
vps_max_num_reorder_pics[ i ] shall be in the range of 0 to vps_max_dec_pic_buffering[ i ], inclusive. When i is greater 
than 0, vps_max_num_reorder_pics[ i ] shall be greater than or equal to vps_max_num_reorder_pics[ i − 1 ]. When 
vps_max_num_reorder_pics[ i ] is not present for i in the range of 0 to vps_max_sub_layers_minus1 − 1 due to 
vps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 
vps_max_num_reorder_pics[ vps_max_sub_layers_minus1 ]. 

vps_max_latency_increase[ i ] not equal to 0 is used to compute the value of MaxLatencyPictures[ i ] as specified by 
setting MaxLatencyPictures[ i ] to vps_max_num_reorder_pics[ i ] + vps_max_latency_increase[ i ]. When 
vps_max_latency_increase[ i ] is not equal to 0, the value of MaxLatencyPictures[ i ] specifies the maximum number of 
pictures that can precede any picture in the coded video sequence in output order and follow that picture in decoding 
order when HighestTid is equal to i. When vps_max_latency_increase[ i ] is equal to 0, no corresponding limit is 
expressed. The value of vps_max_latency_increase[ i ] shall be in the range of 0 to 232 − 2, inclusive. When 
vps_max_latency_increase[ i ] is not present for i in the range of 0 to vps_max_sub_layers_minus1 − 1 due to 
vps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 
vps_max_latency_increase[ vps_max_sub_layers_minus1 ]. 

vps_max_nuh_reserved_zero_layer_id specifies the maximum allowed value of nuh_reserved_zero_6bits of all NAL 
units in the coded video sequence. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 64 

vps_num_op_sets_minus1 plus 1 specifies the number of operation point sets that are specified by the video parameter 
set. In bitstreams conforming to this version of this Specification, the value of vps_num_op_sets_minus1 shall be equal 
to 0. Although the value of vps_num_op_sets_minus1 is required to be equal to 0 in this version of this Specification, 
decoders shall allow other values of vps_num_op_sets_minus1 in the range of 0 to 1023, inclusive, to appear in the 
syntax. 

Each operation point is identified by a set OpLayerIdSet, which includes and only includes the set of 
nuh_reserved_zero_6bits values of all NAL units included in the operation point, and a variable OpTid, which is equal to 
the highest TemporalId of NAL units included in the operation point. The bitstream subset associated with the operation 
point identified by OpLayerIdSet and OpTid refers to the output of the sub-bitstream extraction process as specified in 
subclause 10.1 with the bitstream, OpTid and OpLayerIdSet as inputs. The OpLayerIdSet and OpTid that identify an 
operation point are also referred to the OpLayerIdSet and OpTid of the operation point, respectively. 

Each operation point set consists of all operation points for which the included NAL units have the same set 
OpLayerIdSet and different values of OpTid. An operation point is thus also referred to as being identified by the 
particular value of OpLayerIdSet and is considered to have OplayerIdSet equal to the particular value. The OpLayerIdSet 
that identifies an operation point set is also referred to as the OpLayerIdSet of the operation point set. 

The 0-th operation point set specified by the video parameter set is identified by the OpLayerIdSet that includes the 
value 0 only. The i-th operation point set, with i greater than 0, specified by the video parameter set is specified by the 
syntax structure operation_point_set( i ). 

vps_num_hrd_parameters specifies the number of hrd_parameters( ) syntax structures present in the video parameter 
set RBSP. In bitstreams conforming to this version of this Specification, the value of vps_num_hrd_parameters shall be 
less than or equal to 1. Although the value of vps_num_hrd_parameters is required to be less than or equal to 1 in this 
version of this Specification, decoders shall allow other values of vps_num_hrd_parameters in the range of 0 to 1024, 
inclusive to appear in the syntax. 

hrd_op_set_idx[ i ] specifies the index, in the list of operation point sets specified by the video parameter set, of the 
operation point set to which the i-th hrd_parameters( ) syntax structure in the video parameter set applies. In bitstreams 
conforming to this version of this Specification, the value of hrd_op_set_idx[ i ] shall be equal to 0. Although the value 
of hrd_op_set_idx[ i ] is required to be less than or equal to 1 in this version of this Specification, decoders shall allow 
other values of hrd_op_set_idx[ i ] in the range of 0 to 1023 to appear in the syntax. 

cprms_present_flag[ i ] equal to 1 specifies that the HRD parameters that are common for all sub-layers are present in 
the i-th hrd_parameters( ) syntax structure in the video parameter set. cprms_present_flag[ i ] equal to 0 specifies that the 
HRD parameters that are common for all sub-layers are not present in the i-th hrd_parameters( ) syntax structure in the 
video parameter set and are derived to be the same as the ( i − 1 )-th hrd_parameters( ) syntax structure in the video 
parameter set. cprms_present_flag[ 0 ] is inferred to be equal to 1. 

vps_extension_flag equal to 0 specifies that no vps_extension_data_flag syntax elements are present in the video 
parameter set RBSP syntax structure. vps_extension_flag shall be equal to 0 in bitstreams conforming to this version of 
this Specification. The value of 1 for vps_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall 
ignore all data that follow the value 1 for vps_extension_flag in a video parameter set NAL unit. 

vps_extension_data_flag may have any value. It shall not affect the conformance to profiles specified in this version of 
this Specification. 

7.4.2.2 Sequence parameter set RBSP semantics 

sps_video_parameter_set_id identifies the vps_video_parameter_set_id of the active video parameter set. 

sps_max_sub_layers_minus1 plus 1 specifies the maximum number of temporal sub-layers that may be present in each 
coded video sequence referring to the sequence parameter set. The value of sps_max_sub_layers_minus1 shall be in the 
range of 0 to 6, inclusive. 

sps_temporal_id_nesting_flag, when sps_max_sub_layers_minus1 is greater than 0, specifies whether inter prediction 
is additionally restricted for coded video sequences referring to the sequence parameter set. When 
vps_temporal_id_nesting_flag is equal to 1, sps_temporal_id_nesting_flag shall be equal to 1. When 
sps_max_sub_layers_minus1 is equal to 0, sps_temporal_id_nesting_flag shall be equal to 1. 

NOTE 1 – The syntax element sps_temporal_id_nesting_flag is used to indicate that temporal up-switching, i.e. switching from 
decoding up to any TemporalId tIdN to decoding up to any TemporalId tIdM that is greater than tIdN, is always possible in the 
coded video sequence. 

sps_seq_parameter_set_id provides an identifier for the sequence parameter set for reference by other syntax elements. 
The value of sps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in subclause 6.2. The 
value of chroma_format_idc shall be in the range of 0 to 3, inclusive. 



   ISO/IEC 23008-2 : 201x (E) 

65 Draft Rec. ITU-T H.HEVC (201x E) 

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are coded 
separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately. When 
separate_colour_plane_flag is not present, it is inferred to be equal to 0. When separate_colour_plane_flag is equal to 1, 
the coded picture consists of three separate components, each of which consists of coded samples of one colour plane (Y, 
Cb or Cr) that each use the monochrome coding syntax. In this case, each colour plane is associated with a specific 
colour_plane_id value. 

NOTE 2 – There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For 
example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from 
monochrome pictures having different values of colour_plane_id for inter prediction. 

Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as 
follows: 
– If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc. 
– Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0. 

pic_width_in_luma_samples specifies the width of each decoded picture in units of luma samples. 
pic_width_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. 

pic_height_in_luma_samples specifies the height of each decoded picture in units of luma samples. 
pic_height_in_luma_samples shall not be equal to 0 and shall be an integer multiple of MinCbSizeY. 

conformance_window_flag equal to 1 indicates that the conformance cropping window offset parameters follow next in 
the sequence parameter set. conformance_window_flag equal to 0 indicates that the conformance cropping window 
offset parameters are not present. 

conf_win_left_offset, conf_win_right_offset, conf_win_top_offset, and conf_win_bottom_offset specify the samples 
of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular region 
specified in picture coordinates for output. When conformance_window_flag is equal to 0, the values of 
conf_win_left_offset, conf_win_right_offset, conf_win_top_offset, and conf_win_bottom_offset are inferred to be equal 
to 0. 

The conformance cropping window contains the luma samples with horizontal picture coordinates from 
SubWidthC * conf_win_left_offset to pic_width_in_luma_samples − ( SubWidthC * conf_win_right_offset + 1 ) and 
vertical picture coordinates from SubHeightC * conf_win_top_offset to 
pic_height_in_luma_samples − ( SubHeightC * conf_win_bottom_offset + 1 ), inclusive. It is a requirement of bitstream 
conformance that the value of conf_win_left_offset shall be in the range of 0 to 
( pic_width_in_luma_samples / SubWidthC ) − ( conf_win_right_offset + 1 ), inclusive; and that the value of 
conf_win_top_offset shall be in the range of 0 to ( pic_height_in_luma_samples / SubHeightC ) − 
( conf_win_bottom_offset + 1 ), inclusive. 

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples 
having picture coordinates ( x / SubWidthC, y / SubHeightC ), where ( x, y ) are the picture coordinates of the specified 
luma samples. 

NOTE 3 – The conformance cropping window offset parameters are only applied at the output. All internal decoding processes are 
applied to the uncropped picture size. 

bit_depth_luma_minus8 + 8 specifies the bit depth of the samples of the luma array and the value of the luma 
quantization parameter range offset QpBdOffsetY, as specified by 

BitDepthY      = 8 + bit_depth_luma_minus8  (7-4) 
QpBdOffsetY = 6 * bit_depth_luma_minus8  (7-5) 

bit_depth_luma_minus8 shall be in the range of 0 to 6, inclusive. 

bit_depth_chroma_minus8 + 8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma 
quantization parameter range offset QpBdOffsetC, as specified by 

BitDepthC      = 8 + bit_depth_chroma_minus8  (7-6) 
QpBdOffsetC = 6 * bit_depth_chroma_minus8  (7-7) 

bit_depth_chroma_minus8 shall be in the range of 0 to 6, inclusive. 

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the 
decoding process for picture order count as follows: 

MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 ) (7-8) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 66 

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive. 

sps_sub_layer_ordering_info_present_flag equal to 1 specifies that sps_max_dec_pic_buffering[ i ], 
sps_max_num_reorder_pics[ i ], and sps_max_latency_increase[ i ] are present for sps_max_sub_layers_minus1 + 1 sub-
layers, sps_sub_layer_ordering_info_present_flag equal to 0 specifies that the values of 
sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ], 
sps_max_num_reorder_pics[ sps_max_sub_layers_minus1 ], and 
sps_max_latency_increase[ sps_max_sub_layers_minus1 ] apply to all sub-layers. 

sps_max_dec_pic_buffering[ i ] specifies the maximum required size of the decoded picture buffer in units of picture 
storage buffers when HighestTid is equal to i. The value of sps_max_dec_pic_buffering[ i ] shall be in the range of 0 to 
MaxDpbSize (as specified in subclause A.4), inclusive. When i is greater than 0, sps_max_dec_pic_buffering[ i ] shall be 
greater than or equal to sps_max_dec_pic_buffering[ i − 1 ]. The value of sps_max_dec_pic_buffering[ i ] shall be less 
than or equal to vps_max_dec_pic_buffering[ i ] for each value of i. When sps_max_dec_pic_buffering[ i ] is not present 
for i in the range of 0 to sps_max_sub_layers_minus1 − 1 due to sps_sub_layer_ordering_info_present_flag being equal 
to 0, it is inferred to be equal to sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ]. 

sps_max_num_reorder_pics[ i ] indicates the maximum allowed number of pictures preceding any picture in decoding 
order and succeeding that picture in output order when HighestTid is equal to i. The value of 
sps_max_num_reorder_pics[ i ] shall be in the range of 0 to sps_max_dec_pic_buffering[ i ], inclusive. When i is greater 
than 0, sps_max_num_reorder_pics[ i ] shall be greater than or equal to sps_max_num_reorder_pics[ i − 1 ]. The value of 
sps_max_num_reorder_pics[ i ] shall be less than or equal to vps_max_num_reorder_pics[ i ] for each value of i. When 
sps_max_num_reorder_pics[ i ] is not present for i in the range of 0 to sps_max_sub_layers_minus1 − 1 due to 
sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 
sps_max_num_reorder_pics[ sps_max_sub_layers_minus1 ]. 

sps_max_latency_increase[ i ] not equal to 0 is used to compute the value of MaxLatencyPictures[ i ] as specified by 
setting MaxLatencyPictures[ i ] equal to sps_max_num_reorder_pics[ i ] + sps_max_latency_increase[ i ]. When 
sps_max_latency_increase[ i ] is not equal to 0, the value of MaxLatencyPictures[ i ] specifies the maximum number of 
pictures that can precede any picture in the coded video sequence in output order and follow that picture in decoding 
order when HighestTid is equal to i. When sps_max_latency_increase[ i ] is equal to 0, no corresponding limit is 
expressed. The value of sps_max_latency_increase[ i ] shall be in the range of 0 to 232 − 2, inclusive. The value of 
sps_max_latency_increase[ i ] shall be less than or equal to vps_max_latency_increase[ i ] for each value of i. When 
sps_max_latency_increase[ i ] is not present for i in the range of 0 to sps_max_sub_layers_minus1 − 1 due to 
sps_sub_layer_ordering_info_present_flag being equal to 0, it is inferred to be equal to 
sps_max_latency_increase[ sps_max_sub_layers_minus1 ]. 

log2_min_luma_coding_block_size_minus3 specifies the minimum size of a luma coding block. 

log2_diff_max_min_luma_coding_block_size specifies the difference between the maximum and minimum luma 
coding block size. 

The variables Log2MinCbSizeY, Log2CtbSizeY, MinCbSizeY, CtbSizeY, PicWidthInMinCbsY, PicWidthInCtbsY, 
PicHeightInMinCbsY, PicHeightInCtbsY, PicSizeInMinCbsY, PicSizeInCtbsY, and PicSizeInSamplesY are set as 
follows. 

Log2MinCbSizeY = log2_min_luma_coding_block_size_minus3 + 3 (7-9) 
Log2CtbSizeY = Log2MinCbSizeY + log2_diff_max_min_luma_coding_block_size (7-10) 
MinCbSizeY = 1 << Log2MinCbSizeY  (7-11) 
CtbSizeY = 1 << Log2CtbSizeY  (7-12) 
PicWidthInMinCbsY = pic_width_in_luma_samples / MinCbSizeY (7-13) 
PicWidthInCtbsY = Ceil( pic_width_in_luma_samples ÷ CtbSizeY ) (7-14) 
PicHeightInMinCbsY = pic_height_in_luma_samples / MinCbSizeY (7-15) 
PicHeightInCtbsY = Ceil( pic_height_in_luma_samples ÷ CtbSizeY ) (7-16) 
PicSizeInMinCbsY = PicWidthInMinCbsY * PicHeightInMinCbsY (7-17) 
PicSizeInCtbsY = PicWidthInCtbsY * PicHeightInCtbsY (7-18) 
PicSizeInSamplesY = pic_width_in_luma_samples * pic_height_in_luma_samples (7-19) 
PicWidthInSamplesC = pic_width_in_luma_samples / SubWidthC (7-20) 
PicHeightInSamplesC = pic_height_in_luma_samples / SubHeightC (7-21) 
 

[Ed. (GJS): Variable names MinCbSizeY and CtbSizeY violate the editorial convention by being substrings of other 
variable names. (BB): Consider rename of Log2MinCbSizeY, Log2CtbSizeY and log2TrafoSize to MinCbLog2SizeY, 
CtbLog2SizeY, and trafoLog2Size (and other similar names, if any).] 

The variables CtbWidthC and CtbHeightC, which specify the width and height, respectively, of the array for each 
chroma coding tree block, are derived as follows. 



   ISO/IEC 23008-2 : 201x (E) 

67 Draft Rec. ITU-T H.HEVC (201x E) 

– If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, CtbWidthC and 
CtbHeightC are both equal to 0. 

– Otherwise, CtbWidthC and CtbHeightC are derived as 

CtbWidthC = CtbSizeY / SubWidthC  (7-22) 
CtbHeightC = CtbSizeY / SubHeightC  (7-23) 

log2_min_transform_block_size_minus2 specifies the minimum transform block size. 

The variable Log2MinTrafoSize is set equal to log2_min_transform_block_size_minus2 + 2. The bitstream shall not 
contain data that result in Log2MinTrafoSize greater than or equal to Log2MinCbSizeY. 

log2_diff_max_min_transform_block_size specifies the difference between the maximum and minimum transform 
block size. 

The variable Log2MaxTrafoSize is set equal to log2_min_transform_block_size_minus2 + 2 + 
log2_diff_max_min_transform_block_size. 

The bitstream shall not contain data that result in Log2MaxTrafoSize greater than Min( Log2CtbSizeY, 5 ). 

The array ScanOrder[ log2BlockSize ][ scanIdx ][ sPos ][ sComp ] specifies the mapping of the scan position sPos, 
ranging from 0 to ( ( 1 << log2BlockSize ) * ( 1 << log2BlockSize ) ) − 1, inclusive, to horizontal and vertical 
components of the scan-order matrix. The array index scanIdx equal to 0 specifies an up-right diagonal scan order, 
scanIdx equal to 1 specifies a horizontal scan order, and scanIdx equal to 2 specifies a vertical scan order. The array 
index sComp equal to 0 specifies the horizontal component and the array index sComp equal to 1 specifies the vertical 
component. The array ScanOrder is derived as follows. 

For the variable log2BlockSize ranging from Min( 2, Log2MinTrafoSize − 2) to 3, inclusive, the scanning order array 
ScanOrder is derived as follows. 
– The up-right diagonal scan order array initialization process as specified in subclause 6.5.3 is invoked with 

1 << log2BlockSize as input and the output is assigned to ScanOrder[ log2BlockSize ][ 0 ]. 
– The horizontal scan order array initialization process as specified in subclause 6.5.4 is invoked with 

1 << log2BlockSize as input and the output is assigned to ScanOrder[ log2BlockSize ][ 1 ]. 
– The vertical scan order array initialization process as specified in subclause 6.5.5 is invoked with 

1 << log2BlockSize as input and the output is assigned to ScanOrder[ log2BlockSize ][ 2 ]. 

max_transform_hierarchy_depth_inter specifies the maximum hierarchy depth for transform units of coding units 
coded in inter prediction mode. The value of max_transform_hierarchy_depth_inter shall be in the range of 0 to 
Log2CtbSizeY − Log2MinTrafoSize, inclusive. 

max_transform_hierarchy_depth_intra specifies the maximum hierarchy depth for transform blocks of coding blocks 
coded in intra prediction mode. The value of max_transform_hierarchy_depth_intra shall be in the range of 0 to 
Log2CtbSizeY − Log2MinTrafoSize, inclusive. 

scaling_list_enable_flag equal to 1 specifies that a scaling list is used for the scaling process for transform coefficients. 
scaling_list_enable_flag equal to 0 specifies that scaling list is not used for the scaling process for transform coefficients. 

sps_scaling_list_data_present_flag equal to 1 specifies that scaling list data are present in the sequence parameter set. 
sps_scaling_list_data_present_flag equal to 0 specifies that scaling list data are not present in the sequence parameter set. 
When not present, the value of sps_scaling_list_data_present_flag is inferred to be equal to 0. When 
scaling_list_enable_flag is equal to 1 and sps_scaling_list_data_present_flag is equal to 0, the default scaling list data is 
used to derive the array ScalingFactor as described in the scaling list data semantics specified in subclause 7.4.6. 

amp_enabled_flag equal to 1 specifies that asymmetric motion partitions, i.e. PartMode equal to PART_2NxnU, 
PART_2NxnD, PART_nLx2N, or PART_nRx2N, may be used in coding tree blocks; amp_enabled_flag equal to 0 
specifies that asymmetric motion partitions cannot be used in coding tree blocks. 

sample_adaptive_offset_enabled_flag equal to 1 specifies that the sample adaptive offset process is applied to the 
reconstruced picture after the deblocking filter process. sample_adaptive_offset_enabled_flag equal to 0 specifies that 
the sample adaptive offset process is not applied to the reconstruced picture after the deblocking filter process. 

pcm_enabled_flag equal to 0 specifies that PCM data shall not be present in the coded video sequence. 
NOTE 4 – When Log2MinCbSizeY is equal to 6, PCM data is not present in the coded video sequence even if pcm_enabled_flag 
is equal to 1. The maximum size of coding block with pcm_enabled_flag equal to 1 is restricted to be less than or equal to 
Min( Log2CtbSizeY, 5 ). Encoders are encouraged to use an appropriate combination of 
log2_min_luma_coding_block_size_minus3, log2_min_pcm_luma_coding_block_size_minus3, and 
log2_diff_max_min_pcm_luma_coding_block_size values when sending PCM data in the coded video sequence. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 68 

pcm_sample_bit_depth_luma_minus1 + 1 specifies the number of bits used to represent each of PCM sample values of 
luma component. The value of pcm_sample_bit_depth_luma_minus1 + 1 shall be less than or equal to the value of 
BitDepthY. 

PCMBitDepthY = 1 + pcm_sample_bit_depth_luma_minus1 (7-24) 

pcm_sample_bit_depth_chroma_minus1 + 1 specifies the number of bits used to represent each of PCM sample values 
of chroma components. The value of pcm_sample_bit_depth_chroma_minus1 + 1 shall be less than or equal to the value 
of BitDepthC. 

PCMBitDepthC = 1 + pcm_sample_bit_depth_chroma_minus1 (7-25) 

log2_min_pcm_luma_coding_block_size_minus3 + 3 specifies the minimum size of coding blocks with pcm_flag 
equal to 1. 

The variable Log2MinIpcmCbSizeY is set equal to log2_min_pcm_luma_coding_block_size_minus3 + 3. The variable 
Log2MinIpcmCbSizeY shall be in the range of Log2MinCbSizeY to Min( Log2CtbSizeY, 5 ), inclusive. 

log2_diff_max_min_pcm_luma_coding_block_size specifies the difference between the maximum and minimum size 
of coding blocks with pcm_flag equal to 1. 

The variable Log2MaxIpcmCbSizeY is set equal to log2_min_pcm_luma_coding_block_size_minus3 + 3 + 
log2_diff_max_min_pcm_luma_coding_block_size. The variable Log2MaxIpcmCbSizeY shall be equal or less than 
Min( Log2CtbSizeY, 5 ). 

pcm_loop_filter_disable_flag specifies whether the loop filter process is disabled on reconstructed samples in a coding 
unit with pcm_flag equal to 1. If the pcm_loop_filter_disable_flag value is equal to 1, deblocking filter and sample 
adaptive offset filter processes on the reconstructed samples in a coding unit with pcm_flag equal to 1 are disabled; 
otherwise if the pcm_loop_filter_disable_flag value is equal to 0, deblocking filter and sample adaptive offset filter 
processes on the reconstructed samples in a coding unit with pcm_flag equal to 1 are not disabled. When 
pcm_loop_filter_disable_flag is not present, it is inferred to be equal to 0. 

[Ed. (WJ): select one expression – enabled_flag or disable_flag] 

num_short_term_ref_pic_sets specifies the number of short-term reference picture sets that are specified in the 
sequence parameter set. The value of num_short_term_ref_pic_sets shall be in the range of 0 to 64, inclusive. 

NOTE 5 – A decoder must allocate space for a total number of num_short_term_ref_pic_sets + 1 short-term reference picture sets 
since a coded video sequence may contain a short-term reference picture set explicitly signalled in the slice headers of a current 
picture. A short-term reference picture set directly signalled in the slice header will always have an index equal to 
num_short_term_ref_pic_sets in the list of short-term reference picture sets. 

long_term_ref_pics_present_flag equal to 0 specifies that no long-term reference picture is used for inter prediction of 
any coded picture in the coded video sequence. long_term_ref_pics_present_flag equal to 1 specifies that long-term 
reference pictures may be used for inter prediction of one or more coded pictures in the coded video sequence. 

num_long_term_ref_pics_sps specifies the number of candidate long-term reference pictures that are specified in the 
sequence parameter set. The value of num_long_term_ref_pics_sps shall be in the range of 0 to 32, inclusive. 

lt_ref_pic_poc_lsb_sps[ i ] specifies the picture order count modulo MaxPicOrderCntLsb of the i-th candidate long-term 
reference picture specified in the sequence parameter set. The number of bits used to represent 
lt_ref_pic_poc_lsb_sps[ i ] is equal to log2_max_pic_order_cnt_lsb_minus4 + 4. 

used_by_curr_pic_lt_sps_flag[ i ] equal to 0 specifies that the i-th candidate long-term reference picture specified in the 
sequence parameter set is not used for reference by a picture that includes in its reference picture set the i-th candidate 
long-term reference picture specified in the sequence parameter set. 

sps_temporal_mvp_enable_flag equal to 1 specifies that slice_temporal_mvp_enable_flag is present in the slice 
headers of pictures with IdrPicFlag equal to 0 in the coded video sequence. sps_temporal_mvp_enable_flag equal to 0 
specifies that slice_temporal_mvp_enable_flag is not present in slice headers and that temporal motion vector predictors 
is not used in the coded video sequence. 

strong_intra_smoothing_enable_flag equal to 1 specifies that bi-linear interpolation is conditionally used in the 
filtering process in the coded video sequence as specified in subclause 8.4.4.2.3. strong_intra_smoothing_enable_flag 
equal to 0 specifies that that the bi-linear interpolation is not used in the coded video sequence. 

vui_parameters_present_flag equal to 1 specifies that the vui_parameters( ) syntax structure as specified in Annex E is 
present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters( ) syntax structure as specified in 
Annex E is not present. 



   ISO/IEC 23008-2 : 201x (E) 

69 Draft Rec. ITU-T H.HEVC (201x E) 

sps_extension_flag equal to 0 specifies that no sps_extension_data_flag syntax elements are present in the sequence 
parameter set RBSP syntax structure. sps_extension_flag shall be equal to 0 in bitstreams conforming to this version of 
this Specification. The value of 1 for sps_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall 
ignore all sps_extension_data_flag syntax elements that follow the value 1 for sps_extension_flag in a sequence 
parameter set NAL unit. 

sps_extension_data_flag may have any value. Its value does not affect decoder conformance to profiles specified in this 
version of this Specification. Decoders conforming to this version of this Specification shall ignore (remove from the 
bitstream and discard) all sps_extension_data_flag syntax elements. 

7.4.2.3 Picture parameter set RBSP semantics 

pps_pic_parameter_set_id identifies the picture parameter set for reference by other syntax elements. The value of 
pps_pic_parameter_set_id shall be in the range of 0 to 63, inclusive. 

pps_seq_parameter_set_id specifies the value of sps_seq_parameter_set_id for the active sequence parameter set. The 
value of pps_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

dependent_slice_segments_enabled_flag equal to 1 specifies the presence of the syntax element 
dependent_slice_segment_flag in the slice segment headers for coded pictures referring to the picture parameter set. 
dependent_slice_segments_enabled_flag equal to 0 specifies the absence of the syntax element 
dependent_slice_segment_flag in the slice segment headers for coded pictures referring to the picture parameter set. 

sign_data_hiding_flag equal to 0 specifies that sign bit hiding is disabled. sign_data_hiding_flag equal to 1 specifies 
that sign bit hiding is enabled. 

cabac_init_present_flag equal to 1 specifies that cabac_init_flag is present in slice headers referring to the picture 
parameter set. cabac_init_present_flag equal to 0 specifies that cabac_init_flag is not present in slice headers referring to 
the picture parameter set. 

num_ref_idx_l0_default_active_minus1 specifies the inferred value of num_ref_idx_l0_active_minus1 for P and B 
slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be 
in the range of 0 to 15, inclusive. 

num_ref_idx_l1_default_active_minus1 specifies the inferred value of num_ref_idx_l1_active_minus1 for B slices 
with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l1_default_active_minus1 shall be in the 
range of 0 to 15, inclusive. 

init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the slice 
segment layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of 
cu_qp_delta_abs is decoded at the coding unit layer. The value of init_qp_minus26 shall be in the range of 
−(26 + QpBdOffsetY ) to +25, inclusive. 

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded 
samples of neighbouring coding blocks coded using either intra or inter prediction modes. constrained_intra_pred_flag 
equal to 1 specifies constrained intra prediction, in which case intra prediction only uses residual data and decoded 
samples from neighboring coding blocks coded using intra prediction modes. 

transform_skip_enabled_flag equal to 1 specifies that transform_skip_flag may be present in the residual coding 
syntax. transform_skip_enabled_flag equal to 0 specifies that transform_skip_flag is not present in the residual coding 
syntax. 

cu_qp_delta_enabled_flag equal to 1 specifies that the diff_cu_qp_delta_depth syntax element is present in the picture 
parameter set and that cu_qp_delta_abs can be present in transform unit syntax. cu_qp_delta_enabled_flag equal to 0 
specifies that the diff_cu_qp_delta_depth syntax element is not present in the picture parameter set and that 
cu_qp_delta_abs is not present in transform unit syntax. 

diff_cu_qp_delta_depth specifies the granularity for QPY values within a picture. The value of diff_cu_qp_delta_depth 
shall be in the range of 0 to log2_diff_max_min_luma_coding_block_size, inclusive. 

The variable Log2MinCuQpDeltaSize, specifying the minimum luma coding block size of coding units that convey 
cu_qp_delta_abs and cu_qp_delta_sign, is derived as follows. 

Log2MinCuQpDeltaSize = Log2CtbSizeY − diff_cu_qp_delta_depth (7-26) 

pps_cb_qp_offset and pps_cr_qp_offset specify offsets to the luma quantization parameter QP′Y used for deriving 
QP′Cb and QP′Cr, respectively. The values of pps_cb_qp_offset and pps_cr_qp_offset shall be in the range of −12 to +12, 
inclusive. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 70 

pps_slice_chroma_qp_offsets_present_flag equal to 1 indicates that the slice_cb_qp_offset and slice_cr_qp_offset 
syntax elements are present in the associated slice headers. pps_slice_chroma_qp_offsets_present_flag equal to 0 
indicates that these syntax elements are not present in the associated slice headers. 

weighted_pred_flag equal to 0 specifies that weighted prediction is not applied to P slices. weighted_pred_flag equal 
to 1 specifies that weighted prediction is applied to P slices. 

weighted_bipred_flag equal to 0 specifies that the default weighted prediction is applied to B slices. 
weighted_bipred_flag equal to 1 specifies that weighted prediction is applied to B slices. 

output_flag_present_flag equal to 1 indicates that the pic_output_flag syntax element is present in the associated slice 
headers. output_flag_present_flag equal to 0 indicates that the pic_output_flag syntax element is not present in the 
associated slice headers. 

transquant_bypass_enable_flag equal to 1 specifies that cu_transquant_bypass_flag is present. 
transquant_bypass_enable_flag equal to 0 specifies that cu_transquant_bypass_flag is not present. 

tiles_enabled_flag equal to 1 specifies that there is more than one tile in each picture referring to the picture parameter 
set. tiles_enabled_flag equal to 0 specifies that there is only one tile in each picture referring to the picture parameter set. 

entropy_coding_sync_enabled_flag equal to 1 specifies that a specific synchronization process for context variables is 
invoked before decoding the first coding tree block of a row of coding tree blocks in each tile in each picture referring to 
the picture parameter set, and a specific memorization process for context variables is invoked after decoding two coding 
tree blocks of a row of coding tree blocks in each tile in each picture referring to the picture parameter set. 
entropy_coding_sync_enabled_flag equal to 0 specifies that no specific synchronization process for context variables is 
required to be invoked before decoding the first coding tree block of a row of coding tree blocks in each tile in each 
picture referring to the picture parameter set, and no specific memorization process for context variables is required to be 
invoked after decoding two coding tree blocks of a row of coding tree blocks in each tile in each picture referring to the 
picture parameter set. [Ed. (GJS): Consider using a different word than "memorization".] 

It's a requirement of bitstream conformance that the values of tiles_enabled_flag and entropy_coding_sync_enabled_flag 
shall be the same, respectively, for all picture parameter sets that are activated within a coded video sequence. 

When entropy_coding_sync_enabled_flag is equal to 1 and the first coding tree block in a slice is not the first coding tree 
block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last coding tree block 
in the slice shall belong to the same row of coding tree blocks as the first coding tree block in the slice. 

When entropy_coding_sync_enabled_flag is equal to 1 and the first coding tree block in a slice segment is not the first 
coding tree block of a row of coding tree blocks in a tile, it is a requirement of bitstream conformance that the last coding 
tree block in the slice segment shall belong to the same row of coding tree blocks as the first coding tree block in the 
slice segment. 

num_tile_columns_minus1 plus 1 specifies the number of tile columns partitioning the picture. 
num_tile_columns_minus1 shall be in the range of 0 to PicWidthInCtbsY − 1, inclusive. When not present, the value of 
num_tile_columns_minus1 is inferred to be equal to 0. 

num_tile_rows_minus1 plus 1 specifies the number of tile rows partitioning the picture. num_tile_rows_minus1 shall be 
in the range of 0 to PicHeightInCtbsY − 1, inclusive. When not present, the value of num_tile_rows_minus1 is inferred 
to be equal to 0. 

When tiles_enable_flag is equal to 1 and num_tile_columns_minus1 is equal to 0, num_tile_rows_minus1 shall not be 
equal to 0. 

uniform_spacing_flag equal to 1 specifies that column boundaries and likewise row boundaries are distributed 
uniformly across the picture. uniform_spacing_flag equal to 0 specifies that column boundaries and likewise row 
boundaries are not distributed uniformly across the picture but signalled explicitly using the syntax elements 
column_width_minus1[ i ] and row_height_minus1[ i ]. 

column_width_minus1[ i ] plus 1 specifies the width of the i-th tile column in units of coding tree blocks. 

row_height_minus1[ i ] plus 1 specifies the height of the i-th tile row in units of coding tree blocks. 

The following variables are derived by invoking the coding tree block raster and tile scanning conversion process as 
specified in subclause 6.5.1. 
– The list CtbAddrRStoTS[ ctbAddrRS ] for ctbAddrRS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying 

the conversion from a CTB address in CTB raster scan of a picture to a CTB address in tile scan,  
– the list CtbAddrTStoRS[ ctbAddrTS ] for ctbAddrTS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying 

the conversion from a CTB address in tile scan to a CTB address in CTB raster scan of a picture,  



   ISO/IEC 23008-2 : 201x (E) 

71 Draft Rec. ITU-T H.HEVC (201x E) 

– the list TileId[ ctbAddrTS ] for ctbAddrTS ranging from 0 to PicSizeInCtbsY − 1, inclusive, specifying the 
conversion from a CTB address in tile scan to a tile ID,  

– the list ColumnWidthInLumaSamples[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, specifying 
the width of the i-th tile column in units of luma samples,  

– the list RowHeightInLumaSamples[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, specifying the 
height of the j-th tile row in units of luma samples. 

The values of ColumnWidthInLumaSamples[ i ] for i ranging from 0 to num_tile_columns_minus1, inclusive, and 
RowHeightInLumaSamples[ j ] for j ranging from 0 to num_tile_rows_minus1, inclusive, shall all be greater than 0. 

The array MinTbAddrZS with elements MinTbAddrZS[ x ][ y ] for x ranging from 0 to 
( PicWidthInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ) − 1, inclusive, and y ranging from 0 to 
( PicHeightInCtbsY << ( Log2CtbSizeY − Log2MinTrafoSize ) ) − 1, inclusive, specifying the conversion from a 
location ( x, y ) in units of minimum transform blocks to a transform block address in z-scan order, is derived by 
invoking the z-scan order array initialization process as specified in subclause 6.5.2. 

loop_filter_across_tiles_enabled_flag equal to 1 specifies that in-loop filtering operations are performed across tile 
boundaries. loop_filter_across_tiles_enabled_flag equal to 0 specifies that in-loop filtering operations are not performed 
across tile boundaries. The in-loop filtering operations include the deblocking filter and sample adaptive offset filter 
operations. When not present, the value of loop_filter_across_tiles_enabled_flag is inferred to be equal to 1. 

loop_filter_across_slices_enabled_flag equal to 1 specifies that the slice_loop_filter_across_slices_enabled_flag 
determines whether in-loop filtering operations are performed across left and upper boundaries of the current slice; 
otherwise, the in-loop filtering operations are not applied across left and upper boundaries of the current slice. The in-
loop filtering operations include the deblocking filter and sample adaptive offset filter. 

deblocking_filter_control_present_flag equal to 1 specifies the presence of deblocking filter control syntax elements in 
the picture parameter set and in the slice headers for pictures referring to the picture parameter set. 
deblocking_filter_control_present_flag equal to 0 specifies the absence of deblocking filter control syntax elements in 
the picture parameter set and in the slice headers for pictures referring to the picture parameter set. 

deblocking_filter_override_enabled_flag equal to 1 specifies the presence of deblocking_filter_overriding_flag in the 
slice headers for pictures referring to the picture parameter set. deblocking_filter_override_enabled_flag equal to 0 
specifies the absence of deblocking_filter_overriding_flag in the slice headers for pictures referring to the picture 
parameter set. When not present, the value of deblocking_filter_override_enabled_flag is inferred to be equal to 0. 

pps_disable_deblocking_filter_flag equal to 1 specifies that the operation of deblocking filter shall not be applied for 
pictures referring to the picture parameter set when deblocking_filter_override_enabled_flag is equal to 0. 
pps_disable_deblocking_filter_flag equal to 0 specifies that the operation of the deblocking filter shall be applied for 
pictures referring to the picture parameter set when deblocking_filter_override_enabled_flag is equal to 0. When not 
present, the value of pps_disable_deblocking_filter_flag is inferred to be equal to 0. 

pps_beta_offset_div2 and pps_tc_offset_div2 specify the default deblocking parameter offsets for β and tC (divided 
by 2) that are applied for pictures referring to the picture parameter set unless the default deblocking parameter offsets 
are overriden by the deblocking parameter offsets present in the slice headers for pictures referring to the picture 
parameter set. The values of pps_beta_offset_div2 and pps_tc_offset_div2 shall both be in the range of −6 to 6, inclusive. 
When not present, the value of pps_beta_offset_div2 and pps_tc_offset_div2 are inferred to be equal to 0. 

pps_scaling_list_data_present_flag equal to 1 specifies that parameters are present in the picture parameter set to 
modify the scaling lists specified in the active sequence parameter set. pps_scaling_list_data_present_flag equal to 0 
specifies that the scaling lists used for the pictures referring to the picture parameter set is inferred to be equal to those 
specified by the active sequence parameter set. When scaling_list_enable_flag is equal to 0, the value of 
pps_scaling_list_data_present_flag shall be equal to 0. When scaling_list_enable_flag is equal to 1 and 
pps_scaling_list_data_present_flag is equal to 0, the default scaling list data is used to derive the array ScalingFactor as 
described in the scaling list data semantics 7.4.6. 

lists_modification_present_flag equal to 1 specifies that the syntax structure ref_pic_lists_modification( ) is present in 
the slice segment header. lists_modification_present_flag equal to 0 specifies that the syntax structure 
ref_pic_lists_modification( ) is not present in the slice segment header. 

log2_parallel_merge_level_minus2 specifies the parallel processing level of merge/skip mode. The value of 
log2_parallel_merge_level_minus2 shall be in the range of 0 to log2_min_luma_coding_block_size_minus3 + 1 + 
log2_diff_max_min_luma_coding_block_size, inclusive. 

num_extra_slice_header_bits equal to 0 specifies that no extra slice header bits are present in the slice header RBSP for 
coded pictures referring to the picture parameter set. num_extra_slice_header_bits shall be equal to 0 in bitstreams 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 72 

conforming to this version of this Specification. Other values for num_extra_slice_header_bits are reserved for future use 
by ITU-T | ISO/IEC. However, decoders shall allow num_extra_slice_header_bits to have any value. 

slice_segment_header_extension_present_flag equal to 0 specifies that no slice segment header extension syntax 
elements are present in the slice segment headers for coded pictures referring to the picture parameter set. 
slice_segment_header_extension_present_flag shall be equal to 0 in bitstreams conforming to this version of this 
Specification. The value of 1 for slice_segment_header_extension_present_flag is reserved for future use by ITU-T | 
ISO/IEC. 

pps_extension_flag equal to 0 specifies that no pps_extension_data_flag syntax elements are present in the picture 
parameter set RBSP syntax structure. pps_extension_flag shall be equal to 0 in bitstreams conforming to this version of 
this Specification. The value of 1 for pps_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall 
ignore all data that follow the value 1 for pps_extension_flag in a picture parameter set NAL unit. 

pps_extension_data_flag may have any value. Its value does not affect decoder conformance to profiles specified in this 
version of this Specification. 

7.4.2.4 Supplemental enhancement information RBSP semantics 

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded 
pictures from VCL NAL units. An SEI RBSP contains one or more SEI messages. 

7.4.2.5 Access unit delimiter RBSP semantics 

The access unit delimiter may be used to indicate the type of slices present in a coded picture and to simplify the 
detection of the boundary between access units. There is no normative decoding process associated with the access unit 
delimiter. 

pic_type indicates that the slice_type values for all slices of the coded picture are members of the set listed in Table 7-2 
for the given value of pic_type. 

Table 7-2 – Interpretation of pic_type 

pic_type slice_type values that may be present in the coded picture 

0 I 
1 P, I 
2 B, P, I 

 

7.4.2.6 End of sequence RBSP semantics 

When the next subsequent NAL unit in decoding order is not an end of bitstream NAL unit, the end of sequence RBSP 
specifies that the next subsequent access unit in the bitstream in decoding order (if any) is an IDR or BLA access unit. 
The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. 

7.4.2.7 End of bitstream RBSP semantics 

The end of bitstream RBSP indicates that no additional NAL units are present in the bitstream that are subsequent to the 
end of bitstream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of bitstream RBSP are 
empty. 

NOTE – When an elementary stream contains more than one bitstream, the last NAL unit of the last access unit of a bitstream 
must contain an end of bitstream NAL unit and the first access unit of the subsequent bitstream must be a RAP access unit. This 
RAP access unit may be a CRA, BLA, or IDR access unit. 

7.4.2.8 Filler data RBSP semantics 

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for 
a filler data RBSP. 

ff_byte is a byte equal to 0xFF. 

7.4.2.9 Slice segment layer RBSP semantics 

The slice segment layer RBSP consists of a slice segment header and slice segment data. 

7.4.2.10 RBSP slice segment trailing bits semantics 

cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000. 



   ISO/IEC 23008-2 : 201x (E) 

73 Draft Rec. ITU-T H.HEVC (201x E) 

Let NumBytesInVclNALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded 
picture. 

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin( ), specified in 
subclause 9.2.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. 

Let the variable RawMinCuBits be derived as 

RawMinCuBits = MinCbSizeY * MinCbSizeY * ( BitDepthY + BitDepthC / 2 ) (7-27) 

The value of BinCountsInNALunits shall be less than or equal to ( 32 ÷ 3 ) * NumBytesInVclNALunits + 
( RawMinCuBits * PicSizeInMinCbsY ) ÷ 32. 

NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the coded slice segment NAL 
units can be met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVclNALunits. 
Each cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL 
unit contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word). 

7.4.2.11 RBSP trailing bits semantics 

rbsp_stop_one_bit shall be equal to 1. 

rbsp_alignment_zero_bit shall be equal to 0. 

7.4.2.12 Byte alignment semantics 

alignment_bit_equal_to_one shall be equal to 1. 

alignment_bit_equal_to_zero shall be equal to 0. 

7.4.3 Profile, tier and level semantics 

general_profile_space specifies the context for the interpretation of general_profile_idc and 
general_profile_combatibility_flag[ i ] for all values of i in the range of 0 to 31, inclusive. The value of 
general_profile_space shall be equal to 0 in bitstreams conforming to this version of this Specification. Other values for 
general_profile_space are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the coded video sequence if 
general_profile_space is not equal to 0. [Ed. (GJS): Ignore the CVS or ignore the VPS/SPS? Think about this.] 

general_tier_flag specifies the tier context for the interpretation of general_level_idc as specified in Annex A. 

general_profile_idc, when general_profile_space is equal to 0, indicates a profile to which the coded video sequence 
conforms as specified in Annex A. Bitstreams shall not contain values of general_profile_idc other than those specified 
in Annex A. Other values of general_profile_idc are reserved for future use by ITU-T | ISO/IEC. 

[Ed. (DS): We might prefer not to use the general_profile_idc value zero, or reserve it to mean "no profile signalled, 
bitstream is unconstrained"; this gives us one spare bit in the profile compatibility flags array.] 

general_profile_compatibility_flag[ i ] equal to 1, when general_profile_space is equal to 0, indicates that the coded 
video sequence conforms to the profile indicated by general_profile_idc equal to i as specified in Annex A. When 
general_profile_space is equal to 0, general_profile_compatibility_flag[ general_profile_idc ] shall be equal to 1. The 
value of general_profile_compatibility_flag[ i ] shall be equal to 0 for any value of i that is not specified as an allowed 
value of general_profile_idc in Annex A. 

general_reserved_zero_16bits shall be equal to 0 in bitstreams conforming to this version of this Specification. Other 
values for general_reserved_zero_16bits are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore the value 
of general_reserved_zero_16bits. 

general_level_idc indicates a level to which the coded video sequence conforms as specified in Annex A. 
NOTE 1 – A greater value of general_level_idc indicates a higher level. The maximum level signalled in the video parameter set 
for a coded video sequence may be higher than the level signalled in the sequence parameter set for the same coded video 
sequence. 
NOTE 2 – For bitstreams compatible with more than one profile, the value of general_profile_idc should be set to the "best viewed 
as" profile. 
NOTE 3 – The general_reserved_zero_16bits can be used to indicate the respect of further constraints on the bitstream (e.g. that a 
selected tool, permitted by the profiles signalled, is nonetheless not used). These flags are ideally profile independent, but unlike 
general_level_idc, it is allowed to be contextual on general_profile_idc. 

sub_layer_profile_present_flag[ i ] equal to 1, when profilePresentFlag is equal to 1, specifies that profile information 
is present in the profile_tier_level( ) syntax structure for the representation of the sub-layer with TemporalId equal to i. 
sub_layer_profile_present_flag[ i ] equal to 0 specifies that profile information is not present in the profile_tier_level( ) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 74 

syntax structure for the representations of the sub-layer with TemporalId equal to i. When not present, the value of 
sub_layer_profile_present_flag[ i ] is inferred to be equal to 0. 

sub_layer_level_present_flag[ i ] equal to 1 specifies that level information is present in the profile_tier_level( ) syntax 
structure for the representation of the sub-layer with TemporalId equal to i. sub_layer_level_present_flag[ i ] equal to 0 
specifies that level information is not present in the profile_tier_level( ) syntax structure for the representation of the sub-
layer with TemporalId equal to i. 

sub_layer_profile_space[ i ], sub_layer_tier_flag[ i ], sub_layer_profile_idc[ i ], 
sub_layer_profile_compatibility_flag[ i ][ j ], sub_layer_reserved_zero_16bits[ i ], and sub_layer_level_idc[ i ] have 
the same semantics as general_profile_space, general_tier_flag, general_profile_idc, 
general_profile_compatibility_flag[ j ], general_reserved_zero_16bits, and general_level_idc, respectively, but apply to 
the representation of the sub-layer with TemporalId equal to i. 

When not present, the value of sub_layer_tier_flag[ i ] is inferred to be equal to 0. 
NOTE 4 – It is possible that sub_layer_tier_flag[ i ] is not present and sub_layer_level_idc[ i ] is present. In this case, a default 
value of sub_layer_tier_flag[ i ] is needed for interpretation of sub_layer_level_idc[ i ]. 

7.4.4 Bit rate and picture rate information semantics 

bit_rate_info_present_flag[ i ] equal to 1 specifies that the bit rate information for the i-th sub-layer is present. 
bit_rate_info_present_flag[ i ] equal to 0 specifies that the bit rate information for the i-th sub-layer is not present. 

pic_rate_info_present_flag[ i ] equal to 1 specifies that picture rate information for the i-th sub-layer is present. 
pic_rate_info_present_flag[ i ] equal to 0 specifies that picture rate information for the i-th sub-layer is not present. 

avg_bit_rate[ i ] indicates the average bit rate of the representation of the i-th sub-layer. The average bit rate for the 
representation of the i-th sub-layer in bits per second is given by BitRateBPS( avg_bit_rate[ i ] ) with the function 
BitRateBPS( ) being specified by 

BitRateBPS( x ) = ( x & ( 214 − 1 ) ) * 10( 2 + ( x >> 14 ) ) (7-28) 

The average bit rate is derived according to the access unit removal time specified in Annex C of this Specification. In 
the following, bTotal is the number of bits in all NAL units of the representation of the i-th sub-layer, t1 is the removal 
time (in seconds) of the first access unit to which the video parameter set applies, and t2 is the removal time (in seconds) 
of the last access unit (in decoding order) to which the video parameter set applies. 

With x specifying the value of avg_bit_rate[ i ], the following applies: 
– If t1 is not equal to t2, the following condition shall be true: 

( x & ( 214 − 1 ) )  = =  Round( bTotal ÷ ( ( t2 − t1 ) * 10( 2 + ( x >> 14 ) ) ) ) (7-29) 

– Otherwise (t1 is equal to t2), the following condition shall be true: 

( x & ( 214 − 1 ) )  = =  0  (7-30) 

max_bit_rate_layer[ i ] indicates an upper bound for the bit rate of the representation of the i-th sub-layer in any one-
second time window of access unit removal time as specified in Annex C. The upper bound for the bit rate in bits per 
second is given by BitRateBPS( max_bit_rate_layer[ i ] ). The bit rate values are derived according to the access unit 
removal time specified in Annex C of this Specification. In the following, t1 is any point in time (in seconds), t2 is set 
equal to t1 + 1 ÷ 100, and bTotal is the number of bits in all NAL units of access units with a removal time greater than 
or equal to t1 and less than t2. With x specifying the value of max_bit_rate_layer[ i ], the following condition shall be 
obeyed for all values of t1: 

( x & ( 214 − 1 ) )  >=  bTotal ÷ ( ( t2 − t1 ) * 10( 2 + ( x >> 14 ) ) ) (7-31) 

constant_pic_rate_idc[ i ] indicates whether the picture rate of the representation of the i-th sub-layer is constant. In the 
following, a temporal segment tSeg is any set of two or more consecutive access units, in decoding order, of the 
representation of the i-th sub-layer, fTotal( tSeg ) is the number of pictures in the temporal segment tSeg, t1( tSeg ) is the 
removal time (in seconds) of the first access unit (in decoding order) of the temporal segment tSeg, t2( tSeg ) is the 
removal time (in seconds) of the last access unit (in decoding order) of the temporal segment tSeg, and avgFR( tSeg ) is 
the average frame rate in the temporal segment tSeg, which is given by: 

avgFR( tSeg)  = =  Round( fTotal( tSeg ) * 256 ÷ ( t2( tSeg ) − t1( tSeg ) ) ) (7-32) 



   ISO/IEC 23008-2 : 201x (E) 

75 Draft Rec. ITU-T H.HEVC (201x E) 

If the representation of the i-th sub-layer only contains one access unit or the value of avgFR( tSeg ) is constant over all 
temporal segments of the representation of the i-th sub-layer, the picture rate is constant; otherwise, the picture rate is not 
constant. 

constant_pic_rate_idc[ i ] equal to 0 indicates that the picture rate of the representation of the i-th sub-layer is not 
constant. constant_pic_rate_idc[ i ] equal to 1 indicates that the picture rate of the representation of the i-th sub-layer is 
constant. constant_pic_rate_idc[ i ] equal to 2 indicates that the picture rate of the representation of the i-th sub-layer 
may or may not be constant. [Ed. (GJS): If equal to 1, is the bitstream non-conforming if the picture rate happens to turn 
out to be constant?] [Ed. (GJS): If there are only two pictures, is the picture rate constant?],  The value of 
constant_pic_rate_idc[ i ] shall be in the range of 0 to 2, inclusive. 

avg_pic_rate[ i ] indicates the average picture rate, in units of picture per 256 seconds, of representation of the i-th sub-
layer. With fTotal being the number of pictures in the representation of the i-th sub-layer, t1 being the removal time (in 
seconds) of the first access unit to which the video parameter set applies, and t2 being the removal time (in seconds) of 
the last access unit (in decoding order) to which the video parameter set applies, the following applies: 
– If t1 is not equal to t2, the following condition shall be true: 

avg_pic_rate[ i ]  = =  Round( fTotal * 256 ÷ ( t2 − t1 ) ) (7-33) 

– Otherwise (t1 is equal to t2), the following condition shall be true: 

avg_pic_rate[ i ]  = =  0  (7-34) 

7.4.5 Operation point layer set semantics 

The operation_point_set( opsIdx ) syntax structure specifies the OpLayerIdSet of the opsIdx-th operation point set 
specified by the video parameter set. 

layer_id_included_flag[ opsIdx ][ i ] equal to 0 specifies that the value of nuh_reserved_zero_6bits equal to i is not 
included in the OpLayerIdSet of the opsIdx-th operation point set specified by the video parameter set. 
layer_id_included_flag[ opsIdx ][ i ] equal to 1 specifies that the value of nuh_reserved_zero_6bits equal to i is included 
in the OpLayerIdSet of the opsIdx-th operation point set specified by the video parameter set. The sum of all 
layer_id_included_flag[ opsIdx ][ i ] values for i from 0 to vps_max_nuh_reserved_zero_layer_id, inclusive, shall be in 
the range of 1 to vps_reserved_zero_6bits + 1, inclusive. 

The variable numLayerIdsMinus1[ opsIdx ] and the variables layerId[ opsIdx ][ j ], for j in the range of 0 to 
numLayerIdsMinus1[ opsIdx ], inclusive, are derived as follows. 

j = 0 
for( i = 0; i <= vps_max_nuh_reserved_zero_layer_id; i++ ) 
 if( layer_id_included_flag[ opsIdx ][ i ] )  (7-35) 
  layerId[ opsIdx ][ j++ ] = i 
numLayerIdsMinus1[ opsIdx ] = j − 1 

The values of numLayerIdsMinus1[ 0 ] and layerId[ 0 ][ 0 ] are defined as follows: 

numLayerIdsMinus1[ 0 ] = 0  (7-36) 
layerId[ 0 ][ 0 ] = 0   (7-37) 

Any two sets layerId[ opsIdx1 ] and layerId[ opsIdx2 ], where opsIdx1 is not equal to opsIdx2, shall not include the same 
set of nuh_reserved_zero_6bits values. 

The layerIdSet of the opsIdx-th operation point set specified in the video parameter set is set to the set of 
nuh_reserved_zero_6bits values equal to layerId[ opsIdx ][ i ], for i in the range of 0 to numLayerIdsMinus1[ opsIdx ], 
inclusive. 

7.4.6 Scaling list data semantics 

scaling_list_pred_mode_flag[ sizeId ][ matrixId ] equal to 0 specifies that the values of the scaling list are the same as 
the values of a reference scaling list. The reference scaling list is specified by 
scaling_list_pred_matrix_id_delta[ sizeId ][ matrixId ]. scaling_list_pred_mode_flag[ sizeId ][ matrixId ] equal to 1 
specifies that the values of the scaling list are explicitly signalled. 

scaling_list_pred_matrix_id_delta[ sizeId ][ matrixId ] specifies the reference scaling list used to derive 
ScalingList[ sizeId ][ matrixId ] as follows. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 76 

– If scaling_list_pred_matrix_id_delta is equal to 0, the scaling list is inferred from the default scaling list 
ScalingList[ sizeId ][ matrixId ][ i ] as specified in Table 7-5 and Table 7-6 for 
i = 0..Min( 64, ( 1 << ( 4 + ( sizeId << 1) ) ) ). 

– Otherwise, the scaling list is inferred from the reference scaling list as follows. 

refMatrixId = matrixId − scaling_list_pred_matrix_id_delta[ sizeId ][ matrixId ] (7-38) 

ScalingList[ sizeId ][ matrixId ][ i ] = ScalingList[ sizeId ][ refMatrixId ][ i ]  
with i =0 .. Min( 64, ( 1 << ( 4 + ( sizeId << 1) ) ) ) (7-39) 

The value of scaling_list_pred_matrix_id_delta[ sizeId ][ matrixId ] shall be in the range of 0 to matrixId, inclusive. 

Table 7-3 – Specification of sizeId 

Size of quantization matrix sizeId 
4x4 0 
8x8 1 

16x16 2 
32x32 3 

 

Table 7-4 – Specification of matrixId according to sizeId, prediction mode and colour component 

sizeId CuPredMode cIdx  
(colour component) matrixId 

0, 1, 2 MODE_INTRA 0 (Y) 0 
0, 1, 2 MODE_INTRA 1 (Cb) 1 
0, 1, 2 MODE_INTRA 2 (Cr) 2 
0, 1, 2 MODE_INTER 0 (Y) 3 
0, 1, 2 MODE_INTER 1 (Cb) 4 
0, 1, 2 MODE_INTER 2 (Cr) 5 

3 MODE_INTRA 0 (Y) 0 
3 MODE_INTER 0 (Y) 1 

 

scaling_list_dc_coef_minus8[ sizeId − 2 ][ matrixId ] plus 8 specifies the DC value of the scaling list for 16x16 size 
when sizeId is equal to 2 and specifies the DC value of the scaling list for 32x32 size when sizeId is equal to 3. The value 
of scaling_list_dc_coef_minus8[ sizeId − 2 ][ matrixId ] shall be in the range of −7 to 247, inclusive. When 
scaling_list_dc_coef_minus8 is not present, it is inferred to be equal to 8. 

scaling_list_delta_coef specifies the difference between the current matrix coefficient 
ScalingList[ sizeId ][ matrixId ][ i ] and the previous matrix coefficient ScalingList[ sizeId ][ matrixId ][ i − 1 ], when 
scaling_list_pred_mode_flag[ sizeId ][ matrixId ] is equal to 1. The value of scaling_list_delta_coef shall be in the range 
of −128 to 127, inclusive. The value of ScalingList[ sizeId ][ matrixId ][ i ] shall be greater than 0. 

Table 7-5 – Specification of default values of ScalingList[ 0 ][ matrixId ][ i ] with i = 0..15 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ScalingList[0][0..2][ i ] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

ScalingList[0][3..5][ i ] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 

 



   ISO/IEC 23008-2 : 201x (E) 

77 Draft Rec. ITU-T H.HEVC (201x E) 

Table 7-6 – Specification of default values of ScalingList[ 1..3 ][ matrixId ][ i ] with i = 0..63 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ScalingList[1..2][0..2][ i ] 

ScalingList[3][0][ i ] 
16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 18 

ScalingList[1..2][3..5][ i ] 
ScalingList[3][1][ i ] 

16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 18 

i − 16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ScalingList[1..2][0..2][ i ] 

ScalingList[3][0][ i ] 
17 18 18 17 18 21 19 20 21 20 19 21 24 22 22 24 

ScalingList[1..2][3..5][ i ] 
ScalingList[3][1][ i ] 

18 18 18 18 18 20 20 20 20 20 20 20 24 24 24 24 

i − 32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ScalingList[1..2][0..2][ i ] 

ScalingList[3][0][ i ] 
24 22 22 24 25 25 27 30 27 25 25 29 31 35 35 31 

ScalingList[1..2][3..5][ i ] 
ScalingList[3][1][ i ] 

24 24 24 24 25 25 25 25 25 25 25 28 28 28 28 28 

i − 48 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ScalingList[1..2][0..2][ i ] 

ScalingList[3][0][ i ] 
29 36 41 44 41 36 47 54 54 47 65 70 65 88 88 115 

ScalingList[1..2][3..5][ i ] 
ScalingList[3][1][ i ] 

28 33 33 33 33 33 41 41 41 41 54 54 54 71 71 91 

 

The four-dimensional array ScalingFactor[ sizeId ][ matrixId ][ x ][ y ], with x, y = 0..( 1 << ( 2 + sizeId ) ) − 1, specifies 
the array of scaling factors according to the variables sizeId specified in Table 7-3 and matrixId specified in Table 7-4. 

The elements of the quantization matrix of size 4x4, ScalingFactor[ 0 ][ matrixId ][ ][ ], are derived as follows: 

ScalingFactor[ 0 ][ matrixId ][ x ][ y ] = ScalingList[ 0 ][ matrixId ][ i ] (7-40) 
with i = 0..15 and matrixId = 0..5 

where x=ScanOrder[ 2 ][ 0 ][ i ][ 0 ] and y=ScanOrder[ 2 ][ 0 ][ i ][ 1 ] 

The elements of the quantization matrix of size 8x8, ScalingFactor[ 1 ][ matrixId ][ ][ ], are derived as follows: 

ScalingFactor[ 1 ][ matrixId ][ x ][ y ] = ScalingList[ 1 ][ matrixId ][ i ] (7-41) 
with i = 0..63 and matrixId = 0..5 

where x=ScanOrder[ 3 ][ 0 ][ i ][ 0 ] and y=ScanOrder[ 3 ][ 0 ][ i ][ 1 ] 

The elements of the quantization matrix of size 16x16, ScalingFactor[ 2 ][ matrixId ][ ][ ], are derived as follows: 

ScalingFactor[ 2 ][ matrixId ][ x *2 + k ][ y * 2 + j ] = ScalingList[ 2 ][ matrixId ][ i ] (7-42) 
with i = 0..63, j = 0..1, k = 0..1 and matrixId = 0..5 

where x=ScanOrder[ 3 ][ 0 ][ i ][ 0 ] and y=ScanOrder[ 3 ][ 0 ][ i ][ 1 ] 

ScalingFactor[ 2 ][ matrixId ][ 0 ][ 0 ] = scaling_list_dc_coef_minus8[ 0 ][ matrixId ] + 8 (7-43) 
with matrixId = 0..5 

The elements of the quantization matrix of size 32x32, ScalingFactor[ 3 ][ matrixId ][ ][ ], are derived as follows: 

ScalingFactor[ 3 ][ matrixId ][ x * 4 + k ][ y * 4 + j ] = ScalingList[ 3 ][ matrixId ][ i ] (7-44) 
with i = 0..63, j = 0..3, k = 0..3 and matrixId = 0..1 

where x=ScanOrder[ 3 ][ 0 ][ i ][ 0 ] and y=ScanOrder[ 3 ][ 0 ][ i ][ 1 ] 

ScalingFactor[ 3 ][ matrixId ][ 0 ][ 0 ] = scaling_list_dc_coef_minus8[ 1 ][ matrixId ] + 8 (7-45) 
with matrixId = 0..1 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 78 

7.4.7 Supplemental enhancement information message semantics 

Each SEI message consists of the variables specifying the type payloadType and size payloadSize of the SEI message 
payload. SEI message payloads are specified in Annex D. The derived SEI message payload size payloadSize is 
specified in bytes and shall be equal to the number of RBSP bytes in the SEI message payload. 

NOTE – The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes 
(represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in 
RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload. 

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used within. 

last_payload_type_byte is the last byte of the payload type of an SEI message. 

last_payload_size_byte is the last byte of the payload size of an SEI message. 

7.4.8 Slice segment header semantics 

7.4.8.1 General slice segment header semantics 

When present, the value of the slice segment header syntax elements slice_pic_parameter_set_id, pic_output_flag, 
no_output_of_prior_pics_flag, pic_order_cnt_lsb, short_term_ref_pic_set_sps_flag, short_term_ref_pic_set_idx, 
num_long_term_sps, num_long_term_pics, and slice_temporal_mvp_enable_flag shall be the same in all slice segment 
headers of a coded picture. When present, the value of the slice segment header syntax elements lt_idx_sps[ i ], 
poc_lsb_lt[ i ], used_by_curr_pic_lt_flag[ i ], delta_poc_msb_present_flag[ i ], and delta_poc_msb_cycle_lt[ i ] shall be 
the same in all slice segment headers of a coded picture for each possible value of i. 

first_slice_segment_in_pic_flag equal to 1 specifies that the slice segment is the first slice segment of the picture in 
decoding order. first_slice_segment_in_pic_flag equal to 0 specifies that the slice segment is not the first slice segment 
of the picture in decoding order. 

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated 
after decoding of an IDR or a BLA picture. See Annex C. When the current picture is a CRA picture, or the current 
picture is an IDR or BLA picture that is the first picture in the bitstream, the value of no_output_of_prior_pics_flag has 
no effect on the decoding process. When the current picture is an IDR or BLA picture that is not the first picture in the 
bitstream and the value of pic_width_in_luma_samples or pic_height_in_luma_samples or 
sps_max_dec_pic_buffering[ HighestTid ] derived from the active sequence parameter set is different from the value of 
pic_width_in_luma_samples or pic_height_in_luma_samples or sps_max_dec_pic_buffering[ HighestTid ] derived from 
the sequence parameter set active for the preceding picture, no_output_of_prior_pics_flag equal to 1 may (but should 
not) be inferred by the decoder, regardless of the actual value of no_output_of_prior_pics_flag. [Ed. (GJS): Check why 
this had not been moved previously.] [Ed. (GJS): Use a variable here.] 

slice_pic_parameter_set_id specifies the value of pps_pic_parameter_set for the picture parameter set in use. The value 
of slice_pic_parameter_set_id shall be in the range of 0 to 63, inclusive. 

dependent_slice_segment_flag equal to 1 specifies that the value of each slice segment header syntax element that is 
not present is inferred to be equal to the value of the corresponding slice segment header syntax element in the slice 
header. When not present, the value of dependent_slice_segment_flag is inferred to be equal to 0. 

The variable SliceAddrRS is derived as follows. 

– If dependent_slice_segment_flag is equal to 0, SliceAddrRS is set equal to slice_segment_address. 

– Otherwise, SliceAddrRS is set equal to SliceAddrRS of the preceding slice segment containing the coding tree block 
for which the coding tree block address is ctbAddrTStoRS[ ctbAddrRStoTS[ slice_segment_address ] − 1 ]. 

slice_segment_address specifies the address of the first coding tree block in the slice segment, in coding tree block 
raster scan of a picture. The length of the slice_segment_address syntax element is Ceil( Log2( PicSizeInCtbsY ) ) bits. 
The value of slice_segment_address shall be in the range of 1 to PicSizeInCtbsY − 1, inclusive and the value of 
slice_segment_address shall not be equal to the value of slice_segment_address of any other coded slice segment NAL 
unit of the same coded picture. When slice_segment_address is not present, it is inferred to be equal to 0. 

The variable CtbAddrInRS, specifying a coding tree block address in coding tree block raster scan of a picture, is set 
equal to slice_segment_address. The variable CtbAddrInTS, specifying a coding tree block address in tile scan, is set 
equal to CtbAddrRStoTS[ CtbAddrInRS ]. The variable CuQpDelta, specifying the difference between a luma 
quantization parameter for the coding unit containing cu_qp_delta_abs and its prediction, is set equal to 0. 

slice_reserved_undetermined_flag[ i ] has semantics and values that are reserved for future specification by ITU-T | 
ISO/IEC. Decoders shall ignore the presence and value of slice_reserved_undetermined_flag[ i ]. 

slice_type specifies the coding type of the slice according to Table 7-7. 



   ISO/IEC 23008-2 : 201x (E) 

79 Draft Rec. ITU-T H.HEVC (201x E) 

 

Table 7-7 – Name association to slice_type 

slice_type Name of slice_type 

0 B (B slice) 
1 P (P slice) 
2 I (I slice) 

 

When nal_unit_type has a value in the range of 16 to 23, inclusive (RAP picture), slice_type shall be equal to 2. 

When sps_max_dec_pic_buffering[ TemporalId ] is equal to 0, slice_type shall be equal to 2. 

pic_output_flag affects the decoded picture output and removal processes as specified in Annex C. When 
pic_output_flag is not present, it is inferred to be equal to 1. 

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is 
equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1, and 2 
correspond to the Y, Cb, and Cr planes, respectively. 

NOTE 1 – There is no dependency between the decoding processes of pictures having different values of colour_plane_id. 

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the current picture. The length of 
the pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the 
pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive. When pic_order_cnt_lsb is not 
present, pic_order_cnt_lsb is inferred to be equal to 0, except as specified in subclause 8.3.3.1. [Ed. (GJS): This syntax 
element name violates the convention against having a syntax element name that is a sub-string of another syntax 
element name.] 

short_term_ref_pic_set_sps_flag equal to 1 specifies that the short-term reference picture set of the current picture is 
created using syntax elements in the active sequence parameter set. short_term_ref_pic_set_sps_flag equal to 0 specifies 
that the short-term reference picture set of the current picture is created using syntax elements in the 
short_term_ref_pic_set( ) syntax structure in the slice header. 

short_term_ref_pic_set_idx specifies the index to the list of the short-term reference picture sets specified in the active 
sequence parameter set that is used for creation of the reference picture set of the current picture. The syntax element 
short_term_ref_pic_set_idx is represented by Ceil( Log2( num_short_term_ref_pic_sets ) ) bits. The value of 
short_term_ref_pic_set_idx shall be in the range of 0 to num_short_term_ref_pic_sets − 1, inclusive. 

The variable StRpsIdx is derived as follows: 
– If short_term_ref_pic_set_sps_flag is equal to 1, StRpsIdx is set equal to short_term_ref_pic_set_idx. 
– Otherwise, StRpsIdx is set equal to num_short_term_ref_pic_sets. 

num_long_term_sps specifies the number of candidate long-term reference pictures specified in the active sequence 
parameter set that are included in the long-term reference picture set of the current picture. The value of 
num_long_term_sps shall be in the range of 0 to Min( num_long_term_ref_pics_sps, 
sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ] −NumNegativePics[ StRpsIdx ] − 
NumPositivePics[ StRpsIdx ] ), inclusive. When not present, the value of num_long_term_sps is inferred to be equal 
to 0. 

num_long_term_pics specifies the number of long-term reference pictures specified in the slice header, which are 
included in the long-term reference picture set of the current picture. The value of num_long_term_pics shall be in the 
range of 0 to sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ] − NumNegativePics[ StRpsIdx ] − 
NumPositivePics[ StRpsIdx ] − num_long_term_sps, inclusive. When not present, the value of num_long_term_pics is 
inferred to be equal to 0. 

lt_idx_sps[ i ] specifies an index into the list of candidate long-term reference pictures specified in the active sequence 
parameter set for identification of the picture that is included in the long-term reference pictur set of the current picture. 
The value of lt_idx_sps[ i ] shall be in the range of 0 to num_long_term_ref_pics_sps − 1, inclusive. The number of bits 
used to represent lt_idx_sps[ i ] is equal to Ceil( Log2( num_long_term_ref_pics_sps ) ). 

poc_lsb_lt[ i ] specifies the value of the picture order count modulo MaxPicOrderCntLsb of the i-th long-term reference 
picture that is included in the long-term reference picture set of the current picture. The length of the poc_lsb_lt[ i ] 
syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 80 

used_by_curr_pic_lt_flag[ i ] equal to 0 specifies that the i-th long-term reference picture included in the long-term 
reference picture set of the current picture is not used for reference by the current picture. 

The variables PocLsbLt[ i ] and UsedByCurrPicLt[ i ] are derived as follows: 
– If i is less than num_long_term_sps, PocLsbLt[ i ] is set equal to lt_ref_pic_poc_lsb_sps[ lt_idx_sps[ i ] ] and 

UsedByCurrPicLt[ i ] is set equal to used_by_curr_pic_lt_sps_flag[ lt_idx_sps[ i ] ]. 
– Otherwise, PocLsbLt[ i ] is set equal to poc_lsb_lt[ i ] and UsedByCurrPicLt[ i ] is set equal to 

used_by_curr_pic_lt_flag[ i ]. 

delta_poc_msb_present_flag[ i ] equal to 1 specifies that delta_poc_msb_cycle_lt[ i ] is present. 
delta_poc_msb_present_flag[ i ] equal to 0 specifies that delta_poc_msb_cycle_lt[ i ] is not present. 
delta_poc_msb_present_flag[ i ] shall be equal to 1 when there is more than one reference picture in the decoded picture 
buffer with picture order count modulo MaxPicOrderCntLsb equal to PocLsbLt[ i ]. 

delta_poc_msb_cycle_lt[ i ] is used to determine the value of the most significant bits of the picture order count value of 
the i-th long-term reference picture that is included in the long-term reference picture set of the current picture. When 
delta_poc_msb_cycle_lt[ i ] is not present, it is inferred to be equal to 0. 

The variable DeltaPocMSBCycleLt[ i ] is derived as follows: 

if( i  = =  0  | |  i = =  num_long_term_sps ) 
 DeltaPocMSBCycleLt[ i ] = delta_poc_msb_cycle_lt[ i ] 
else       (7-46) 
 DeltaPocMSBCycleLt[ i ] = delta_poc_msb_cycle_lt[ i ] + DeltaPocMSBCycleLt[ i − 1 ] 

slice_temporal_mvp_enable_flag specifies whether temporal motion vector predictors can be used for inter prediction. 
If slice_temporal_mvp_enable_flag is equal to 0, temporal motion vector predictors shall not be used in decoding of the 
current picture. If slice_temporal_mvp_enable_flag is equal to 1, temporal motion vector predictors may be used in 
decoding of the current picture. When not present, the value of slice_temporal_mvp_enable_flag is inferred to be equal 
to 0. [Ed. (GJS): Check the use of "shall" in this paragraph. Is that a bitstream constraint or a decoding process 
specification? Is it duplicating a prescription expressed elsewhere?] 

When both slice_temporal_mvp_enable_flag and TemporalId are equal to 0, the decoding process of all coded pictures 
that follow the current picture in decoding order shall not use temporal motion vectors from any picture that precedes the 
current picture in decoding order. [Ed. (GJS): Check the use of "shall" in this paragraph.] 

slice_sao_luma_flag equal to 1 specifies that SAO is enabled for the luma component in the current slice; 
slice_sao_luma_flag equal to 0 specifies that SAO is disabled for the luma component in the current slice. When 
slice_sao_luma_flag is not present, it is inferred to be equal to 0. 

slice_sao_chroma_flag equal to 1 specifies that SAO is enabled for the chroma component in the current slice; 
slice_sao_chroma_flag equal to 0 specifies that SAO is disabled for the chroma component in the current slice. When 
slice_sao_chroma_flag is not present, it is inferred to be equal to 0. 

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is 
present for P and B slices and that the syntax element num_ref_idx_l1_active_minus1 is present for B slices. 
num_ref_idx_active_override_flag equal to 0 specifies that the syntax elements num_ref_idx_l0_active_minus1 and 
num_ref_idx_l1_active_minus1 are not present. 

num_ref_idx_l0_active_minus1 specifies the maximum reference index for reference picture list 0 that may be used to 
decode the slice. num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive. When the current slice is a P 
or B slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 is inferred to be equal to 
num_ref_idx_l0_default_active_minus1. 

num_ref_idx_l1_active_minus1 specifies the maximum reference index for reference picture list 1 that shall be used to 
decode the slice. num_ref_idx_l1_active_minus1 shall be in the range of 0 to 15, inclusive. When the current slice is a B 
slice and num_ref_idx_l1_active_minus1 is not present, num_ref_idx_l1_active_minus1 is inferred to be equal to 
num_ref_idx_l1_default_active_minus1. 

mvd_l1_zero_flag equal to 1 indicates that the mvd_coding( x0, y0, 1 ) syntax structure is not parsed and 
MvdL1[ x0 ][ y0 ][ compIdx ] is set equal to 0 for compIdx = 0..1. mvd_l1_zero_flag equal to 0 indicates that the 
mvd_coding( x0, y0, 1 ) syntax structure is parsed. 

cabac_init_flag specifies the method for determining the initialization table used in the initialization process for context 
variables. When cabac_init_flag is not present, it is inferred to be 0. 

collocated_from_l0_flag equal to 1 specifies the picture that contains the collocated partition is derived from list 0, 
otherwise the picture is derived from list 1.When collocated_from_l0_flag is not present, it is inferred to be equal to 1. 



   ISO/IEC 23008-2 : 201x (E) 

81 Draft Rec. ITU-T H.HEVC (201x E) 

collocated_ref_idx specifies the reference index of the picture that contains the collocated partition. When the current 
slice is a P slice, collocated_ref_idx refers to a picture in list 0. When the current slice is a B slice, collocated_ref_idx 
refers to a picture in list 0 if collocated_from_l0 is 1, otherwise it refers to a picture in list 1. collocated_ref_idx shall 
always refer to a valid list entry, and the resulting picture shall be the same for all slices of a coded picture. When 
collocated_ref_idx is not present, it is inferred to be equal to 0. 

five_minus_max_num_merge_cand specifies the maximum number of merging MVP candidates supported in the slice 
subtracted from 5. The maximum number of merging MVP candidates, MaxNumMergeCand is derived as  

MaxNumMergeCand = 5 − five_minus_max_num_merge_cand (7-47) 

The value of five_minus_max_num_merge_cand shall be limited such that MaxNumMergeCand is in the range of 1 to 5, 
inclusive. 

slice_qp_delta specifies the initial value of QPY to be used for the coding blocks in the slice until modified by the value 
of CuQpDelta in the coding unit layer. The initial value of the QPY quantization parameter for the slice, SliceQPY, is 
derived as 

SliceQPY = 26 + init_qp_minus26 + slice_qp_delta  (7-48) 

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −QpBdOffsetY to +51, inclusive. 

slice_cb_qp_offset specifies a difference to be added to the value of pps_cb_qp_offset when determining the value of 
the QP′Cb quantization parameter. The value of slice_cb_qp_offset shall be in the range of −12 to +12, inclusive. When 
slice_cb_qp_offset is not present, it is inferred to be equal to 0. The value of pps_cb_qp_offset + slice_cb_qp_offset shall 
be in the range of −12 to +12, inclusive. 

slice_cr_qp_offset specifies a difference to be added to the value of pps_cr_qp_offset when determining the value of the 
QP′Cr quantization parameter. The value of slice_cr_qp_offset shall be in the range of −12 to +12, inclusive. When 
slice_cr_qp_offset is not present, it is inferred to be equal to 0. The value of pps_cr_qp_offset + slice_cr_qp_offset shall 
be in the range of −12 to +12, inclusive. 

deblocking_filter_override_flag equal to 0 specifies that deblocking parameters from the active picture parameter set 
are used for deblocking the current slice. deblocking_filter_override_flag equal to 1 specifies that deblocking parameters 
from the slice header are used for deblocking the current slice. When not present, the value of 
deblocking_filter_override_flag is inferred to be equal to 0. 

slice_disable_deblocking_filter_flag equal to 1 specifies that the operation of the deblocking filter is not applied for the 
current slice. slice_disable_deblocking_filter_flag equal to 0 specifies that the operation of the deblocking filter is 
applied for the current slice. When slice_disable_deblocking_filter_flag is not present, it is inferred to be equal to 
pps_disable_deblocking_filter_flag. 

slice_beta_offset_div2 and slice_tc_offset_div2 specify the deblocking parameter offsets for β and tC (divided by 2) for 
the current slice. The values of slice_beta_offset_div2 and slice_tc_offset_div2 shall be in the range of −6 to 6, inclusive. 
When not present, the values of slice_beta_offset_div2 and slice_tc_offset_div2 are inferred to be equal to 
pps_beta_offset_div2 and pps_tc_offset_div2, respectively. 

slice_loop_filter_across_slices_enabled_flag equal to 1 specifies that in-loop filtering operations are performed across 
the left and upper boundaries of the current slice; otherwise, the in-loop operations are not applied across left and upper 
boundaries of the current slice. The in-loop filtering operations include the deblocking filter and sample adaptive offset 
filter. When slice_loop_filter_across_slices_enabled_flag is not present, it is inferred to be equal to 
loop_filter_across_slices_enabled_flag. 

num_entry_point_offsets specifies the number of entry_point_offset[ i ] syntax elements in the slice header. When not 
present, the value of num_entry_point_offsets is inferred to be equal to 0. 

The value of num_entry_point_offsets shall be constrained as follows: 
– If tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, the value of 

num_entry_point_offsets shall be in the range of 0 to PicHeightInCtbsY − 1, inclusive.  
– Otherwise, if tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, the value of 

num_entry_point_offsets shall be in the range of 0 to ( num_tile_columns_minus1 + 1 ) * 
( num_tile_rows_minus1 + 1 ) − 1, inclusive. 

– Otherwise, when tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 1, the value of 
num_entry_point_offsets shall be in the range of 0 to ( num_tile_columns_minus1 + 1 ) * PicHeightInCtbsY − 1, 
inclusive. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 82 

offset_len_minus1 plus 1 specifies the length, in bits, of the entry_point_offset[ i ] syntax elements. The value of 
offset_len_minus1 shall be in the range of 0 to 31, inclusive. 

entry_point_offset[ i ] specifies the i-th entry point offset in bytes, and is represented by offset_len_minus1 plus 1 bits. 
The slice segment data that follows the slice segment header consists of num_entry_point_offsets + 1 subsets, with 
subset index values ranging from 0 to num_entry_point_offsets, inclusive. The first byte of the slice segment data is 
considered byte 0. When present, emulation prevention bytes that appear in the slice segment data portion of the coded 
slice segment NAL unit are counted as part of the slice segment data for purposes of subset identification. Subset 0 
consists of bytes 0 to entry_point_offset[ 0 ] − 1, inclusive, of the coded slice segment data, subset k, with k in the range 
of 1 to num_entry_point_offsets − 1, inclusive, consists of bytes firstByte[ k ] to lastByte[ k ], inclusive, of the coded 
slice segment data with firstByte[ k ] and lastByte[ k ] defined as: 

firstByte[ k ] = ∑n( entry_point_offset[ n − 1 ] ) with n = 1..k (7-49) 

lastByte[ k ] = firstByte[ k ] − 1+entry_point_offset[ k ] (7-50) 

The last subset (with subset index equal to num_entry_point_offsets) consists of the remaining bytes of the coded slice 
segment data. 

When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, each subset shall consist of 
all coded bits of all coding tree units in the slice segment that are within the same tile. In this case, the number of subsets 
(i.e. the value of num_entry_point_offsets + 1) shall be equal to the number of tiles that contain coding tree units that are 
in the coded slice segment. 

NOTE 2 – When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 0, each slice must include 
either a subset of the coding tree units of one tile (in which case the syntax element entry_point_offset[ i ] is not present) or must 
include all coding tree units of an integer number of complete tiles. 

When tiles_enabled_flag is equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, each subset k with k in the 
range of 0 to num_entry_point_offsets, inclusive, shall consist of all coded bits of all coding tree units in the slice 
semgnet that are within the same row of coding tree units in the picture. In this case, the number of subsets (i.e. the value 
of num_entry_point_offsets + 1) shall be equal to the number of rows of coding tree units of the picture that contain 
coding tree units that are in the coded slice segment. 

NOTE 3 – The last subset (i.e. subset k for k equal to num_entry_point_offsets) may or may not contain all coding tree units that 
are within a row of coding tree units in the picture. 

When tiles_enabled_flag is equal to 1 and entropy_coding_sync_enabled_flag is equal to 1, each subset k with k in the 
range of 0 to num_entry_point_offsets − 1, inclusive, shall consist of all coded bits of all coding tree units in the slice 
segment that are within the same row of coding tree units in a tile. In this case, the number of subsets (i.e. the value of 
num_entry_point_offsets + 1) shall be equal to the number of rows of coding tree units of tiles that contain coding tree 
units that are in the coded slice segment. 

[Ed. (RS): Search/fix uses of "coding tree blocks" vs. "coding tree units" and "coding blocks" vs. "coding units".] 

slice_segment_header_extension_length specifies the length of the slice segment header extension data in bytes, not 
including the bits used for signalling slice_segment_header_extension_length itself. The value of 
slice_segment_header_extension_length shall be in the range of 0 to 256, inclusive. 

slice_segment_header_extension_data_byte may have any value. Decoders shall ignore the value of 
slice_segment_header_extension_data_byte. Its value does not affect decoder conformance to profiles specified in this 
version of this Specification. 

7.4.8.2 Short-term reference picture set semantics 

A short-term reference picture set may be present in a sequence parameter set or in a slice header. When a short-term 
reference picture set is present in a slice header, the content of the short-term reference picture set syntax structure shall 
be the same in all slice headers of a picture and the value of idxRps shall be equal to the syntax element 
num_short_term_ref_pic_sets from the active sequence parameter set. In the following, when the 
short_term_ref_pic_set( idxRps ) syntax structure is included in the sequence parameter set, the term "the current 
picture" applies to all pictures in the coded video sequence with short_term_ref_pic_set_idx equal to idxRps. 

inter_ref_pic_set_prediction_flag equal to 1 specifies that the reference picture set of the current picture is predicted 
using another reference picture set in the active sequence parameter set. When inter_ref_pic_set_prediction_flag is not 
present, it is inferred to be equal to 0. 

delta_idx_minus1 plus 1 specifies the difference between the index of the reference picture set of the current picture and 
the index of the reference picture set used for inter reference picture set prediction. The value of delta_idx_minus1 shall 
be in the range of 0 to idxRps − 1, inclusive. When delta_idx_minus1 is not present, it is inferred to be equal to 0. 

The variable RIdx is derived as follows. 



   ISO/IEC 23008-2 : 201x (E) 

83 Draft Rec. ITU-T H.HEVC (201x E) 

RIdx = idxRps − ( delta_idx_minus1 + 1 )  (7-51) 

delta_rps_sign and abs_delta_rps_minus1 together specify the value of the variable DeltaRPS as follows 

DeltaRPS = (1 − 2 * delta_rps_sign ) * ( abs_delta_rps_minus1 + 1 ) (7-52) 

The variable DeltaRPS represents the value to be added to picture order count difference values of the reference picture 
set used for inter reference picture set prediction to obtain the picture order count difference values of the current 
reference picture set. 

used_by_curr_pic_flag[ j ] equal to 0 specifies that the j-th picture is not used for reference by the current picture. 

use_delta_flag[ j ] equal to 1 specifies that the j-th picture is included in the reference picture set of the current picture. 
use_delta_flag[ j ] equal to 0 specifies that the j-th picture is not included in the reference picture set of the current 
picture. When use_delta_flag[ j ] is not present, its value is inferred to be equal to 1. 

When inter_ref_pic_set_prediction_flag is equal to 1, the variables DeltaPocS0[ idxRps ][ i ], 
UsedByCurrPicS0[ idxRps ][ i ], and NumNegativePics[ idxRps ] are derived as follows. 

i = 0 
for( j = NumPositivePics[ RIdx ] − 1; j  >=  0; j−  − ) { 
 dPoc = DeltaPocS1[ RIdx ][ j ] + DeltaRPS 
 if( dPoc < 0  &&  use_delta_flag[ NumNegativePics[ RIdx ] + j ] ) { 
  DeltaPocS0[ idxRps ][ i ] = dPoc 
  UsedByCurrPicS0[ idxRps ][ i++ ] = used_by_curr_pic_flag[ NumNegativePics[ RIdx ] + j ] 
 } 
} 
if( DeltaRPS < 0  &&  use_delta_flag[ NumDeltaPocs[ RIdx ] ] ) { 
 DeltaPocS0[ idxRps ][ i ] = DeltaRPS 
 UsedByCurrPicS0[ idxRps ][ i++ ] = used_by_curr_pic_flag[ NumDeltaPocs[ RIdx ] ] (7-53) 
} 
for( j = 0; j < NumNegativePics[ RIdx ]; j++ ) { 
 dPoc = DeltaPocS0[ RIdx ][ j ] + DeltaRPS 
 if( dPoc < 0  &&  use_delta_flag[ j ] ) { 
  DeltaPocS0[ idxRps ][ i ] = dPoc 
  UsedByCurrPicS0[ idxRps ][ i++ ] = used_by_curr_pic_flag[ j ] 
 } 
} 
NumNegativePics[ idxRps ] = i 

When inter_ref_pic_set_prediction_flag is equal to 1, the variables DeltaPocS1[ idxRps ][ i ], 
UsedByCurrPicS1[ idxRps ][ i ], and NumPositivePics[ idxRps ] are derived as follows. 

i = 0 
for( j = NumNegativePics[ RIdx ] − 1; j  >=  0; j−  − ) { 
 dPoc = DeltaPocS0[ RIdx ][ j ] + DeltaRPS 
 if( dPoc > 0  &&  use_delta_flag[ j ] ) { 
  DeltaPocS1[ idxRps ][ i ] = dPoc 
  UsedByCurrPicS1[ idxRps ][ i++ ] = used_by_curr_pic_flag[ j ] 
 } 
} 
if( DeltaRPS > 0  &&  use_delta_flag[ NumDeltaPocs[ RIdx ] ] ) { 
 DeltaPocS1[ idxRps ][ i ] = DeltaRPS 
 UsedByCurrPicS1[ idxRps ][ i++ ] = used_by_curr_pic_flag[ NumDeltaPocs[ RIdx ] ] (7-54) 
} 
for( j = 0; j < NumPositivePics[ RIdx ]; j++) { 
 dPoc = DeltaPocS1[ RIdx ][ j ] + DeltaRPS 
 if( dPoc > 0  &&  use_delta_flag[ NumNegativePics[ RIdx ] + j ] ) { 
  DeltaPocS1[ idxRps ][ i ] = dPoc 
  UsedByCurrPicS1[ idxRps ][ i++ ] = used_by_curr_pic_flag[ NumNegativePics[ RIdx ] + j ] 
 } 
} 
NumPositivePics[ idxRps ] = i 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 84 

num_negative_pics specifies the number of the following delta_poc_s0_minus1[ i ] and used_by_curr_pic_s0_flag[ i ] 
syntax elements. The value of num_negative_pics shall be in the range of 0 to 
sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ], inclusive. 

num_positive_pics specifies the number of the following delta_poc_s1_minus1[ i ] and used_by_curr_pic_s1_flag1[ i ] 
syntax elements. The value of num_positive_pics shall be in the range of 0 to 
sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ] − num_negative_pics, inclusive. 

delta_poc_s0_minus1[ i ] plus 1 specifies an absolute difference between two picture order count values for the i-th 
reference picture that has picture order count less than that of the current picture. The value of delta_poc_s0_minus1[ i ] 
shall be in the range of 0 to 215 − 1, inclusive. 

used_by_curr_pic_s0_flag[ i ] equal to 0 specifies that the i-th reference picture that has picture order count less than 
that of the current picture is not used for reference by the current picture. 

delta_poc_s1_minus1[ i ] plus 1 specifies an absolute difference between two picture order count values for the i-th 
reference picture that has picture order count greater than that of the current picture. The value of 
delta_poc_s1_minus1[ i ] shall be in the range of 0 to 215 − 1, inclusive. 

used_by_curr_pic_s1_flag[ i ] equal to 0 specifies that the i-th reference picture that has picture order count greater than 
that of the current picture is not used for reference by the current picture. 

When inter_ref_pic_set_prediction_flag is equal to 0, the variables NumNegativePics[ idxRps ], 
NumPositivePics[ idxRps ], UsedByCurrPicS0[ idxRps ][ i ], UsedByCurrPicS1[ idxRps ][ i ], DeltaPocS0[ idxRps ][ i ], 
and DeltaPocS1[ idxRps ][ i ] are derived as follows. 

NumNegativePics[ idxRps ] = num_negative_pics  (7-55) 
NumPositivePics[ idxRps ] = num_positive_pics  (7-56) 
UsedByCurrPicS0[ idxRps ][ i ] = used_by_curr_pic_s0_flag[ i ] (7-57) 
UsedByCurrPicS1[ idxRps ][ i ] = used_by_curr_pic_s1_flag[ i ] (7-58) 

– If the variable i is equal to 0, the following applies. 

DeltaPocS0[ idxRps ][ i ] = − ( delta_poc_s0_minus1[ i ] + 1 )  (7-59) 
DeltaPocS1[ idxRps ][ i ] = delta_poc_s1_minus1[ i ] + 1 (7-60) 

– Otherwise, the following applies. 

DeltaPocS0[ idxRps ][ i ] = DeltaPocS0[ idxRps ][ i − 1 ] − ( delta_poc_s0_minus1[ i ] + 1 )  (7-61) 
DeltaPocS1[ idxRps ][ i ] = DeltaPocS1[ idxRps ][ i − 1 ] + ( delta_poc_s1_minus1[ i ] + 1 )  (7-62) 

The variable NumDeltaPocs[ idxRps ] is derived as follows. 

NumDeltaPocs[ idxRps ] = NumNegativePics[ idxRps ] + NumPositivePics[ idxRps ] (7-63) 

7.4.8.3 Reference picture list modification semantics 

ref_pic_list_modification_flag_l0 equal to 1 indicates that reference picture list 0 is specified explicitly by a list of 
list_entry_l0[ i ] values. ref_pic_list_modification_flag_l0 equal to 0 indicates that reference picture list 0 is determined 
implicitly. When ref_pic_list_modification_flag_l0 is not present in the slice header, it is inferred to be equal to 0. 

list_entry_l0[ i ] specifies the index of the reference picture in RefPicListTemp0 to be placed at the current position of 
reference picture list 0. The length of the list_entry_l0[ i ] syntax element is Ceil( Log2( NumPocTotalCurr) ) bits. The 
value of list_entry_l0[ i ] shall be in the range of 0 to NumPocTotalCurr − 1, inclusive. When the syntax element 
list_entry_l0[ i ] is not present in the slice header, it is inferred to be equal to 0. [Ed. (YK/GJS): OK to remove that last 
sentence?] 



   ISO/IEC 23008-2 : 201x (E) 

85 Draft Rec. ITU-T H.HEVC (201x E) 

The variable NumPocTotalCurr is derived as follows. 

NumPocTotalCurr = 0; 
for( i = 0; i < NumNegativePics[ StRpsIdx ]; i++) 
 if(UsedByCurrPicS0[ StRpsIdx ][ i ] = = 1) 
  NumPocTotalCurr++ 
for( i = 0; i < NumPositivePics[ StRpsIdx ]; i++) (7-64) 
 if(UsedByCurrPicS1[ StRpsIdx ][ i ] = = 1) 
  NumPocTotalCurr++ 
for( i = 0; i < num_long_term_sps + num_long_term_pics; i++ ) 
 if( UsedByCurrPicLt[ i ] = = 1) 
  NumPocTotalCurr++ 

ref_pic_list_modification_flag_l1 equal to 1 indicates that reference picture list 1 is specified explicitly by a list of 
list_entry_l1[ i ] values. ref_pic_list_modification_flag_l1 equal to 0 indicates that reference picture list 1 is determined 
implicitly. When ref_pic_list_modification_flag_l1 is not present in the slice header, it is inferred to be equal to 0. 

list_entry_l1[ i ] specifies the index of the reference picture in RefPicListTemp1 to be placed at the current position of 
reference picture list 1. The length of the list_entry_l1[ i ] syntax element is Ceil( Log2( NumPocTotalCurr ) ) bits. The 
value of list_entry_l1[ i ] shall be in the range of 0 to NumPocTotalCurr − 1, inclusive. When the syntax element 
list_entry_l1[ i ] is not present in the slice header, it is inferred to be equal to 0. [Ed. (YK/GJS): OK to remove that last 
sentence?] 

7.4.8.4 Weighted prediction parameters semantics 

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of 
luma_log2_weight_denom shall be in the range of 0 to 7, inclusive. 

delta_chroma_log2_weight_denom is the difference of the base 2 logarithm of the denominator for all chroma 
weighting factors. 

The variable ChromaLog2WeightDenom is specified by luma_log2_weight_denom + 
delta_chroma_log2_weight_denom and it shall be in the range of 0 to 7, inclusive. 

luma_weight_l0_flag[ i ] equal to 1 specifies that weighting factors for the luma component of list 0 prediction using 
RefPicList0[ i ] are present. luma_weight_l0_flag[ i ] equal to 0 specifies that these weighting factors are not present.  

chroma_weight_l0_flag[ i ] equal to 1 specifies that weighting factors for the chroma prediction values of list 0 
prediction using RefPicList0[ i ] are present. chroma_weight_l0_flag[ i ] equal to 0 specifies that these weighting factors 
are not present.  When chroma_weight_l0_flag[ i ] is not present, it is inferred to be equal to 0. 

delta_luma_weight_l0[ i ] is the difference of the weighting factor applied to the luma prediction value for list 0 
prediction using RefPicList0[ i ].  

The variable LumaWeightL0[ i ] is specified by (1 << luma_log2_weight_denom ) + delta_luma_weight_l0[ i ]. When 
luma_weight_l0_flag[ i ] is equal to 1, the value of delta_luma_weight_l0[ i ] shall be in the range of −128 to 127, 
inclusive. When luma_weight_l0_flag[ i ] is equal to 0, LumaWeightL0[ i ] is inferred to be equal to 2luma_log2_weight_denom. 

luma_offset_l0[ i ] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicList0[ i ]. 
The value of luma_offset_l0[ i ] shall be in the range of −128 to 127, inclusive.  When luma_weight_l0_flag[ i ] is equal 
to 0, luma_offset_l0[ i ] is inferred as equal to 0. 

delta_chroma_weight_l0[ i ][ j ] is the difference of the weighting factor applied to the chroma prediction values for list 
0 prediction using RefPicList0[ i ] with j equal to 0 for Cb and j equal to 1 for Cr. 

The variable ChromaWeightL0[ i ][ j ] is specified by ( 1 << ChromaLog2WeightDenom ) + 
delta_chroma_weight_l0[ i ][ j ]. When chroma_weight_l0_flag[ i ] is equal to 1, the value of 
delta_chroma_weight_l0[ i ][ j ] shall be in the range of −128 to 127, inclusive.  When chroma_weight_l0_flag[ i ] is 
equal to 0, ChromaWeightL0[ i ][ j ] is inferred to be equal to 2ChromaLog2WeightDenom. 

delta_chroma_offset_l0[ i ][ j ] is the difference of the additive offset applied to the chroma prediction values for list 0 
prediction using RefPicList0[ i ] with j equal to 0 for Cb and j equal to 1 for Cr. 

The variable ChromaOffsetL0[ i ][ j ] is specified as follows: 

ChromaOffsetL0[ i ][ j ] = Clip3( −128, 127, ( delta_chroma_offset_l0[ i ][ j ] −  (7-65) 
    ( ( 128 * ChromaWeightL0[ i ][ j ] ) >> ChromaLog2WeightDenom ) + 128 ) ) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 86 

The value of delta_chroma_offset_l0[ i ][ j ] shall be in the range of −512 to 511, inclusive. When 
chroma_weight_l0_flag[ i ] is equal to 0, ChromaOffsetL0[ i ][ j ] is inferred to be equal to 0. 

luma_weight_l1_flag[ i ], chroma_weight_l1_flag[ i ], delta_luma_weight_l1[ i ], luma_offset_l1[ i ], 
delta_chroma_weight_l1[ i ][ j ], and delta_chroma_offset_l1[ i ][ j ] have the same semantics as 
luma_weight_l0_flag[ i ], chroma_weight_l0_flag[ i ], delta_luma_weight_l0[ i ], luma_offset_l0[ i ], 
delta_chroma_weight_l0[ i ][ j ], and delta_chroma_offset_l0[ i ][ j ], respectively, with l0, list 0, and List0 replaced by 
l1, list 1, and List1, respectively. 

The variable sumWeightL0Flags is specified as the sum of luma_weight_l0_flag[ i ] + 2 * chroma_weight_l0_flag[ i ], 
for i = 0..num_ref_idx_l0_active_minus1. 

When slice_type is equal to B, the variable sumWeightL1Flags is specified as the sum of 
luma_weight_l1_flag[ i ] + 2 * chroma_weight_l1_flag[ i ], for i = 0..num_ref_idx_l1_active_minus1. 

It is a requirement of bitstream conformance that, when slice_type is equal to P, sumWeightL0Flags shall be less than or 
equal to 24, and when slice_type is equal to B, the sum of sumWeightL0Flags and sumWeightL1Flags shall be less than 
or equal to 24. 

7.4.9 Slice segment data semantics 

7.4.9.1 General slice segment data semantics 

end_of_slice_segment_flag equal to 0 specifies that another coding tree unit is following in the slice. 
end_of_slice_segment_flag equal to 1 specifies the end of the slice segment, i.e. that no further coding tree unit follows 
in the slice segment. 

end_of_sub_stream_one_bit shall be equal to 1. 

7.4.9.2 Coding tree unit semantics 

The coding tree unit is the root node of the coding quadtree structure. 

7.4.9.3 Sample adaptive offset semantics 

sao_merge_left_flag equal to 1 specifies that the syntax elements sao_type_idx_luma, sao_type_idx_chroma, 
sao_band_position, sao_eo_class_luma, sao_eo_class_chroma, sao_offset_abs and sao_offset_sign are derived from the 
corresponding syntax elements of the left coding tree block; equal to 0 specifies that these syntax elements are not 
derived from the corresponding syntax elements of the left coding tree block. When sao_merge_left_flag is not present, it 
is inferred to be equal to 0. 

sao_merge_up_flag equal to 1 specifies that the syntax elements sao_type_idx_luma, sao_type_idx_chroma, 
sao_band_position, sao_eo_class_luma, sao_eo_class_chroma, sao_offset_abs and sao_offset_sign are derived from the 
corresponding syntax elements of the above coding tree block; equal to 0 specifies that these syntax elements are not 
derived from the corresponding syntax elements of the above coding tree block. When sao_merge_up_flag is not present, 
it is inferred to be equal to 0. 

sao_type_idx_luma indicates the offset type for the luma component. The array SaoTypeIdx[ cIdx ][ rx ][ ry ] indicates 
the offset type as specified in Table 7-8 of current coding tree block at position rx and ry for the colour component cIdx. 
The value of SaoTypeIdx[ 0 ][ rx ][ ry ] is derived as follows. 

– If sao_type_idx_luma is present, SaoTypeIdx[ 0 ][ rx ][ ry ] is set equal to sao_type_idx_luma. 

– Otherwise (sao_type_idx_luma is not present), SaoTypeIdx[ 0 ][ rx ][ ry ] is inferred as follows. 

– If sao_merge_left_flag is equal to 1, SaoTypeIdx[ 0 ][ rx ][ ry ] is set equal to SaoTypeIdx[ 0 ][ rx − 1 ][ ry  ]. 

– Otherwise, if sao_merge_up_flag is equal to 1, SaoTypeIdx[ 0 ][ rx ][ ry ] is set equal to 
SaoTypeIdx[ 0 ][ rx ][ ry − 1 ]. 

– Otherwise, SaoTypeIdx[ 0 ][ rx ][ ry ] is set equal to 0. 

sao_type_idx_chroma indicates the offset type for the chroma components. The values of SaoTypeIdx[ cIdx ][ rx ][ ry ] 
are derived as follows for cIdx equal to 1..2. 

– If sao_type_idx_chroma is present, SaoTypeIdx[ cIdx ][ rx ][ ry ] is set equal to sao_type_idx_chroma. 

– Otherwise (sao_type_idx_chroma is not present), SaoTypeIdx[ cIdx ][ rx ][ ry ] is inferred as follows. 

– If sao_merge_left_flag is equal to 1, SaoTypeIdx[ cIdx ][ rx ][ ry ] is set equal to SaoTypeIdx[ cIdx ][ rx − 1 ][ ry  ]. 



   ISO/IEC 23008-2 : 201x (E) 

87 Draft Rec. ITU-T H.HEVC (201x E) 

– Otherwise, if sao_merge_up_flag is equal to 1, SaoTypeIdx[ cIdx ][ rx ][ ry ] is set equal to 
SaoTypeIdx[ cIdx ][ rx ][ ry − 1 ]. 

– Otherwise, SaoTypeIdx[ cIdx ][ rx ][ ry ] is set equal to 0. 

Table 7-8 – Specification of the SAO type 

SaoTypeIdx[ cIdx ][ rx ][ ry ] SAO type (informative) 
0 Not applied 
1 Band offset 
2 Edge offset 

 

sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] indicates the offset value of i-th category of current coding tree block at position rx 
and ry for the colour component cIdx. 

When sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] is not present, it is inferred as follows. 

– If sao_merge_left_flag is equal to 1, sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] is set equal to 
sao_offset_abs[ cIdx ][ rx − 1 ][ ry ][ i ]. 

– Otherwise, if sao_merge_up_flag is equal to 1, sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] is set equal to 
sao_offset_abs[ cIdx ][ rx ][ ry − 1 ][ i ]. 

– Otherwise, sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] is set equal to 0. 

The variable bitDepth is derived as follows. 

– If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

– Otherwise (cIdx is equal to1 or 2), bitDepth is set equal to BitDepthC. 

sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] specifies the sign of sao_offset[ cIdx ][ rx ][ ry ][ i ] when 
SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 1. 

When sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] is not present, it is inferred as follows. 

– If sao_merge_left_flag is equal to 1, sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] is set equal to 
sao_offset_sign[ cIdx ][ rx − 1 ][ ry ][ i ] 

– Otherwise, if sao_merge_up_flag is equal to 1, sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] is set equal to 
sao_offset_sign[ cIdx ][ rx ][ ry − 1 ][ i ]. 

– Otherwise, sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] is set equal 0. 

The variable offsetSign is derived as follows. 

– If SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 2 and i is greater than 1,offsetSign is set equal to −1. 

– Otherwise, if SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 2 and i is less than 2, offsetSign is set equal to 1. 

– Otherwise, if sao_offset_sign[ cIdx ][ rx ][ ry ][ i ] is equal to 0, offsetSign is set to equal to 1. 

– Otherwise, offsetSign is set to equal to −1. 

The array SaoOffsetVal is derived as follows. 

SaoOffsetVal[ cIdx ][ rx ][ ry ][ 0 ] = 0  (7-66) 

SaoOffsetVal[ cIdx ][ rx ][ ry ][ i + 1 ] =  
   offsetSign*sao_offset_abs[ cIdx ][ rx ][ ry ][ i ] << ( bitDepth − Min( bitDepth, 10 ) )  (7-67) 

sao_band_position[ cIdx ][ rx ][ ry ] indicates the displacement of the band offset of the sample range when 
SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 1. 

When sao_band_position[ cIdx ][ rx ][ ry ] is not present it is inferred as follows. 

– If sao_merge_left_flag is equal to 1, sao_band_position[ cIdx ][ rx ][ ry ] is set equal to 
sao_band_position[ cIdx ][ rx − 1 ][ ry ]. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 88 

– Otherwise, if sao_merge_up_flag is equal to 1, sao_band_position[ cIdx ][ rx ][ ry ] is set equal to 
sao_band_position[ cIdx ][ rx ][ ry − 1 ]. 

– Otherwise, sao_band_position[ cIdx ][ rx ][ ry ] is set equal to 0. 

sao_eo_class_luma indicates the edge offset class for the luma component. The array SaoEoClass[ cIdx ][ rx ][ ry ] 
indicates the offset type as specified in Table 7-9 of current coding tree block at position rx and ry for the colour 
component cIdx. The value of SaoEoClass[ 0 ][ rx ][ ry ] is derived as follows. 

– If sao_eo_class_luma is present, SaoEoClass[ 0 ][ rx ][ ry ] is set equal to sao_eo_class_luma. 

– Otherwise (sao_eo_class_luma is not present), SaoEoClass[ 0 ][ rx ][ ry ] is inferred as follows. 

– If sao_merge_left_flag is equal to 1, SaoEoClass[ 0 ][ rx ][ ry ] is set equal to SaoEoClass[ 0 ][ rx − 1 ][ ry  ]. 

– Otherwise, if sao_merge_up_flag is equal to 1, SaoEoClass[ 0 ][ rx ][ ry ] is set equal to 
SaoEoClass[ 0 ][ rx ][ ry − 1 ]. 

– Otherwise, SaoEoClass[ 0 ][ rx ][ ry ] is set equal to 0. 

sao_eo_class_chroma indicates the edge offset class for the chroma components. The values of 
SaoEoClass[ cIdx ][ rx ][ ry ] are derived as follows for cIdx equal to 1..2. 

– If sao_eo_class_chroma is present, SaoEoClass[ cIdx ][ rx ][ ry ] is set equal to sao_eo_class_chroma. 

– Otherwise (sao_eo_class_chroma is not present), SaoEoClass[ cIdx ][ rx ][ ry ] is inferred as follows. 

– If sao_merge_left_flag is equal to 1, SaoEoClass[ cIdx ][ rx ][ ry ] is set equal to 
SaoEoClass[ cIdx ][ rx − 1 ][ ry  ]. 

– Otherwise, if sao_merge_up_flag is equal to 1, SaoEoClass[ cIdx ][ rx ][ ry ] is set equal to 
SaoEoClass[ cIdx ][ rx ][ ry − 1 ]. 

– Otherwise, SaoEoClass[ cIdx ][ rx ][ ry ] is set equal to 0. 

Table 7-9 – Specification of the SAO edge offset class 

SaoEoClass[ cIdx ][ rx ][ ry ] SAO edge offset class (informative) 
0 1D 0-degree edge offset 

1 1D 90-degree edge offset 

2 1D 135-degree edge offset 

3 1D 45-degree edge offset 

 

7.4.9.4 Coding quadtree semantics 

split_cu_flag[ x0 ][ y0 ] specifies whether a coding unit is split into coding units with half horizontal and vertical size. 
The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered coding block relative 
to the top-left luma sample of the picture. 

When split_cu_flag[ x0 ][ y0 ] is not present, the following applies: 

– If log2CbSize is greater than Log2MinCbSizeY, the value of split_cu_flag[ x0 ][ y0 ] is inferred to be equal to 1. 

– Otherwise (log2CbSize is equal to Log2MinCbSizeY), the value of split_cu_flag[ x0 ][ y0 ] is inferred to be equal to 
0. 

The array CtDepth[ x ][ y ] specifies the coding tree depth for a luma coding block covering location ( x, y ). When 
split_cu_flag[ x0 ][ y0 ] is equal to 0, CtDepth[ x ][ y ] is inferred to be equal to cqtDepth for x = x0..x0 + nCbS − 1 and 
y = y0..y0 + nCbS − 1. 

7.4.9.5 Coding unit semantics 

cu_transquant_bypass_flag equal to 1 specifies that the scaling and transform process as specified in subclause 8.6 and 
the in-loop filter process as specified in subclause 8.7 are bypassed. When cu_transquant_bypass_flag is not present, it is 
inferred to be equal to 0. 

cu_skip_flag[ x0 ][ y0 ] equal to 1 specifies that for the current coding unit, when decoding a P or B slice, no more 
syntax elements except the merging candidate index merge_idx[ x0 ][ y0 ] are parsed after cu_skip_flag[ x0 ][ y0 ]. 



   ISO/IEC 23008-2 : 201x (E) 

89 Draft Rec. ITU-T H.HEVC (201x E) 

cu_skip_flag[ x0 ][ y0 ] equal to 0 specifies that the coding unit is not skipped. The array indices x0, y0 specify the 
location ( x0, y0 ) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the 
picture. 

When cu_skip_flag[ x0 ][ y0 ] is not present, it is inferred to be equal to 0. 

pred_mode_flag equal to 0 specifies that the current coding unit is coded in inter prediction mode. pred_mode_flag 
equal to 1 specifies that the current coding unit is coded in intra prediction mode. The variable CuPredMode[ x ][ y ] is 
derived as follows for x = x0..x0 + nCbS − 1 and y = y0..y0 + nCbS − 1. 

– If pred_mode_flag is equal to 0,  

– CuPredMode[ x ][ y ] is set to MODE_INTER. 

– Otherwise (pred_mode_flag is equal to 1),  

– CuPredMode[ x ][ y ] is set to MODE_INTRA. 

When pred_mode_flag is not present, the variable CuPredMode[ x ][ y ] is derived as follows for x = x0..x0 + nCbS − 1 
and y = y0..y0 + nCbS − 1. 

– If slice_type is equal to I,  

– CuPredMode[ x ][ y ] is inferred to be equal to MODE_INTRA 

– Otherwise (slice_type is equal to P or B), if cu_skip_flag[ x0 ][ y0 ] is equal to 1,  

– CuPredMode[ x ][ y ] is inferred to be equal to MODE_SKIP 

part_mode specifies partitioning mode of the current coding unit. The semantics of part_mode depend on 
CuPredMode[ x0 ][ y0 ]. The variables PartMode and IntraSplitFlag are derived from the value of part_mode as defined 
in Table 7-10.  

The value of part_mode is restricted as follows. 

– If CuPredMode[ x0 ][ y0 ] is equal to MODE_INTRA, part_mode shall be equal to 0 or 1. 

– Otherwise (CuPredMode[ x0 ][ y0 ] is equal to MODE_INTER), the following applies 

– If log2CbSize is greater than Log2MinCbSizeY and amp_enabled_flag is equal to 1, part_mode shall be in the 
range of 0 to 2, inclusive and in the range of 4 to 7, inclusive. 

– Otherwise, if log2CbSize is greater than Log2MinCbSizeY and amp_enabled_flag is equal to 0, part_mode 
shall be in the range of 0 to 2, inclusive. 

– Otherwise, if log2CbSize is equal to 3, the value of part_mode shall be in the range of 0 to 2, inclusive. 

– Otherwise (log2CbSize is greater than 3), the value of part_mode shall be in the range of 0 to 3, inclusive. 

When part_mode is not present, the variables PartMode and IntraSplitFlag are derived as follows. 

– PartMode is inferred to be equal to PART_2Nx2N, 

– IntraSplitFlag is inferred to be equal to 0. 

pcm_flag[ x0 ][ y0 ] equal to 1 specifies that pcm_sample( ) syntax is present and transform_tree( ) syntax is not present 
in the coding unit including the luma coding block at location ( x0, y0 ). pcm_flag[ x0 ][ y0 ] equal to 0 specifies that 
pcm_sample( ) syntax is not present. When pcm_flag[ x0 ][ y0 ] is not present, it is inferred to be equal to 0. 

The value of pcm_flag[ x0 + i ][ y0 + j ] with i = 1..nCbS − 1, j = 1..nCbS − 1 is inferred to be equal to 
pcm_flag[ x0 ][ y0 ]. 

pcm_alignment_zero_bit is a bit equal to 0. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 90 

Table 7-10 – Name association to prediction mode and partitioning type 

CuPredMode[ x0 ][ y0 ] part_mode IntraSplitFlag PartMode 

MODE_INTRA 
0 0 PART_2Nx2N 
1 1 PART_NxN 

MODE_INTER 

0 0 PART_2Nx2N 
1 0 PART_2NxN 
2 0 PART_Nx2N 
3 0 PART_NxN 
4 0 PART_2NxnU 
5 0 PART_2NxnD 
6 0 PART_nLx2N 
7 0 PART_nRx2N 

prev_intra_luma_pred_flag[ x0 + i ][ y0 + j ], mpm_idx[ x0 + i ][ y0 + j ] and 
rem_intra_luma_pred_mode[ x0 + i ][ y0 + j ] specify the intra prediction mode for luma samples. The array indices 
x0 + i, y0 + j specify the location ( x0 + i, y0 + j ) of the top-left luma sample of the considered prediction block relative 
to the top-left luma sample of the picture. When prev_intra_luma_pred_flag[ x0 + i ][ y0 + j ] is equal to 1, the intra 
prediction mode is inferred from a neighbouring intra-predicted prediction unit according to subclause 8.4.2. 

intra_chroma_pred_mode[ x0 ][ y0 ] specifies the intra prediction mode for chroma samples. The array indices x0, y0 
specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma 
sample of the picture. 

rqt_root_cbf equal to 1 specifies that transform_tree( ) syntax is present for the current coding unit. rqt_root_cbf equal 
to 0 specifies that transform_tree( ) syntax is not present for the current coding unit. 

When rqt_root_cbf is not present, its value is inferred to be equal to 1. 

7.4.9.6 Prediction unit semantics 

mvp_l0_flag[ x0 ][ y0 ] specifies the motion vector predictor index of list 0 where x0, y0 specify the location ( x0, y0 ) 
of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.  

When mvp_l0_flag[ x0 ][ y0 ] is not present, it is inferred to be equal to 0. 

mvp_l1_flag[ x0 ][ y0 ] has the same semantics as mvp_l0_flag, with l0 and list 0 replaced by l1 and list 1, respectively. 

merge_flag[ x0 ][ y0 ] specifies whether the inter prediction parameters for the current prediction unit are inferred from 
a neighbouring inter-predicted partition. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma 
sample of the considered prediction block relative to the top-left luma sample of the picture. 

merge_idx[ x0 ][ y0 ] specifies the merging candidate index of the merging candidate list where x0, y0 specify the 
location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of 
the picture. 

When merge_idx[ x0 ][ y0 ] is not present, it is inferred to be equal to 0. 

inter_pred_idc[ x0 ][ y0 ] specifies whether list0, list1 or bi-prediction is used for the current prediction unit according 
to Table 7-11. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered 
prediction block relative to the top-left luma sample of the picture.  

Table 7-11 – Name association to inter prediction mode 

inter_pred_idc Name of inter_pred_idc 

( nPbW + nPbH ) != 12 ( nPbW + nPbH ) = = 12 

0 Pred_L0 Pred_L0 

1 Pred_L1 Pred_L1 

2 Pred_BI na 



   ISO/IEC 23008-2 : 201x (E) 

91 Draft Rec. ITU-T H.HEVC (201x E) 

 

When inter_pred_idc[ x0 ][ y0 ] is not present, it is inferred to be equal to Pred_L0. 

ref_idx_l0[ x0 ][ y0 ] specifies the list 0 reference picture index for the current prediction unit. The array indices x0, y0 
specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma 
sample of the picture.  

When ref_idx_l0[ x0 ][ y0 ] is not present it is inferred to be equal to 0. 

ref_idx_l1[ x0 ][ y0 ] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively. 

7.4.9.7 PCM sample semantics 

pcm_sample_luma[ i ] represents a coded luma sample value in the raster scan within the coding unit. The number of 
bits used to represent each of these samples is PCMBitDepthY. 

pcm_sample_chroma[ i ] represents a coded chroma sample value in the raster scan within the coding unit. The first 
half of the values represent coded Cb samples and the remaining half of the values represent coded Cr samples. The 
number of bits used to represent each of these samples is PCMBitDepthC. 

7.4.9.8 Transform tree semantics 

split_transform_flag[ x0 ][ y0 ][ trafoDepth ] specifies whether a block is split into four blocks with half horizontal and 
half vertical size for the purpose of transform coding. The array indices x0, y0 specify the location ( x0, y0 ) of the top-
left luma sample of the considered block relative to the top-left luma sample of the picture. The array index trafoDepth 
specifies the current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is 
equal to 0 for blocks that correspond to coding blocks. 

The variable interSplitFlag is derived as follows. 

– If max_transform_hierarchy_depth_inter is equal to 0 and CuPredMode[ x0 ][ y0 ] is equal to MODE_INTER and 
PartMode is not equal to PART_2Nx2N and trafoDepth is equal to 0, interSplitFlag is set to 1. 

– Otherwise, interSplitFlag is set to 0. 

When split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is not present, it is inferred as follows: 

– If one or more of the following conditions are true, the value of split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is 
inferred to be equal to 1. 

– log2TrafoSize is greater than Log2MaxTrafoSize 

– IntraSplitFlag is equal to 1 and trafoDepth is equal to 0 

– interSplitFlag is equal to 1 

– Otherwise, the value of split_transform_flag[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0. 

cbf_luma[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the luma transform block contains one or more transform 
coefficient levels not equal to 0. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the 
considered transform block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the 
current subdivision level of a coding block into blocks for the purpose of transform coding. trafoDepth is equal to 0 for 
blocks that correspond to coding blocks. 

When cbf_luma[ x0 ][ y0 ][ trafoDepth ] is not present, it is inferred to be equal to 1. 

cbf_cb[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the Cb transform block contains one or more transform 
coefficient levels not equal to 0. The array indices x0, y0 specify the top-left location ( x0, y0 ) of the considered 
transform unit. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the 
purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks. 

When cbf_cb[ x0 ][ y0 ][ trafoDepth ] is not present, the value of cbf_cb[ x0 ][ y0 ][ trafoDepth ] is inferred as follows. 

– If trafoDepth is greater than 0 and log2TrafoSize is equal to 2, cbf_cb[ x0 ][ y0 ][ trafoDepth ] is inferred to be 
equal to cbf_cb[ xBase ][ yBase ][ trafoDepth − 1 ] 

– Otherwise, cbf_cb[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0. 

cbf_cr[ x0 ][ y0 ][ trafoDepth ] equal to 1 specifies that the Cr transform block contains one or more transform 
coefficient levels not equal to 0. The array indices x0, y0 specify the top-left location ( x0, y0 ) of the considered 
transform unit. The array index trafoDepth specifies the current subdivision level of a coding block into blocks for the 
purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding blocks. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 92 

When cbf_cr[ x0 ][ y0 ][ trafoDepth ] is not present, the value of cbf_cr[ x0 ][ y0 ][ trafoDepth ] is inferred as follows. 

– If trafoDepth is greater than 0 and log2TrafoSize is equal to 2, cbf_cr[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal 
to cbf_cr[ xBase ][ yBase ][ trafoDepth − 1 ] 

– Otherwise, cbf_cr[ x0 ][ y0 ][ trafoDepth ] is inferred to be equal to 0. 

7.4.9.9 Motion vector difference semantics 

abs_mvd_greater0_flag[ compIdx ] specifies whether the absolute value of a motion vector component difference is 
greater than 0. The horizontal motion vector component difference is assigned compIdx = 0 and the vertical motion 
vector component is assigned compIdx = 1. 

abs_mvd_greater1_flag[ compIdx ] specifies whether the absolute value of a motion vector component difference is 
greater than 1. The horizontal motion vector component difference is assigned compIdx = 0 and the vertical motion 
vector component is assigned compIdx = 1. 

When abs_mvd_greater1_flag[ compIdx ] is not present, it is inferred to be equal to 0. 

abs_mvd_minus2[ compIdx ] is the absolute value of a motion vector component difference minus 2. The horizontal 
motion vector component difference is assigned compIdx = 0 and the vertical motion vector component is assigned 
compIdx = 1. 

When abs_mvd_minus2[ compIdx ] is not present, it is inferred as follows. 

– If abs_mvd_greater1_flag[ compIdx ] is equal to 0, abs_mvd_minus2[ compIdx ] is inferred to be equal to −1. 

– Otherwise (abs_mvd_greater1_flag[ compIdx ] is equal to 1), abs_mvd_minus2[ compIdx ] is inferred to be equal 
to 0. 

mvd_sign_flag[ compIdx ] specifies the sign of a motion vector component difference as follows. 

– If mvd_sign_flag[ compIdx ] is equal to 0, the corresponding motion vector component difference has a positive 
value.  

– Otherwise (mvd_sign_flag[ compIdx ] is equal to 1), the corresponding motion vector component difference has a 
negative value. 

The horizontal motion vector component difference is assigned compIdx = 0 and the vertical motion vector component is 
assigned compIdx = 1. 

When mvd_sign_flag[ compIdx ] is not present, it is inferred to be equal to 0. 

The motion vector difference lMvd[ compIdx ] for compIdx = 0..1 is derived as follows. 

lMvd[ compIdx ] = abs_mvd_greater0_flag[ compIdx ] *  
   ( abs_mvd_minus2[ compIdx ] + 2 ) * (7-68) 
   ( 1 − 2 * mvd_sign_flag[ compIdx ] ) 

The variable MvdLX[ x0 ][ y0 ][ compIdx ] with X being either 0 or 1, specifies the difference between a list X vector 
component to be used and its prediction. The value of MvdLX[ x0 ][ y0 ][ compIdx ] shall be in the range of −215 to 
215 − 1. The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction 
block relative to the top-left luma sample of the picture. The horizontal motion vector component difference is assigned 
compIdx = 0 and the vertical motion vector component is assigned compIdx = 1. 

– If refList is equal to 0, MvdL0[ x0 ][ y0 ][ compIdx ] is set equal to lMvd[ compIdx ] for compIdx = 0..1. 

– Otherwise (refList is equal to 1), MvdL1[ x0 ][ y0 ][ compIdx ] is set equal to lMvd[ compIdx ] for compIdx = 0..1. 

7.4.9.10 Transform unit semantics 

The transform coefficient levels are parsed into the arrays TransCoeffLevel[ x0 ][ y0 ][ cIdx ][ xC ][ yC ]. The array 
indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block relative to the 
top-left luma sample of the picture. The array index cIdx specifies an indicator for the colour component; it is equal to 0 
for luma, equal to 1 for Cb, and equal to 2 for Cr. The array indices xC, yC specify the transform coefficient location 
( xC, yC ) within the current transform block. When the value of TransCoeffLevel[ x0 ][ y0 ][ cIdx ][ xC ][ yC ] is not 
specified in subclause 7.3.9.11 residual coding syntax, it is inferred to be equal to 0. 

cu_qp_delta_abs specifies the absolute value of the difference between a luma quantization parameter for the coding 
unit containing cu_qp_delta_abs and its prediction. 

cu_qp_delta_sign specifies the sign of a CuQpDelta as follows. 



   ISO/IEC 23008-2 : 201x (E) 

93 Draft Rec. ITU-T H.HEVC (201x E) 

– If cu_qp_delta_sign is equal to 0, the corresponding CuQpDelta has a positive value.  

– Otherwise (cu_qp_delta_sign is equal to 1), the corresponding CuQpDelta has a negative value. 

When cu_qp_delta_sign is not present, it is inferred to be equal to 0. 

When cu_qp_delta_abs is present, the variables IsCuQpDeltaCoded and CuQpDelta are derived as follows. 

IsCuQpDeltaCoded = 1 (7-69) 

CuQpDelta = cu_qp_delta_abs * ( 1 − 2 * cu_qp_delta_sign ) (7-70) 

The decoded value of CuQpDelta shall be in the range of −( 26+ QpBdOffsetY / 2 ) to +( 25+ QpBdOffsetY / 2 ), 
inclusive. 

7.4.9.11 Residual coding semantics 

For intra prediction, different scanning orders are used. The variable scanIdx specifies which scan order is used where 
scanIdx equal to 0 specifies an up-right diagonal scan order, scanIdx equal to 1 specifies a horizontal scan order, and 
scanIdx equal to 2 specifies a vertical scan order. The value of scanIdx is derived as follows. 

– If CuPredMode[ x0 ][ y0 ] is equal to MODE_INTRA and one or more of the following conditions are true,  

– log2TrafoSize is equal to 2 

– log2TrafoSize is equal to 3 and cIdx is equal to 0 

predModeIntra is derived as follows. 

– If cIdx is equal to 0, predModeIntra is set equal to IntraPredModeY[ x0 ][ y0 ]. 

– Otherwise, predModeIntra is set equal to IntraPredModeC. 

scanIdx is derived as follows. 

– If predModeIntra is in the range from 6 to 14, inclusive, scanIdx is set equal to 2. 

– Otherwise if predModeIntra is in the range from 22 to 30, inclusive, scanIdx is set equal to 1. 

– Otherwise, scanIdx is set equal to 0. 

– Otherwise, scanIdx is set equal to 0. 

transform_skip_flag[ x0 ][ y0 ][ cIdx ] specifies whether a transform is applied to the associated transform block or not: 
The array indices x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered transform block 
relative to the top-left luma sample of the picture. The array index cIdx specifies an indicator for the colour component; 
it is equal to 0 for luma, equal to 1 for Cb, and equal to 2 for Cr. transform_skip_flag[ x0 ][ y0 ][ cIdx ] equal to 1, 
specifies that no transform will be applied to the current transform block. When transform_skip_flag[ x0 ][ y0 ][ cIdx ] is 
not present, it is inferred to be equal to 0.  

last_significant_coeff_x_prefix specifies the prefix of the column position of the last significant coefficient in scanning 
order within a transform block. The values of last_significant_coeff_x_prefix shall be in the range from 0 to 
( log2TrafoSize << 1 ) − 1, inclusive. 

last_significant_coeff_y_prefix specifies the prefix of the row position of the last significant coefficient in scanning 
order within a transform block. The values of last_significant_coeff_y_prefix shall be in the range from 0 to 
( log2TrafoSize << 1 ) − 1, inclusive. 

last_significant_coeff_x_suffix specifies the suffix of the column position of the last significant coefficient in scanning 
order within a transform block. The values of last_significant_coeff_x_suffix shall be in the range from 0 to 
( 1 << ( ( last_significant_coeff_x_prefix >> 1 ) − 1 ) ) − 1, inclusive. 

The column position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffX 
is derived as follows. 

– If last_significant_coeff_x_suffix is not present, the following applies. 

LastSignificantCoeffX  =  last_significant_coeff_x_prefix (7-71) 

– Otherwise (last_significant_coeff_x_suffix is present), the following applies. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 94 

LastSignificantCoeffX  =  (1 << ((last_significant_coeff_x_prefix >> 1) − 1))  *    
    (2 + (last_significant_coeff_x_prefix & 1))  +   (7-72) 
    last_significant_coeff_x_suffix 

last_significant_coeff_y_suffix specifies the suffix of the row position of the last significant coefficient in scanning 
order within a transform block. The values of last_significant_coeff_y_suffix shall be in the range from 0 to 
( 1 << (  ( last_significant_coeff_y_prefix >> 1 ) − 1 ) ) − 1, inclusive. 

The row position of the last significant coefficient in scanning order within a transform block LastSignificantCoeffY is 
derived as follows. 

– If last_significant_coeff_y_suffix is not present, the following applies. 

LastSignificantCoeffY  =  last_significant_coeff_y_prefix (7-73) 

– Otherwise (last_significant_coeff_y_suffix is present), the following applies. 

LastSignificantCoeffY  =  (1 << ((last_significant_coeff_y_prefix >> 1) − 1))  *    
    (2 + (last_significant_coeff_y_prefix & 1))  +   (7-74)  
    last_significant_coeff_y_suffix 

When scanIdx is equal to 2, the coordinates are swapped as follows. 

( LastSignificantCoeffX, LastSignificantCoeffY ) = Swap( LastSignificantCoeffX, LastSignificantCoeffY ) (7-75) 

coded_sub_block_flag[ xS ][ yS ] specifies the following for the sub-block at location ( xS, yS ) within the current 
transform block, where a sub-block is a (4x4) array of 16 transform coefficient levels. 

– If coded_sub_block_flag[ xS ][ yS ] is equal to 0, the 16 transform coefficient levels of the sub-block at location 
( xS, yS ) are inferred to be equal to 0; 

– Otherwise (coded_sub_block_flag[ xS ][ yS ] is equal to 1), the following applies. 

– If ( xS, yS ) is equal to ( 0, 0 ) and ( LastSignificantCoeffX, LastSignificantCoeffY ) is not equal to ( 0, 0 ), at 
least one of the 16 significant_coeff_flag syntax elements is present for the sub-block at location ( xS, yS ) . 

– Otherwise, at least one of the 16 transform coefficient levels of the sub-block at location ( xS, yS ) has a non 
zero value. 

When coded_sub_block_flag[ xS ][ yS ] is not present, it is inferred as follows. 

– If one or more of the following conditions are true, coded_sub_block_flag[ xS ][ yS ] is inferred to be equal to 1. 

– ( xS, yS ) is equal to ( 0, 0 ) 

– ( xS, yS ) is equal to ( LastSignificantCoeffX >> 2 , LastSignificantCoeffY >> 2 ) 

– Otherwise, coded_sub_block_flag[ xS ][ yS ] is inferred to be equal to 0. 

significant_coeff_flag[ xC ][ yC ] specifies for the transform coefficient position ( xC, yC ) within the current transform 
block whether the corresponding transform coefficient level at location ( xC, yC ) is non-zero as follows. 

– If significant_coeff_flag[ xC ][ yC ] is equal to 0, the transform coefficient level at location ( xC, yC ) is set equal 
to 0. 

– Otherwise (significant_coeff_flag[ xC ][ yC ] is equal to 1), the transform coefficient level at location ( xC, yC ) has 
a non-zero value. 

When significant_coeff_flag[ xC ][ yC ] is not present, it is inferred as follows. 

– If ( xC, yC ) is the last significant location ( LastSignificantCoeffX, LastSignificantCoeffY ) in scan order or all of 
the following conditions are true, significant_coeff_flag[ xC ][ yC ] is inferred to be equal to 1. 

– ( xC & 3, yC & 3 ) is equal to ( 0, 0 ) 

– inferSbDcSigCoeffFlag is equal to 1 

– coded_sub_block_flag[ xS ][ yS ] is equal to 1 

– Otherwise, significant_coeff_flag[ xC ][ yC ] is inferred to be equal to 0. 



   ISO/IEC 23008-2 : 201x (E) 

95 Draft Rec. ITU-T H.HEVC (201x E) 

coeff_abs_level_greater1_flag[ n ] specifies for the scanning position n whether there are transform coefficient levels 
greater than 1. 

When coeff_abs_level_greater1_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_abs_level_greater2_flag[ n ] specifies for the scanning position n whether there are transform coefficient levels 
greater than 2. 

When coeff_abs_level_greater2_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_sign_flag[ n ] specifies the sign of a transform coefficient level for the scanning position n as follows. 

– If coeff_sign_flag[ n ] is equal to 0, the corresponding transform coefficient level has a positive value.  

– Otherwise (coeff_sign_flag[ n ] is equal to 1), the corresponding transform coefficient level has a negative value. 

When coeff_sign_flag[ n ] is not present, it is inferred to be equal to 0. 

coeff_abs_level_remaining[ n ] is the remaining absolute value of a transform coefficient level that is coded with 
Golomb-Rice code at the scanning position n. The value of coeff_abs_level_remaining[ n ] is constrained that the 
corresponding value of TransCoeffLevel[x0][y0][cIdx][xC][yC] is in the range from −32768 to 32767, inclusive. When 
coeff_abs_level_remaining [ n ] is not present, it is inferred as 0. 

8 Decoding process 

8.1 General decoding process 
The input of this process is a bitstream and the output is a list of decoded pictures. 

The set TargetDecLayerIdSet, which specifies the set of nuh_reserved_zero_6bits values of  NAL units to be decoded, is 
specified as follows: 

– If some external means not specified in this Specification is available to set TargetDecLayerIdSet, 
TargetDecLayerIdSet is set by the external means. 

– Otherwise if the decoding process is invoked in a bitstream conformance test as specified in subclause C.1, 
TargetDecLayerIdSet is set as specified in subclause C.1. 

– Otherwise, TargetDecLayerIdSet contains only one nuh_reserved_zero_6bits vlaue that  is equal to 0. 

The variable HighestTid, which identifies the highest temporal sub-layer to be decoded, is specified as follows: 

– If some external means not specified in this Specification is available to set HighestTid, HighestTid is set by the 
external means. 

– Otherwise if the decoding process is invoked in a bitstream conformance test as specified in subclause C.1, 
HighestTid is set as specified in subclause C.1. 

– Otherwise, HighestTid is set to sps_max_sub_layers_minus1. 

The sub-bitstream extraction process as specified in subclause 10.1 is applied with the bitstream, HighestTid and 
TargetDecLayerIdSet as inputs and the output is assigned to a bitstream referred to as BitstreamToDecode. 

The following applies to each coded picture (referred to as the current picture,and denoted by the variable CurrPic) in 
BitstreamToDecode. 

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows: 

– If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL. 

– Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr. 

The decoding process for the current picture takes as input the syntax elements and upper-case variables from clause 7. 
When interpreting the semantics of each syntax element in each NAL unit, the term "the bitstream" (or part thereof, e.g. a 
coded video sequence of the bitstream) refers to BitstreamToDecode (or part thereof). 

The decoding process is specified such that all decoders will produce numerically identical cropped output pictures. Any 
decoding process that produces identical cropped output pictures to those produced by the process described herein (with 
the correct output order or output timing, as specified) conforms to the decoding process requirements of this 
Specification. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 96 

When the current picture is a BLA picture that has nal_unit_type equal to BLA_W_LP or is a CRA picture, the following 
applies: 

– If some external means not specified in this Specification is available to set the variable UseAltCpbParamsFlag to a 
value, UseAltCpbParamsFlag is set to the value provided by the external means. 

– Otherwise, the value of UseAltCpbParamsFlag is set to 0. 

When the current picture is a CRA picture, the following applies: 

– If some external means not specified in this Specification is available to set the variable HandleCraAsBlaFlag to a 
value, HandleCraAsBlaFlag is set to the value provided by the external means. 

– Otherwise, the value of HandleCraAsBlaFlag is set to 0. 

When the current picture is a CRA picture and HandleCraAsBlaFlag is equal to 1, the value of 
no_output_of_prior_pics_flag is set to 1 and the following applies during the parsing and decoding processes for each 
coded slice segment NAL unit: [Ed. (GJS): Do not set a syntax element equal to a value. You can only do that with 
variables. Create a variable called something like NoOutputOfPriorPicsFlag and use that instead.] 

– If UseAltCpbParamsFlag is equal to 0, the value of nal_unit_type is set to BLA_W_LP. [Ed. (GJS): Do not set a 
syntax element equal to a value. You can only do that with variables. Create a variable called something like 
BlaPicActionFlag and use that instead.] 

– Otherwise, the value of nal_unit_type is set to BLA_W_DLP. [Ed. (GJS): Do not set a syntax element equal to a 
value. Create a variable called something like BlaPicActionFlag and use that instead.] 

Each picture referred to in this clause is a complete coded picture. 

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows: 

– If separate_colour_plane_flag is equal to 0, the decoding process is invoked a single time with the current picture 
being the output. 

– Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the 
decoding process are all NAL units of the coded picture with identical value of colour_plane_id. The decoding 
process of NAL units with a particular value of colour_plane_id is specified as if only a coded video sequence with 
monochrome colour format with that particular value of colour_plane_id would be present in the bitstream. The 
output of each of the three decoding processes is assigned to the 3 sample arrays of the current picture with the NAL 
units with colour_plane_id equal to 0 being assigned to SL, the NAL units with colour_plane_id equal to 1 being 
assigned to SCb, and the NAL units with colour_plane_id equal to 2 being assigned to SCr. 

NOTE – The variable ChromaArrayType is derived as 0 when separate_colour_plane_flag is equal to 1 and chroma_format_idc is 
equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical to that of monochrome 
pictures with chroma_format_idc being equal to 0. 

The decoding process operates as follows for the current picture CurrPic: 

1. The decoding of NAL units is specified in subclause 8.2. 

2. The processes in subclause 8.3 specify decoding processes using syntax elements in the slice segment layer and 
above: 

– Variables and functions relating to picture order count are derived in subclause 8.3.1 (which only needs to 
be invoked for the first slice segment of a picture). 

– The decoding process for reference picture set in subclause 8.3.2 is invoked, wherein reference pictures 
may be marked as "unused for reference" or "used for long-term reference" (which only needs to be 
invoked for the first slice segment of a picture). 

– When the current picture is a BLA picture or is a CRA picture that is the first picture in the bitstream, the 
decoding process for generating unavailable reference pictures specified in subclause 8.3.3 is invoked 
(which only needs to be invoked for the first slice segment of a picture). 

– PicOutputFlag is set as follows: 

– If the current picture is a RASL picture and the previous RAP picture in decoding order is a BLA 
picture or is a CRA picture that is the first coded picture in the bitstream, PicOutputFlag is set equal 
to 0. 

– Otherwise, PicOutputFlag is set equal to pic_output_flag. 



   ISO/IEC 23008-2 : 201x (E) 

97 Draft Rec. ITU-T H.HEVC (201x E) 

– At the beginning of the decoding process for each P or B slice, the decoding process for reference picture 
lists construction specified in subclause 8.3.4 is invoked for derivation of reference picture list 0 
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicList1). 

– After all slices of the current picture have been decoded, the decoded picture is marked as "used for short-
term reference". 

3. The processes in subclauses 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the 
coding tree unit layer and above. 

8.2 NAL unit decoding process 
Inputs to this process are NAL units. 

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units. 

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the 
decoding processes specified for the RBSP syntax structure in the NAL unit as follows. 

Subclause 8.3 describes the decoding process for VCL NAL units. 

NAL units with nal_unit_type equal to VPS_NUT, SPS_NUT, and PPS_NUT contain video parameter sets, sequence 
parameter sets, and picture parameter sets, respectively. Sequence parameter sets are used in the decoding processes of 
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets or active 
parameter sets SEI messages. Picture parameter sets are used in the decoding processes of other NAL units as determined 
by reference to a picture parameter set within the slice segment headers. 

8.3 Slice decoding process 

8.3.1 Decoding process for picture order count 

Output of this process is PicOrderCntVal, the picture order count of the current picture. 

Picture order counts are used to identify pictures, for deriving motion parameters in merge mode and motion vector 
prediction, to represent picture order differences between pictures for motion vector derivation, and for decoder 
conformance checking (see subclause C.5). 

Each coded picture is associated with one picture order count, denoted as PicOrderCntVal. 

When none of the following conditions is true: [Ed. (GJS): Logical structure of sentence seems strange.] 

– The current picture is an IDR 

– The current picture is a BLA picture 

– The current picture is a CRA picture and is the first coded picture in the bitstream 

the variables prevPicOrderCntLsb and prevPicOrderCntMsb are derived as follows. Let prevTid0Pic be the previous 
reference picture in decoding order that has TemporalId equal to 0. The variable prevPicOrderCntLsb is set equal to 
pic_order_cnt_lsb of prevTid0Pic, and the variable prevPicOrderCntMsb is set equal to PicOrderCntMsb of prevTid0Pic. 

The variable PicOrderCntMsb of the current picture is derived as follows. 

– If the current picture is an IDR or a BLA picture, or if the first coded picture in the bitstream is a CRA picture and 
the current picture is the first coded picture in the bitstream, PicOrderCntMsb is set equal to 0. 

– Otherwise, PicOrderCntMsb is derived as specified by the following pseudo-code: 

if( ( pic_order_cnt_lsb <  prevPicOrderCntLsb )  && 
  ( ( prevPicOrderCntLsb − pic_order_cnt_lsb )  >=  ( MaxPicOrderCntLsb / 2 ) ) ) 
 PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-1) 
else if( (pic_order_cnt_lsb  >  prevPicOrderCntLsb )  && 
  ( (pic_order_cnt_lsb − prevPicOrderCntLsb )  >  ( MaxPicOrderCntLsb / 2 ) ) ) 
 PicOrderCntMsb = prevPicOrderCntMsb − MaxPicOrderCntLsb 
else 
 PicOrderCntMsb = prevPicOrderCntMsb 

PicOrderCntVal is derived as 

PicOrderCntVal = PicOrderCntMsb + pic_order_cnt_lsb (8-2) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 98 

NOTE 1 – All IDR pictures will have PicOrderCntVal equal to 0 since pic_order_cnt_lsb is inferred to be 0 for IDR pictures and 
prevPicOrderCntLsb and prevPicOrderCntMsb are both set equal to 0. 

The value of PicOrderCntVal shall be in the range of −231 to 231 − 1, inclusive. In one coded video sequence, the 
PicOrderCntVal values for any two coded pictures shall not be the same. 

The function PicOrderCnt( picX ) is specified as follows: 

PicOrderCnt( picX ) = PicOrderCntVal of the picture picX (8-3) 

The function DiffPicOrderCnt( picA, picB ) is specified as follows: 

DiffPicOrderCnt( picA, picB ) = PicOrderCnt( picA ) − PicOrderCnt( picB ) (8-4) 

The bitstream shall not contain data that result in values of DiffPicOrderCnt( picA, picB ) used in the decoding process 
that are not in the range of −215 to 215 − 1, inclusive. [Ed. (GJS/YKW): Include the limit in all places where such a POC 
difference is used in the decoding process (i.e. TMVP).] 

NOTE 2 – Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in 
the same output order direction from X when both DiffPicOrderCnt( X, Y ) and DiffPicOrderCnt( X, Z ) are positive or both are 
negative. 
NOTE 3 – Many encoders assign PicOrderCntVal proportional to the sampling time of the corresponding picture relative to the 
sampling time of the previous IDR or BLA picture. 

8.3.2 Decoding process for reference picture set 

This process is invoked once per picture, after decoding of a slice header but prior to the decoding of any coding unit and 
prior to the decoding process for reference picture list construction for the slice as specified in subclause 8.3.3. This 
process may result in one or more reference pictures in the DPB being marked as "unused for reference" or "used for 
long-term reference". 

NOTE 1 – The reference picture set is an absolute description of the reference pictures used in the decoding process of the current 
and future coded pictures. The reference picture set signalling is explicit in the sense that all reference pictures included in the 
reference picture set are listed explicitly and there is no default reference picture set construction process in the decoder that 
depends on the status of the DPB. [Ed. (GJS): Search for line spacing exactly 9.95 pt and change to "single".] 

A picture can be marked as "unused for reference", "used for short-term reference", or "used for long-term reference", 
but only one among these three. Assigning one of these markings to a picture implicitly removes another of these 
markings when applicable. When a picture is referred to as being marked as "used for reference", this collectively refers 
to the picture being marked as "used for short-term reference" or "used for long-term reference" (but not both). 

When the current picture is the first picture in the bitstream, the DPB is initialized to be an empty set of pictures. 

When the current picture is an IDR picture or a BLA picture, all reference pictures currently in the DPB (if any) are 
marked as "unused for reference". 

Short-term reference pictures are identified by their PicOrderCntVal values. Long-term reference pictures are identified 
either by their PicOrderCntVal values or their pic_order_cnt_lsb values. 

Five lists of picture order count values are constructed to derive the reference picture set; PocStCurrBefore, 
PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll with NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, 
NumPocLtCurr, and NumPocLtFoll number of elements, respectively. 

– If the current picture is an IDR picture, PocStCurrBefore, PocStCurrAfter, PocStFoll, PocLtCurr, and PocLtFoll are 
all set to empty, and NumPocStCurrBefore, NumPocStCurrAfter, NumPocStFoll, NumPocLtCurr, and 
NumPocLtFoll are all set to 0. 

– Otherwise, the following applies for derivation of the five lists of picture order count values and the numbers of 
entries. 

for( i = 0, j = 0, k = 0; i < NumNegativePics[ StRpsIdx ] ; i++ ) 
 if( UsedByCurrPicS0[ StRpsIdx ][ i ] ) 
  PocStCurrBefore[ j++ ] = PicOrderCntVal + DeltaPocS0[ StRpsIdx ][ i ] 
 else 
  PocStFoll[ k++ ] = PicOrderCntVal + DeltaPocS0[ StRpsIdx ][ i ] 
NumPocStCurrBefore = j 
 
for( i = 0, j = 0; i < NumPositivePics[ StRpsIdx ]; i++ ) 
 if( UsedByCurrPicS1[ StRpsIdx ][ i ] ) 
  PocStCurrAfter[ j++ ] = PicOrderCntVal + DeltaPocS1[ StRpsIdx ][ i ] 



   ISO/IEC 23008-2 : 201x (E) 

99 Draft Rec. ITU-T H.HEVC (201x E) 

 else 
  PocStFoll[ k++ ] = PicOrderCntVal + DeltaPocS1[ StRpsIdx ][ i ] 
NumPocStCurrAfter = j 
NumPocStFoll = k  (8-5) 
for( i = 0, j = 0, k = 0; i < num_long_term_sps + num_long_term_pics; i++ ) { 
 pocLt = PocLsbLt[ i ] 
 if( delta_poc_msb_present_flag[ i ] ) 
  pocLt += PicOrderCntVal − DeltaPocMSBCycleLt[ i ] * MaxPicOrderCntLsb − pic_order_cnt_lsb 
 if( UsedByCurrPicLt[ i ] ) { 
  PocLtCurr[ j ] = pocLt 
  CurrDeltaPocMsbPresentFlag[ j++ ] = delta_poc_msb_present_flag[ i ] 
 } else { 
  PocLtFoll[ k ] = pocLt 
  FollDeltaPocMsbPresentFlag[ k++ ] = delta_poc_msb_present_flag[ i ] 
 } 
} 
NumPocLtCurr = j 
NumPocLtFoll = k 

where PicOrderCntVal is the picture order count of the current picture as specified in subclause 8.3.1.  

NOTE 2 – A value of StRpsIdx in the range from 0 to num_short_term_ref_pic_sets − 1, inclusive, indicates that a short-term 
reference picture set from the active sequence parameter set is being used, where StRpsIdx is the index of the short-term reference 
picture set to the list of short-term reference picture sets in the order in which they are signalled in the sequence parameter set. 
StRpsIdx equal to num_short_term_ref_pic_sets indicates that a short-term reference picture set explicitly signalled in the slice 
header is being used. 

For each i in the range of 0 to NumPocLtCurr − 1, inclusive, when CurrDeltaPocMsbPresentFlag[ i ] is equal to 1, it is a 
requirement of bitstream conformance that the following conditions apply: 

– There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtCurr[ i ] is equal to 
PocStCurrBefore[ j ]. 

– There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtCurr[ i ] is equal to 
PocStCurrAfter[ j ].  

– There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtCurr[ i ] is equal to 
PocStFoll[ j ]. 

– There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, where j is not equal to i, for which 
PocLtCurr[ i ] is equal to PocLtCurr[ j ]. 

For each i in the range of 0 to NumPocLtFoll − 1, inclusive, when FollDeltaPocMsbPresentFlag[ i ] is equal to 1, it is a 
requirement of bitstream conformance that the following conditions apply: 

– There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtFoll[ i ] is equal to 
PocStCurrBefore[ j ]. 

– There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtFoll[ i ] is equal to 
PocStCurrAfter[ j ].  

– There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtFoll[ i ] is equal to 
PocStFoll[ j ]. 

– There shall be no j in the range of 0 to NumPocLtFoll − 1, inclusive, where j is not equal to i, for which 
PocLtFoll[ i ] is equal to PocLtFoll[ j ]. 

– There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, for which PocLtFoll[ i ] is equal to 
PocLtCurr[ j ]. 

For each i in the range of 0 to NumPocLtCurr − 1, inclusive, when CurrDeltaPocMsbPresentFlag[ i ] is equal to 0, it is a 
requirement of bitstream conformance that the following conditions apply: 

– There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtCurr[ i ] is equal to 
( PocStCurrBefore[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtCurr[ i ] is equal to 
( PocStCurrAfter[ j ] & ( MaxPicOrderCntLsb − 1 ) ).  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 100 

– There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtCurr[ i ] is equal to 
( PocStFoll[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, where j is not equal to i, for which 
PocLtCurr[ i ] is equal to ( PocLtCurr[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

For each i in the range of 0 to NumPocLtFoll − 1, inclusive, when FollDeltaPocMsbPresentFlag[ i ] is equal to 0, it is a 
requirement of bitstream conformance that the following conditions apply: 

– There shall be no j in the range of 0 to NumPocStCurrBefore − 1, inclusive, for which PocLtFoll[ i ] is equal to 
( PocStCurrBefore[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocStCurrAfter − 1, inclusive, for which PocLtFoll[ i ] is equal to 
( PocStCurrAfter[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocStFoll − 1, inclusive, for which PocLtFoll[ i ] is equal to 
( PocStFoll[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocLtFoll − 1, inclusive, where j is not equal to i, for which 
PocLtFoll[ i ] is equal to ( PocLtFoll[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

– There shall be no j in the range of 0 to NumPocLtCurr − 1, inclusive, for which PocLtFoll[ i ] is equal to 
( PocLtCurr[ j ] & ( MaxPicOrderCntLsb − 1 ) ). 

The reference picture set consists of five lists of reference pictures; RefPicSetStCurrBefore, RefPicSetStCurrAfter, 
RefPicSetStFoll, RefPicSetLtCurr and RefPicSetLtFoll. The variable NumPocTotalCurr is derived in 7.4.8.3, reference 
picture list modification semantics.  

It is a requirement of bitstream conformance that the following applies to the value of NumPocTotalCurr: 

– If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0. 

– Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0. 
NOTE 3 – RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr contains all reference pictures that may be used in 
inter prediction of the current picture and that may be used in inter prediction of one or more of the pictures following the current 
picture in decoding order. RefPicSetStFoll and RefPicSetLtFoll consists of all reference pictures that are not used in inter 
prediction of the current picture but may be used in inter prediction of one or more of the pictures following the current picture in 
decoding order. 

The derivation process for the reference picture set and picture marking are performed according to the following 
ordered steps, where DPB refers to the decoded picture buffer as described in Annex C: 

1. The following applies: 

for( i = 0; i < NumPocLtCurr; i++ ) 
 if( !CurrDeltaPocMsbPresentFlag[ i ] ) 
  if( there is a long-term reference picture picX in the DPB [Ed. (JB): Should be made more precise. 
(GJS): Seems roughly OK to me.] 
    with pic_order_cnt_lsb equal to PocLtCurr[ i ] ) 
   RefPicSetLtCurr[ i ] = picX 
  else if( there is a short-term reference picture picY in the DPB 
    with pic_order_cnt_lsb equal to PocLtCurr[ i ] ) 
   RefPicSetLtCurr[ i ] = picY 
  else  
   RefPicSetLtCurr[ i ] = "no reference picture" 
 else 
  if( there is a long-term reference picture picX in the DPB 
    with PicOrderCntVal equal to PocLtCurr[ i ] ) 
   RefPicSetLtCurr[ i ] = picX 
  else if( there is a short-term reference picture picY in the DPB 
    with PicOrderCntVal equal to PocLtCurr[ i ] ) 
   RefPicSetLtCurr[ i ] = picY 
  else  
   RefPicSetLtCurr[ i ] = "no reference picture" 
                      (8-6) 
for( i = 0; i < NumPocLtFoll; i++ ) 
 if( !FollDeltaPocMsbPresentFlag[ i ] ) 
  if( there is a long-term reference picture picX in the DPB 
     with pic_order_cnt_lsb equal to PocLtFoll[ i ] ) 



   ISO/IEC 23008-2 : 201x (E) 

101 Draft Rec. ITU-T H.HEVC (201x E) 

    RefPicSetLtFoll[ i ] = picX 
  else if( there is a short-term reference picture picY in the DPB 
     with pic_order_cnt_lsb equal to PocLtFoll[ i ] ) 
    RefPicSetLtFoll[ i ] = picY 
  else  
    RefPicSetLtFoll[ i ] = "no reference picture" 
 else 
  if( there is a long-term reference picture picX in the DPB 
     with PicOrderCntVal to PocLtFoll[ i ] ) 
    RefPicSetLtFoll[ i ] = picX 
   else if( there is a short-term reference picture picY in the DPB 
     with PicOrderCntVal equal to PocLtFoll[ i ] ) 
    RefPicSetLtFoll[ i ] = picY 
  else 
    RefPicSetLtFoll[ i ] = "no reference picture" 

2. All reference pictures included in RefPicSetLtCurr and RefPicSetLtFoll are marked as "used for long-term 
reference". 

3. The following applies: 

for( i = 0; i < NumPocStCurrBefore; i++ ) 
 if( there is a short-term reference picture picX in the DPB 
   with PicOrderCntVal equal to PocStCurrBefore[ i ]) 
  RefPicSetStCurrBefore[ i ] = picX 
 else 
  RefPicSetStCurrBefore[ i ] = "no reference picture" 

for( i = 0; i < NumPocStCurrAfter; i++ ) 
 if( there is a short-term reference picture picX in the DPB 
   with PicOrderCntVal equal to PocStCurrAfter[ i ]) 
  RefPicSetStCurrAfter[ i ] = picX 
 else 
  RefPicSetStCurrAfter[ i ] = "no reference picture" (8-7) 

for( i = 0; i < NumPocStFoll; i++ ) 
 if( there is a short-term reference picture picX in the DPB 
   with PicOrderCntVal equal to PocStFoll[ i ]) 
  RefPicSetStFoll[ i ] = picX 
 else 
  RefPicSetStFoll[ i ] = "no reference picture" 

4. All reference pictures in the decoded picture buffer that are not included in RefPicSetLtCurr, RefPicSetLtFoll, 
RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetStFoll are marked as "unused for reference". 

NOTE 4 – There may be one or more reference pictures that are included in the reference picture set but not present in the decoded 
picture buffer. Entries in RefPicSetStFoll or RefPicSetLtFoll that are equal to "no reference picture" should be ignored. An 
unintentional picture loss should be inferred for each entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr 
that is equal to "no reference picture". 

It is a requirement of bitstream conformance that the reference picture set is restricted as follows: 

– There shall be no entry in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr for which one or more 
of the following are true. 

– The entry is equal to "no reference picture". 

– The entry is a picture that has nal_unit_type equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, 
RSV_VCL_N10, RSV_VCL_N12, or RSV_VCL_N14 and TemporalId equal to that of the current picture. 

– The entry is a picture that has TemporalId greater than that of the current picture. 

– There shall no entry in RefPicSetLtCurr or RefPicSetLtFoll for which the difference between the picture order count 
value of the current picture and the picture order count value of the entry is greater than or equal to 224. 

– When the current picture is a TSA picture, there shall be no picture included in the reference picture set with 
TemporalId greater than or equal to the TemporalId of the current picture. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 102 

– When the current picture is an STSA picture, there shall be no picture included in RefPicSetStCurrBefore, 
RefPicSetStCurrAfter or RefPicSetLtCurr that has TemporalId equal to that of the current picture. 

– When the current picture is a picture that follows, in decoding order, an STSA picture that has TemporalId equal to 
that of the current picture, there shall be no picture that has TemporalId equal to that of the current picture included 
in RefPicSetStCurrBefore, RefPicSetStCurrAfter or RefPicSetLtCurr that preceded the STSA picture in decoding 
order. 

– When the current picture is a CRA picture, there shall be no picture included in the reference picture set that 
precedes, in decoding order, any preceding RAP picture in decoding order (when present). 

– When the current picture is a trailing picture, there shall be no picture in RefPicSetStCurrBefore, 
RefPicSetStCurrAfter or RefPicSetLtCurr that was generated by the decoding process for generating unavailable 
reference pictures as specified in subclause 8.3.3. 

– When the current picture is a trailing picture, there shall be no picture in the reference picture set that precedes the 
associated RAP picture in output order or decoding order. 

– When the current picture is a RADL picture, there shall be no picture included in RefPicSetStCurrBefore, 
RefPicSetStCurrAfter or RefPicSetLtCurr that is any of the following types of pictures. 

– A RASL picture. 

– A picture that was generated by the decoding process for generating unavailable reference pictures as 
specified in subclause 8.3.3. 

– A picture that precedes the associated RAP picture in decoding order. 

– When the sps_temporal_id_nesting_flag is equal to 1, the following applies. Let tIdA be the value of TemporalId of 
the current picture picA. Any picture picB with TemporalId equal to tIdB that is less than or equal to tIdA shall not 
be included in RefPicSetStCurrBefore, RefPicSetStCurrAfter and RefPicSetLtCurr of picA when there exists a 
picture picC with TemporalId equal to tIdC that is less than tIdB, which follows the picture picB in decoding order 
and precedes the picture picA in decoding order. 

NOTE 5 – A picture cannot be included in more than one of the five reference picture set lists. 

8.3.3 Decoding process for generating unavailable reference pictures 

8.3.3.1 General decoding process for generating unavailable reference pictures 

[Ed. (GJS): Scan the table of contents to look for any cases where headings do not appear there, as this is almost 
certainly due to having some style other than the ordinary heading style used on the headings of the missing sections.] 

This process is invoked once per coded picture when the current picture is a BLA picture or is a CRA picture that is the 
first picture in the bitstream. 

NOTE – This process is primarily specified only for the specification of syntax constraints for RASL pictures. The entire 
specification of the decoding process for RASL pictures associated with a CRA picture at the beginning of the bitstream or for 
RASL pictures associated with a BLA picture is only included herein for purposes of specifying constraints on the allowed syntax 
content of such RASL pictures. During the decoding process, any RASL pictures associated with a CRA picture at the beginning 
of the bitstream or any RASL pictures associated with a BLA picture may be ignored (removed from the bitstream and discarded), 
as these pictures are not specified for output and have no effect on the decoding process of any other pictures that are specified for 
output. However, in HRD operations as specified in Annex C, RASL access units may need to be taken into consideration in 
derivation of CPB arrival and removal times. 

When this process is invoked, the following applies. 

– For each RefPicSetStFoll[ i ], with i in the range of 0 to NumPocStFoll − 1, inclusive, that is equal to "no reference 
picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies.  

– The value of PicOrderCntVal for the generated picture is set to PocStFoll[ i ]. 

– The value of PicOutputFlag for the generated picture is set to 0. 

– The generated picture is marked as "used for short-term reference". 

– RefPicSetStFoll[ i ] is set to be the generated reference picture. 

– For each RefPicSetLtFoll[ i ], with i in the range of 0 to NumPocLtFoll − 1, inclusive, that is equal to "no reference 
picture", a picture is generated as specified in subclause 8.3.3.2, and the following applies. 

– The value of PicOrderCntVal for the generated picture is set to PocLtFoll[ i ]. 



   ISO/IEC 23008-2 : 201x (E) 

103 Draft Rec. ITU-T H.HEVC (201x E) 

– The value of pic_order_cnt_lsb for the generated picture is inferred to be equal to ( PocLtFoll[ i ] & 
( MaxPicOrderCntLsb – 1 ) ) 

– The value of PicOutputFlag for the generated picture is set to 0. 

– The generated picture is marked as "used for long-term reference". 

– RefPicSetLtFoll[ i ] is set to the generated reference picture. 

8.3.3.2 Generation of one unavailable picture 

When this process is invoked, an unavailable picture is generated as follows: 

– The value of each element in the sample array SL for the picture is set to 1 << ( BitDepthY − 1 ). 

– The value of each element in the sample arrays SCb and SCr for the picture is set to 1 << ( BitDepthC − 1 ). 

– The prediction mode CuPredMode[ x ][ y ] is set to MODE_INTRA for x = 0..pic_width_in_luma_samples − 1, 
y = 0..pic_height_in_luma_samples − 1. 

8.3.4 Decoding process for reference picture lists construction 

This process is invoked at the beginning of the decoding process for each P or B slice. 

Reference pictures are addressed through reference indices as specified in subclause 8.5.3.2.1. A reference index is an 
index into a reference picture list. When decoding a P slice, there is a single reference picture list RefPicList0. When 
decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0. 

At the beginning of the decoding process for each slice, the reference picture list RefPicList0, and for B slices 
RefPicList1, are derived as follows. 

The variable NumRpsCurrTempList0 is set equal to Max( num_ref_idx_l0_active_minus1 + 1, NumPocTotalCurr ) and 
the list RefPicListTemp0 is constructed as follows: 

rIdx = 0 
while( rIdx < NumRpsCurrTempList0 ) { 
 for( i = 0; i < NumPocStCurrBefore && rIdx < NumRpsCurrTempList0; rIdx++, i++ ) 
  RefPicListTemp0[ rIdx ] = RefPicSetStCurrBefore[ i ]  
 for( i = 0;  i < NumPocStCurrAfter && rIdx < NumRpsCurrTempList0; rIdx++, i++ )  (8-8) 
  RefPicListTemp0[ rIdx ] = RefPicSetStCurrAfter[ i ] 
 for( i = 0; i < NumPocLtCurr && rIdx < NumRpsCurrTempList0; rIdx++, i++ ) 
  RefPicListTemp0[ rIdx ] = RefPicSetLtCurr[ i ] 
} 

The list RefPicList0 is constructed as follows: 

for( rIdx = 0; rIdx <= num_ref_idx_l0_active_minus1; rIdx++)   (8-9) 
 RefPicList0[ rIdx ] = ref_pic_list_modification_flag_l0 ? RefPicListTemp0[ list_entry_l0[ rIdx ] ] : 
                  RefPicListTemp0[ rIdx ] 

When the slice is a B slice, the variable NumRpsCurrTempList1 is set equal to 
Max( num_ref_idx_l1_active_minus1 + 1, NumPocTotalCurr ) and the list RefPicListTemp1 is constructed as follows: 

rIdx = 0 
while( rIdx < NumRpsCurrTempList1 ) { 
 for( i = 0; i < NumPocStCurrAfter && rIdx < NumRpsCurrTempList1; rIdx++, i++ ) 
  RefPicListTemp1[ rIdx ] = RefPicSetStCurrAfter[ i ] 
 for( i = 0;  i < NumPocStCurrBefore && rIdx < NumRpsCurrTempList1; rIdx++, i++ )  (8-10) 
  RefPicListTemp1[ rIdx ] = RefPicSetStCurrBefore[ i ] 
 for( i = 0; i < NumPocLtCurr && rIdx < NumRpsCurrTempList1; rIdx++, i++ ) 
  RefPicListTemp1[ rIdx ] = RefPicSetLtCurr[ i ] 
} 

When the slice is a B slice, the list RefPicList1 is constructed as follows: 

for( rIdx = 0; rIdx <= num_ref_idx_l1_active_minus1; rIdx++)   (8-11) 
 RefPicList1[ rIdx ] = ref_pic_list_modification_flag_l1 ? RefPicListTemp1[ list_entry_l1[ rIdx ] ] : 
                  RefPicListTemp1[ rIdx ] 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 104 

8.4 Decoding process for coding units coded in intra prediction mode 

8.4.1 General decoding process for coding units coded in intra prediction mode 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current luma coding block. 

Output of this process is: 

– a modified reconstructed picture before deblocking filtering. 

The derivation process for quantization parameters as specified in subclause 8.6.1 is invoked with the luma location 
( xC, yC ) as input. 

A variable nS is set equal to ( 1 << log2CbSize ). 

Depending on pcm_flag[ xC ][ yC ] and IntraSplitFlag, the decoding process for luma samples is specified as follows. 

– If pcm_flag[ xC ][ yC ] is equal to 1, the reconstucted picture is modified as follows: 

SL[ xC + i ][ yC + j ] =  
  pcm_sample_luma[ ( nS * j ) + i ] << ( BitDepthY − PCMBitDepthY ), with i, j = 0..nS−1 (8-12) 

– Otherwise (pcm_flag[ xC ][ yC ] is equal to 0), if IntraSplitFlag is equal to 0, the following ordered steps apply: 

1. The derivation process for the intra prediction mode as specified in subclause 8.4.2 is invoked with the luma 
location ( xC, yC ) as the input. 

2. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is invoked with the luma location 
( xC, yC ), the variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal to 0, the 
variable predModeIntra set equal to IntraPredModeY[ xC ][ yC ] and the variable cIdx set equal to 0 as the 
inputs and the output is a modified reconstructed picture before deblocking filtering. 

– Otherwise (pcm_flag[ xC ][ yC ] is equal to 0 and IntraSplitFlag is equal to 1), for the variable blkIdx proceeding 
over the values 0..3, the following ordered steps apply: 

1. The variable xBS is set equal to xC + ( nS >> 1 ) * ( blkIdx % 2 ). 

2. The variable yBS is set equal to yC + ( nS >> 1 ) * ( blkIdx / 2 ). 

3. The derivation process for the intra prediction mode as specified in subclause 8.4.2 is invoked with the luma 
location ( xBS, yBS ) as the input. 

4. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is invoked with the luma location 
( xBS, yBS ), the variable log2TrafoSize set equal to log2CbSize − 1, the variable trafoDepth set equal to 1, the 
variable predModeIntra set equal to IntraPredModeY[ xBS ][ yBS ] and the variable cIdx set equal to 0 as the 
inputs and the output is a modified reconstructed picture before deblocking filtering. 

Depending on pcm_flag[ xC ][ yC ], the decoding process for chroma samples is specified as follows: 

– If pcm_flag[ xC ][ yC ] is equal to 1, the reconstucted picture is modified as follows: 

SCb[ xC/2 + i ][ yC/2 + j ] =  
  pcm_sample_chroma[ ( nS/2 * j ) + i ] << ( BitDepthC − PCMBitDepthC ) with i, j = 0..nS/2−1  (8-13) 

SCr[ xC/2 + i ][ yC/2 + j ] =  
  pcm_sample_chroma[ ( nS/2 * ( j + nS/2 ) ) + i ] << ( BitDepthC − PCMBitDepthC ) with i, j = 0..nS/2−1  
     (8-14) 

– Otherwise (pcm_flag[ xC ][ yC ] is equal to 0), the following ordered steps apply: 

1. The derivation process for the chroma intra prediction mode as specified in 8.4.3 is invoked with the luma 
location ( xC, yC ) as input and the output is the variable IntraPredModeC. 

2. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is invoked with the chroma 
location ( xC/2, yC/2 ), the variable log2TrafoSize set equal to log2CbSize − 1, the variable trafoDepth set equal 
to 0, the variable predModeIntra set equal to IntraPredModeC, and the variable cIdx set equal to 1 as the inputs 
and the output is a modified reconstructed picture before deblocking filtering. 



   ISO/IEC 23008-2 : 201x (E) 

105 Draft Rec. ITU-T H.HEVC (201x E) 

3. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is invoked with the chroma 
location ( xC/2, yC/2 ), the variable log2TrafoSize set equal to log2CbSize − 1, the variable trafoDepth set equal 
to 0, the variable predModeIntra set equal to IntraPredModeC, and the variable cIdx set equal to 2 as the inputs 
and the output is a modified reconstructed picture before deblocking filtering. 

8.4.2 Derivation process for luma intra prediction mode 

Inputs to this process is a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the 
top-left luma sample of the current picture. 

Table 8-1 specifies the value for the intra prediction mode and the associated names. 

Table 8-1 – Specification of intra prediction mode and associated names 

Intra prediction mode Associated names 

0 Intra_Planar 

1 Intra_DC 

Otherwise (2..34) Intra_Angular 

 

IntraPredModeY[ xB ][ yB ] labelled 0..34 represents directions of predictions as illustrated in Figure 8-1. 

17       16       15      14     13      12       11       10       9        8        7        6         5        4        3         2

18      19       20      21      22         23     24       25      26        27     28      29      30       31     32       33       34

 0  : Intra_Planar
 1  : Intra_DC

 

Figure 8-1 – Intra prediction mode directions (informative) 

IntraPredModeY[ xB ][ yB ] is derived as the following ordered steps. [Ed. (WJ): proponent suggests to move this part to 
the syntax since the other syntax elements utilize IntraPredModeY. But it seems too complex to move all the following 
process to the syntax table. Maybe it’s better to move this part to the semantics section or simply avoid the use of 
IntraPredModeY to parse the syntax item] 

1. The neighbouring locations ( xBA, yBA ) and ( xBB, yBB ) are set equal to ( xB−1, yB ) and ( xB, yB−1 ), 
respectively. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 106 

2. For N being either replaced A or B, the variables candIntraPredModeN are derived as follows. 

– The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with 
the location ( xCurr, yCurr ) set equal to ( xB, yB ) and the neighbouring location ( xN, yN ) set equal to 
( xBN, yBN ) as the input and the output is assigned to availableN. 

– The candidate intra prediction mode candIntraPredModeN is derived as follows. 

– If availableN is equal to FALSE, candIntraPredModeN is set equal to Intra_DC. 

– Otherwise, if CuPredMode[ xBN ][ yBN ] is not equal to MODE_INTRA or pcm_flag[ xBN ][ yBN ] is 
equal to 1, candIntraPredModeN is set equal to Intra_DC, 

– Otherwise, if N is equal to B and yB−1 is less than ( ( yB >> Log2CtbSizeY ) << Log2CtbSizeY ), 
candIntraPredModeB is set equal to Intra_DC. 

– Otherwise, candIntraPredModeN is set equal to IntraPredModeY[ xBN ][ yBN ]. 

3. The candModeList[ x ] with x = 0..2 is derived as follows: 

– If candIntraPredModeB is equal to candIntraPredModeA, the following applies: 

– If candIntraPredModeA is less than 2 (either Intra_Planar or Intra_DC), candModeList[ x ] with 
x = 0..2 is derived as: 

candModeList[0] = Intra_Planar  (8-15) 
candModeList[1] = Intra_DC  (8-16) 
candModeList[2] = Intra_Angular (26)  (8-17) 

– Otherwise, candModeList[ x ] with x = 0..2 is derived as: 

candModeList[0] = candIntraPredModeA  (8-18) 
candModeList[1] = 2 + ( ( candIntraPredModeA + 29 ) % 32 ) (8-19) 
candModeList[2] = 2 + ( ( candIntraPredModeA − 2 + 1 ) % 32 ) (8-20) 

– Otherwise (candIntraPredModeB is not equal to candIntraPredModeA), the following applies: 

– candModeList[0] and candModeList[1] are derived as follows: 

candModeList[0] = candIntraPredModeA  (8-21) 
candModeList[1] = candIntraPredModeB  (8-22) 

– If none of candModeList[0] and candModeList[1] is equal to Intra_Planar, candModeList[2] is set 
equal to Intra_Planar, 

– Otherwise, if none of candModeList[0] and candModeList[1] is equal to Intra_DC, candModeList[2] is 
set equal to Intra_DC, 

– Otherwise, candModeList[2] is set equal to Intra_Angular (26). 

4. IntraPredModeY[ xB ][ yB ] is derived by applying the following procedure: 

– If prev_intra_luma_pred_flag[ xB ][ yB ] is equal to 1, the IntraPredModeY[ xB ][ yB ] is set equal to  
candModeList[ mpm_idx ]. 

– Otherwise IntraPredModeY[ xB ][ yB ] is derived by applying the following ordered steps: 

1) The array candModeList[x], x = 0..2 is modified as the following ordered steps: 

i. When candModeList[0] is greater than candModeList[1], both values are swapped as follows. 

( candModeList[0], candModeList[1] ) = Swap( candModeList[0], candModeList[1] ) (8-23) 

ii. When candModeList[0] is greater than candModeList[2], both values are swapped as follows. 

( candModeList[0], candModeList[2] ) = Swap( candModeList[0], candModeList[2] ) (8-24) 

iii. When candModeList[1] is greater than candModeList[2], both values are swapped as follows. 

( candModeList[1], candModeList[2] ) = Swap( candModeList[1], candModeList[2] ) (8-25) 



   ISO/IEC 23008-2 : 201x (E) 

107 Draft Rec. ITU-T H.HEVC (201x E) 

2) IntraPredModeY[xB][yB] is derived as the following ordered steps: 

i. IntraPredModeY[ xB ][ yB ] = rem_intra_luma_pred_mode[ xB ][ yB ] 

ii. For i equal to 0 to 2, inclusive, when IntraPredModeY[ xB ][ yB ] is greater than or equal to 
candModeList[ i ], the value of IntraPredModeY[ xB ][ yB ] is incremented by one 

8.4.3 Derivation process for chroma intra prediction mode 

[Ed.: (WJ) this subclause may be moved to the semantics of intra_chroma_pred_mode syntax] 

Input to this process is a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the 
top-left luma sample of the current picture. 

Output of this process is the variable IntraPredModeC. 

The chroma intra prediction mode IntraPredModeC is derived using intra_chroma_pred_mode[ xB ][ yB ] and 
IntraPredModeY[ xB ][ yB ] as specified in Table 8-2. 

Table 8-2 – Specification of IntraPredModeC 

intra_chroma_pred_mode[ xB ][ yB ] 
IntraPredModeY[ xB ][ yB ] 

0 26 10 1 X ( 0 <= X <= 34 ) 

0 34 0 0 0 0 

1 26 34 26 26 26 

2 10 10 34 10 10 

3 1 1 1 34 1 

4 0 26 10 1 X 

 

8.4.4 Decoding process for intra blocks 

8.4.4.1 General decoding process for intra blocks 

Inputs to this process are: 

– a sample location ( xB0, yB0 ) specifying the top-left sample of the current block relative to the top-left sample of the 
current picture, 

– a variable log2TrafoSize specifying the size of the current transform block, 

– a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit, 

– a variable predModeIntra specifying the intra prediction mode, 

– a variable cIdx specifying the colour component of the current block. 

Output of this process is: 

– a modified reconstructed picture before deblocking filtering. 

The variable splitFlag is derived as follows: 

– If cIdx is equal to 0, splitFlag is set equal to split_transform_flag[ xB0 ][ yB0 ][ trafoDepth ]. 

– Otherwise, if all of the following conditions are true, splitFlag is set equal to 1. 

– cIdx is greater than 0 

– split_transform_flag[ xB0 << 1 ][ yB0 << 1 ][ trafoDepth ] is equal to 1 

– log2TrafoSize is greater than 2 

– Otherwise, splitFlag is set equal to 0. 

Depending on splitFlag, the following applies: 

– If splitFlag is equal to 1, the following ordered steps apply: 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 108 

1. The variables xB1 and yB1 are derived as follows. 

– The variable xB1 is set equal to xB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

– The variable yB1 is set equal to yB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

2. The general decoding process for intra blocks as specified in this subclause is invoked with the location 
( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to 
trafoDepth + 1, the intra prediction mode predModeIntra, and the variable cIdx as the inputs and the output is a 
modified reconstructed picture before deblocking filtering. 

3. The general decoding process for intra blocks as specified in this subclause is invoked with the location 
( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to 
trafoDepth + 1, the intra prediction mode predModeIntra, and the variable cIdx as the inputs and the output is a 
modified reconstructed picture before deblocking filtering. 

4. The general decoding process for intra blocks as specified in this subclause is invoked with the location 
( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to 
trafoDepth + 1, the intra prediction mode predModeIntra, and the variable cIdx as the inputs and the output is a 
modified reconstructed picture before deblocking filtering. 

5. The general decoding process for intra blocks as specified in this subclause is invoked with the location 
( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to 
trafoDepth + 1, the intra prediction mode predModeIntra, and the variable cIdx as the inputs and the output is a 
modified reconstructed picture before deblocking filtering. 

– Otherwise (splitFlag is equal to 0), the following ordered steps apply: 

1. The variable nT is set equal to 1 << log2TrafoSize. 

2. The general intra sample prediction process as specified in subclause 8.4.4.2.1 is invoked with the location 
( xB0, yB0 ), the intra prediction mode predModeIntra, the transform block size nT and the variable cIdx as the 
inputs and the output is a (nT)x(nT) array predSamples. 

3. The scaling and transformation process as specified in subclause 8.6.2 is invoked with the location ( xB0, yB0 ), 
the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nT as the inputs and the 
output is a (nT)x(nT) array resSamples. 

4. The picture reconstruction process prior to in-loop filtering for a colour component as specified in 
subclause 8.6.5 is invoked with the transform block location ( xB0, yB0 ), the transform block size nT, the 
variable cIdx, the (nT)x(nT) array predSamples, and the (nT)x(nT) array resSamples as the inputs. 

8.4.4.2 Intra sample prediction 

8.4.4.2.1 General intra sample prediction 

Inputs to this process are: 

– a sample location ( xB, yB ) specifying the top-left sample of the current block relative to the top-left sample of the 
current picture, 

– a variable predModeIntra specifying the intra prediction mode, 

– a variable nT specifying the transform block size, 

– a variable cIdx specifying the colour component of the current block. 

Output of this process is: 

– the predicted samples predSamples[ x ][ y ], with x, y = 0..nT − 1. 

The nT*4+1 neighbouring samples p[ x ][ y ] that are constructed samples prior to the deblocking filter process, with 
x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1, are derived as follows. 

– The luma location ( xBN, yBN ) is specified by 

xBN = xB + x   (8-26) 

yBN = yB + y   (8-27) 



   ISO/IEC 23008-2 : 201x (E) 

109 Draft Rec. ITU-T H.HEVC (201x E) 

– The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with the 
location ( xCurr, yCurr ) set equal to ( xB, yB ) and the neighbouring location ( xN, yN ) set equal to ( xBN, yBN ) as 
the input and the output is assigned to availableN. 

– Each sample p[ x ][ y ] is derived as follows 

– If one or more of the following conditions are true, the sample p[ x ][ y ] is marked as "not available for intra 
prediction" 

– the variable availableN is equal to FALSE 

– CuPredMode[ xBN ][ yBN ] is not equal to MODE_INTRA and constrained_intra_pred_flag is equal to 1 

– Otherwise, the sample p[ x ][ y ] is marked as "available for intra prediction" and the sample at the location 
( xBN, yBN ) is assigned to p[ x ][ y ]. 

When at least one sample p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 is marked as "not available 
for intra prediction", the reference sample substitution process for intra sample prediction in subclause 8.4.4.2.2 is 
invoked with the samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 and nT as input and the 
modified samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 as output. 

Depending on predModeIntra, the following ordered steps apply: 

1. When cIdx is equal to 0, filtering process of neighbouring samples specified in 8.4.4.2.3 is invoked with the 
sample array p and the transform block size nT as the inputs and the output is reassigned to the sample array p. 

2. Intra sample prediction process according to predModeIntra applies as follows: 

– If predModeIntra is equal to Intra_Planar(0), the corresponding intra prediction mode specified in 
subclause 8.4.4.2.4 is invoked with the sample array p and the transform block size nT as the inputs and 
the output are the predicted sample array predSamples.  

– Otherwise, if predModeIntra is equal to Intra_DC(1), the corresponding intra prediction mode specified in 
subclause 8.4.4.2.5 is invoked with the sample array p, the transform block size nT and the colour 
component index cIdx as the inputs and the output are the predicted sample array predSamples. 

– Otherwise, if predModeIntra is equal to Intra_Angular(2..34), the corresponding intra prediction mode 
specified in subclause 8.4.4.2.6 is invoked with the intra prediction mode predModeIntra, the sample array 
p, the transform block size nT and the colour component index cIdx as the inputs and the output are the 
predicted sample array predSamples. 

8.4.4.2.2 Reference sample substitution process for intra sample prediction 

Inputs to this process are: 

– reference samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 for intra sample prediction, 

– a transform block size nT. 

Outputs of this process are: 

– the modified reference samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 for intra sample 
prediction. [Ed. (GJS): Global check/replace for incorrect use of ordinary hyphens ("-") versus non-breaking 
hyphens ("-") versus minus signs ("−") versus en-dashes ("–").] 

The values of the samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 are modified as follows:  

– If all samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 are marked as "not available for 
intra prediction," the value ( 1 << ( BitDepthY − 1 ) ) is substituted for the values of all samples p[ x ][ y ]. 

– Otherwise (at least one but not all samples p[ x ][ y ] are marked as "not available for intra prediction"), the 
following ordered steps are performed: 

1. If p[ −1 ][ nT*2−1 ] is marked as "not available for intra prediction", searching sequentially starting from 
x = −1, y = nT*2−1 to x = −1, y = −1, then from x = 0, y = −1 to x = nT*2−1, y = −1. As soon as a sample 
p[ x ][ y ] marked as "available for intra prediction" is found, the search is terminated and the value of p[ x ][ y ] 
is assigned to p[ −1 ][ nT*2−1 ]. 

2. For x = −1, y = nT*2−2...−1, if p[ x ][ y ] is marked as "not available for intra prediction", the value of 
p[ x ][ y+1 ] is substituted for the value of p[ x ][ y]. 

3. For x = 0..nT*2−1, y = −1, if p[ x ][ y ] is marked as "not available for intra prediction", the value of 
p[ x−1 ][ y ] is substituted for the value of p[ x ][ y ]. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 110 

All samples p[ x ][ y ] with x = −1, y = −1..nT*2−1 and x = 0..nT*2−1, y = −1 are marked as "available for intra 
prediction". 

8.4.4.2.3 Filtering process of neighbouring samples 

Inputs to this process are: 

– neighbouring samples p[ x ][ y ], with x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1, 

– a variable nT specifying the transform block size. 

Output of this process are: 

– filtered samples pF[ x ][ y ], with x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1. 

The variable filterFlag is derived as follows. 

– If one or more of the following conditions are true, filterFlag is set equal to 0 

– predModeIntra is equal to Intra_DC 

– nT is equal 4 

– Otherwise, the following applies. 

– The variable minDistVerHor is set equal to Min( Abs( predModeIntra − 26 ), Abs( predModeIntra − 10 ) ). 

– The variable intraHorVerDistThres[ nT ] is specified in Table 8-3. 

– The variable filterFlag is derived as follows.  

– If minDistVerHor is larger than intraHorVerDistThres[ nT ], filterFlag is set equal to 1,  

– Otherwise, filterFlag is set equal to 0. 

Table 8-3 – Specification of intraHorVerDistThres[ nT ] for various transform block sizes 

 nT = 8 nT = 16 nT = 32 

intraHorVerDistThres[ nT ] 7 1 0 

 

When filterFlag is equal to 1, the following applies. 

– The variable biIntFlag is derived as follows. 

– If all of the following conditions are true, biIntFlag is set equal to 1 

– strong_intra_smoothing_enable_flag is equal to 1 

– nT is equal to 32 

– Abs( p[ −1 ][ −1 ] + p[ nT*2−1 ][ −1 ] – 2*p[ nT−1 ][ −1 ] ) < (1 << ( BitDepthY − 5 )) 

– Abs( p[ −1 ][ −1 ] + p[ −1 ][ nT*2−1 ] – 2*p[ −1 ][ nT−1 ] ) < (1 << ( BitDepthY − 5 )) 

– Otherwise, biIntFlag is set equal to 0. 

– The filtering is performed as follows. 

– If biIntFlag is equal to 1, the filtered sample values pF[ x ][ y ] with x = −1, y = −1..63 and x = 0..63, y = −1 are 
derived as follows. 

pF[ −1 ][ 63 ] = p[ −1 ][ 63 ]  (8-28) 

pF[ 63 ][ −1 ] = p[ 63 ][ −1 ]  (8-29) 

pF[ −1 ][ y ] = p[ −1 ][ −1 ] + ( ( y + 1 )*( p[ −1 ][ 63 ] − p[ −1 ][ −1 ] ) + 32 ) >> 6 for y = 0..62 (8-30) 

pF[ −1 ][ −1 ] = p[ −1 ][ −1 ]  (8-31) 

pF[ x ][ −1 ] = p[ −1 ][ −1 ] + ( ( x + 1 )*( p[ 63 ][ −1 ] − p[ −1 ][ −1 ] ) + 32 ) >> 6 for x = 0..62 (8-32) 



   ISO/IEC 23008-2 : 201x (E) 

111 Draft Rec. ITU-T H.HEVC (201x E) 

– Otherwise (biIntFlag is equal to 0), the filtered sample values pF[ x ][ y ] with x = −1, y = −1..nT*2−1 and 
x = 0..nT*2 − 1, y = −1 are derived as follows. 

pF[ −1 ][ nT*2−1 ] = p[ −1 ][ nT*2−1 ]  (8-33) 

pF[ nT*2−1 ][ −1 ] = p[ nT*2−1 ][ −1 ]  (8-34) 

pF[ −1 ][ y ] = ( p[ −1 ][ y+1 ] + 2*p[ −1 ][ y ] + p[ −1 ][ y−1 ] + 2 ) >> 2 for y = nT*2−2..0 (8-35) 

pF[ −1 ][ −1] = ( p[ −1 ][ 0 ] + 2*p[ −1 ][ −1] + p[ 0 ][ −1 ] + 2) >> 2 (8-36) 

pF[ x ][ −1 ] = ( p[ x−1 ][ −1 ] + 2*p[ x ][ −1 ] + p[ x+1 ][ −1 ] + 2 ) >> 2 for x = 0..nT*2−2 (8-37) 

8.4.4.2.4 Specification of Intra_Planar (0) prediction mode 

Inputs to this process are: 

– neighbouring samples p[ x ][ y ], with x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1, 

– a variable nT specifying the transform block size. 

Output of this process are: 

– predicted samples predSamples[ x ][ y ], with x, y = 0..nT−1. 

The values of the prediction samples predSamples[ x ][ y ], with x, y = 0..nT−1, are derived by 

predSamples[ x ][ y ] = (( nT − 1 − x ) * p[ −1 ][ y ] + ( x + 1 ) * p[ nT ][ −1 ] +  
 ( nT − 1 − y ) * p[ x ][ −1 ] + ( y + 1 ) * p[ −1 ][ nT ] + nT ) >> ( Log2( nT ) + 1 ) (8-38) 

8.4.4.2.5 Specification of Intra_DC (1) prediction mode 

Inputs to this process are: 

– neighbouring samples p[ x ][ y ], with x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1, 

– a variable nT specifying the transform block size, 

– a variable cIdx specifying the colour component of the current block. 

Output of this process are: 

– predicted samples predSamples[ x ][ y ], with x, y = 0..nT−1. 

The values of the prediction samples predSamples[ x ][ y ], with x, y = 0..nT−1, are derived as the following ordered 
steps: 

1. A variable dcVal is derived as: 

dcVal = )1(]'][1[]1]['[
1

0'

1

0'
+>>








+−+− ∑∑

−

=

−

=

knTypxp
nT

y

nT

x

 (8-39) 

where k=Log2(nT) 

2. Depending on the colour component index cIdx, the following applies. 

– If cIdx is equal to 0 and nT is less than 32, the following applies. 

predSamples[ 0 ][ 0 ] = ( p[ −1 ][ 0 ] + 2*dcVal + p[ 0 ][ −1 ] + 2 ) >> 2 (8-40) 
predSamples[ x ][ 0 ] = ( p[ x ][ −1 ] + 3*dcVal + 2 ) >> 2, with x = 1..nT−1 (8-41) 
predSamples[ 0 ][ y ] = ( p[ −1 ][ y ] + 3*dcVal + 2 ) >> 2, with y = 1..nT−1 (8-42) 
predSamples[ x ][ y ] = dcVal, with x, y = 1..nT−1 (8-43) 

– Otherwise, the prediction samples predSamples[ x ][ y ] are derived as 

 predSamples[ x ][ y ] = dcVal, with x, y = 0..nT−1 (8-44) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 112 

8.4.4.2.6 Specification of Intra_Angular (2..34) prediction mode 

Inputs to this process are: 

– intra prediction mode predModeIntra, 

– neighbouring samples p[ x ][ y ], with x = −1, y = −1..nT*2−1 and x = 0..nT*2 − 1, y = −1, 

– a variable nT specifying the transform block size, 

– a variable cIdx specifying the colour component of the current block. 

Output of this process are: 

– predicted samples predSamples[ x ][ y ], with x, y = 0..nT−1. 

Figure 8-2 illustrates the total 33 intra angles and Table 8-4 specifies the mapping table between predModeIntra and the 
angle parameter intraPredAngle. 

0-5-10-15-20-25-30

-30

-25

-20

-15

-10

-5

0

5 10 15 20 25 30

5

10

15

20

25

30
 

Figure 8-2 – Intra prediction angle definition (informative) 

Table 8-4 – Specification of intraPredAngle 

predModeIntra 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

intraPredAngle - 32 26 21 17 13 9 5 2 0 −2 −5 −9 −13 −17 −21 −26 

predModeIntra 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

intraPredAngle −32 −26 −21 −17 −13 −9 −5 −2 0 2 5 9 13 17 21 26 32 

 

Table 8-5 further specifies the mapping table between predModeIntra and the inverse angle parameter invAngle. 



   ISO/IEC 23008-2 : 201x (E) 

113 Draft Rec. ITU-T H.HEVC (201x E) 

Table 8-5 – Specification of invAngle 

predModeIntra 11 12 13 14 15 16 17 18 

invAngle −4096 −1638 −910 −630 −482 −390 −315 −256 

predModeIntra 19 20 21 22 23 24 25 26 

invAngle −315 −390 −482 −630 −910 −1638 −4096 - 

 

The values of the prediction samples predSamples[ x ][ y ], with x, y = 0..nT−1 are derived as follows. 

– If predModeIntra is equal or greater than 18, the following ordered steps apply. 

1. The reference sample array ref[ x ], with x= −nT..2*nT is specified as follows. 

ref[ x ] = p[ −1+x ][ −1 ], with x = 0..nT  (8-45) 

– If intraPredAngle is less than 0, the main reference sample array is extended as follows. 

– When ( nT*intraPredAngle ) >>5 is less than −1, 

ref[ x ] = p[ −1 ][ −1+( ( x*invAngle+128 )>>8 ) ], with x=( nT*intraPredAngle ) >>5..−1 (8-46) 

– Otherwise, 

ref[ x ] = p[ −1+x ][ −1 ], with x=nT+1..2*nT  (8-47) 

2. The values of the prediction samples predSamples[ x ][ y ], with x, y = 0..nT−1 are derived as follows. 

a. The index variable iIdx and the multiplication factor iFact are derived by 

iIdx = ( ( y + 1 )*intraPredAngle ) >> 5  (8-48) 

iFact = ( ( y + 1 )*intraPredAngle ) & 31  (8-49) 

b. Depending on the value of iFact, the following applies. 

– If iFact is not equal to 0, the value of the prediction samples predSamples[ x ][ y ] is derived by 

predSamples[ x ][ y ] = ( ( 32 − iFact )*ref[ x+iIdx+1 ] + iFact*ref[ x+iIdx+2] + 16 ) >> 5 (8-50) 

– Otherwise, the value of the prediction samples predSamples[ x ][ y ] is derived by 

predSamples[ x ][ y ] = ref[ x+iIdx+1 ]  (8-51) 

c. When predModeIntra is equal to 26 (vertical), cIdx is equal to 0 and nT is less than 32, the following 
filtering applies with x = 0, y = 0..nT−1. 

predSamples[ x ][ y ] = Clip1Y( p[ x ][ −1 ] + ( ( p[ −1 ][ y ] − p[ −1 ][ −1 ] ) >> 1 ) ) (8-52) 

– Otherwise (predModeIntra is less than 18), the following ordered steps apply. 

1. The reference sample array ref[ x ], with x= −nT..2*nT is specified as follows. 

ref[ x ] = p[ −1 ][ −1+x ], with x = 0..nT  (8-53) 

– If intraPredAngle is less than 0, the main reference sample array is extended as follows. 

– When ( nT*intraPredAngle ) >>5 is less than −1, 

ref[ x ] = p[ −1+( ( x*invAngle+128 )>>8 ) ][ −1 ], with x=( nT*intraPredAngle ) >>5..−1 (8-54) 

– Otherwise, 

ref[ x ] = p[ −1 ][ −1+x ], with x=nT+1..2*nT  (8-55) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 114 

2. The values of the prediction samples predSamples[ x ][ y ], with x, y = 0..nT−1 are derived as follows. 

a. The index variable iIdx and the multiplication factor iFact are derived by 

iIdx = ( ( x + 1 )*intraPredAngle ) >> 5  (8-56) 

iFact = ( ( x + 1 )*intraPredAngle ) & 31  (8-57) 

b. Depending on the value of iFact, the following applies. 

– If iFact is not equal to 0, the value of the prediction samples predSamples[ x ][ y ] is derived by 

predSamples[ x ][ y ] = ( ( 32 − iFact )*ref[ y+iIdx+1 ] + iFact*ref[ y+iIdx+2] + 16 ) >> 5 (8-58) 

– Otherwise, the value of the prediction samples predSamples[ x ][ y ] is derived by 

predSamples[ x ][ y ] = ref[ y+iIdx+1 ]  (8-59) 

c. When predModeIntra is equal to 10 (horizontal), cIdx is equal to 0 and nT is less than 32, the following 
filtering applies with x = 0..nT−1, y = 0. 

predSamples[ x ][ y ] = Clip1Y( p[ −1 ][ y ] + ( ( p[ x ][ −1 ] − p[ −1 ][ −1 ] ) >> 1 ) ) (8-60) 

 

8.5 Decoding process for coding units coded in inter prediction mode 

8.5.1 General decoding process for coding units coded in inter prediction mode 

[Ed. (GJS): Create similar subclauses for other places where there is "orphaned" text that is at the parent level of a 
subclause that contains subordinate subclauses.] 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current coding block. 

Output of this process is a modified reconstructed picture before deblocking filtering. 

The derivation process for quantization parameters as specified in subclause 8.6.1 is invoked with the luma location 
( xC, yC ) as input. 

The variable nCSL is set equal to 1 << log2CbSize and the variable nCSC is set equal to ( 1 << log2CbSize ) >> 1. 

Decoding process for coding units coded in inter prediction mode consists of following ordered steps: 

1. The inter prediction process as specified in subclause 8.5.2 is invoked with the luma location ( xC, yC ), and the 
luma coding block size log2CbSize as the inputs and the outputs are three arrays predSamplesL, predSamplesCb, 
predSamplesCr. 

2. The decoding process for the residual signal of coding units coded in inter prediction mode specified in 
subclause 8.5.4 is invoked with the luma location ( xC, yC ), luma coding block size log2CbSize as the inputs 
and the outputs are three arrays resSamplesL, resSamplesCb, resSamplesCr. 

3. The reconstructed samples of the current coding unit are derived as follows. 

– The picture reconstruction process prior to in-loop filtering for a colour component as specified in 
subclause 8.6.5 is invoked with the luma coding block location ( xC, yC ), the variable nS set equal to nCSL, 
the variable cIdx set equal to 0, the (nCSL)x(nCSL) array predSamples set equal to predSamplesL, and the 
(nCSL)x(nCSL) array resSamples set equal to resSamplesL as the inputs. 

– The picture reconstruction process prior to in-loop filtering for a colour component as specified in 
subclause 8.6.5 is invoked with the chroma coding block location ( xC/2, yC/2 ), the variable nS set equal to 
nCSC, the variable cIdx set equal to 1, the (nCSC)x(nCSC) array predSamples set equal to predSamplesCb, and 
the (nCSC)x(nCSC) array resSamples set equal to resSamplesCb as the inputs. 

– The picture reconstruction process prior to in-loop filtering for a colour component as specified in 
subclause 8.6.5 is invoked with the chroma coding block location ( xC/2, yC/2 ), the variable nS set equal to 



   ISO/IEC 23008-2 : 201x (E) 

115 Draft Rec. ITU-T H.HEVC (201x E) 

nCSC, the variable cIdx set equal to 2, the (nCSC)x(nCSC) array predSamples set equal to predSamplesCr, and 
the (nCSC)x(nCSC) array resSamples set equal to resSamplesCr as the inputs. 

8.5.2 Inter prediction process 

This process is invoked when decoding coding unit whose CuPredMode[ xC ][ yC ] is not equal to MODE_INTRA. 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current luma coding block, 

Outputs of this process are: 

– a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below, 

– a (nCSC)x(nCSC) array predSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as 
specified below, 

– a (nCSC)x(nCSC) array predSamplesCr of chroma prediction samples for the component Cr, where nCSC is derived as 
specified below. 

The variable nCSL is set equal to 1 << log2CbSize and the variable nCSC is set equal to ( 1 << log2CbSize ) >> 1. 

The variable nCS1L is set equal to nCSL >> 1. 

Depending on PartMode, the following applies: 

– If PartMode is equal to PART_2Nx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma prediction 
block nPbH set equal to nCSL and a partition index partIdx set equal to 0 as inputs, and the outputs are a 
(nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_2NxN, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma prediction 
block nPbH set equal to nCS1L and a partition index partIdx set equal to 0 as inputs, and the outputs are a 
(nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L ), the size of the luma 
coding block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma 
prediction block nPbH set equal to nCS1L and a partition index partIdx set equal to 1 as inputs, and the outputs 
are the modfied (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays predSamplesCb 
and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_Nx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the luma prediction 
block nPbH set equal to nCSL and a partition index partIdx set equal to 0 as inputs, and the outputs are a 
(nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, 0 ), the size of the luma 
coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the luma 
prediction block nPbH set equal to nCSL and a partition index partIdx set equal to 1 as inputs, and the outputs 
are the modified  (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays 
predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_2NxnU, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 116 

block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma prediction 
block nPbH set equal to nCS1L >> 1 and a partition index partIdx set equal to 0 as inputs, and the outputs are a 
(nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L >> 1 ), the size of the 
luma coding block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma 
prediction block nPbH set equal to nCS1L + (nCS1L >> 1) and a partition index partIdx set equal to 1 as inputs, 
and the outputs are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) 
arrays predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_2NxnD, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of the luma prediction 
block nPbH set equal to nCS1L + (nCS1L >> 1) and a partition index partIdx set equal to 0 as inputs, and the 
outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and 
predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L + (nCS1L >> 1) ), the size 
of the luma coding block nCSL, the width of the luma prediction block nPbW set equal to nCSL, the height of 
the luma prediction block nPbH set equal to nCS1L >> 1 and a partition index partIdx set equal to 1 as inputs, 
and the outputs are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) 
arrays predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_nLx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCS1L >> 1, the height of the luma 
prediction block nPbH set equal to nCSL and a partition index partIdx set equal to 0 as inputs, and the outputs 
are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to (nCS1L >> 1, 0 ), the size of the luma 
coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L + (nCS1L >> 1), the height 
of the luma prediction block nPbH set equal to nCSL and a partition index partIdx set equal to 1 as inputs, and 
the outputs are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays 
predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_nRx2N, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCS1L + (nCS1L >> 1), the height of the 
luma prediction block nPbH set equal to nCSL and a partition index partIdx set equal to 0 as inputs, and the 
outputs are a (nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and 
predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to (nCS1L + (nCS1L >> 1), 0 ), the size 
of the luma coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L >> 1, the 
height of the luma prediction block nPbH set equal to nCSL and a partition index partIdx set equal to 1 as inputs, 
and the outputs are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) 
arrays predSamplesCb and predSamplesCr. 

– Otherwise, if PartMode is equal to PART_NxN, the following ordered steps apply: 

1. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the size of the luma coding 
block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the luma prediction 
block nPbH set equal to nCS1L and a partition index partIdx set equal to 0 as inputs, and the outputs are a 
(nCSL)x(nCSL) array predSamplesL and two (nCSC)x(nCSC) arrays predSamplesCb and predSamplesCr. 

2. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, 0 ), the size of the luma 
coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the luma 



   ISO/IEC 23008-2 : 201x (E) 

117 Draft Rec. ITU-T H.HEVC (201x E) 

prediction block nPbH set equal to nCS1L and a partition index partIdx set equal to 1 as inputs, and the outputs 
are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays predSamplesCb 
and predSamplesCr. 

3. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, nCS1L ), the size of the luma 
coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the luma 
prediction block nPbH set equal to nCS1L and a partition index partIdx set equal to 2 as inputs, and the outputs 
are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays predSamplesCb 
and predSamplesCr. 

4. The decoding process for prediction units in inter prediction mode as specified in subclause 8.5.3 is invoked 
with the luma location ( xC, yC ), the luma location ( xB, yB ) set equal to ( nCS1L, nCS1L ), the size of the 
luma coding block nCSL, the width of the luma prediction block nPbW set equal to nCS1L, the height of the 
luma prediction block nPbH set equal to nCS1L and a partition index partIdx set equal to 3 as inputs, and the 
outputs are the modified (nCSL)x(nCSL) array predSamplesL and the two modified (nCSC)x(nCSC) arrays 
predSamplesCb and predSamplesCr. 

8.5.3 Decoding process for prediction units in inter prediction mode 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture, 

– a luma location ( xB, yB ) specifying the top-left sample of the current luma prediction block relative to the top left 
sample of the current luma coding block, 

– a variable nCS specifying the size of the current luma coding block, 

– a variable nPbW specifying the width of the current luma prediction block, 

– a variable nPbH specifying the width of the current luma prediction block, 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are: 

– a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below, 

– a (nCSC)x(nCSC) array predSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as 
specified below, 

– a (nCSC)x(nCSC) array predSamplesCr of chroma prediction samples for the component Cr, where nCSC is derived as 
specified below. 

The variable nCSL is set equal to nCS and the variable nCSC is set equal to nCS >> 1. 

The decoding process for prediction units in inter prediction mode consists of the following ordered steps: 

1. The derivation process for motion vector components and reference indices as specified in subclause 8.5.3.1 is 
invoked with the luma coding block location ( xC, yC ), the luma prediction block location ( xB, yB ), the luma 
coding block size block nCS, the luma prediction block width and height, nPbW and nPbH, and the prediction 
unit index partIdx specifying as inputs and the luma motion vectors mvL0 and mvL1, the chroma motion 
vectors mvCL0 and mvCL1, the reference indices refIdxL0 and refIdxL1, and the prediction list utilization flags 
predFlagL0 and predFlagL1 as outputs. 

2. The decoding process for inter sample prediction as specified in subclause 8.5.3.2 is invoked with the luma 
coding block location ( xC, yC ), the luma prediction block location ( xB, yB ), the luma coding block size block 
nCS, the luma prediction block width height, nPbW and nPbH, the luma motion vectors mvL0 and mvL1, the 
chroma motion vectors mvCL0 and mvCL1, the reference indices refIdxL0 and refIdxL1, and the prediction list 
utilization flags predFlagL0 and predFlagL1 as inputs and the inter prediction samples (predSamples) which are 
a (nCSL)x(nCSL) array predSamplesL of prediction luma samples and two (nCSC)x(nCSC) arrays predSamplesCr, 
and predSamplesCr of prediction chroma samples, one for each of the chroma components Cb and Cr as outputs. 

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made 
for x = xB..xB + nPbW − 1, y = yB..yB + nPbH− 1: 

MvL0[ x ][ y ] = mvL0  (8-61) 
MvL1[ x ][ y ] = mvL1  (8-62) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 118 

RefIdxL0[ x ][ y ] = refIdxL0  (8-63) 
RefIdxL1[ x ][ y ] = refIdxL1  (8-64) 

PredFlagL0[ x ][ y ] = predFlagL0  (8-65) 
PredFlagL1[ x ][ y ] = predFlagL1  (8-66) 

8.5.3.1 Derivation process for motion vector components and reference indices 

Inputs to this process are 

– a luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xB, yB ) of the top-left sample of the current luma prediction block relative to the top-left sample 
of the current luma coding block, 

– a variable nCS specifying the size of the current luma coding block, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are 

– luma motion vectors mvL0 and mvL1 

– chroma motion vectors mvCL0 and mvCL1, 

– reference indices refIdxL0 and refIdxL1, 

– prediction list utilization flags predFlagL0 and predFlagL1. 

Let ( xP, yP ) specify the top-left sample location of the current luma prediction block relative to the top-left luma 
sample of the current picture where xP = xC + xB and yP = yC + yB. 

Let the variable currPic and ListX be the current picture and RefPicListX (with X being 0 or 1) of the current picture, 
respectively. 

The function LongTermRefPic( nPic, nPb, refIdx, LX ), with X being either 0 or 1, is defined as follows. If the picture 
with index refIdx from reference picture list LX of the slice containing prediction block nPb in the picture nPic was 
marked as "used for long term reference" at the time when nPic was the current picture, LongTermRefPic( nPic, nPb, 
refIdx, LX ) is equal to 1; otherwise LongTermRefPic( nPic, nPb, refIdx, LX ) is equal to 0. 

For the derivation of the variables mvL0 and mvL1, refIdxL0 and refIdxL1 as well as predFlagL0 and predFlagL1, the 
following applies. 

– If CuPredMode[ xC ][ yC ] is equal to MODE_SKIP, the derivation process for luma motion vectors for merge 
mode as specified in subclause 8.5.3.1.1 is invoked with the luma location ( xC, yC ), the luma location ( xP, yP ), 
variables nCS, nPbW, nPbH and the partition index partIdx as inputs and the output being the luma motion vectors 
mvL0, mvL1, the reference indices refIdxL0, refIdxL1, and the prediction list utilization flags predFlagL0 and 
predFlagL1. 

– Otherwise, if CuPredMode[ xC ][ yC ] is equal to MODE_INTER and merge_flag[ xP ][ yP ] is equal to 1, the 
derivation process for luma motion vectors for merge mode as specified in subclause 8.5.3.1.1 is invoked with the 
luma location ( xC, yC ), luma location ( xP, yP ), variables nCS, nPbW and nPbH and the partition index partIdx as 
inputs and the outputs being the luma motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, 
the prediction utilization flags predFlagL0 and predFlagL1. 

– Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX and in Pred_LX and 
in the syntax elements ref_idx_lX and MvdLX, the following applies. 

1. The variables refIdxLX and predFlagLX are derived as follows. 

- If inter_pred_idc[ xP ][ yP ] is equal to Pred_LX or Pred_BI,  

     refIdxLX = ref_idx_lX[ xP ][ yP ]  (8-67) 
     predFlagLX = 1  (8-68) 

- Otherwise, the variables refIdxLX and predFlagLX are specified by 



   ISO/IEC 23008-2 : 201x (E) 

119 Draft Rec. ITU-T H.HEVC (201x E) 

     refIdxLX = −1  (8-69) 
     predFlagLX = 0  (8-70) 

2. The variable mvdLX is derived as follows. 

    mvdLX[ 0 ] = MvdLX[ xP ][ yP ][ 0 ]  (8-71) 
    mvdLX[ 1 ] = MvdLX[ xP ][ yP ][ 1 ]  (8-72) 

3. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in 
subclause 8.5.3.1.5 is invoked with the luma coding block location ( xC, yC ), the coding block size nCS, 
the luma prediction block location ( xP, yP ), variables nPbW and nPbH, refIdxLX, and the partition index 
partIdx as the inputs and the output being mvpLX. 

4. When predFlagLX is equal to 1, the luma motion vector mvLX is derived as 

    uLX[ 0 ] = (mvpLX[ 0 ] + mvdLX[ 0 ] + 216) % 216 (8-73) 
    mvLX[ 0 ] = ( uLX[ 0 ] >= 215 ) ? ( uLX[ 0 ] − 216 ) : uLX[ 0 ] (8-74) 
    uLX[ 1 ] = (mvpLX[ 1 ] + mvdLX[ 1 ] + 216) % 216 (8-75) 
    mvLX[ 1 ] = ( uLX[ 1 ] >= 215 ) ? ( uLX[ 1 ] − 216 ) : uLX[ 1 ] (8-76) 

NOTE – The resulting values of mvLX[ 0 ] and mvLX[ 1 ] as specified above will always be in the range of −215 to 215 − 1. 

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation 
process for chroma motion vectors in subclause 8.5.3.1.9 is invoked with mvLX and refIdxLX as inputs and the output 
being mvCLX. 

8.5.3.1.1 Derivation process for luma motion vectors for merge mode 

This process is only invoked when CuPredMode[ xC ][ yC ] is equal to MODE_SKIP or CuPredMode[ xC ][ yC ] is 
equal to MODE_INTER and merge_flag [ xP ][ yP ] is equal to 1, where ( xP, yP ) specify the top-left sample of the 
current luma prediction block relative to the top-left luma sample of the current picture. 

Inputs of this process are 

– a luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xP, yP ) of the top-left sample of the current luma prediction block relative to the top-left luma 
sample of the current picture, 

– a variable nCS specifying the size of the current luma coding block, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are 

– the luma motion vectors mvL0 and mvL1, 

– the reference indices refIdxL0 and refIdxL1, 

– the prediction list utilization flags predFlagL0 and predFlagL1. 

The variables singleMCLFlag is derived as follows. 

– If log2_parallel_merge_level_minus2 is greater than 0 and nCS is equal to 8, singleMCLFlag is set to 1. 

– Otherwise, singleMCLFlag is set to 0. 

When singleMCLFlag is equal to 1, xP is set equal to xC, yP is set equal to yC, and both nPbW and nPbH are set equal 
to nCS. 

NOTE – When singleMCLFlag is equal to 1, all the prediction units of the current coding unit share a single merge candidate list, 
which is identical to the merge candidate list of the 2Nx2N prediction unit. 

The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the prediction utilization flags 
predFlagL0 and predFlagL1 are derived as specified by the following ordered steps: 

1. The derivation process for merging candidates from neighboring prediction unit partitions in subclause 8.5.3.1.2 
is invoked with the luma coding block location ( xC, yC ), the coding block size nCS, the luma prediction block 
location ( xP, yP ), the variable singleMCLFlag, the width and the height of the luma prediction block nPbW 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 120 

and nPbH and the partition index partIdx as inputs and the output being the availability flags availableFlagA0, 
availableFlagA1, availableFlagB0, availableFlagB1, availableFlagB2, the reference indices refIdxLXA0, 
refIdxLXA1, refIdxLXB0, refIdxLXB1, refIdxLXB2, the prediction list utilization flags predFlagLXA0, 
predFlagLXA1, predFlagLXB0, predFlagLXB1, predFlagLXB2 and the motion vectors mvLXA0, mvLXA1, 
mvLXB0, mvLXB1, mvLXB2 (with X being 0 or 1, respectively). 

2. The reference indices for the temporal merging candidate, refIdxLXCol (with X being 0 or 1, respectively), are 
set equal to 0. 

3. The derivation process for temporal luma motion vector prediction in subclause 8.5.3.1.7 is invoked with luma 
location ( xP, yP ), the width and the height of the luma prediction block nPbW and nPbH, and refIdxLXCol as 
the inputs and the output being the availability flags availableFlagLXCol and the temporal motion vectors 
mvLXCol (with X being 0 or 1, respectively). The variables availableFlagCol and predFlagLXCol (with X 
being 0 or 1, respectively) are derived as specified below. 

availableFlagCol = availableFlagL0Col | | availableFlagL1Col (8-77) 

predFlagLXCol = availableFlagLXCol (8-78) 

4. The merging candidate list, mergeCandList, is constructed as follows. 

1. A1, if availableFlagA1 is equal to 1 

2. B1, if availableFlagB1 is equal to 1 

3. B0, if availableFlagB0 is equal to 1 

4. A0, if availableFlagA0 is equal to 1 

5. B2, if availableFlagB2 is equal to 1 

6. Col, if availableFlagCol is equal to 1 

5. The variable numMergeCand and numOrigMergeCand are set to the number of merging candidates in the 
mergeCandList. 

6. When slice_type is equal to B, the derivation process for combined bi-predictive merging candidates specified 
in subclause 8.5.3.1.3 is invoked with mergeCandList, the reference indices refIdxL0N and refIdxL1N, the 
prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every 
candidate N being in mergeCandList, numMergeCand and numOrigMergeCand given as input and the output is 
assigned to mergeCandList, numMergeCand, the reference indices refIdxL0combCandk and 
refIdxL1combCandk, the prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk and 
the motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in 
mergeCandList. The number of candidates being added numCombMergeCand is set equal to 
( numMergeCand − numOrigMergeCand ). When numCombMergeCand is greater than 0, k ranges from 0 to 
numCombMergeCand − 1, inclusive. 

7. The derivation process for zero motion vector merging candidates specified in subclause 8.5.3.1.4 is invoked 
with the mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags 
predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in 
mergeCandList and the NumMergeCand as the inputs and the output is assigned to mergeCandList, 
numMergeCand, the reference indices refIdxL0zeroCandm and refIdxL1zeroCandm, the prediction list utilization 
flags predFlagL0zeroCandm and predFlagL1zeroCandm, the motion vectors mvL0zeroCandm and 
mvL1zeroCandm of every new candidate zeroCandm being added in mergeCandList. The number of candidates 
being added numZeroMergeCand is set equal to 
( numMergeCand − numOrigMergeCand − numCombMergeCand ). When numZeroMergeCand is greater than 
0, m ranges from 0 to numZeroMergeCand − 1, inclusive. 

8. The following assignments are made with N being the candidate at position merge_idx[ xP][ yP ] in the merging 
candidate list mergeCandList ( N = mergeCandList[ merge_idx[ xP][ yP ] ] ) and X being replaced by 0 or 1: 

mvLX[ 0 ] = mvLXN[ 0 ] (8-79) 

mvLX[ 1 ] = mvLXN[ 1 ] (8-80) 

refIdxLX = refIdxLXN (8-81) 

predFlagLX = predFlagLXN (8-82) 

9. When predFlagL0 is equal to 1 and predFlagL1 is equal to 1, and ( nPbW + nPbH ) is equal to 12, the following 
applies. 



   ISO/IEC 23008-2 : 201x (E) 

121 Draft Rec. ITU-T H.HEVC (201x E) 

refIdxL1 = −1  (8-83) 

predFlagL1 = 0  (8-84) 

8.5.3.1.2 Derivation process for spatial merging candidates 

Inputs to this process are 

– a luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable nCS specifying the size of the current luma coding block, 

– a luma location ( xP, yP ) specifying the top-left sample of the current luma prediction block relative to the top-left 
luma sample of the current picture, 

– a variable singleMCLFlag, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are (with X being 0 or 1, respectively) 

– the availability flags availableFlagA0, availableFlagA1, availableFlagB0, availableFlagB1, availableFlagB2 of the 
neighbouring prediction units, 

– the reference indices refIdxLXA0, refIdxLXA1, refIdxLXB0, refIdxLXB1, refIdxLXB2 of the neighbouring 
prediction units, 

– the prediction list utilization flags predFlagLXA0, predFlagLXA1, predFlagLXB0, predFlagLXB1, predFlagLXB2 of 
the neighbouring prediction units, 

– the motion vectors mvLXA0, mvLXA1, mvLXB0, mvLXB1, mvLXB2 of the neighbouring prediction units. 

For the derivation of availableFlagA1, refIdxLXA1, predFlagLXA1, and mvLXA1 the following applies. 

– The luma location ( xA1, yA1 ) inside the neighbouring luma coding block is set equal to ( xP − 1,  yP + nPbH − 1 ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the luma 
location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), the 
width and the height of the luma prediction block nPbW and nPbH, the luma location ( xA1, yA1 ) and the partition 
index partIdx as inputs and the output is assigned to the prediction block availability flag availableA1. 

– When one or more of the following conditions are true, availableA1 is set equal to FALSE 

– (xP >> (log2_parallel_merge_level_minus2 + 2)) is equal to (xA1 >> (log2_parallel_merge_level_minus2 + 2)) 
and (yP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(yA1 >> (log2_parallel_merge_level_minus2 + 2)). 

– singleMCLFlag is equal to 0 and PartMode of the current prediction unit is PART_Nx2N or PART_nLx2N or 
PART_nRx2N and partIdx is equal to 1 

– The variables availableFlagA1, refIdxLXA1, predFlagLXA1, and mvLXA1 are derived as follows. 

– If availableA1 is equal to FALSE, availableFlagA1 is set equal to 0, both components mvLXA1 are set equal to 
0, refIdxLXA1 is set equal to −1 and predFlagLXA1 is set equal to 0 (with X being 0 or 1, respectively). 

– Otherwise, availableFlagA1 is set equal to 1 and the following assignments are made. 

mvLXA1 = MvLX[ xA1 ][ yA1 ]  (8-85) 
refIdxLXA1 = RefIdxLX[ xA1 ][ yA1 ]  (8-86) 
predFlagLXA1 = PredFlagLX[ xA1 ][ yA1 ]  (8-87) 

For the derivation of availableFlagB1, refIdxLXB1, predFlagLXB1, and mvLXB1 the following applies. 

– The luma location ( xB1, yB1 ) inside the neighbouring luma coding block is set equal to ( xP + nPbW − 1,  yP − 1 ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the luma 
location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), the 
width and the height of the luma prediction block nPbW and nPbH, the luma location ( xB1, yB1 ) and the partition 
index partIdx as inputs and the output is assigned to the prediction block availability flag availableB1. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 122 

– When one or more of the following conditions are true, availableB1 is set equal to FALSE 

– (xP >> (log2_parallel_merge_level_minus2 + 2)) is equal to (xB1 >> (log2_parallel_merge_level_minus2 + 2)) 
and (yP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(yB1 >> (log2_parallel_merge_level_minus2 + 2)). 

– singleMCLFlag is equal to 0 and PartMode of the current prediction unit is PART_2NxN or PART_2NxnU or 
PART_2NxnD and partIdx is equal to 1 

– The variables availableFlagB1, refIdxLXB1, predFlagLXB1, and mvLXB1 are derived as follows. 

– If one or more of the following conditions are true, availableFlagB1 is set equal to 0, both components 
mvLXB1 are set equal to 0, refIdxLXB1 is set equal to −1 and predFlagLXB1 is set equal to 0 (with X being 0 
or 1, respectively). 

– availableB1 is equal to FALSE 

– availableA1 is equal to TRUE and the prediction units covering luma location ( xA1, yA1 ) and luma 
location ( xB1, yB1 ) have the same motion vectors and the same reference indices 

– Otherwise, availableFlagB1 is set equal to 1 and the following assignments are made. 

mvLXB1 = MvLX[ xB1 ][ yB1 ]  (8-88) 
refIdxLXB1 = RefIdxLX[ xB1 ][ yB1 ]  (8-89) 
predFlagLXB1 = PredFlagLX[ xB1 ][ yB1 ]  (8-90) 

For the derivation of availableFlagB0, refIdxLXB0, predFlagLXB0, and mvLXB0 the following applies. 

– The luma location ( xB0, yB0 ) inside the neighbouring luma coding block is set equal to ( xP + nPbW,  yP − 1 ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the luma 
location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), the 
width and the height of the luma prediction block nPbW and nPbH, the luma location ( xB0, yB0 ) and the partition 
index partIdx as inputs and the output is assigned to the prediction block availability flag availableB0. 

– When (xP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(xB0 >> (log2_parallel_merge_level_minus2 + 2)) and (yP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(yB0 >> (log2_parallel_merge_level_minus2 + 2)), availableB0 is set equal to FALSE 

– The variables availableFlagB0, refIdxLXB0, predFlagLXB0, and mvLXB0 are derived as follows. 

– If one or more of the following conditions are true, availableFlagB0 is set equal to 0, both components 
mvLXB0 are set equal to 0, refIdxLXB0 is set equal to −1 and predFlagLXB0 is set equal to 0 (with X being 0 
or 1, respectively). 

– availableB0 is equal to FALSE 

– availableB1 is equal to TRUE and the prediction units covering luma location ( xB1, yB1 ) and luma 
location ( xB0, yB0 ) have the same motion vectors and the same reference indices 

– Otherwise, availableFlagB0 is set equal to 1 and the following assignments are made. 

mvLXB0 = MvLX[ xB0 ][ yB0 ]  (8-91) 
refIdxLXB0 = RefIdxLX[ xB0 ][ yB0 ]  (8-92) 
predFlagLXB0 = PredFlagLX[ xB0 ][ yB0 ]  (8-93) 

For the derivation of availableFlagA0, refIdxLXA0, predFlagLXA0, and mvLXA0 the following applies. 

– The luma location ( xA0, yA0 ) inside the neighbouring luma coding block is set equal to ( xP − 1,  yP + nPbH ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the luma 
location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), the 
width and the height of the luma prediction block nPbW and nPbH, the luma location ( xA0, yA0 ) and the partition 
index partIdx as inputs and the output is assigned to the prediction block availability flag availableA0. 

– When (xP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(xA0 >> (log2_parallel_merge_level_minus2 + 2)) and (yP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(yA0 >> (log2_parallel_merge_level_minus2 + 2)), availableA0 is set equal to FALSE 

– The variables availableFlagA0, refIdxLXA0, predFlagLXA0, and mvLXA0 are derived as follows. 



   ISO/IEC 23008-2 : 201x (E) 

123 Draft Rec. ITU-T H.HEVC (201x E) 

– If one or more of the following conditions are true, availableFlagA0 is set equal to 0, both components 
mvLXA0 are set equal to 0, refIdxLXA0 is set equal to −1 and predFlagLXA0 is set equal to 0 (with X being 0 
or 1, respectively). 

– availableA0 is equal to FALSE 

– availableA1 is equal to TRUE and the prediction units covering luma location ( xA1, yA1 ) and luma 
location ( xA0, yA0 ) have the same motion vectors and the same reference indices 

– Otherwise, availableFlagA0 is set equal to 1 and the following assignments are made. 

mvLXA0 = MvLX[ xA0 ][ yA0 ]  (8-94) 
refIdxLXA0 = RefIdxLX[ xA0 ][ yA0 ]  (8-95) 
predFlagLXA0 = PredFlagLX[ xA0 ][ yA0 ]  (8-96) 

For the derivation of availableFlagB2, refIdxLXB2, predFlagLXB2, and mvLXB2 the following applies. 

– The luma location ( xB2, yB2 ) inside the neighbouring luma coding block is set equal to ( xP − 1, yP − 1 ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the luma 
location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), the 
width and the height of the luma prediction block nPbW and nPbH, the luma location ( xB2, yB2 ) and the partition 
index partIdx as inputs and the output is assigned to the prediction block availability flag availableB2. 

– When (xP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(xB2 >> (log2_parallel_merge_level_minus2 + 2)) and (yP >> (log2_parallel_merge_level_minus2 + 2)) is equal to 
(yB2 >> (log2_parallel_merge_level_minus2 + 2)), availableB2 is set equal to FALSE 

– The variables availableFlagB2, refIdxLXB2, predFlagLXB2, and mvLXB2 are derived as follows. 

– If one or more of the following conditions are true, availableFlagB2 is set equal to 0, both components 
mvLXB2 are set equal to 0, refIdxLXB2 is set equal to −1 and predFlagLXB2 is set equal to 0 (with X being 0 
or 1, respectively). 

– availableB2 is equal to FALSE 

– availableA1 is equal to TRUE and prediction units covering luma location ( xA1, yA1 ) and luma location 
( xB2, yB2 ) have the same motion vectors and the same reference indices 

– availableB1 is equal to TRUE and the prediction units covering luma location ( xB1, yB1 ) and luma 
location ( xB2, yB2 ) have the same motion vectors and the same reference indices 

– availableFlagA0 + availableFlagA1 + availableFlagB0 + availableFlagB1 is equal to 4. 

– Otherwise, availableFlagB2 is set equal to 1 and the following assignments are made. 

mvLXB2 = MvLX[ xB2 ][ yB2 ]  (8-97) 
refIdxLXB2 = RefIdxLX[ xB2 ][ yB2 ]  (8-98) 
predFlagLXB2 = PredFlagLX[ xB2 ][ yB2 ]  (8-99) 

8.5.3.1.3 Derivation process for combined bi-predictive merging candidates 

Inputs of this process are 

– a merging candidate list mergeCandList, 

– reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList, 

– prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList, 

– motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, 

– the number of elements numMergeCand within mergeCandList, 

– the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge 
candidate derivation process, 

Outputs of this process are 

– the merging candidate list mergeCandList, 

– the number of elements numMergeCand within mergeCandList. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 124 

– reference indices refIdxL0combCandk and refIdxL1combCandk of every new candidate combCandk being added in 
mergeCandList during the invokation of this process, 

– prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk of every new candidate 
combCandk being added in mergeCandList during the invokation of this process, 

– motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in 
mergeCandList during the invokation of this process, 

When numOrigMergeCand is greater than 1 and less than MaxNumMergeCand, the variable numInputMergeCand is set 
to numMergeCand, the variable combIdx is set to 0, the variable combStop is set to FALSE and the following steps are 
repeated until combStop is equal to TRUE. 

1. The variables l0CandIdx and l1CandIdx are derived using combIdx as specified in Table 8-6. 

2. The following assignments are made with l0Cand being the candidate at position l0CandIdx and l1Cand being 
the candidate at position l1CandIdx in the merging candidate list mergeCandList 
( l0Cand = mergeCandList[ l0CandIdx ], l1Cand = mergeCandList[ l1CandIdx ] ). 

3. When all of the following conditions are true, 

– predFlagL0l0Cand  = =  1, 

– predFlagL1l1Cand  = =  1, 

– DiffPicOrderCnt( RefPicList0[ refIdxL0l0Cand ], RefPicList1[ refIdxL1l1Cand ] )  != 0   | | 
mvL0l0Cand  !=  mvL1l1Cand, 

 the candidate combCandk with k equal to ( numMergeCand − numInputMergeCand ) is added at the end of 
mergeCandList ( mergeCandList[ numMergeCand ] = combCandk ) and the reference indices, the prediction list 
utilization flags and the motion vectors of combCandk are derived as follows and numMergeCand is 
incremented by 1. 

refIdxL0combCandk = refIdxL0l0Cand (8-100) 

refIdxL1combCandk = refIdxL1l1Cand (8-101) 

predFlagL0combCandk = 1 (8-102) 

predFlagL1combCandk = 1 (8-103) 

mvL0combCandk[ 0 ] = mvL0l0Cand[ 0 ] (8-104) 

mvL0combCandk[ 1 ] = mvL0l0Cand[ 1 ] (8-105) 

mvL1combCandk[ 0 ] = mvL1l1Cand[ 0 ] (8-106) 

mvL1combCandk[ 1 ] = mvL1l1Cand[ 1 ] (8-107) 

numMergeCand = numMergeCand + 1 (8-108) 

4. The variable combIdx is incremented by 1. 

5. When combIdx is equal to ( numOrigMergeCand * ( numOrigMergeCand − 1 ) ) or numMergeCand is equal to 
MaxNumMergeCand, combStop is set to TRUE. 

Table 8-6 – Specification of l0CandIdx and l1CandIdx 

combIdx 0 1 2 3 4 5 6 7 8 9 10 11 

l0CandIdx 0 1 0 2 1 2 0 3 1 3 2 3 

l1CandIdx 1 0 2 0 2 1 3 0 3 1 3 2 

 

8.5.3.1.4 Derivation process for zero motion vector merging candidates 

Inputs of this process are 

– a merging candidate list mergeCandList, 

– reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList, 



   ISO/IEC 23008-2 : 201x (E) 

125 Draft Rec. ITU-T H.HEVC (201x E) 

– prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList, 

– motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, 

– the number of elements numMergeCand within mergeCandList, 

Outputs of this process are 

– the merging candidate list mergeCandList, 

– the number of elements numMergeCand within mergeCandList. 

– reference indices refIdxL0zeroCandm and refIdxL10zeroCandm of every new candidate zeroCandm being added in 
mergeCandList during the invokation of this process, 

– prediction list utilization flags predFlagL0zeroCandm and predFlagL10zeroCandm of every new candidate 
zeroCandm being added in mergeCandList during the invokation of this process, 

– motion vectors mvL0zeroCandm and mvL10zeroCandm of every new candidate zeroCandm being added in 
mergeCandList during the invokation of this process, 

The variable numRefIdx is derived as follows. 

– If slice_type is equal to P, numRefIdx is set to num_ref_idx_l0_active_minus1 + 1 

– Otherwise (slice_type is equal to B), numRefIdx is set to Min( num_ref_idx_l0_active_minus1 + 1, 
num_ref_idx_l1_active_minus1 + 1) 

When numMergeCand is less than MaxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the 
variable zeroIdx is set to 0, and the following steps are repeated until numMergeCand is equal to MaxNumMergeCand. 

1. For the derivation of the reference indices, the prediction list utilization flags and the motion vectors of the zero 
motion vector merging candidate, the following applies. 

– If slice_type is equal to P, the candidate zeroCandm with m equal to 
( numMergeCand − numInputMergeCand ) is added at the end of mergeCandList 
( mergeCandList[ numMergeCand ] = zeroCandm ) and the reference indices, the prediction list utilization 
flags and the motion vectors of zeroCandm are derived as follows and numMergeCand is incremented 
by 1. 

refIdxL0zeroCandm = (zeroIdx < numRefIdx) ? zeroIdx : 0 (8-109) 

refIdxL1zeroCandm = −1 (8-110) 

predFlagL0zeroCandm = 1 (8-111) 

predFlagL1zeroCandm = 0 (8-112) 

mvL0zeroCandm[ 0 ] = 0 (8-113) 

mvL0zeroCandm[ 1 ] = 0 (8-114) 

mvL1zeroCandm[ 0 ] = 0 (8-115) 

mvL1zeroCandm[ 1 ] = 0 (8-116) 

numMergeCand = numMergeCand + 1 (8-117) 

– Otherwise (slice_type is equal to B), the candidate zeroCandm with m equal to 
( numMergeCand − numInputMergeCand ) is added at the end of mergeCandList 
( mergeCandList[ numMergeCand ] = zeroCandm ) and the reference indices, the prediction list utilization 
flags and the motion vectors of zeroCandm are derived as follows and numMergeCand is incremented 
by 1. 

refIdxL0zeroCandm = (zeroIdx < numRefIdx) ? zeroIdx : 0 (8-118) 

refIdxL1zeroCandm = (zeroIdx < numRefIdx) ? zeroIdx : 0 (8-119) 

predFlagL0zeroCandm = 1 (8-120) 

predFlagL1zeroCandm = 1 (8-121) 

mvL0zeroCandm[ 0 ] = 0 (8-122) 

mvL0zeroCandm[ 1 ] = 0 (8-123) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 126 

mvL1zeroCandm[ 0 ] = 0 (8-124) 

mvL1zeroCandm[ 1 ] = 0 (8-125) 

numMergeCand = numMergeCand + 1 (8-126) 

2. The variable zeroIdx is incremented by 1. 

8.5.3.1.5 Derivation process for luma motion vector prediction 

Inputs to this process are 

– a luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable nCS specifying the size of the current luma coding block, 

– a luma location ( xP, yP ) specifying the top-left sample of the current luma prediction block relative to the top-left 
luma sample of the current picture, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1), 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Output of this process is  

– the prediction mvpLX of the motion vector mvLX (with X being 0 or 1). 

The motion vector predictor mvpLX is derived in the following ordered steps. 

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in 
subclause 8.5.3.1.6 is invoked with the luma coding block location ( xC, yC ), the coding block size nCS, the 
luma prediction block location ( xP, yP ), the width and the height of the luma prediction block nPbW and 
nPbH, refIdxLX (with X being 0 or 1, respectively), and the partition index partIdx as inputs and the availability 
flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B as the output. 

2. If both availableFlagLXA and availableFlagLXB are equal to 1 and mvLXA is not equal to mvLXB, 
availableFlagLXCol is set equal to 0, otherwise, the derivation process for temporal luma motion vector 
prediction in subclause 8.5.3.1.7 is invoked with luma location ( xP, yP ), the width and the height of the luma 
prediction block nPbW and nPbH, and refIdxLX (with X being 0 or 1, respectively) as the inputs and with the 
output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol. 

3. The motion vector predictor candidate list, mvpListLX, is constructed as follows. 

1. mvLXA, if availableFlagLXA is equal to 1 

2. mvLXB, if availableFlagLXB is equal to 1 

3. mvLXCol, if availableFlagLXCol is equal to 1 

4. The motion vector predictor list is modifed as follows. 

– When mvLXA and mvLXB have the same value, mvLXB is removed from the list and the variable 
numMVPCandLX is set to the number of elements within the mvpListLX. 

– When numMVPCandLX is less than 2, the following applies repeatedly until numMVPCandLX is equal 
to 2. 

mvpListLX[ numMVPCandLX ][ 0 ] = 0 (8-127) 

mvpListLX[ numMVPCandLX ][ 1 ] = 0 (8-128) 

numMVPCandLX = numMVPCandLX + 1 (8-129) 

– When numMVPCandLX is greater than 2, all motion vector predictor candidates mvpListLX[ idx ] with 
idx greater than 1 are removed from the list. 

5. The motion vector of mvpListLX[ mvp_lX_flag[ xP ][ yP ] ] is assigned to mvpLX. 

8.5.3.1.6 Derivation process for motion vector predictor candidates 

Inputs to this process are 



   ISO/IEC 23008-2 : 201x (E) 

127 Draft Rec. ITU-T H.HEVC (201x E) 

– a luma location ( xC, yC ) of the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable nCS specifying the size of the current luma coding block, 

– a luma location ( xP, yP ) specifying the top-left sample of the current luma prediction block relative to the top-left 
luma sample of the current picture, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1), 

– a variable partIdx specifying the index of the current prediction unit within the current coding unit. 

Outputs of this process are (with N being replaced by A, or B) 

– the motion vectors mvLXN of the neighbouring prediction units, 

– the availability flags availableFlagLXN of the neighbouring prediction units. 

 

Figure 8-3 – Spatial motion vector neighbours (informative) 

The variable currPb specifies the current luma prediction block at luma location ( xP, yP ) and the variable currPic 
specifies the current picture. 

The variable isScaledFlagLX with X being 0 or 1 is set equal to 0. 

The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps: 

1. The sample location (xA0, yA0) is set equal to (xP − 1, yP + nPbH) and the sample location (xA1, yA1) is set 
equal to (xA0, yA0 − 1). 

2. The availability flag availableFlagLXA is set equal to 0 and the both components of mvLXA are set equal to 0. 

3. The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the 
luma location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), 
the width and the height of the luma prediction block nPbW and nPbH, the luma location ( xN, yN ) set equal to 
( xA0, yA0 ) and the partition index partIdx as inputs and the output is assigned to the prediction block 
availability flag availableA0. 

4. The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with the 
luma location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location ( xP, yP ), 
the width and the height of the luma prediction block nPbW and nPbH, the luma location ( xN, yN ) set equal to 
( xA1, yA1 ) and the partition index partIdx as inputs and the output is assigned to the prediction block 
availability flag availableA1. 

5. When availableA0 or availableA1 is equal to TRUE, the variable isScaledFlagLX is set equal to 1. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 128 

6. The following applies for ( xAk, yAk ) from ( xA0, yA0 ) to ( xA1, yA1 ). 

– When availableAk is equal to TRUE , CuPredMode[ xAk][ yAk ] is not equal to MODE_INTRA and 
availableFlagLXA is equal to 0, the following applies. 

– If, PredFlagLX[ xAk ][ yAk ] is equal to 1 and the reference index refIdxLX[ xAk ][ yAk ] is equal to 
the reference index of the current prediction unit refIdxLX, availableFlagLXA is set equal to 1 and 
the following assignments are made. 

mvLXA = MvLX[ xAk ][ yAk ] (8-130) 
refIdxA = RefIdxLX[ xAk ][ yAk ] (8-131) 

– Otherwise, if PredFlagLY[ xAk ][ yAk ] (with Y = !X) is equal to 1 and 
DiffPicOrderCnt( RefPicListY[ refIdxLY[ xAk ][ yAk ] ], RefPicListX[ refIdxLX ] ) is equal to 0, 
availableFlagLXA is set equal to 1 and the following assignments are made. 

mvLXA = MvLY[ xAk ][ yAk ] (8-132) 
refIdxA = RefIdxLY[ xAk ][ yAk ] (8-133) 

7. When availableFlagLXA is equal to 0, the following applies for ( xAk, yAk ) from ( xA0, yA0 ) to ( xA1, yA1 ) or 
until availableFlagLXA is equal to 1. 

– When availableAk is equal to TRUE , CuPredMode[ xAk][ yAk ] is not equal to MODE_INTRA and 
availableFlagLXA is equal to 0, the following applies. 

– If PredFlagLX[ xAk ][ yAk ] is equal to 1 and 
LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX) is equal to 
LongTermRefPic( currPic, currPb, RefIdxLX[ xAk ][ yAk ], RefPicListX), availableFlagLXA is set 
equal to 1 and the following assignments are made. 

mvLXA = MvLX[ xAk ][ yAk ] (8-134) 
refIdxA = RefIdxLX[ xAk ][ yAk ] (8-135) 
refPicListA = RefPicListX (8-136) 

– Otherwise, if PredFlagLY[ xAk ][ yAk ] (with Y = !X) is equal to 1 and 
LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX) is equal to 
LongTermRefPic( currPic, currPb, RefIdxLY[ xAk ][ yAk ], RefPicListY), availableFlagLXA is set 
equal to 1 and the following assignments are made. 

mvLXA = MvLY[ xAk ][ yAk ] (8-137) 
refIdxA = RefIdxLY[ xAk ][ yAk ] (8-138) 
refPicListA = RefPicListY (8-139) 

– When availableFlagLXA is equal to 1, and both refPicListA[ refIdxA ] and RefPicListX[ refIdxLX ] are 
short-term reference pictures, mvLXA is derived as specified below. 

tx = ( 16384 + ( Abs( td ) >> 1 ) ) / td (8-140) 

distScaleFactor = Clip3( −4096, 4095, ( tb * tx + 32 ) >> 6 ) (8-141) 

mvLXA = Clip3( −32768, 32767, Sign( distScaleFactor * mvLXA ) *     
  ( ( Abs( distScaleFactor * mvLXA ) + 127 ) >> 8 ) ) (8-142) 

where td and tb are derived as 

td = Clip3( −128, 127, DiffPicOrderCnt( currPic, refPicListA[ refIdxA ] ) ) (8-143) 

tb = Clip3( −128, 127, DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) ) (8-144) 

The motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps: 

1. Let a set of three sample location (xBk, yBk), with k = 0,1,2, specifies sample locations with xB0 = xP + nPbW, 
xB1 = xB0− 1, xB2 = xP − 1 and yBk = yP − 1. The set of sample locations ( xBk, yBk ) represent the sample 
locations immediately to the upper side of the above partition boundary and its extended line. 

2. The availability flag availableFlagLXB is set equal to 0 and the both components of mvLXB are set equal to 0. 

3. Tthe following applies for ( xBk, yBk ) from ( xB0, yB0 ) to ( xB2, yB2 ). 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with 
the luma location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location 
( xP, yP ), the width and the height of the luma prediction block nPbW and nPbH, the luma location 



   ISO/IEC 23008-2 : 201x (E) 

129 Draft Rec. ITU-T H.HEVC (201x E) 

( xN, yN ) set equal to ( xBk, yBk ) and the partition index partIdx as inputs and the output is assigned to 
the prediction block availability flag availableBk. 

– When availableBk is equal to TRUE and availableFlagLXB is equal to 0, the following applies. 

– If PredFlagLX[ xBk ][ yBk ] is equal to 1, and the reference index refIdxLX[ xBk ][ yBk ] is equal to 
the reference index of the current prediction unit refIdxLX, availableFlagLXB is set equal to 1 and the 
following assignments are made. 

mvLXB = MvLX[ xBk ][ yBk ] (8-145) 
refIdxB = RefIdxLX[ xBk ][ yBk ] (8-146) 

– Otherwise, if PredFlagLY[ xBk ][ yBk ] (with Y = !X) is equal to 1 and 
DiffPicOrderCnt( RefPicListY[ refIdxLY[ xBk ][ yBk ] ], RefPicListX[ refIdxLX ] ) is equal to 0, 
availableFlagLXB is set equal to 1 and the following assignments are made. 

mvLXB = MvLY[ xBk ][ yBk ] (8-147) 
refIdxB = RefIdxLY[ xBk ][ yBk ] (8-148) 

4. When isScaledFlagLX is equal to 0 and availableFlagLXB is equal to 1, availableFlagLXA is set equal to 1 and 
the following assignments are made. 

mvLXA = mvLXB (8-149) 
refIdxA = refIdxLXB (8-150) 

5. When isScaledFlagLX is equal to 0, availableFlagLXB is set equal to 0 and the following applies for 
( xBk, yBk ) from ( xB0, yB0 ) to ( xB2, yB2 ) or until availableFlagLXB is equal to 1. 

– The availability derivation process for a prediction block as specified in subclause 6.4.2 is invoked with 
the luma location ( xC, yC ), the current luma coding block size nCbS set equal to nCS, the luma location 
( xP, yP ), the width and the height of the luma prediction block nPbW and nPbH, the luma location 
( xN, yN ) set equal to ( xBk, yBk ) and the partition index partIdx as inputs and the output is assigned to 
the prediction block availability flag availableBk. 

– When availableBk is equal to TRUE and availableFlagLXB is equal to 0, the following applies. 

– If PredFlagLX[ xBk ][ yBk ] is equal to 1 and 
LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX) is equal to 
LongTermRefPic( currPic, currPb, RefIdxLX[ xBk ][ yBk ], RefPicListX), availableFlagLXB is set 
equal to 1 and the following assignments are made. 

mvLXB = MvLX[ xBk ][ yBk ] (8-151) 
refIdxB = RefIdxLX[ xBk ][ yBk ] (8-152) 
refPicListB = RefPicListX (8-153) 

– Otherwise, if PredFlagLY[ xBk ][ yBk ] (with Y = !X) is equal to 1 and 
LongTermRefPic( currPic, currPb, refIdxLX, RefPicListX) is equal to 
LongTermRefPic( currPic, currPb, RefIdxLY[ xBk ][ yBk ], RefPicListY), availableFlagLXB is set 
equal to 1 and the following assignments are made. 

mvLXB = MvLY[ xBk ][ yBk ] (8-154) 
refIdxB = RefIdxLY[ xBk ][ yBk ] (8-155) 
refPicListB = RefPicListY (8-156) 

– When availableFlagLXB is equal to 1 and 
DiffPicOrderCnt( refPicListB[ refIdxB ], RefPicListX[ refIdxLX ] ) is not equal to 0 and both 
refPicListB[ refIdxB ] and RefPicListX[ refIdxLX ] are short-term reference pictures, mvLXB is derived 
as specified below. 

tx = ( 16384 + ( Abs( td ) >> 1 ) ) / td (8-157) 

distScaleFactor = Clip3( −4096, 4095, ( tb * tx + 32 ) >> 6 ) (8-158) 

mvLXB =Clip3( −32768, 32767, Sign( distScaleFactor * mvLXB ) *  
  ( ( Abs( distScaleFactor * mvLXB ) + 127 ) >> 8 ) ) (8-159) 

where td and tb are derived as 

td = Clip3( −128, 127, DiffPicOrderCnt( currPic, refPicListB[ refIdxB ] ) ) (8-160) 

tb = Clip3( −128, 127, DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) ) (8-161) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 130 

8.5.3.1.7 Derivation process for temporal luma motion vector prediction 

Inputs to this process are 

– a luma location ( xP, yP ) specifying the top-left sample of the current luma prediction block relative to the top-left 
luma sample of the current picture, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– a reference index refIdxLX (with X being 0 or 1). 

Outputs of this process are 

– the motion vector prediction mvLXCol, 

– the availability flag availableFlagLXCol. 

The variable currPb specifies the current luma prediction block at luma location ( xP, yP ). 

The variables mvLXCol and availableFlagLXCol are derived as follows. 

– If slice_temporal_mvp_enable_flag is equal to 0, both components of mvLXCol are set equal to 0 and 
availableFlagLXCol is set equal to 0. 

– Otherwise, the following ordered steps apply. 

1. Depending on the values of slice_type, collocated_from_l0_flag, and collocated_ref_idx, the variable colPic, 
specifying the picture that contains the collocated partition, is derived as follows. 

– If slice_type is equal to B and collocated_from_l0_flag is equal to 0, the variable colPic specifies the 
picture that contains the collocated partition as specified by RefPicList1[ collocated_ref_idx ]. 

– Otherwise (slice_type is equal to B and collocated_from_l0_flag is equal to 1 or slice_type is equal to P), 
the variable colPic specifies the picture that contains the collocated partition as specified by 
RefPicList0[ collocated_ref_idx ]. 

2. The bottom right collocated motion vector is derived as follows 

xPRb = xP + nPbW (8-162) 

yPRb = yP + nPbH (8-163) 

– If ( yP >> Log2CtbSizeY ) is equal to ( yPRb >> Log2CtbSizeY ), and xPRb is less than 
pic_width_in_luma_samples, the following applies. 

– The variable colPb specifies the luma prediction block covering the modified location given by 
( ( xPRb >> 4 ) << 4, ( yPRb >> 4 ) << 4 ) inside the collocated picture specified by colPic. 

– The luma location ( xPCol, yPCol ) is set equal to the top-left sample of the of the collocated luma 
prediction block specified by colPb relative to the top-left luma sample of the collocated picture 
specified by colPic. 

– The derivation process for collocated motion vectors as specified in subclause 8.5.3.1.8 is invoked 
with currPb, colPic, colPb, ( xPCol, yPCol ), and refIdxLX as inputs and the output being assigned 
to mvLXCol and availableFlagLXCol. 

– Otherwise, both components of mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0. 

3. When availableFlagLXCol is equal to 0, the central collocated motion vector is derived as follows. 

xPCtr = xP + ( nPbW >> 1 ) (8-164) 

yPCtr = yP + ( nPbH >> 1 ) (8-165) 

– The variable colPb specifies the luma prediction block covering the modified location given by 
( ( xPCtr >> 4 ) << 4, ( yPCtr >> 4 ) << 4 ) inside the colPic. 

– The luma location ( xPCol, yPCol ) is set equal to the top-left sample of the of the collocated luma 
prediction block specified by colPb relative to the top-left luma sample of the collocated picture specified 
by colPic. 

– The derivation process for collocated motion vectors as specified in subclause 8.5.3.1.8 is invoked with 
currPb, colPic, colPb, ( xPCol, yPCol ), and refIdxLX as inputs and the output being assigned to 
mvLXCol and availableFlagLXCol. 



   ISO/IEC 23008-2 : 201x (E) 

131 Draft Rec. ITU-T H.HEVC (201x E) 

8.5.3.1.8 Derivation process for collocated motion vectors 

Inputs to this process are 

– currPb specifying the current prediction block, 

– colPic specifying the collocated picture, 

– colPb specifying the collocated prediction block inside the collocated picture specified by colPic, 

– a luma location ( xPCol, yPCol ) specifying the top-left sample of the collocated luma prediction block specified by 
colPb relative to the top-left luma sample of the collocated picture specified by colPic, 

– a reference index refIdxLX (with X being 0 or 1). 

Outputs of this process are 

– the motion vector prediction mvLXCol, 

– the availability flag availableFlagLXCol. 

The variable currPic specifies the current picture. 

The arrays predFlagLXCol[ x ][ y ], mvLXCol[ x ][ y ] and refIdxLXCol[ x ][ y ] are set equal to the corresponding 
arrays of the collocated picture specified by colPic, PredFlagLX[ x ][ y ], MvLX[ x ][ y ] and RefIdxLX[ x ][ y ], 
respectively with X being the value of X this process is invoked for. 

The variables mvLXCol and availableFlagLXCol are derived as follows. 

– If colPb is coded in an intra prediction mode, both components of mvLXCol are set equal to 0 and 
availableFlagLXCol is set equal to 0. 

– Otherwise, the motion vector mvCol, the reference index refIdxCol, and the reference list identifier listCol are 
derived as follows. 

– If predFlagL0Col[ xPCol ][ yPCol ] is equal to 0, mvCol, refIdxCol, and listCol are set equal to 
mvL1Col[ xPCol ][ yPCol ], refIdxL1Col[ xPCol ][ yPCol ], and L1, respectively.  

– Otherwise if predFlagL0Col[ xPCol ][ yPCol ] is equal to 1 and predFlagL1Col[ xPCol ][ yPCol ] is equal to 0, 
mvCol, refIdxCol, and listCol are set equal to mvL0Col[ xPCol ][ yPCol ], refIdxL0Col[ xPCol ][ yPCol ], and 
L0, respectively. 

– Otherwise (predFlagL0Col[ xPCol ][ yPCol ] is equal to 1 and predFlagL1Col[ xPCol ][ yPCol ] is equal to 1), 
the following assignments are made. 

– If DiffPicOrderCnt( currPic, pic ) is less than or equal to 0 for every picture pic in every reference picture 
list of the current slice, mvCol, refIdxCol, and listCol are set equal to mvLXCol[ xPCol ][ yPCol ], 
refIdxLXCol[ xPCol ][ yPCol ] and LX, respectively with X being the value of X this process is invoked 
for. 

– Otherwise, mvCol, refIdxCol and listCol are set equal to mvLNCol[ xPCol ][ yPCol ], 
refIdxLNCol[ xPCol ][ yPCol ] and LN, respectively with N being the value of collocated_from_l0_flag. 

and mvLXCol and availableFlagLXCol are derived as follows. 

– If LongTermRefPic( currPic, currPb, refIdxLX, LX ) is not equal to LongTermRefPic( colPic, colPb, refIdxCol, 
listCol ), both components of mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0.  

– Otherwise, the variable availableFlagLXCol is set equal to 1, refPicListCol[ refIdxCol ] is set to be the picture 
with reference index refIdxCol in the reference picture list listCol of the slice containing prediction block currPb 
in the picture colPic, and the following applies. 

colPocDiff = DiffPicOrderCnt( colPic, refPicListCol[ refIdxCol ] ) (8-166) 

currPocDiff = DiffPicOrderCnt( currPic, RefPicListX[ refIdxLX ] ) (8-167) 

– If RefPicListX[ refIdxLX ] is a long-term reference picture, or colPocDiff is equal to currPocDiff, 
mvLXCol is derived as: 

mvLXCol = mvCol (8-168) 

– Otherwise, mvLXCol is derived as scaled version of the motion vector mvCol as specified below. 

tx = ( 16384 + ( Abs( td ) >>1 ) ) / td (8-169) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 132 

distScaleFactor = Clip3( −4096, 4095, ( tb * tx + 32 ) >> 6 ) (8-170) 

mvLXCol =  Clip3( −32768, 32767, Sign( distScaleFactor * mvCol ) *    
  ( ( Abs( distScaleFactor * mvCol ) + 127 ) >> 8 ) ) (8-171) 

where td and tb are derived as 

td = Clip3( −128, 127, colPocDiff ) (8-172) 

tb = Clip3( −128, 127, currPocDiff ) (8-173) 

8.5.3.1.9 Derivation process for chroma motion vectors 

[Ed.: (WJ) 4:2:0 assumption yet] 

Inputs to this process are a luma motion vector mvLX and a reference index refIdLX. 

Output of this process is a chroma motion vector mvCLX. 

A chroma motion vector is derived from the corresponding luma motion vector. 

For the derivation of the chroma motion vector mvCLX, the following applies. 

mvCLX[ 0 ] = mvLX[ 0 ] (8-174) 

mvCLX[ 1 ] = mvLX[ 1 ] (8-175) 

8.5.3.2 Decoding process for inter prediction samples 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture, 

– a luma location ( xB, yB ) specifying the top-left sample of the current luma prediction block relative to the top-left 
sample of the current luma coding block, 

– a variable nCS specifying the size of the current luma coding block, 

– variables specifying the width and the height of the luma prediction block, nPbW and nPbH, 

– luma motion vectors mvL0 and mvL1, 

– chroma motion vectors mvCL0 and mvCL1, 

– reference indices refIdxL0 and refIdxL1, 

– prediction list utilization flags, predFlagL0 and predFlagL1. 

Outputs of this process are: 

– a (nCSL)x(nCSL) array predSamplesL of luma prediction samples, where nCSL is derived as specified below, 

– a (nCSC)x(nCSC) array preSamplesCb of chroma prediction samples for the component Cb, where nCSC is derived as 
specified below, 

– a (nCSC)x(nCSC) array predSamplesCr of chroma residual samples for the component Cr, where nCSC is derived as 
specified below. 

The variable nCSL is set equal to nCS and the variable nCSC is set equal to nCS >> 1. [Ed: (WJ) revisit for supporting 
other chroma formats] 

Let predSamplesL0L and predSamplesL1L be (nPbW)x(nPbH) arrays of predicted luma sample values and 
predSampleL0Cb, predSampleL1Cb, predSampleL0Cr, and predSampleL1Cr be (nPbW/2)x(nPbH/2) arrays of predicted 
chroma sample values. 

For LX being replaced by either L0 or L1 in the variables predFlagLX, RefPicListX, refIdxLX, refPicLX, and 
predPartLX, the following is specified. 

When predFlagLX is equal to 1, the following applies. 

– The reference picture consisting of an ordered two-dimensional array refPicLXL of luma samples and two ordered 
two-dimensional arrays refPicLXCb and refPicLXCr of chroma samples is derived by invoking the process specified in 
subclause 8.5.3.2.1 with refIdxLX as input.  



   ISO/IEC 23008-2 : 201x (E) 

133 Draft Rec. ITU-T H.HEVC (201x E) 

– The arrays predSamplesLXL, predSamplesLXCb, and predSamplesLXCr are derived by invoking the fractional sample 
interpolation process specified in subclause 8.5.3.2.2 with the luma locations ( xC, yC ), ( xB, yB ), the width and the 
height of the current luma prediction block nPbW, nPbH, the motion vectors mvLX, mvCLX, and the reference 
arrays with refPicLXL, refPicLXCb and refPicLXCr given as input. 

The array predSampleL of the prediction samples of luma component is derived by invoking the weighted sample 
prediction process specified in subclause 8.5.3.2.3 with the luma location ( xB, yB ), the width and the height of the 
current luma prediction block nPbW, nPbH, and the sample arrays predSamplesL0L and predSamplesL1L as well as 
predFlagL0, predFlagL1, refIdxL0, refIdxL1 and cIdx equal to 0 given as input. 

The array predSampleCb of the prediction samples of component Cb is derived by invoking the weighted sample 
prediction process specified in subclause 8.5.3.2.3 with the chroma location ( xB/2, yB/2 ), the width and the height of 
the current chroma prediction block nPbWCb set equal to nPbW/2, nPbHCb set equal to nPbH/2, and the sample arrays 
predSamplesL0Cb and predSamplesL1Cb as well as predFlagL0, predFlagL1, refIdxL0, refIdxL1, and cIdx equal to 1 
given as input. 

The array predSampleCr of the prediction samples of component Cr is derived by invoking the weighted sample 
prediction process specified in subclause 8.5.3.2.3 with the chroma location ( xB/2, yB/2 ), the width and the height of 
the current chroma prediction block nPbWCr set equal to nPbW/2, nPbHCr set equal to nPbH/2, and the sample arrays 
predSamplesL0Cr and predSamplesL1Cr as well as predFlagL0, predFlagL1, refIdxL0, refIdxL1, and cIdx equal to 2 
given as input. 

8.5.3.2.1 Reference picture selection process 

Input to this process is a reference index refIdxLX. 

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLXL and two 
two-dimensional arrays of chroma samples refPicLXCb and refPicLXCr. 

The output reference picture RefPicListX[ refIdxLX ] consists of a 
(pic_width_in_luma_samples)x(pic_height_in_luma_samples) array of luma samples refPicLXL and two 
(PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma samples refPicLXCb and refPicLXCr. 

The reference picture sample arrays refPicLXL, refPicLXCb, and refPicLXCr correspond to decoded sample arrays SL, SCb, 
SCr derived in subclause 8.7 for a previously-decoded picture. 

8.5.3.2.2 Fractional sample interpolation process 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture, 

– a luma location ( xB, yB ) specifying the top-left sample of the current luma prediction block relative to the top left 
sample of the current luma coding block, 

– the width and height of the prediction block, nPbW and nPbH, in luma-sample units, 

– a luma motion vector mvLX given in quarter-luma-sample units, 

– a chroma motion vector mvCLX given in eighth-chroma-sample units, 

– the selected reference picture sample arrays refPicLXL, refPicLXCb, and refPicLXCr. 

Outputs of this process are: 

– a (nPbW)x(nPbH) array predSampleLXL of prediction luma sample values, 

– two (nPbW/2)x(nPbH/2) arrays predSampleLXCb, and predSampleLXCr of prediction chroma sample values. 

The location ( xP, yP ) given in full-sample units of the upper-left luma samples of the current prediction block relative 
to the upper-left luma sample location of the given reference sample arrays is derived by 

xP = xC + xB  (8-176) 
yP = yC + yB  (8-177) 

Let ( xIntL, yIntL ) be a luma location given in full-sample units and ( xFracL, yFracL ) be an offset given in quarter-
sample units. These variables are used only inside this subclause for specifying fractional-sample locations inside the 
reference sample arrays refPicLXL, refPicLXCb, and refPicLXCr. 

For each luma sample location ( xL = 0..nPbW−1, yL = 0..nPbH−1 ) inside the prediction luma sample array 
predSampleLXL, the corresponding prediction luma sample value predSampleLXL[xL, yL] is derived as follows: 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 134 

– The variables xIntL, yIntL, xFracL, and yFracL are derived by 

xIntL = xP + ( mvLX[ 0 ] >> 2 ) + xL  (8-178) 
yIntL = yP + ( mvLX[ 1 ] >> 2 ) + yL  (8-179) 

xFracL = mvLX[ 0 ] & 3  (8-180) 
yFracL = mvLX[ 1 ] & 3  (8-181) 

– The prediction luma sample value predSampleLXL[ xL, yL ] is derived by invoking the process specified in subclause 
8.5.3.2.2.1 with ( xIntL, yIntL ), ( xFracL, yFracL ) and refPicLXL given as input. 

Let ( xIntC, yIntC ) be a chroma location given in full-sample units and ( xFracC, yFracC ) be an offset given in one-eighth 
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside 
the reference sample arrays refPicLXCb and refPicLXCr. 

For each chroma sample location ( xC = 0..nPbW/2−1, yC = 0..nPbH/2−1 ) inside the prediction chroma sample arrays 
predSampleLXCb and predSampleLXCr, the corresponding prediction chroma sample values predSampleLXCb[ xC, yC ] 
and predSampleLXCr[ xC, yC ] are derived asfollows: 

– The variables xIntC, yIntC, xFracC, and yFracC are derived by 

xIntC = ( xP / 2 ) + ( mvCLX[ 0 ] >> 3 ) + xC  (8-182) 
yIntC = ( yP / 2 ) + ( mvCLX[ 1 ] >> 3 ) + yC  (8-183) 

xFracC = mvLX[ 0 ] & 7  (8-184) 
yFracC = mvLX[ 1 ] & 7  (8-185) 

– The prediction sample value predSampleLXCb[ xC, yC ] is derived by invoking the process specified in subclause 
8.5.3.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCb given as input. 

– The prediction sample value predSampleLXCr[ xC, yC ] is derived by invoking the process specified in subclause 
8.5.3.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCr given as input. 

8.5.3.2.2.1 Luma sample interpolation process 

Inputs to this process are: 

– a luma location in full-sample units ( xIntL, yIntL ), 

– a luma location in fractional-sample units ( xFracL, yFracL ), 

– the luma reference sample array refPicLXL. 

Output of this process is a predicted luma sample value predSampleLXL[ xL, yL ] 

 



   ISO/IEC 23008-2 : 201x (E) 

135 Draft Rec. ITU-T H.HEVC (201x E) 

A-1,-1 A0,-1 a0,-1 b0,-1 c0,-1 A1,-1

A-1,0 A0,0 A1,0

A-1,1 A0,1 A1,1a0,1 b0,1 c0,1

a0,0 b0,0 c0,0

d0,0

h0,0

n0,0

e0,0

i0,0

p0,0

f0,0

j0,0

q0,0

g0,0

k0,0

r0,0

d-1,0

h-1,0

n-1,0

d1,0

h1,0

n1,0

A2,-1

A2,0

A2,1

d2,0

h2,0

n2,0

A-1,2 A0,2 A1,2a0,2 b0,2 c0,2 A2,2
 

Figure 8-4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded 
blocks with lower-case letters) for quarter sample luma interpolation 

In Figure 8-4, the positions labelled with upper-case letters Ai, j within shaded blocks represent luma samples at full-
sample locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for 
generating the predicted luma sample value predSampleLXL[ xL, yL ]. The locations ( xAi, j, yAi, j ) for each of the 
corresponding luma samples Ai, j inside the given array refPicLXL of luma samples are derived as follows: 

xAi, j = Clip3( 0, pic_width_in_luma_samples − 1, xIntL +i ) (8-186) 
yAi, j = Clip3( 0, pic_height_in_luma_samples − 1, yIntL +j ) (8-187) 

The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample 
fractional locations. The luma location offset in fractional-sample units ( xFracL, yFracL ) specifies which of the 
generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value 
predSampleLXL[ xL, yL ]. This assignment is done according to Table 8-7. The value of predSampleLXL[ xL, yL ] shall be 
the output. 

Variables shift1, shift2 and shift3 are derived as follows. 

– The variable shift1 is set equal to BitDepthY − 8, the variable shift2 is set equal to 6, and the variable shift3 is set 
equal to 14 − BitDepthY. 

Given the luma samples Ai, j at full-sample locations ( xAi, j, yAi, j ), the luma samples "a0,0" to "r0,0" at fractional sample 
positions are derived by the following equations. 

– The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 8-tap filter to the nearest integer 
position samples: 

a0,0 = ( −A−3,0 + 4*A−2,0 − 10*A−1,0 + 58*A0,0 + 17*A1,0 − 5*A2,0 + A3,0 ) >> shift1 (8-188) 

b0,0 = ( −A−3,0 + 4*A−2,0 − 11*A−1,0 + 40*A0,0 + 40*A1,0 − 11*A2,0 + 4*A3,0 − A4,0 ) >> shift1 (8-189) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 136 

c0,0 = ( A−2,0 − 5*A−1,0 + 17*A0,0 + 58*A1,0 − 10*A2,0 + 4*A3,0 − A4,0 ) >> shift1 (8-190) 

d0,0 = ( −A0,−3 + 4*A0,−2 − 10*A0,−1 + 58*A0,0 + 17*A0,1 − 5*A0,2 + A0,3 ) >> shift1 (8-191) 

h0,0 = ( −A0,−3 + 4*A0,−2 − 11*A0,−1 + 40*A0,0 + 40*A0,1 − 11*A0,2 + 4*A0,3 − A0,4 ) >> shift1 (8-192) 

n0,0 = ( A0,−2 − 5*A0,−1 + 17*A0,0 + 58*A0,1 − 10*A0,2 + 4*A0,3 − A0,4 ) >> shift1 (8-193) 

– The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and r0,0 shall be derived by applying the 8-tap filter to the 
samples a0,i, b0,i and c0,i where i = −3..4 in vertical direction: 

e0,0 = ( −a0,−3 + 4*a0,−2 − 10*a0,−1 + 58*a0,0 + 17*a0,1 − 5*a0,2 + a0,3 ) >> shift2 (8-194) 

i0,0 = ( −a0,−3 + 4*a0,−2 − 11*a0,−1 + 40*a0,0 + 40*a0,1 − 11*a0,2 + 4*a0,3 − a0,4 ) >> shift2 (8-195) 

p0,0 = ( a0,−2 − 5*a0,−1 + 17*a0,0 +  58*a0,1 − 10*a0,2 + 4*a0,3 − a0,4 ) >> shift2 (8-196) 

f0,0 = ( −b0,−3 + 4*b0,−2 − 10*b0,−1 + 58*b0,0 + 17*b0,1 − 5*b0,2 + b0,3 ) >> shift2 (8-197) 

j0,0 = ( −b0,−3 + 4*b0,−2 − 11*b0,−1 + 40*b0,0 + 40*b0,1 − 11*b0,2 + 4*b0,3 − b0,4 ) >> shift2 (8-198) 

q0,0 = ( b0,−2 − 5*b0,−1 + 17*b0,0 + 58*b0,1 − 10*b0,2 + 4*b0,3 − b0,4 ) >> shift2 (8-199) 

g0,0 = ( −c0,−3 + 4*c0,−2 − 10*c0,−1 + 58*c0,0 + 17*c0,1 − 5*c0,2 + c0,3 ) >> shift2 (8-200) 

k0,0 = ( −c0,−3 + 4*c0,−2 − 11*c0,−1 + 40*c0,0 + 40*c0,1 − 11*c0,2 + 4*c0,3 − c0,4 ) >> shift2 (8-201) 

r0,0 = ( c0,−2 − 5*c0,−1 + 17*c0,0 +  58*c0,1 − 10*c0,2 + 4*c0,3 − c0,4 ) >> shift2 (8-202) 

Table 8-7 – Assignment of the luma prediction sample predSampleLXL[ xL, yL ] 

xFracL 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

yFracL 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

predSampleLXL[ xL, yL ] A << shift3 d h n a e i p b f j q c g k r 

 

8.5.3.2.2.2 Chroma sample interpolation process 

Inputs to this process are: 

– a chroma location in full-sample units ( xIntC, yIntC ), 

– a chroma location in fractional-sample units ( xFracC, yFracC ), 

– the chroma reference sample array refPicLXC. 

Output of this process is a predicted chroma sample value predSampleLXC[ xC, yC ] 

 



   ISO/IEC 23008-2 : 201x (E) 

137 Draft Rec. ITU-T H.HEVC (201x E) 

B0,0 ae0,0 ag0,0 ah0,0ab0,0 ac0,0 ad0,0 af0,0 B1,0

B1,1B0,1

be0,0 bg0,0 bh0,0bb0,0 bc0,0 bd0,0 bf0,0ba0,0

ce0,0 cg0,0 ch0,0cb0,0 cc0,0 cd0,0 cf0,0ca0,0

de0,0 dg0,0 dh0,0db0,0 dc0,0 dd0,0 df0,0da0,0

ee0,0 eg0,0 eh0,0eb0,0 ec0,0 ed0,0 ef0,0ea0,0

fe0,0 fg0,0 fh0,0fb0,0 fc0,0 fd0,0 ff0,0fa0,0

ge0,0 gg0,0 gh0,0gb0,0 gc0,0 gd0,0 gf0,0ga0,0

he0,0 hg0,0 hh0,0hb0,0 hc0,0 hd0,0 hf0,0ha0,0

ah-1,0

bh-1,0

ch-1,0

dh-1,0

eh-1,0

fh-1,0

gh-1,0

hh-1,0

he0,-1 hg0,-1 hh0,-1hb0,-1 hc0,-1 hd0,-1 hf0,-1ha0,-1

ba1,0

ca1,0

da1,0

ea1,0

fa1,0

ga1,0

ha1,0

ae0,1 ag0,1 ah0,1ab0,1 ac0,1 ad0,1 af0,1
 

Figure 8-5 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded 
blocks with lower-case letters) for eighth sample chroma interpolation 

In Figure 8-5, the positions labelled with upper-case letters Bi, j within shaded blocks represent chroma samples at full-
sample locations inside the given two-dimensional array refPicLXC of chroma samples. These samples may be used for 
generating the predicted chroma sample value predSampleLXC[ xC, yC ]. The locations ( xBi, j, yBi, j ) for each of the 
corresponding chroma samples Bi, j inside the given array refPicLXC of chroma samples are derived as follows: 

xBi, j = Clip3( 0, (pic_width_in_luma_samples / SubWidthC) − 1, xIntC +i ) (8-203) 
yBi, j = Clip3( 0, (pic_height_in_luma_samples / SubHeightC) − 1, yIntC +j ) (8-204) 

The positions labelled with lower-case letters within un-shaded blocks represent chroma samples at eighth-pel sample 
fractional locations. The chroma location offset in fractional-sample units ( xFracC, yFracC ) specifies which of the 
generated chroma samples at full-sample and fractional-sample locations is assigned to the predicted chroma sample 
value predSampleLXC[ xC, yC ]. This assignment is done according to Table 8-8. The value of predSampleLXC[ xC, yC ] 
shall be the output. 

Variables shift1, shift2 and shift3 are derived as follows. 

– The variable shift1 is set equal to BitDepthC − 8, the variable shift2 is set equal to 6, and the variable shift3 is set 
equal to 14 − BitDepthC. 

Given the chroma samples Bi, j at full-sample locations ( xBi, j, yBi, j ), the chroma samples "ab0,0" to "hh0,0" at fractional 
sample positions are derived by the following equations. 

– The samples labelled ab0,0, ac0,0, ad0,0, ae0,0, af0,0, ag0,0, and ah0,0 shall be derived by applying the 4-tap filter to the 
nearest integer position samples: 

ab0,0 = ( −2*B−1,0 + 58*B0,0 + 10*B1,0 − 2*B2,0 ) >> shift1 (8-205) 

ac0,0 = ( −4*B−1,0 + 54*B0,0 + 16*B1,0 − 2*B2,0 ) >> shift1 (8-206) 

ad0,0 = ( −6*B−1,0 + 46*B0,0 + 28*B1,0 − 4*B2,0 ) >> shift1 (8-207) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 138 

ae0,0 = ( −4*B−1,0 + 36*B0,0 + 36*B1,0 − 4*B2,0 ) >> shift1 (8-208) 

af0,0 = ( −4*B−1,0 + 28*B0,0 + 46*B1,0 − 6*B2,0 ) >> shift1 (8-209) 

ag0,0 = ( −2*B−1,0 + 16*B0,0 + 54*B1,0 − 4*B2,0 ) >> shift1 (8-210) 

ah0,0 = ( −2*B−1,0 + 10*B0,0 + 58*B1,0 − 2*B2,0 ) >> shift1 (8-211) 

– The samples labelled ba0,0, ca0,0, da0,0, ea0,0, fa0,0, ga0,0, and ha0,0 shall be derived by applying the 4-tap filter to the 
nearest integer position samples: 

ba0,0 = ( −2*B0,−1 + 58*B0,0 + 10*B0,1 − 2*B0,2 ) >> shift1 (8-212) 

ca0,0 = ( −4*B0,−1 + 54*B0,0 + 16*B0,1 − 2*B0,2 ) >> shift1 (8-213) 

da0,0 = ( −6*B0,−1 + 46*B0,0 + 28*B0,1 − 4*B0,2 ) >> shift1 (8-214) 

ea0,0 = ( −4*B0,−1 + 36*B0,0 + 36*B0,1 − 4*B0,2 ) >> shift1 (8-215) 

fa0,0 = ( −4*B0,−1 + 28*B0,0 + 46*B0,1 − 6*B0,2 ) >> shift1 (8-216) 

ga0,0 = ( −2*B0,−1 + 16*B0,0 + 54*B0,1 − 4*B0,2 ) >> shift1 (8-217) 

ha0,0 = ( −2*B0,−1 + 10*B0,0 + 58*B0,1 − 2*B0,2 ) >> shift1 (8-218) 

– The samples labelled bX0,0, cX0,0, dX0,0, eX0,0, fX0,0, gX0,0 and hX0,0 for X being replaced by b, c, d, e, f, g and h, 
respectively, shall be derived by applying the 4-tap filter to the intermediate values aX0,i where i = −1..2 in vertical 
direction: 

bX0,0 = ( −2*aX0,−1 + 58*aX0,0 + 10*aX0,1 − 2*aX0,2 ) >> shift2 (8-219) 

cX0,0 = ( −4*aX0,−1 + 54*aX0,0 + 16*aX0,1 − 2*aX0,2 ) >> shift2 (8-220) 

dX0,0 = ( −6*aX0,−1 + 46*aX0,0 + 28*aX0,1 − 4*aX0,2 ) >> shift2 (8-221) 

eX0,0 = ( −4*aX0,−1 + 36*aX0,0 + 36*aX0,1 − 4*aX0,2 ) >> shift2 (8-222) 

fX0,0 = ( −4*aX0,−1 + 28*aX0,0 + 46*aX0,1 − 6*aX0,2 ) >> shift2 (8-223) 

gX0,0 = ( −2*aX0,−1 + 16*aX0,0 + 54*aX0,1 − 4*aX0,2 ) >> shift2 (8-224) 

hX0,0 = ( −2*aX0,−1 + 10*aX0,0 + 58*aX0,1 − 2*aX0,2 ) >> shift2 (8-225) 

Table 8-8 – Assignment of the chroma prediction sample predSampleLXC[ xC, yC ] for ( X, Y ) being replaced by 
( 1, b ), ( 2, c ), ( 3, d ), ( 4, e ), ( 5, f ), ( 6, g ), and ( 7, h ), respectively 

xFracC 0 0 0 0 0 0 0 0 X X X X X X X X 

yFracC 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 

predSampleLXC[ xC, yC ] B << shift3 ba ca da ea fa ga ha aY bY cY dY eY fY gY hY 

 

8.5.3.2.3 Weighted sample prediction process 

Inputs to this process are: 

– a location ( xB, yB ) specifying the top-left sample of the current prediction block relative to the top left sample of 
the current coding block, 

– the width and height of this prediction block, nPbW and nPbH, 

– two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

– prediction list utilization flags, predFlagL0 and predFlagL1, 



   ISO/IEC 23008-2 : 201x (E) 

139 Draft Rec. ITU-T H.HEVC (201x E) 

– reference indices, refIdxL0 and refIdxL1, 

– a variable cIdx specifying colour component index. 

Outputs of this process are: 

– the (nPbW)x(nPbH) array predSamples of prediction sample values. 

The variable bitDepth is derived as follows. 

– If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

– Otherwise, bitDepth is set equal to BitDepthC. 

In P slices, if the value of predFlagL0 is equal to 1, the following applies. 

– If weighted_pred_flag is equal to 0, the array predSample of the prediction samples is derived by invoking the default 
weighted sample prediction process as specified in subclause 8.5.3.2.3.1 with the location ( xB, yB ), the width and 
height of this prediction block, nPbW and nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 
prediction list utilization flags, predFlagL0 and predFlagL1, and the bit depth of samples, bitDepth given as input.. 

– Otherwise (weighted_pred_flag is equal to 1), the array predSample of the prediction samples is derived by invoking 
the weighted sample prediction process as specified in subclause 8.5.3.2.3.2 with the location ( xB, yB ), the width 
and height of this prediction block, nPbW and nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and 
predSamplesL1, prediction list utilization flags, predFlagL0 and predFlagL1, reference indices, refIdxL0 and 
refIdxL1, colour component index, cIdx, and the bit depth of samples, bitDepth given as input. 

In B slices, if predFlagL0 or predFlagL1 is equal to 1, the following applies. 

– If weighted_bipred_flag is equal to 0, the array predSample of the prediction samples is derived by invoking the 
default weighted sample prediction process as specified in subclause 8.5.3.2.3.1 with the location ( xB, yB ), the 
width and height of this prediction block, nPbW and nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and 
predSamplesL1, prediction list utilization flags, predFlagL0 and predFlagL1, and the bit depth of samples, bitDepth 
given as input. 

– Otherwise, if weighted_bipred_flag is equal to 1, the array predSample of the prediction samples is derived by 
invoking the weighted sample prediction process as specified in subclause 8.5.3.2.3.2 with the location ( xB, yB ), the 
width and height of this prediction block, nPbW and nPbH, two (nPbW)x(nPbH) arrays predSamplesL0 and 
predSamplesL1, prediction list utilization flags, predFlagL0 and predFlagL1, reference indices, refIdxL0 and 
refIdxL1, colour component index, cIdx, and the bit depth of samples, bitDepth given as input. 

8.5.3.2.3.1 Default weighted sample prediction process 

Inputs to this process are: 

– a location ( xB, yB ) specifying the top-left sample of the current prediction block relative to the top left sample of 
the current coding block, 

– the width and height of this prediction block, nPbW and nPbH, 

– two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

– prediction list utilization flags, predFlagL0 and predFlagL1, 

– a bit depth of samples, bitDepth. 

Outputs of this process are: 

– the (nPbW)x(nPbH) array predSamples of prediction sample values. 

Variables shift1, shift2, offset1 and offset2 are derived as follows. 

– The variable shift1 is set equal to 14 − bitDepth and the variable shift2 is set equal to 15 − bitDepth, 

– The variable offset1 is derived as follows. 

– If shift1 is greater than 0, offset1 set equal to 1 << ( shift1 − 1 ). 

– Otherwise (shift1 is equal to 0), offset1 is set equal to 0. 

– The variable offset2 is set equal to 1 << ( shift2 − 1 ).  

Depending on the value of predFlagL0 and predFlagL1, the prediction samples predSamples[ x ][ y ] with 
x = 0..(nPbW)−1 and y = 0..(nPbH)−1 are derived as follows. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 140 

– If predFlagL0 is equal to 1 and predFlagL1 is equal to 0, 

predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1, ( predSamplesL0[ x ][ y ] + offset1 ) >> shift1 ) (8-226) 

– Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1, 

predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1, ( predSamplesL1[ x ][ y ] + offset1 ) >> shift1 ) (8-227) 

– Otherwise, 

predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1,  
       ( predSamplesL0[ x ][ y ] + predSamplesL1[ x ][ y ] + offset2 ) >> shift2 ) (8-228) 

8.5.3.2.3.2 Weighted sample prediction process 

Inputs to this process are: 

– a location ( xB, yB ) specifying the top-left sample of the current prediction block relative to the top left sample of 
the current coding block, 

– the width and height of this prediction block, nPbW and nPbH, 

– two (nPbW)x(nPbH) arrays predSamplesL0 and predSamplesL1, 

– prediction list utilization flags, predFlagL0 and predFlagL1, 

– reference indices, refIdxL0 and refIdxL1, 

– a variable cIdx specifying colour component index, 

– a bit depth of samples, bitDepth. 

Outputs of this process are: 

– the (nPbW)x(nPbH) array predSamples of prediction sample values. 

The variables shift1 is set equal to 14 − bitDepth. 

The variables log2WD, o0, o1, and w0, w1 are derived as follows. 

– If cIdx is equal to 0 for luma samples, 

log2WD = luma_log2_weight_denom + shift1  (8-229) 

w0 = LumaWeightL0[ refIdxL0 ]  (8-230) 

w1 = LumaWeightL1[ refIdxL1 ]  (8-231) 

o0 = luma_offset_l0[ refIdxL0 ] * ( 1 <<  ( bitDepth − 8 ) ) (8-232) 

o1 = luma_offset_l1[ refIdxL1 ] * ( 1 << ( bitDepth − 8 ) ) (8-233) 

– Otherwise (cIdx is not equal to 0 for chroma samples), 

log2WD = ChromaLog2WeightDenom + shift1  (8-234) 

w0 = ChromaWeightL0[ refIdxL0 ][ cIdx − 1 ]  (8-235) 

w1 = ChromaWeightL1[ refIdxL1 ][ cIdx − 1 ]  (8-236) 

o0 = ChromaOffsetL0[ refIdxL0 ][ cIdx − 1 ] * ( 1 << ( bitDepth − 8 ) ) (8-237) 

o1 = ChromaOffsetL1[ refIdxL1 ][ cIdx − 1 ] * ( 1 << ( bitDepth − 8 ) ) (8-238) 

The prediction sample predSamples[ x ][ y ] with x = 0..(nPbW)−1 and y = 0..(nPbH)−1 are derived as follows: 

– If the predFlagL0 is equal to 1 and predFlagL1 is equal to 0, the prediction samples are derived by: 



   ISO/IEC 23008-2 : 201x (E) 

141 Draft Rec. ITU-T H.HEVC (201x E) 

if( log2WD >= 1 )  
 predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1,  
  ( (predSamplesL0[ x ][ y ] * w0 + 2log2WD − 1) >> log2WD ) + o0 ) (8-239) 
else 
 predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1, predSamplesL0[ x ][ y ] * w0 + o0 )  (8-240) 

– Otherwise, if the predFlagL0 is equal to 0 and predFlagL1 is equal to 1, the final predicted sample values 
predSamples [ x ][ y ] are derived by 

if( log2WD >= 1 ) 
 predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1,  
  ( (predSamplesL1[ x ][ y ] * w1 + 2log2WD − 1) >> log2WD ) + o1 )  (8-241) 
else 
 predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1, predSamplesL1[ x ][ y ] * w1 + o1 )  (8-242) 

– Otherwise, the final predicted sample values predSamples[ x ][ y ] are derived by 

predSamples[ x ][ y ] = Clip3( 0, ( 1 << bitDepth ) − 1,  
 ( predSamplesL0 [ x ][ y ] * w0 + predSamplesL1[ x ][ y ] * w1 +  
   ((o0 + o1 + 1) << log2WD) ) >> (log2WD + 1) ) (8-243) 

8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current luma coding block. 

Outputs of this process are: 

– a (nCSL)x(nCSL) array resSamplesL of luma residual samples, where nCSL is derived as specified below, 

– a (nCSC)x(nCSC) array resSamplesCb of chroma residual samples for the component Cb, where nCSC is derived as 
specified below, 

– a (nCSC)x(nCSC) array resSamplesCr of chroma residual samples for the component Cr, where nCSC is derived as 
specified below. 

The variable nCSL is set equal to 1 << log2CbSize and the variable nCSC is set equal to ( 1 << log2CbSize ) >> 1. 

Let resSamplesL be a (nCSL)x(nCSL) array of luma residual samples and let resSamplesCb and resSamplesCr be two 
(nCSC)x(nCSC) arrays of chroma residual samples. 

Depending on rqt_root_cbf, the following applies: 

– If rqt_root_cbf is equal to 0, all samples of the (nCSL)x(nCSL) array resSamplesL and all samples of the two 
(nCSC)x(nCSC) arrays resSamplesCb and resSamplesCr are set equal to 0. 

– Otherwise (rqt_root_cbf is equal to 1), the following ordered steps apply: 

1. The decoding process for luma residual blocks as specified in subclause 8.5.4.1 below is invoked with the luma 
location ( xC, yC ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the variable log2TrafoSize set equal to 
log2CbSize, the variable trafoDepth set equal to 0, the variable nCS set equal to nCSL, and the (nCSL)x(nCSL) 
array resSamplesL as the inputs and the output is a modified version of the (nCSL)x(nCSL) array resSamplesL. 

2. The decoding process for chroma residual blocks as specified in subclause 8.5.4.2 below is invoked with the 
luma location ( xC, yC ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the variable log2TrafoSize set 
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable cIdx set equal to 1, the variable nCS set 
equal to nCSC, and the (nCSC)x(nCSC) array resSamplesCb as the inputs and the output is a modified version of 
the (nCSC)x(nCSC) array resSamplesCb. 

3. The decoding process for chroma residual blocks as specified in subclause 8.5.4.2 below is invoked with the 
luma location ( xC, yC ), the luma location ( xB0, yB0 ) set equal to ( 0, 0 ), the variable log2TrafoSize set 
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable cIdx set equal to 2, the variable nCS set 
equal to nCSC, and the (nCSC)x(nCSC) array resSamplesCr as the inputs and the output is a modified version of 
the (nCSC)x(nCSC) array resSamplesCr. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 142 

8.5.4.1 Decoding process for luma residual blocks 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xB0, yB0 ) specifying the top-left sample of the current luma block relative to the top-left sample of 
the current luma coding block, 

– a variable log2TrafoSize specifying the size of the current luma block, 

– a variable trafoDepth specifying the hierarchy depth of the current luma block relative to the luma coding block, 

– a variable nCS specifying the size of the current luma coding block, 

– a (nCS)x(nCS) array resSamples of luma residual samples. 

Output of this process is: 

– a modified version of the (nCS)x(nCS) array of luma residual samples. 

Depending split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ], the following applies: 

– If split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ] is equal to 1, the following ordered steps apply: 

2. The variables xB1 and yB1 are derived as follows. 

– The variable xB1 is set equal to xB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

– The variable yB1 is set equal to yB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

3. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location 
( xC, yC ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the 
variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the 
inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

4. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location 
( xC, yC ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the 
variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the 
inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

5. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location 
( xC, yC ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the 
variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the 
inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

6. The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location 
( xC, yC ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, the 
variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the 
inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

– Otherwise (split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ] is equal to 0), the following ordered steps 
apply: 

1. The variable nT is set equal to 1 << log2TrafoSize. 

2. The scaling and transformation process as specified in subclause 8.6.2 is invoked with the luma location 
( xC + xB0, yC +yB0 ), the variable trafoDepth, the variable cIdx set equal to 0 and the transform size trafoSize 
set equal to nT as the inputs and the output is a (nT)x(nT) array transformBlock. 

3. The (nC)x(nC) residual sample array of the current coding block resSamples is modified as follows. 

resSamples[ xB0 + i, yB0 + j ] = transformBlock[ i, j ], with i = 0..nT − 1, j = 0..nT − 1 (8-244) 

8.5.4.2 Decoding process for chroma residual blocks 

Inputs to this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xB0, yB0 ) specifying the top-left luma sample of the current chroma block relative to the top-left 
sample of the current luma coding block, 



   ISO/IEC 23008-2 : 201x (E) 

143 Draft Rec. ITU-T H.HEVC (201x E) 

– a variable log2TrafoSize specifying the size of the current chroma block in luma samples, 

– a variable trafoDepth specifying the hierarchy depth of the current chroma block relative to the chroma coding block, 

– a variable cIdx specifying the chroma component of the current block, 

– a variable nCS specifying the size of the current chroma coding block, 

– a (nCS)x(nCS) array resSamples of chroma residual samples. 

Output of this process is: 

– a modified version of the (nCS)x(nCS) array of chroma residual samples. 

The variable splitChromaFlag is derived as follows: 

– If split_transform_flag[ xB0 ][ yB0 ][ trafoDepth ] is equal to 1 and log2TrafoSize is greater than 3, splitChromaFlag 
is set equal to 1. 

– Otherwise (split_transform_flag[ xB0 ][ yB0 ][ trafoDepth ] is equal to 0 or log2TrafoSize is equal to 3), 
splitChromaFlag is set equal to 0. 

Depending splitChromaFlag, the following applies: 

– If splitChromaFlag is equal to 1, the following ordered steps apply: 

1. The variables xB1 and yB1 are derived as follows. 

– The variable xB1 is set equal to xB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

– The variable yB1 is set equal to yB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

2. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) 
array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

3. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) 
array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

4. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) 
array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

5. The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) 
array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples. 

– Otherwise (splitChromaFlag is equal to 0), the following ordered steps apply: 

1. The variable nT is set equal to ( 1 << log2TrafoSize ) >> 1. 

2. The scaling and transformation process as specified in subclause 8.6.2 is invoked with the luma location 
( xC + xB0, yC +yB0 ), the variable trafoDepth, the variable cIdx and the transform size trafoSize set equal to 
nT as the inputs and the output is a (nT)x(nT) array transformBlock. 

3. The (nC)x(nC) residual sample array of the current coding block resSamples is modified as follows. 

resSamples[ (xC+xB0)/2+i, (yC+yB0)/2+j ] = transformBlock[ i, j ], with i = 0..nT − 1, j = 0..nT − 1 (8-245) 

8.6 Scaling, transformation and array construction process prior to deblocking filter process 

8.6.1 Derivation process for quantization parameters 

Input of this process is: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top left luma 
sample of the current picture. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 144 

The luma location ( xQG, yQG ), specifies the top-left luma sample of the current quantization group relative to the 
top-left luma sample of the current picture. The horizontal and vertical positions xQG and yQG are set equal to 
( xC − ( xC & ((1 << Log2MinCuQpDeltaSize) − 1) ) ) and ( yC − ( yC & ((1 << Log2MinCuQpDeltaSize) − 1) ) ), 
respectively. The luma size of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the smallest 
area inside a coding tree block that shares the same qPY_PRED. 

The predicted luma quantization parameter qPY_PRED is derived by the following ordered steps: 

1. The variable qPY_PREV is derived as follows. 

– If one or more of the following conditions are true, qPY_PREV is set equal to SliceQPY. 

– The current quantization group is the first quantization group in a slice. 

– The current quantization group is the first quantization group in a tile. 

– The current quantization group is the first quantization group in a coding tree block row and 
entropy_coding_sync_enabled_flag is equal to 1. 

– Otherwise, qPY_PREV is set equal to the luma quantization parameter QPY of the the last coding unit in the 
previous quantization group in decoding order. 

2. The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with the 
location ( xCurr, yCurr ) set equal to ( xB, yB ) and the neighbouring location ( xN, yN ) set equal to 
( xQG−1, yQG ) as the input and the output is assigned to availableA. The variable qPY_A is derived as follows. 

– If availableA is equal to FALSE or the coding tree block address of the coding tree block containing the 
luma coding block covering ( xQG − 1,  yQG ) ctbAddrA is not equal to CtbAddrInTS, qPY_A is set equal to 
qPY_PREV. 

[Ed. (BB): Insert correct derivation of ctbAddrA using MinTbAddrZS[][].] 

– Otherwise, qPY_A is set equal to the luma quantization parameter QPY of the coding unit containing the luma 
coding block covering ( xQG − 1,  yQG ). 

3. The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with the 
location ( xCurr, yCurr ) set equal to ( xB, yB ) and the neighbouring location ( xN, yN ) set equal to 
( xQG, yQG−1 ) as the input and the output is assigned to availableB. The variable qPY_B is derived as follows. 

– If availableB is equal to FALSE or the coding tree block address of the coding tree block containing the 
luma coding block covering ( xQG, yQG − 1 ) ctbAddrB is not equal to CtbAddrInTS, qPY_B is set equal to 
qPY_PREV. 

[Ed. (BB): Insert correct derivation of ctbAddrA using MinTbAddrZS[][].] 

– Otherwise, qPY_B is set equal to the luma quantization parameter QPY of the coding unit containing the luma 
coding block covering ( xQG, yQG − 1 ). 

4. The predicted luma quantization parameter qPY_PRED is derived as: 

 qPY_PRED =  (qPY_A + qPY_B + 1) >> 1  (8-246) 

The variable QPY is derived as 

QPY = ( ( qPY_PRED + CuQpDelta +52+ 2 * QpBdOffsetY )%( 52 + QpBdOffsetY ) ) − QpBdOffsetY (8-247)  

The luma quantization parameter QP′Y is derived as 

QP′Y = QPY + QpBdOffsetY  (8-248) 

The variables qPCb and qPCr are set equal to the value of QPC as specified in Table 8-9 based on the index qPi equal to 
qPiCb and qPiCr derived as: 

qPiCb = Clip3( −QpBdOffsetC, 57, QPY + pps_cb_qp_offset + slice_cb_qp_offset ) (8-249) 

qPiCr = Clip3( −QpBdOffsetC, 57, QPY + pps_cr_qp_offset + slice_cr_qp_offset ) (8-250) 

The chroma quantization parameters for Cb and Cr components, QP′Cb and QP′Cr are derived as: 



   ISO/IEC 23008-2 : 201x (E) 

145 Draft Rec. ITU-T H.HEVC (201x E) 

QP′Cb = qPCb + QpBdOffsetC  (8-251) 

QP′Cr = qPCr + QpBdOffsetC  (8-252) 

Table 8-9 – Specification of QPC as a function of qPi 

qPi <30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 >43 

QPC = qPi 29 30 31 32 33 33 34 34 35 35 36 36 37 37 = qPi − 6 

 

8.6.2 Scaling and transformation process 

Inputs to this process are: 

– a luma location ( xT, yT ) specifying the top-left sample of the current luma transform block relative to the top-left 
luma sample of the current picture, 

– a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding block, 

– a variable cIdx specifying the colour component of the current block, 

– a variable nT specifying the size of the current transform block. 

Output of this process is: 

– the (nT)x(nT) array of residual samples r with elements r[ x ][ y ]. 

The quantization parameter qP is derived as follows. 

– If cIdx is equal to 0, 

qP = QP′Y   (8-253) 

– Otherwise, if cIdx is equal to 1, 

qP = QP′Cb  (8-254) 

– Otherwise (cIdx is equal to 2), 

qP = QP′Cr  (8-255) 

The (nT)x(nT) array of residual samples r is derived as specified as follows: 

– If cu_transquant_bypass_flag is equal to 1, the (nT)x(nT) array r is set equal to the (nT)x(nT) array of transform 
coefficients TransCoeffLevel[ xT ][ yT ][ cIdx ]. 

– Otherwise, the following ordered steps apply: 

1. The scaling process for transform coefficients as specified in subclause 8.6.3 is invoked with the transform 
block location ( xT, yT ), the size of the transform block nT, the colour component variable cIdx and the 
quantization parameter qP as the inputs and the output is a (nT)x(nT) array of scaled transform coefficients d. 

2. The (nT)x(nT) array of residual samples r is derived as follows. 

- If transform_skip_flag[ xT ][ yT ][ cIdx ] is equal to 1, the residual sample array values r[ x ][ y ] with 
x = 0..nT − 1, y = 0..nT − 1 are derived as: 

r[ x ][ y ] = ( d[ x ][ y ] << 7 )  (8-256) 

- Otherwise (transform_skip_flag[ xT ][ yT ][ cIdx ] is equal to 0), the transformation process for scaled 
transform coefficients as specified in subclause 8.6.4 is invoked with the transform block location 
( xT, yT ), the size of the transform block nT, the colour component variable cIdx, and the (nT)x(nT) array 
of scaled transform coefficients d as the inputs and the output is a (nT)x(nT) array of residual samples r. 

3. The variable bdShift is derived as: 

bdShift = ( cIdx = = 0 ) ? 20 − BitDepthY : 20 − BitDepthC (8-257) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 146 

4. The residual sample values r[ x ][ y ] with x = 0..nT − 1, y = 0..nT − 1 are modified as follows. 

r[ x ][ y ] = ( r[ x ][ y ] + (1 << ( bdShift − 1) ) ) >> bdShift (8-258) 

8.6.3 Scaling process for transform coefficients 

Inputs of this process are: 

– a luma location ( xT, yT ) specifying the top-left sample of the current luma transform block relative to the top-left 
luma sample of the current picture, 

– a variable nT specifying the size of the current transform block, 

– a variable cIdx specifying the colour component of the current block, 

– a variable qP specifying the quantization parameter. 

Output of this process is: 

– the (nT)x(nT) array d of scaled transform coefficients with elements d[ x ][ y ]. 

[Ed. (BB): In general we should replace all subscript matrix aij notations by the a[j][i] array notations to avoid confusion. 
Then, the corresponding definition in 5.9 Variables, syntax elements, and tables can be removed.] 

The variable bdShift is derived as follows: 

– If cIdx is equal to 0, 

bdShift = BitDepthY + Log2( nT ) − 5  (8-259) 

– Otherwise, 

bdShift = BitDepthC + Log2( nT ) − 5  (8-260) 

The list levelScale[ ] is specified as levelScale[k] = { 40, 45, 51, 57, 64, 72 } with k = 0..5. 

For the derivation of the scaled transform coefficients d[ x ][ y ] with x = 0..nT − 1, y = 0..nT − 1, the following applies. 

– The scaling factor m[ x ][ y ] is derived as follows. 

– If scaling_list_enable_flag is equal to 0, 

m[ x ][ y ] = 16  (8-261) 

– Otherwise (scaling_list_enable_flag is equal to 1), 

m[ x ][ y ] = ScalingFactor[ sizeId ][ matrixId ][ x ][ y ] (8-262) 

Where sizeId is specified in Table 7-3 for the size of the quantization matrix equal to (nT)x(nT) and matrixId is specified 
in Table 7-4 for sizeId, CuPredMode[ xT ][ yT ] and cIdx, respectively. 

– The scaled transform coefficient d[ x ][ y ] is derived as follows. 

d[ x ][ y ] = Clip3( −32768, 32767, ( ( TransCoeffLevel[ xT ][ yT ][ cIdx ][ x ][ y ] * m[ x ][ y ] *  
     levelScale[ qP%6 ] << (qP/6)) +  (8-263) 
    (1 << (bdShift − 1 )) ) >> bdShift ) 

8.6.4 Transformation process for scaled transform coefficients 

Inputs of this process are: 

– a luma location ( xT, yT ) specifying the top-left sample of the current luma transform block relative to the top-left 
luma sample of the current picture, 

– a variable nT specifying the size of the current transform block, 

– a variable cIdx specifying the colour component of the current block, 

– a (nT)x(nT) array d of scaled transform coefficients with elements d[ x ][ y ]. 

Output of this process is: 

– the (nT)x(nT) array r of residual samples with elements r[ x ][ y ]. 



   ISO/IEC 23008-2 : 201x (E) 

147 Draft Rec. ITU-T H.HEVC (201x E) 

Depending on CuPredMode[ xT ][ yT ], nT and cIdx, the variable trType is derived as follows. 

– If CuPredMode[ xT ][ yT ] is equal to MODE_INTRA, nT is equal to 4, and cIdx is equal to 0, trType is set equal 
to 1. 

– Otherwise, trType is set equal to 0. 

The (nT)x(nT) array r of residual samples is derived as follows. 

1. Each (vertical) column of scaled transform coefficients d[ x ][ y ] with x = 0..nT − 1, y = 0..nT − 1 is transformed to 
e[ x ][ y ] with x = 0..nT − 1, y = 0..nT − 1 by invoking the one-dimensional transformation process as specified in 
subclause 8.6.4.1 for each column x = 0..nT − 1 with the size of the transform block nT, the list d[ x ][ y ] with 
y = 0..nT − 1 and the transform type variable trType as the inputs and the output is the list e[ x ][ y ] with 
y = 0..nT − 1. 

2. The intermediate sample values g[ x ][ y ] with  x = 0..nT − 1, y = 0..nT − 1  are derived by 

g[ x ][ y ] = Clip3( −32768, 32767, ( e[ x ][ y ] + 64 ) >> 7 ) (8-264) 

3. Each (horizontal) row of the resulting array g[ x ][ y ] with x = 0..nT − 1, y = 0..nT − 1 is transformed to r[ x ][ y ] 
with x = 0..nT − 1, y = 0..nT − 1 by invoking the one-dimensional transformation process as specified in subclause 
8.6.4.1 for each row y = 0..nT − 1 with the size of the transform block nT, the list g[ x ][ y ] with x = 0..nT − 1 and 
the transform type variable trType as the inputs and the output is the list r[ x ][ y ] with x = 0..nT − 1. 

8.6.4.1 Transformation process 

Inputs of this process are: 

– a variable nT specifying the sample size of scaled transform coefficients, 

– a list of scaled transform coefficients x with elements x[ j ], with j = 0..nT − 1. 

– a transform type variable trType 

Output of this process is: 

– the list of transformed samples y with elements y[ i ], with i = 0..nT − 1. 

Depending on trType, the following applies: 

– If trType is equal to 1, the following transform matrix multiplication applies. 

y[ i ] = ∑j( transMatrix[ i ][ j ] * x[ j ] ) with i = 0..nT − 1, j = 0..nT − 1, (8-265) 

where the transform coefficient array transMatrix is specified as: 

transMatrix = (8-266) 
{ 
{29  55  74  84} 
{74  74   0 −74} 
{84 −29 −74  55} 
{55 −84  74 −29} 
} 

– Otherwise (trType is equal to 0), the following transform matrix multiplication applies. 

y[ i ] = ∑j( transMatrix[ i ][ k ] * x[ j ] ) with i = 0..nT − 1, j = 0..nT − 1, (8-267) 

where k = ( 1 << ( 5 − Log2( nT ) ) ) * j and the transform coefficient array transMatrix is specified as: 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 148 

transMatrix[ m ][ n ] = transMatrixCol0to15[ m ][ n ] with m = 0..15, n = 0...31 (8-268) 

transMatrixCol0to15 = (8-269) 
{ 
{64  64  64  64  64  64  64  64  64  64  64  64  64  64  64  64} 
{90  90  88  85  82  78  73  67  61  54  46  38  31  22  13   4} 
{90  87  80  70  57  43  25   9  −9 −25 −43 −57 −70 −80 −87 −90} 
{90  82  67  46  22  −4 −31 −54 −73 −85 −90 −88 −78 −61 −38 −13} 
{89  75  50  18 −18 −50 −75 −89 −89 −75 −50 −18  18  50  75  89} 
{88  67  31 −13 −54 −82 −90 −78 −46  −4  38  73  90  85  61  22} 
{87  57   9 −43 −80 −90 −70 −25  25  70  90  80  43  −9 −57 −87} 
{85  46 −13 −67 −90 −73 −22  38  82  88  54  −4 −61 −90 −78 −31} 
{83  36 −36 −83 −83 −36  36  83  83  36 −36 −83 −83 −36  36  83} 
{82  22 −54 −90 −61  13  78  85  31 −46 −90 −67   4  73  88  38} 
{80   9 −70 −87 −25  57  90  43 −43 −90 −57  25  87  70  −9 −80} 
{78  −4 −82 −73  13  85  67 −22 −88 −61  31  90  54 −38 −90 −46} 
{75 −18 −89 −50  50  89  18 −75 −75  18  89  50 −50 −89 −18  75} 
{73 −31 −90 −22  78  67 −38 −90 −13  82  61 −46 −88  −4  85  54} 
{70 −43 −87   9  90  25 −80 −57  57  80 −25 −90  −9  87  43 −70} 
{67 −54 −78  38  85 −22 −90   4  90  13 −88 −31  82  46 −73 −61} 
{64 −64 −64  64  64 −64 −64  64  64 −64 −64  64  64 −64 −64  64} 
{61 −73 −46  82  31 −88 −13  90  −4 −90  22  85 −38 −78  54  67} 
{57 −80 −25  90  −9 −87  43  70 −70 −43  87   9 −90  25  80 −57} 
{54 −85  −4  88 −46 −61  82  13 −90  38  67 −78 −22  90 −31 −73} 
{50 −89  18  75 −75 −18  89 −50 −50  89 −18 −75  75  18 −89  50} 
{46 −90  38  54 −90  31  61 −88  22  67 −85  13  73 −82   4  78} 
{43 −90  57  25 −87  70   9 −80  80  −9 −70  87 −25 −57  90 −43} 
{38 −88  73  −4 −67  90 −46 −31  85 −78  13  61 −90  54  22 −82} 
{36 −83  83 −36 −36  83 −83  36  36 −83  83 −36 −36  83 −83  36} 
{31 −78  90 −61   4  54 −88  82 −38 −22  73 −90  67 −13 −46  85} 
{25 −70  90 −80  43   9 −57  87 −87  57  −9 −43  80 −90  70 −25} 
{22 −61  85 −90  73 −38  −4  46 −78  90 −82  54 −13 −31  67 −88} 
{18 −50  75 −89  89 −75  50 −18 −18  50 −75  89 −89  75 −50  18} 
{13 −38  61 −78  88 −90  85 −73  54 −31   4  22 −46  67 −82  90} 
{ 9 −25  43 −57  70 −80  87 −90  90 −87  80 −70  57 −43  25  −9} 
{ 4 −13  22 −31  38 −46  54 −61  67 −73  78 −82  85 −88  90 −90} 
}, 

transMatrix[ m ][ n ] = transMatrixCol16to31[ m − 16 ][ n ] with m = 16..31, n = 0..31, (8-270) 

transMatrixCol16to31 =  (8-271) 
{ 
{ 64  64  64  64  64  64  64  64  64  64  64  64  64  64  64  64} 
{ −4 −13 −22 −31 −38 −46 −54 −61 −67 −73 −78 −82 −85 −88 −90 −90} 
{−90 −87 −80 −70 −57 −43 −25  −9   9  25  43  57  70  80  87  90} 
{ 13  38  61  78  88  90  85  73  54  31   4 −22 −46 −67 −82 −90} 
{ 89  75  50  18 −18 −50 −75 −89 −89 −75 −50 −18  18  50  75  89} 
{−22 −61 −85 −90 −73 −38   4  46  78  90  82  54  13 −31 −67 −88} 
{−87 −57  −9  43  80  90  70  25 −25 −70 −90 −80 −43   9  57  87} 
{ 31  78  90  61   4 −54 −88 −82 −38  22  73  90  67  13 −46 −85} 
{ 83  36 −36 −83 −83 −36  36  83  83  36 −36 −83 −83 −36  36  83} 
{−38 −88 −73  −4  67  90  46 −31 −85 −78 −13  61  90  54 −22 −82} 
{−80  −9  70  87  25 −57 −90 −43  43  90  57 −25 −87 −70   9  80} 
{ 46  90  38 −54 −90 −31  61  88  22 −67 −85 −13  73  82   4 −78} 
{ 75 −18 −89 −50  50  89  18 −75 −75  18  89  50 −50 −89 −18  75} 
{−54 −85   4  88  46 −61 −82  13  90  38 −67 −78  22  90  31 −73} 
{−70  43  87  −9 −90 −25  80  57 −57 −80  25  90   9 −87 −43  70} 
{ 61  73 −46 −82  31  88 −13 −90  −4  90  22 −85 −38  78  54 −67} 
{ 64 −64 −64  64  64 −64 −64  64  64 −64 −64  64  64 −64 −64  64} 
{−67 −54  78  38 −85 −22  90   4 −90  13  88 −31 −82  46  73 −61} 
{−57  80  25 −90   9  87 −43 −70  70  43 −87  −9  90 −25 −80  57} 
{ 73  31 −90  22  78 −67 −38  90 −13 −82  61  46 −88   4  85 −54} 
{ 50 −89  18  75 −75 −18  89 −50 −50  89 −18 −75  75  18 −89  50} 
{−78  −4  82 −73 −13  85 −67 −22  88 −61 −31  90 −54 −38  90 −46} 
{−43  90 −57 −25  87 −70  −9  80 −80   9  70 −87  25  57 −90  43} 
{ 82 −22 −54  90 −61 −13  78 −85  31  46 −90  67   4 −73  88 −38} 
{ 36 −83  83 −36 −36  83 −83  36  36 −83  83 −36 −36  83 −83  36} 
{−85  46  13 −67  90 −73  22  38 −82  88 −54  −4  61 −90  78 −31} 
{−25  70 −90  80 −43  −9  57 −87  87 −57   9  43 −80  90 −70  25} 
{ 88 −67  31  13 −54  82 −90  78 −46   4  38 −73  90 −85  61 −22} 
{ 18 −50  75 −89  89 −75  50 −18 −18  50 −75  89 −89  75 −50  18} 
{−90  82 −67  46 −22  −4  31 −54  73 −85  90 −88  78 −61  38 −13} 
{ −9  25 −43  57 −70  80 −87  90 −90  87 −80  70 −57  43 −25   9} 
{ 90 −90  88 −85  82 −78  73 −67  61 −54  46 −38  31 −22  13  −4} 
} 

 



   ISO/IEC 23008-2 : 201x (E) 

149 Draft Rec. ITU-T H.HEVC (201x E) 

8.6.5 Picture construction process prior to in-loop filter process 

Inputs of this process are: 

– a location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top-left sample of the 
current picture component, 

– a variable nS specifying the size of the current block, 

– a variable cIdx specifying the colour component of the current block, 

– a (nS)x(nS) array predSamples specifying the predicted samples of the current block, 

– a (nS)x(nS) array resSamples specifying the residual samples of the current block. 

Depending on the colour component cIdx, the following assignments are made. 

– If cIdx is equal to 0, recSamples corresponds to the reconstructed picture sample array SL and the function clipCidx1 
corresponds to Clip1Y. 

– Otherwise, if cIdx is equal to 1, recSamples corresponds to the reconstructed chroma sample array SCb and the 
function clipCidx1 corresponds to Clip1C. 

– Otherwise (cIdx is equal to 2), recSamples corresponds to the reconstructed chroma sample array SCr and the function 
clipCidx1 corresponds to Clip1C. 

The (nS)x(nS) block of the reconstructed sample array recSamples at location ( xB, yB ) is derived as follows. 

recSamples[ xB+i ][ yB+j ] = clipCidx1( predSamples[ i ][ j ] + resSamples[ i ][ j ] ) (8-272) 
 with i = 0..nS − 1, j = 0..nS − 1 

8.7 In-loop filter process 

8.7.1 General 

The two in-loop filters, namely deblocking filter and sample adaptive offset filter, are applied as specified by the 
following ordered steps. 

1. When slice_disable_deblocking_filter_flag is equal to 0, the following applies. 

– The deblocking filter process as specified in subclause 8.7.2 is invoked with the reconstructed picture sample 
arrays SL, SCb, SCr as inputs and the modified reconstructed picture sample arrays S′L, S′Cb, S′Cr after deblocking 
as outputs. 

– The arrays S′L, S′Cb, S′Cr are assigned to the arrays SL, SCb, SCr (which represent the decoded picture), 
respectively. 

2. When sample_adaptive_offset_enabled_flag is equal to 1, the following applies. 

– The sample adaptive offset process as specified in subclause 8.7.3 is invoked with the reconstructed picture 
sample arrays SL, SCb, SCr as inputs and the modified reconstructed picture sample arrays S′L, S′Cb, S′Cr after 
sample adaptive offset as outputs. 

– The arrays S′L, S′Cb, S′Cr are assigned to the arrays SL, SCb, SCr (which represent the decoded picture), 
respectively. 

8.7.2 Deblocking filter process 

Inputs of this process are the reconstructed picture sample arrays prior to deblocking recPictureL, recPictureCb and 
recPictureCr. 

Outputs of this process are the modified reconstructed picture sample arrays after deblocking recPictureL, recPictureCb 
and recPictureCr. 

The vertical edges in a picture are filtered first. Then the horizontal edges in a picture are filtered with samples modified 
by deblocking filtering of vertical edges as the input. The vertical and horizontal edges in the coding tree blocks of each 
coding tree unit are processed separately on a coding unit basis. The vertical edges of the coding blocks in a coding unit 
are filtered starting with the edge on the left-hand side of the coding blocks proceeding through the edges towards the 
right-hand side of the coding blocks in their geometrical order. The horizontal edges of the coding blocks in a coding unit 
are filtered starting with the edge on the top of the coding blocks proceeding through the edges towards the bottom of the 
coding blocks in their geometrical order. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 150 

NOTE – Although the filtering process is specified on a picture basis in this specification, the filtering process can be 
implemented on a coding unit basis with an equivalent result, provided the decoder properly accounts for the processing 
dependency order so as to produce the same output values. 

The deblocking filter process shall be applied to all prediction block edges and transform block edges of a picture, except 
edges at the boundary of the picture, any edges for which the deblocking filter process is disabled by 
slice_disable_deblocking_filter_flag, any edges that coincide with tile boundaries when 
loop_filter_across_tiles_enabled_flag is equal to 0, and any edges that coincide with upper or left slice boundaries of a 
particular slice when slice_loop_filter_across_slices_enabled_flag is equal to 0. For the transform units and prediction 
units with luma block edges less than 8 samples in either vertical or horizontal direction, only the edges lying on the 8x8 
sample grid are filtered. 

The deblocking filter process is invoked as follows. 

For each coding unit with luma coding block size log2CbSize and location of top left sample of the luma coding 
block ( xC, yC ), the vertical edges are filtered by the following ordered steps. 

1. The luma coding block size nS is set equal to 1 << log2CbSize. 

2. The variable filterLeftCbEdgeFlag is derived as follows. 

– If the left boundary of current luma coding block is the left boundary of the picture, or if the left boundary 
of current luma coding block is the left boundary of the tile and loop_filter_across_tiles_enabled_flag is 
equal to 0, or if the left boundary of current luma coding block is the left boundary of the slice and 
slice_loop_filter_across_slices_enabled_flag is equal to 0, the variable filterLeftCbEdgeFlag is set equal 
to 0. 

– Otherwise, the variable filterLeftCbEdgeFlag is set equal to 1. 

3. All elements of the two-dimensional (nS)x(nS) array verEdgeFlags are initialized to zero. 

4. The derivation process of transform block boundary specified in subclause 8.7.2.1 is invoked with the luma 
location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the transform block size log2TrafoSize set 
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable filterLeftCbEdgeFlag, and the variable 
edgeType set equal to EDGE_VER as the inputs and the modified array verEdgeFlags as output. 

5. The derivation process of prediction block boundary specified in subclause 8.7.2.2 is invoked with the luma 
coding block size log2CbSize, the prediction partition mode PartMode, and the variable edgeType set equal to 
EDGE_VER as inputs, and the modified array verEdgeFlags as output. 

6. The derivation process of the boundary filtering strength specified in subclause 8.7.2.3 is invoked with the 
reconstructed luma picture sample array prior to deblocking recPictureL, the luma location ( xC, yC ), the luma 
coding block size log2CbSize, the variable edgeType set equal to EDGE_VER, and verEdgeFlags as inputs and 
an (nS)x(nS) array verBS as output. 

7. The vertical edge filtering process for a coding unit as specified in subclause 8.7.2.4.1 is invoked with the 
reconstructed picture sample arrays prior to deblocking recPictureL, recPictureCb and recPictureCr, the luma 
location ( xC, yC ), the luma coding block size log2CbSize and the array verBS as inputs and the modified 
reconstructued picture sample arrays recPictureL, recPictureCb and recPictureCr as output. 

For each coding unit with luma coding block size log2CbSize and location of top left sample of the luma coding 
block ( xC, yC ), the horizontal edges are filtered by the following ordered steps. 

1. The luma coding block size nS is set equal to 1 << log2CbSize. 

2. The variable filterTopCbEdgeFlag is derived as follows. 

– If the top boundary of current luma coding block is the top boundary of the picture, or if the top boundary 
of current luma coding block is the top boundary of the tile and loop_filter_across_tiles_enabled_flag is 
equal to 0, or if the top boundary of current luma coding block is the top boundary of the slice and 
slice_loop_filter_across_slices_enabled_flag is equal to 0, the variable filterTopCbEdgeFlag is set equal 
to 0. 

– Otherwise, the variable filterTopCbEdgeFlag is set equal to 1. 

3. All elements of the two-dimensional (nS)x(nS) array horEdgeFlags are initialized to zero. 

4. The derivation process of transform block boundary specified in subclause 8.7.2.1 is invoked with the luma 
location ( xC, yC ), the luma location ( xB, yB ) set equal to ( 0, 0 ), the transform block size log2TrafoSize set 
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable filterTopCbEdgeFlag, and the variable 
edgeType set equal to EDGE_HOR as the inputs and the modified array horEdgeFlags as output. 



   ISO/IEC 23008-2 : 201x (E) 

151 Draft Rec. ITU-T H.HEVC (201x E) 

5. The derivation process of prediction block boundary specified in subclause 8.7.2.2 is invoked with the luma 
coding block size log2CbSize, the prediction partition mode PartMode, and the variable edgeType set equal to 
EDGE_HOR as inputs, and the modified array horEdgeFlags as output. 

6. The derivation process of the boundary filtering strength specified in subclause 8.7.2.3 is invoked with the 
reconstructed luma picture sample array prior to deblocking recPictureL, the luma location ( xC, yC ), the luma 
coding block size log2CbSize, the variable edgeType set equal to EDGE_HOR, and horEdgeFlags as inputs and 
an (nS)x(nS) array horBS as output. 

7. The horizontal edge filtering process for a coding unit as specified in subclause 8.7.2.4.2 is invoked with the 
modified reconstructed picture sample arrays recPictureL, recPictureCb and recPictureCr, the luma location 
( xC, yC ), the luma coding block size log2CbSize and the array horBS as inputs and the modified 
reconstructued picture sample arrays recPictureL, recPictureCb and recPictureCr as output. 

8.7.2.1 Derivation process of transform block boundary 

Inputs of this process are: 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture,  

– a luma location ( xB0, yB0 ) specifying the top-left sample of the current luma block relative to the top-left sample of 
the current luma coding block,  

– a variable log2TrafoSize specifying the size of the current block, 

– a variable trafoDepth, 

– a variable filterEdgeFlag, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered. 

Output of this process is: 

– a two-dimensional (nS)x(nS) array edgeFlags. 

Depending on split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ], the following applies: 

– If split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ] is equal to 1, the following ordered steps apply: 

1. The variables xB1 and yB1 are derived as follows. 

– The variable xB1 is set equal to xB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

– The variable yB1 is set equal to yB0 + ( ( 1 << log2TrafoSize ) >> 1 ). 

2. The deriviation process of transform block boundary as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB0, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth1 set equal to trafoDepth + 1, the variable filterEdgeFlag and the variable edgeType as 
inputs and the output is the modified version of array edgeFlags. 

3. The deriviation process of transform block boundary as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB1, yB0 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth1 set equal to trafoDepth + 1, the variable filterEdgeFlag and the variable edgeType as 
inputs and the output is the modified version of array edgeFlags. 

4. The deriviation process of transform block boundary as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB0, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth1 set equal to trafoDepth + 1, the variable filterEdgeFlag and the variable edgeType as 
inputs and the output is the modified version of array edgeFlags. 

5. The deriviation process of transform block boundary as specified in this subclause is invoked with the luma 
location ( xC, yC ), the luma location ( xB1, yB1 ), the variable log2TrafoSize set equal to log2TrafoSize − 1, 
the variable trafoDepth1 set equal to trafoDepth + 1, the variable filterEdgeFlag and the variable edgeType as 
inputs and the output is the modified version of array edgeFlags. 

– Otherwise (split_transform_flag[ xC + xB0 ][ yC + yB0 ][ trafoDepth ] is equal to 0), the following applies: 

– If edgeType is equal to EDGE_VER, the value of edgeFlags[ xB0 ][ yB0 + k ] for 
k = 0..( 1 << log2TrafoSize ) − 1 is derived as follows. 

– If xB0 is equal to 0, edgeFlags[ xB0 ][ yB0 + k ] is set equal to filterEdgeFlag. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 152 

– Otherwise edgeFlags[ xB0 ][ yB0 + k ] is set equal to 1. 

– Otherwise (edgeType is equal to EDGE_HOR), the value of edgeFlags[ xB0 + k ][ yB0 ] for 
k = 0..( 1 << log2TrafoSize ) − 1 is derived as follows. 

– If yB0 is equal to 0, edgeFlags[ xB0 + k ][ yB0 ] is set equal to filterEdgeFlag. 

– Otherwise edgeFlags[ xB0 + k ][ yB0 ] is set equal to 1. 

8.7.2.2 Derivation process of prediction block boundary 

Inputs of this process are: 

– a variable log2CbSize specifying the luma coding block size,  

– a prediction partition mode PartMode, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered. 

Output of this process is: 

– a two-dimensional (nS)x(nS) array edgeFlags. 

Depending on edgeType and PartMode, the following applies for k = 0.. ( 1 << log2CbSize ) − 1: 

– If edgeType is equal to EDGE_VER, 

– When PartMode is equal to PART_Nx2N or PART_NxN,  
edgeFlags[ 1 << ( log2CbSize − 1 ) ][ k ] is set equal to 1. 

– When PartMode is equal to PART_nLx2N,  
edgeFlags[ (1 << ( log2CbSize − 1 )) − (1 << ( log2CbSize − 2 )) ][ k ] is set equal to 1. 

– When PartMode is equal to PART_nRx2N,  
edgeFlags[ (1 << ( log2CbSize − 1 )) + (1 << ( log2CbSize − 2 )) ][ k ] is set equal to 1. 

– Otherwise (edgeType is equal to EDGE_HOR), 

– When PartMode is equal to PART_2NxN or PART_NxN,  
edgeFlags[ k ][ 1 << ( log2CbSize − 1 ) ] is set equal to 1. 

– When PartMode is equal to PART_2NxnU,  
edgeFlags[ k ][ (1 << ( log2CbSize − 1 )) − (1 << ( log2CbSize − 2 )) ] is set equal to 1. 

– When PartMode is equal to PART_2NxnD,  
edgeFlags[ k ][ (1 << ( log2CbSize − 1 )) + (1 << ( log2CbSize − 2 )) ] is set equal to 1. 

8.7.2.3 Derivation process of boundary filtering strength 

Inputs of this process are: 

– a luma picture sample array recPictureL, 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture,  

– a variable log2CbSize specifying the size of the current luma coding block, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

– a two-dimensional array of size (nS)x(nS), edgeFlags. 

Output of this process is: 

– a two-dimensional array of size (nS)x(nS), bS specifying the boundary filtering strength. 

The boundary filtering strength array bS for the current coding unit is derived as follows. 

The variables xDi, yDj, xN and yN are derived as follows. 

– If edgeType is equal to EDGE_VER, xDi is set equal to ( i << 3 ), yDj is set equal to ( j << 2 ), xN is set equal to 
(1 << ( log2CbSize − 3 )) − 1 and yN is set equal to (1 << ( log2CbSize − 2 )) − 1. 

– Otherwise (edgeType is equal to EDGE_HOR), xDi is set equal to ( i << 2 ), yDj is set equal to ( j << 3 ), xN is set 
equal to (1 << ( log2CbSize − 2 )) − 1 and yN is set equal to (1 << ( log2CbSize − 3 )) − 1. 



   ISO/IEC 23008-2 : 201x (E) 

153 Draft Rec. ITU-T H.HEVC (201x E) 

For xDi with i = 0..xN, the following applies. 

For yDj with j = 0..yN, the following applies. 

– If edgeFlags[ xDi ][ yDj ] is equal to 1, the sample values are derived as follows. 

– If edgeType is equal to EDGE_VER, sample p0 = recPictureL[ xC + xDi − 1 ][ yC + yDj ] and 
q0 = recPictureL[ xC + xDi ][ yC + yDj ]. 

– Otherwise (edgeType is equal to EDGE_HOR), sample p0 = recPictureL[ xC + xDi ][ yC + yDj − 1 ] and 
q0 = recPictureL[ xC + xDi ][ yC + yDj ]. 

Depending on p0 and q0, the variable bS[ xDi ][ yDj ] is derived as follows. 

– If the sample p0 or q0 is in the luma coding block of a coding unit coded with intra prediction mode, the 
variable bS[ xDi ][ yDj ] is set equal to 2. 

– Otherwise, if the block edge is also a transform block edge and the sample p0 or q0 is in a luma transform 
block which contains one or more non-zero transform coefficient levels, the variable bS[ xDi ][ yDj ] is set 
equal to 1. 

– Otherwise, the following applies. 

– If one or more of the following conditions are true, the variable bS[ xDi ][ yDj ] is set equal to 1. 

– For the prediction of the luma prediction block containing the sample p0 different reference 
pictures or a different number of motion vectors are used than for the prediction of the luma 
prediction block containing the sample q0. 

NOTE 1 – The determination of whether the reference pictures used for the two luma prediction blocks 
are the same or different is based only on which pictures are referenced, without regard to whether a 
prediction is formed using an index into reference picture list 0 or an index into reference picture list 1, 
and also without regard to whether the index position within a reference picture list is different. 
NOTE 2 – The number of motion vectors that are used for the prediction of a luma prediction block with 
lop left luma sample covering ( xB, yB ), is equal to PredFlagL0[ xB, yB ] + PredFlagL1[ xB, yB ].  

– One motion vector is used to predict the luma prediction block containing the sample p0 and one 
motion vector is used to predict the luma prediction block containing the sample q0 and the 
absolute difference between the horizontal or vertical component of the motion vectors used is 
greater than or equal to 4 in units of quarter luma samples. 

– Two motion vectors and two different reference pictures are used to predict the luma prediction 
block containing the sample p0 and two motion vectors for the same two reference pictures are 
used to predict the luma prediction block containing the sample q0 and the absolute difference 
between the horizontal or vertical component of the two motion vectors used in the prediction of 
the two luma prediction blocks for the same reference picture is greater than or equal to 4 in 
units of quarter luma samples, 

– Two motion vectors for the same reference picture are used to predict the luma prediction block 
containing the sample p0 and two motion vectors for the same reference picture are used to 
predict the luma prediction block containing the sample q0 and all of the following conditions 
are true: 

– The absolute difference between the horizontal or vertical component of list 0 motion 
vectors used in the prediction of the two luma prediction bocks is greater than or equal to 4 
in quarter luma samples or the absolute difference between the horizontal or vertical 
component of the list 1 motion vectors used in the prediction of the two luma prediction 
blocks is greater than or equal to 4 in units of quarter luma samples, 

– The absolute difference between the horizontal or vertical component of list 0 motion 
vector used in the prediction of the luma prediction block containing the sample p0 and the 
list 1 motion vector used in the prediction of the luma prediction block containing the 
sample q0 is greater than or equal to 4 in units of quarter luma samples or the absolute 
difference between the horizontal or vertical component of the list 1 motion vector used in 
the prediction of the luma prediction block containing the sample p0 and list 0 motion 
vector used in the prediction of the luma prediction block containing the sample q0 is 
greater than or equal to 4 in units of quarter luma samples. 

– Otherwise (none of the conditions above is true), the variable bS[ xDi ][ yDj ] is set equal to 0. 

– Otherwise (edgeFlags[ xDi ][ yDj ] is equal to 0), the variable bS[ xDi ][ yDj ] is set equal to 0. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 154 

8.7.2.4 Edge filtering process 

8.7.2.4.1 Vertical edge filtering process 

Inputs of this process are: 

– picture sample arrays recPictureL, recPictureCb and recPictureCr. 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current luma coding block, 

– an array bS specifying the boundary filtering strength.  

Outputs of this process are: 

– the modified picture sample arrays recPictureL, recPictureCb and recPictureCr. 

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered 
steps: 

1. The variable nD is set equal to 1 << ( log2CbSize − 3 ). 

2. For xDk set equal to k << 3, k = 0..nD − 1, the following applies. 

For yDm set equal to m << 2, m = 0..nD*2 − 1, the following applies. 

– When bS[ xDk ][ yDm ] is greater than 0, the following ordered steps apply. 

a. The decision process for luma block edges as specified in subclause 8.7.2.4.3 is invoked with the 
luma picture sample array recPictureL, the location of the luma coding block ( xC, yC ), the luma 
location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_VER, and the 
boundary filtering strength bS[ xDk ][ yDm ] as inputs, the decisions dE, dEp, dEq, and the 
variables β, tC as outputs. 

b. The filtering process for luma block edges as specified in subclause 8.7.2.4.4 is invoked with the 
luma picture sample array recPictureL, the location of the luma coding block ( xC, yC ), the luma 
location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_VER, the decisions dE, 
dEp, dEq, and the variables β, tC as inputs and the modified luma picture sample array recPictureL 
as output. 

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered 
steps: 

1. The variable nD is set equal to 1 << ( log2CbSize − 3 ). 

2. For xDk set equal to k << 2, k = 0..nD − 1, the following applies. 

For yDm set equal to m << 2, m = 0..nD − 1, the following applies. 

– When bS[ xDk*2 ][ yDm*2 ] is greater than 1 and (( xDk >> 3 ) << 3) is equal to xDk, the following 
ordered steps apply. 

a. The filtering process for chroma block edges as specified in subclause 8.7.2.4.5 is invoked with 
the chroma picture sample array recPictureCb, the location of the chroma coding block 
( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable edgeType set equal to 
EDGE_VER, the boundary filtering strength bS[ xDk*2 ][ yDm*2 ], and a variable cQpPicOffset 
set equal to pps_cb_qp_offset as inputs and the modified chroma picture sample array recPictureCb 
as output. 

b. The filtering process for chroma block edges as specified in subclause 8.7.2.4.5 is invoked with 
the chroma picture sample array recPictureCr, the location of the chroma coding block 
( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable edgeType set equal to 
EDGE_VER, the boundary filtering strength bS[ xDk*2 ][ yDm*2 ], and a variable cQpPicOffset 
set equal to pps_cr_qp_offset as inputs and the modified chroma picture sample array recPictureCr 
as output. 

8.7.2.4.2 Horizontal edge filtering process 

Inputs of this process are: 

– picture sample arrays recPictureL, recPictureCb and recPictureCr. 



   ISO/IEC 23008-2 : 201x (E) 

155 Draft Rec. ITU-T H.HEVC (201x E) 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a variable log2CbSize specifying the size of the current luma coding block, 

– an array bS specifying the boundary filtering strength.  

Outputs of this process are: 

– the modified picture sample arrays recPictureL, recPictureCb and recPictureCr. 

The filtering process for edges in the luma coding block of the current coding unit consists of the following ordered 
steps: 

1. The variable nD is set equal to 1 << ( log2CbSize − 3 ). 

2. For yDm set equal to m << 3, m = 0..nD − 1, the following applies. 

For xDk set equal to k << 2, k = 0..nD*2 − 1, the following applies. 

– When bS[ xDk ][ yDm ] is greater than 0, the following ordered steps apply. 

a. The decision process for luma block edges as specified in subclause 8.7.2.4.3 is invoked with the 
luma picture sample array recPictureL, the location of the luma coding block ( xC, yC ), the luma 
location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_HOR, and the 
boundary filtering strength bS[ xDk ][ yDm ] as inputs, the decisions dE, dEp, dEq, and the 
variables β, tC as outputs. 

b. The filtering process for luma block edges as specified in subclause 8.7.2.4.4 is invoked with the 
luma picture sample array recPictureL, the location of the luma coding block ( xC, yC ), the luma 
location of the block ( xDk, yDm ), a variable edgeType set equal to EDGE_HOR, the decisions 
dEp, dEp, dEq, and the variables β, tC as inputs and the modified luma picture sample array 
recPictureL as output. 

The filtering process for edges in the chroma coding blocks of current coding unit consists of the following ordered 
steps: 

1. The variable nD is set equal to 1 << ( log2CbSize − 3 ). 

2. For yDm set equal to m << 2, m = 0..nD − 1, the following applies. 

For xDk set equal to k << 2, k = 0..nD*2 − 1, the following applies. 

– When bS[ xDk*2 ][ yDm*2 ] is greater than 1 and (( yDm >> 3 ) << 3) is equal to yDm, the following 
ordered steps apply. 

a. The filtering process for chroma block edges as specified in subclause 8.7.2.4.5 is invoked with 
the chroma picture sample array recPictureCb, the location of the chroma coding block 
( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable edgeType set equal to 
EDGE_HOR, the boundary filtering strength bS[ xDk*2 ][ yDm*2 ], and a variable cQpPicOffset 
set equal to pps_cb_qp_offset as inputs and the modified chroma picture sample array recPictureCb 
as output. 

b. The filtering process for chroma block edges as specified in subclause 8.7.2.4.5 is invoked with 
the chroma picture sample array recPictureCr, the location of the chroma coding block 
( xC/2, yC/2 ), the chroma location of the block ( xDk, yDm ), a variable edgeType set equal to 
EDGE_HOR, the boundary filtering strength bS[ xDk*2 ][ yDm*2 ], and a variable cQpPicOffset 
set equal to pps_cr_qp_offset as inputs and the modified chroma picture sample array recPictureCr 
as output. 

8.7.2.4.3 Decision process for luma block edges 

Inputs of this process are: 

– a luma picture sample array recPictureL, 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xB, yB ) specifying the top-left sample of the current luma block relative to the top left sample of 
the current luma coding block, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 156 

– a variable bS specifying the boundary filtering strength. 

Outputs of this process are: 

– the variables dE, dEp, dEq containing decisions, 

– the variables β, tC. 

If edgeType is equal to EDGE_VER, the sample values pi,k and qi,k with i = 0..3 and k = 0, 3 are derived as follows: 

 qi,k = recPictureL[ xC + xB +i ][ yC + yB + k ]  (8-273) 

 pi,k = recPictureL[ xC + xB − i − 1 ][ yC + yB + k ] (8-274) 

Otherwise (edgeType is equal to EDGE_HOR), the sample values pi,k and qi,k with i = 0..3 and k = 0, 3 are derived as 
follows: 

 qi,k = recPictureL[ xC + xB +k ][ yC + yB + i ]  (8-275) 

 pi,k = recPictureL[ xC + xB +k ][ yC + yB − i − 1 ] (8-276) 

The variables QPQ and QPP are set equal to the QPY values of the coding units which include the coding blocks 
containing the sample q0,0 and p0,0, respectively. 

A variable qPL is derived as follows: 

qPL = ( ( QPQ + QPP + 1 ) >> 1 ) (8-277) 

The value of the variable β′ is determined as specified in Table 8-10 based on the luma quantization parameter Q derived 
as: 

Q = Clip3( 0, 51, qPL + ( slice_beta_offset_div2 << 1 ) ) (8-278) 

where slice_beta_offset_div2 is the value of the syntax element slice_beta_offset_div2 for the slice that 
contains sample q0,0.  

The variable β is derived as: 

β = β′ * (1 << ( BitDepthY − 8 ) ) (8-279) 

The value of the variable tC′ is determined as specified as Table 8-10 based on the luma quantization parameter Q derived 
as: 

Q = Clip3( 0, 53, qPL + 2*( bS − 1) + ( slice_tc_offset_div2 << 1) ) (8-280) 

where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains 
sample q0,0.  

The variable tC is derived as: 

tC = tC′ * ( 1 << ( BitDepthY − 8 ) ) (8-281) 

Depending on edgeType, the following applies: 

– If edgeType is equal to EDGE_VER, the following ordered steps apply: 

1. The variables dpq0, dpq3, dp, dq, and d are derived as follows: 

 dp0 = Abs( p2,0 − 2*p1,0 + p0,0 )  (8-282) 

 dp3 = Abs( p2,3 − 2*p1,3 + p0,3 )  (8-283) 

 dq0 = Abs( q2,0 − 2*q1,0 + q0,0 )  (8-284) 

 dq3 = Abs( q2,3 − 2*q1,3 + q0,3 )  (8-285) 

 dpq0 = dp0 + dq0  (8-286) 

 dpq3 = dp3 + dq3  (8-287) 

 dp = dp0 + dp3  (8-288) 



   ISO/IEC 23008-2 : 201x (E) 

157 Draft Rec. ITU-T H.HEVC (201x E) 

 dq = dq0 + dq3  (8-289) 

 d = dpq0 + dpq3  (8-290) 

2. The variables dE, dEp and dEq are set equal to 0. 

3. When d is less than β, the following ordered steps apply: 

a. The variable dpq is set equal to 2*dpq0. 

b. For the sample location ( xC + xB, yC + yB ), the decision process for a luma sample as specified in 
subclause 8.7.2.4.6 is invoked with sample values pi,0, qi,0 with i = 0..3, the variables dpq, β and tC as inputs 
and the output is assigned to the decision dSam0. 

c. The variable dqp is set equal to 2*dpq3. 

d. For the sample location ( xC + xB, yC + yB + 3), the decision process for a luma sample as specified in 
subclause 8.7.2.4.6 is invoked with sample values pi,3, qi,3 with i = 0..3, the variables dpq, β and tC as inputs 
and the output is assigned to the decision dSam3. 

e. The variable dE is set equal to 1. 

f. When dSam0 is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2. 

g. When dp is less than ( β + ( β >> 1 ) ) >> 3, the variable dEp is set equal to 1. 

h. When dq is less than ( β + ( β >> 1 ) ) >> 3, the variable dEq is set equal to 1. 

– Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply: 

1. The variables dpq0, dpq3, dp, dq, and d are derived as follows: 

 dp0 = Abs( p2,0 − 2*p1,0 + p0,0 )  (8-291) 

 dp3 = Abs( p2,3 − 2*p1,3 + p0,3 )  (8-292) 

 dq0 = Abs( q2,0 − 2*q1,0 + q0,0 )  (8-293) 

 dq3 = Abs( q2,3 − 2*q1,3 + q0,3 )  (8-294) 

 dpq0 = dp0 + dq0  (8-295) 

 dpq3 = dp3 + dq3  (8-296) 

 dp = dp0 + dp3  (8-297) 

 dq = dq0 + dq3  (8-298) 

 d = dpq0 + dpq3  (8-299) 

2. The variables dE, dEp and dEq are set equal to 0. 

3. When d is less than β, the following ordered steps apply: 

a. The variable dqp is set equal to 2*dpq0. 

b. For the sample location ( xC + xB, yC + yB ), the decision process for a luma sample as specified in 
subclause 8.7.2.4.6 is invoked with sample values pi,0, qi,0 with i = 0..3, the variables dpq, β and tC as inputs 
and the output is assigned to the decision dSam0. 

c. The variable dqp is set equal to 2*dpq3. 

d. For the sample location ( xC + xB + 3, yC + yB ), the decision process for a luma sample as specified in 
subclause 8.7.2.4.6 is invoked with sample values pi,3, qi,3 with i = 0..3, the variables dpq, β and tC as inputs 
and the output is assigned to the decision dSam3. 

e. The variable dE is set equal to 1. 

f. When dSam0 is equal to 1 and dSam3 is equal to 1, the variable dE is set equal to 2. 

g. When dp is less than ( β + ( β >> 1 ) ) >> 3, the variable dEp is set equal to 1. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 158 

h. When dq is less than ( β + ( β >> 1 ) ) >> 3, the variable dEq is set equal to 1. 

Table 8-10 – Derivation of threshold variables β′ and tC′ from input Q 
 

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
β′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 7 8 
tC′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Q 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
β′ 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 30 32 34 36 
tC′ 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 

Q 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53    
β′ 38 40 42 44 46 48 50 52 54 56 58 60 62 64 - -    
tC′ 5 5 6 6 7 8 9 10 11 13 14 16 18 20 22 24    

 

8.7.2.4.4 Filtering process for luma block edges 

Inputs of this process are: 

– a luma picture sample array recPictureL, 

– a luma location ( xC, yC ) specifying the top-left sample of the current luma coding block relative to the top-left luma 
sample of the current picture, 

– a luma location ( xB, yB ) specifying the top-left sample of the current luma block relative to the top left sample of 
the current luma coding block, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

– variables dE, dEp, dEq containing decisions, 

– variables β, tC. 

Output of this process is: 

– the modified luma picture sample array recPictureL. 

Depending on edgeType, the following applies: 

– If edgeType is equal to EDGE_VER, the following ordered steps apply: 

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..3 are derived as follows: 

qi,k = recPictureL[ xC + xB +i ][ yC + yB + k ] (8-300) 

pi,k = recPictureL[ xC + xB − i − 1 ][ yC + yB + k ] (8-301) 

2. When dE is not equal to 0, for each sample location ( xC + xB, yC + yB + k ), k = 0..3, the following ordered 
steps apply: 

a. The filtering process for a luma sample as specified in subclause 8.7.2.4.7 is invoked with the sample 
values pi,k, qi,k with i = 0..3, the locations ( xC + xB +i, yC + yB + k ), ( xC + xB − i − 1, yC + yB + k ) with 
i = 0..2, the decision dE, variables dEp and dEq, the variable tC as inputs and the number of filtered samples 
nDp and nDq from each side of the block boundary, and the filtered sample values pi’ and qj’ as outputs. 

b. When nDp is greater than 0, the filtered sample values pi’ with i = 0..nDp − 1 replace the corresponding 
samples inside the sample array recPictureL as follows: 

recPictureL[ xC + xB + k ][ yC + yB − i − 1 ] = pi’ (8-302) 

c. When nDq is greater than 0, the filtered sample values qj’ with j = 0..nDq − 1 replace the corresponding 
samples inside the sample array recPictureL as follows: 

recPictureL[ xC + xB + k ][ yC + yB + j ] = qj’ (8-303) 

– Otherwise (edgeType is equal to EDGE_HOR), the following ordered steps apply: 

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..3 are derived as follows: 



   ISO/IEC 23008-2 : 201x (E) 

159 Draft Rec. ITU-T H.HEVC (201x E) 

qi,k = recPictureL[ xC + xB +k ][ yC + yB + i ] (8-304) 

pi,k = recPictureL[ xC + xB +k ][ yC + yB − i − 1 ] (8-305) 

2. When dE is not equal to 0, for each sample location ( xC + xB + k, yC + yB ), k = 0..3, the following ordered 
steps apply: 

a. The filtering process for a luma sample as specified in subclause 8.7.2.4.7 is invoked with the sample 
values pi,k, qi,k with i = 0..3, the locations ( xC + xB +k, yC + yB + i ), ( xC + xB +k, yC + yB − i − 1 ) with 
i = 0..2, decision dE, variables dEp and dEq, the variable tC as inputs and the number of filtered samples 
nDp and nDq from each side of the block boundary and the filtered sample values pi’ and qj’ as outputs. 

b. When nDp is greater than 0, the filtered sample values pi’ with i = 0..nDp − 1 replace the corresponding 
samples inside the sample array recPictureL as follows: 

recPictureL[ xC + xB + k ][ yC + yB − i − 1 ] = pi’ (8-306) 

c. When nDq is greater than 0, the filtered sample values qj’ with j = 0..nDq − 1 replace the corresponding 
samples inside the sample array recPictureL as follows: 

recPictureL[ xC + xB + k ][ yC + yB + j ] = qj’ (8-307) 

8.7.2.4.5 Filtering process for chroma block edges 

Inputs of this process are: 

– a chroma picture sample array s′, 

– a chroma location ( xC, yC ) specifying the top-left sample of the current chroma coding block relative to the top-left 
chroma sample of the current picture, 

– a chroma location ( xB, yB ) specifying the top-left sample of the current chroma block relative to the top left sample 
of the current chroma coding block, 

– a variable edgeType specifying whether a vertical (EDGE_VER) or a horizontal (EDGE_HOR) edge is filtered, 

– a variable bS specifying the boundary filtering strength, 

– a variable cQpPicOffset specifying the picture-level chroma QP offset. 

Output of this process is: 

– the modified chroma picture sample array s′. 

If edgeType is equal to EDGE_VER, the values pi and qi with i = 0..1 and k = 0..3 are derived as follows: 

qi,k = s′[ xC + xB +i ][ yC + yB + k ] (8-308) 

pi,k = s′[ xC + xB − i − 1 ][ yC + yB + k ] (8-309) 

Otherwise (edgeType is equal to EDGE_HOR), the sample values pi and qi with i = 0..1 and k = 0..3 are derived as 
follows: 

qi,k = s′[ xC + xB +k ][ yC + yB + i ] (8-310) 

pi,k = s′[ xC + xB +k ][ yC + yB − i − 1 ] (8-311) 

The variables QPQ and QPP are set equal to the QPY values of the coding units which include the coding blocks 
containing the sample q0,0 and p0,0, respectively. 

The variable QPC is determined as specified in Table 8-9 based on the index qPi derived as: 

qPi = ( ( QPQ + QPP + 1 ) >> 1 ) + cQpPicOffset (8-312) 
NOTE – The variable cQpPicOffset provides an adjustment for the value of pps_cb_qp_offset or pps_cr_qp_offset, according to 
whether the filtered chroma component is the Cb or Cr component. However, to avoid the need to vary the amount of the 
adjustment within the picture, the filtering process does not include an adjustment for the value of slice_cb_qp_offset or 
slice_cb_qp_offset. 

The value of the variable tC′ is determined as specified as Table 8-10 based on the chroma quantization parameter Q 
derived as: 

Q = Clip3( 0, 53, QPC + 2 * ( bS − 1 ) + ( slice_tc_offset_div2 << 1 ) ) (8-313) 

where slice_tc_offset_div2 is the value of the syntax element slice_tc_offset_div2 for the slice that contains 
sample q0,0.  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 160 

The variable tC is derived as: 

tC = tC′ * ( 1 << ( BitDepthC − 8 ) ) (8-314) 

Depending on edgeType, the following applies: 

– If edgeType is equal to EDGE_VER, for each sample location ( xC + xB, yC + yB + k ), k = 0..3, the following 
ordered steps apply: 

1. The filtering process for a chroma sample as specified in subclause 8.7.2.4.8 is invoked with the sample values 
pi,k, qi,k, with i = 0..1, the locations ( xC + xB − 1, yC + yB + k ) and ( xC + xB, yC + yB + k ), and the variable 
tC as inputs and the filtered sample values p0′ and q0′ as outputs. 

2. The filtered sample values p0′ and q0′ replace the corresponding samples inside the sample array s′ as follows: 

s′[ xC + xB ][ yC + yB + k ] = q0′ (8-315) 

s′[ xC + xB − 1 ][ yC + yB + k ] = p0′ (8-316) 

– Otherwise (edgeType is equal to EDGE_HOR), for each sample location ( xC + xB + k, yC + yB ), k = 0..3, the 
following ordered steps apply: 

1. The filtering process for a chroma sample as specified in subclause 8.7.2.4.8 is invoked with the sample values 
pi,k, qi,k, with i = 0..1, the locations ( xC + xB +k, yC + yB − 1 ) and ( xC + xB +k, yC + yB ) and the variable tC 
as inputs and the filtered sample values p0′ and q0′ as outputs. 

2. The filtered sample values p0′ and q0′ replace the corresponding samples inside the sample array s′ as follows: 

s′[ xC + xB +k ][ yC + yB ] = q0′ (8-317) 

s′[ xC + xB +k ][ yC + yB − 1 ] = p0′ (8-318) 

8.7.2.4.6 Decision process for a luma sample 

Inputs of this process are: 

– sample values, pi and qi with i = 0..3, 

– variables dpq, β and tC. 

Output of this process is: 

– a variable dSam containing a decision  

The variable dSam is specified as follows: 

– If dpq is less than ( β >> 2 ), Abs( p3 − p0 ) + Abs( q0 − q3 ) is less than ( β >> 3 ) and Abs( p0 − q0 ) is less than 
( 5*tC + 1 ) >> 1, dSam is set equal to 1. 

– Otherwise, dSam is set equal to 0. 

8.7.2.4.7 Filtering process for a luma sample 

Inputs of this process are: 

– luma sample values, pi and qi with i = 0..3, 

– luma locations of pi and qi, ( xPi, yPi ) and ( xQi, yQi ) with i = 0..2, 

– a variable dE, 

– variables dEp and dEq containing decisions to filter samples p1 and q1 respectively, 

– a variable tC. 

Output of this process is: 

– number of filtered samples nDp and nDq, 

– filtered sample values, pi′ and qj′ with i = 0..nDp − 1, j = 0..nDq − 1 

Depending on dE, the following applies: 

– If the variable dE is equal to 2, the following strong filtering applies while nDp and nDq are set equal to 3: 

p0′ = Clip3( p0−2*tC, p0+2*tC, ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3 ) (8-319) 



   ISO/IEC 23008-2 : 201x (E) 

161 Draft Rec. ITU-T H.HEVC (201x E) 

p1′ = Clip3( p1−2*tC, p1+2*tC, ( p2 + p1 + p0 + q0 + 2 ) >> 2 ) (8-320) 

p2′ = Clip3( p2−2*tC, p2+2*tC, ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3 ) (8-321) 

q0′ = Clip3( q0−2*tC, q0+2*tC, ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3 ) (8-322) 

q1′ = Clip3( q1−2*tC, q1+2*tC, ( p0 + q0 + q1 + q2 + 2 ) >> 2 ) (8-323) 

q2′= Clip3( q2−2*tC, q2+2*tC, ( p0 + q0 + q1 + 3*q2 + 2*q3 + 4 ) >> 3 ) (8-324) 

– Otherwise, nDp and nDq are set equal to 0 and the following weak filtering applies: 

∆ = ( 9 * ( q0 −  p0 ) − 3 * ( q1 − p1 ) + 8 ) >> 4  (8-325) 

– When Abs(∆) is less than tC*10, the following ordered steps apply: 

– The filtered sample values p0′ and q0′ are specified as follows: 

∆ = Clip3( −tC, tC, ∆ )  (8-326) 

p0′ = Clip1Y( p0 + ∆ )  (8-327) 

q0′ = Clip1Y( q0 − ∆ )  (8-328) 

– When dEp is equal to 1, the filtered sample value p1′ is specified as follows: 

∆p = Clip3( −(tC >> 1), tC >> 1, ( ( ( p2 + p0 + 1 ) >> 1 ) − p1 + ∆ ) >>1 ) (8-329) 

p1′ = Clip1Y( p1 + ∆p )  (8-330) 

– When dEq is equal to 1, the filtered sample value q1′ is specified as follows: 

∆q = Clip3( −(tC >> 1), tC >> 1, ( ( ( q2 + q0 + 1 ) >> 1 ) − q1 − ∆ ) >>1 ) (8-331) 

q1′ = Clip1Y( q1 + ∆q )  (8-332) 

– nDp is set equal to dEp+1 and nDq is set equal to dEq+1. 

When nDp is greater than 0 and one or more of the following conditions are true for i = 0..nDp−1, nDp is set equal to 0 
[Ed. (GJS): It may be preferable to restructure this logic so that instead of computing a filtered pi′ and then replacing it 
with an unfiltered pi, we would just not bother computing the filtered pi′ in the first place.] 

– pcm_loop_filter_disable_flag is equal to 1 and pcm_flag[ xPi ][ yPi ] is equal to 1. 

– cu_transquant_bypass_flag of the coding unit which includes the coding block containing the sample pi is equal 
to 1. 

When nDq is greater than 0 and one or more of the following conditions are true for j = 0..nDq−1, nDq is set equal to 0. 

– pcm_loop_filter_disable_flag is equal to 1 and pcm_flag[ xQj ][ yQj ]. 

– cu_transquant_bypass_flag of the coding unit which includes the coding block containing the sample qj is equal 
to 1. 

8.7.2.4.8 Filtering process for a chroma sample 

Inputs of this process are: 

– chroma sample values, pi and qi with i = 0..1, 

– chroma locations of p0 and q0, ( xP0, yP0 ) and ( xQ0, yQ0 ), 

– a variable tC. 

Output of this process is: 

– The filtered sample values, p0′ and q0′. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 162 

The filtered sample values p0′ and q0′ are derived by 

∆ = Clip3( −tC, tC, ( ( ( ( q0 − p0 ) << 2 ) + p1 − q1 + 4 ) >> 3 ) ) (8-333) 

p0′ = Clip1C( p0 + ∆ )  (8-334) 

q0′ = Clip1C( q0 − ∆ )  (8-335) 

When one or more of the following conditions are true, the filtered sample value, p0′ is substituted by the corresponding 
input sample value p0. 

– pcm_loop_filter_disable_flag is equal to 1 and pcm_flag[ 2 * xP0 ][ 2 * yP0 ] is equal to 1. 

– cu_transquant_bypass_flag of the coding unit which includes the coding block containing the sample p0 is equal 
to 1. 

When one or more of the following conditions are true, the filtered sample value, q0′ is substituted by the corresponding 
input sample value q0. 

– pcm_loop_filter_disable_flag is equal to 1 and pcm_flag[ 2 * xQ0 ][ 2 * yQ0 ] is equal to 1. 

– cu_transquant_bypass_flag of the coding unit which includes the coding block containing the sample q0 is equal 
to 1. 

8.7.3 Sample adaptive offset process 

8.7.3.1 General 

Inputs of this process are the reconstructed picture sample arrays prior to sample adaptive offset recPictureL, recPictureCb 
and recPictureCr. 

Outputs of this process are the modified reconstructed picture sample arrays after sample adaptive offset saoPictureL, 
saoPictureCb and saoPictureCr. 

This process is performed on a coding tree block basis after the completion of the deblocking filter process for the 
decoded picture. 

The sample values in the modified reconstructed picture sample arrays after sample adaptive offset saoPictureL, 
saoPictureCb and saoPictureCr are initially set equal to the sample values in the reconstructed picture sample arrays prior 
to sample adaptive offset recPictureL, recPictureCb and recPictureCr. 

For every coding tree unit with coding tree block location ( rx, ry ), where rx = 0..PicWidthInCtbsY − 1 and 
ry = 0..PicHeightInCtbsY − 1, the following applies: 

– When slice_sao_luma_flag of the current slice is equal to 1, the coding tree block modification process as specified in 
subclause 8.7.3.2 is invoked with recPicture set equal to recPictureL, cIdx set equal to 0, ( rx, ry ) and nS set equal to 
( 1 << Log2CtbSizeY ) as inputs and the modified luma picture sample array saoPictureL as output. 

– When slice_sao_chroma_flag of the current slice is equal to 1, the coding tree block modification process as specified 
in subclause 8.7.3.2 is invoked with recPicture set equal to recPictureCb, cIdx set equal to 1, ( rx, ry ) and nS set equal 
to ( 1 << (Log2CtbSizeY − 1) ) as inputs and the modified chroma picture sample array saoPictureCb as output.  

– When slice_sao_chroma_flag of the current slice is equal to 1, the coding tree block modification process as specified 
in subclause 8.7.3.2 is invoked with recPicture set equal to recPictureCr, cIdx set equal to 2, ( rx, ry ) and nS set equal 
to ( 1 << (Log2CtbSizeY − 1) ) as inputs and the modified chroma picture sample array saoPictureCr as output. 

8.7.3.2 Coding tree block modification process 

Inputs to this process are: 

– picture sample array recPicture for the colour component cIdx, 

– a variable cIdx specifying colour component index, 

– a pair of variables ( rx, ry ) specifying the coding tree block location, 

– a coding tree block size nS. 

Output of this process is a modified picture sample array saoPicture for the colour component cIdx. 

The variable bitDepth is derived as follows. 



   ISO/IEC 23008-2 : 201x (E) 

163 Draft Rec. ITU-T H.HEVC (201x E) 

– If cIdx is equal to 0, bitDepth is set equal to BitDepthY. 

– Otherwise, bitDepth is set equal to BitDepthC. 

The variables xC and yC are set equal to rx*nS and ry*nS, respectively. 

For i = 0..nS−1 and j = 0..nS−1, depending on the value of pcm_loop_filter_disable_flag, pcm_flag[ xC + i ][ yC + j ], 
and cu_transquant_bypass_flag of the coding unit which includes the coding block covering 
recPicture[ xC + i ][ yC + j ], the following applies: 

– If one or more of the following conditions are true, saoPicture[ xC + i ][ yC + j ] is not modified. 

- pcm_loop_filter_disable_flag and pcm_flag[ xC + i ][ yC + j ] are both equal to 1. 

- cu_transquant_bypass_flag is equal to 1. 

- SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 0. 

– Otherwise, if SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 2, the following ordered steps apply: 

1. The values of hPos[ k ] and vPos[ k ] for k = 0..1 are specified in Table 8-11 based on 
SaoEoClass[ cIdx ][ rx ][ ry ]. 

2. The variable edgeIdx is derived as follows. 

- If one or more of the following conditions for ( xS, xS) = (xC + i + hPos[ k ], yC + j + vPos[ k ]), k = 0..1 
are true, edgeIdx is set equal to 0. 

- The sample at location ( xS, yS ) is outside picture boundary 

- The sample at location ( xS, yS ) belongs to a different slice and one of the following two conditions is 
true: 

- MinTbAddrZS[ xS >> Log2MinTrafoSize ][ yS >> Log2MinTrafoSize ] is less than 
MinTbAddrZS[(xC + i )>>Log2MinTrafoSize][ (yC + j)>>Log2MinTrafoSize] and 
slice_loop_filter_across_slices_enabled_flag in the slice which the sample 
recPicture[xC + i ][ yC + j ] belongs to is equal to 0. 

- MinTbAddrZS[(xC + i )>>Log2MinTrafoSize][ (yC + j)>>Log2MinTrafoSize] is less than 
MinTbAddrZS[ xS >> Log2MinTrafoSize ][ yS >> Log2MinTrafoSize ] and 
slice_loop_filter_across_slices_enabled_flag in the slice which the sample recPicture[ xS ][ yS ] 
belongs to is equal to 0. 

- loop_filter_across_tiles_enabled_flag is equal to 0 and the sample at location ( xS, yS ) belongs to a 
different tile. 

- Otherwise, edgeIdx is derived as follows. 

edgeIdx = 2 + ∑k( Sign( recPicture[ xC + i ][ yC + j ] −  
 recPicture[ xC + i + hPos[ k ] ][ yC + j + vPos[ k ] ] ) ) with k = 0..1 (8-336) 

When edgeIdx is equal to 0, 1, or 2, it is modified as follows. 

edgeIdx = (edgeIdx = = 2) ? 0 : (edgeIdx + 1) (8-337) 

3. The modified picture sample array saoPicture[ xC + i ][ yC + j ] is derived as follows. 

saoPicture[ xC + i ][ yC + j ] = Clip3( 0, (1 << bitDepth) − 1, recPicture[ xC + i ][ yC + j ] +  
  SaoOffsetVal[ cIdx ][ rx ][ ry ][ edgeIdx ] ) (8-338) 

- Otherwise (SaoTypeIdx[ cIdx ][ rx ][ ry ] is equal to 1), the following ordered steps apply: 

1. The variable bandShift is set equal to bitDepth − 5. 

2. The variable saoLeftClass is set equal to sao_band_position[ cIdx ][ rx ][ ry ]. 

3. The list bandTable is defined with 32 elements and all elements are initially set to 0. Then, four of its elements 
(indicating the starting position of bands for explicit offsets) are modified as follows. 

for( k = 0; k < 4; k++ ) 
 bandTable[ (k + saoLeftClass) & 31 ] = k + 1 (8-339) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 164 

4. The variable bandIdx is set equal to bandTable[ recPicture[ xC + i ][ yC + j ] >> bandShift ]. 

5. The modified picture sample array saoPicture[ xC + i ][ yC + j ] is derived as follows. 

saoPicture[ xC + i ][ yC + j ] = Clip3( 0, (1 << bitDepth) − 1, recPicture[ xC + i ][ yC + j ] +  
  SaoOffsetVal[ cIdx ][ rx ][ ry ][ bandIdx ] ) (8-340) 

Table 8-11 – Specification of hPos and vPos according to the sample adaptive offset class 

SaoEoClass[ cIdx ][ rx ][ ry ] 0 1 2 3 

hPos[0] −1 0 −1 1 

hPos[1] 1 0 1 −1 

vPos[0] 0 −1 −1 −1 

vPos[1] 0 1 1 1 

9 Parsing process 
Inputs to this process are bits from the RBSP. 

Outputs of this process are syntax element values. 

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v), 
se(v) (see subclause 9.1), or ae(v) (see subclause 9.2). 

9.1 Parsing process for 0-th order Exp-Golomb codes 
This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v) or 
se(v). 

Inputs to this process are bits from the RBSP. 

Outputs of this process are syntax element values. 

Syntax elements coded as ue(v) or se(v) are Exp-Golomb-coded. The parsing process for these syntax elements begins 
with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, and 
counting the number of leading bits that are equal to 0. This process is specified as follows: 

leadingZeroBits = −1 
for( b = 0; !b; leadingZeroBits++ ) (9-1) 
 b = read_bits( 1 ) 

The variable codeNum is then assigned as follows: 
codeNum = 2leadingZeroBits − 1 + read_bits( leadingZeroBits )  (9-2) 

where the value returned from read_bits( leadingZeroBits ) is interpreted as a binary representation of an unsigned 
integer with most significant bit written first. 

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits. The 
"prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are 
shown as either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the 
computation of codeNum and are shown as xi in Table 9-1, with i being in the range 0 to leadingZeroBits − 1, inclusive. 
Each xi can take on values 0 or 1. 



   ISO/IEC 23008-2 : 201x (E) 

165 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) 

Bit string form Range of codeNum 

1 0 

0 1 x0 1..2 

0 0 1 x1 x0 3..6 

0 0 0 1 x2 x1 x0 7..14 

0 0 0 0 1 x3 x2 x1 x0 15..30 

0 0 0 0 0 1 x4 x3 x2 x1 x0 31..62 

… … 

 

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values. 

Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative) 
 

Bit string codeNum 

1 0 

0 1 0 1 

0 1 1 2 

0 0 1 0 0 3 

0 0 1 0 1 4 

0 0 1 1 0 5 

0 0 1 1 1 6 

0 0 0 1 0 0 0 7 

0 0 0 1 0 0 1 8 

0 0 0 1 0 1 0 9 

… … 

 

Depending on the descriptor, the value of a syntax element is derived as follows. 

– If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.  

– Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the 
mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input. 

9.1.1 Mapping process for signed Exp-Golomb codes 

Input to this process is codeNum as specified in subclause 9.1. 

Output of this process is a value of a syntax element coded as se(v). 

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order 
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the 
assignment rule. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 166 

Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v) 
 

codeNum syntax element value 

0 0 

1 1 

2 −1 

3 2 

4 −2 

5 3 

6 −3 

k (−1)k+1 Ceil( k÷2 ) 

 



   ISO/IEC 23008-2 : 201x (E) 

167 Draft Rec. ITU-T H.HEVC (201x E) 

9.2 CABAC parsing process for slice segment data 
This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.9 to 7.3.9.11. 

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements. 

Output of this process is the value of the syntax element. 

When one or more of the following conditions are true, the initialization process of the CABAC parsing process is 
invoked as specified in subclause 9.2.1 

– when starting the parsing of the slice segment data of a slice segment in subclause 7.3.9 

– when starting the parsing of the coding tree unit syntax in subclause 7.3.9.2 and the coding tree unit is the first 
coding tree unit in a tile  

– when starting the parsing of the coding tree unit syntax in subclause 7.3.9.2, entropy_coding_sync_enabled_flag is 
equal to 1 and the associated luma coding tree block is the first luma coding tree block in a row 

The parsing of syntax elements proceeds as follows: 

For each requested value of a syntax element a binarization is derived as described in subclause 9.2.2. 

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as 
described in subclause 9.2.3. For each bin of the binarization of the syntax element, which is indexed by the variable 
binIdx, a context index ctxIdx is derived as specified in subclause 9.2.3.1. For each ctxIdx the arithmetic decoding 
process is invoked as specified in subclause 9.2.3.2. 

The resulting sequence ( b0..bbinIdx ) of parsed bins is compared to the set of bin strings given by the binarization process 
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is assigned 
to the syntax element. 

In case the request for a value of a syntax element is processed for the syntax element pcm_flag and the decoded value of 
pcm_flag is equal to 1, the decoding engine is initialized as specified in subclause 9.2.1.4. 

When ending the parsing of the coding tree unit syntax in subclause 7.3.9.2, the memorization process for context 
variables is applied as follows. 

– When entropy_coding_sync_enabled_flag is equal to 1 and CtbAddrInRS % PicWidthInCtbsY is equal to 1, the 
memorization process for context variables as specified in subclause 9.2.1.2 is invoked with TableStateIdxWPP and 
TableMPSValWPP as output. 

– When dependent_slice_segment_flag is equal to 1, and end_of_slice_segment_flag is equal to 1, the memorization 
process for context variables as specified in subclause 9.2.1.2 is invoked with TableStateIdxDS and 
TableMPSValDS as output. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 168 

CABACParsing(SE)

First SE in:
a slice segment | |

a tile | |
a CTU row?

No

Get Binarization(SE)

binIdx = − 1

binIdx++

Get ctxIdx(binIdx)

DecodeBin(ctxIdxTable, ctxIdx)

(b0, …,bbinIdx) in 
Binarization (SE)? 

SE == pcm_flag &&
 b0 == 1

Initialization of 
decoding engine

No

Yes

Yes

No

Initialization

Yes

Done

Last SE in CTU?

Memorization

Yes

No

 

Figure 9-1 – Illustration of CABAC parsing process for a syntax element SE (informative) 

 

9.2.1 Initialization process 

This process is invoked when one or more of the follwing conditions are true. 

– when starting the parsing of the slice segment data of a slice segment in subclause 7.3.9 

– when starting the parsing of the coding tree unit syntax in subclause 7.3.9.2 and the coding tree unit is the first 
coding tree unit in a tile  

– when starting the parsing of the coding tree unit syntax in subclause 7.3.9.2, entropy_coding_sync_enabled_flag is 
equal to 1 and the associated luma coding tree block is the first luma coding tree block in a row 

Outputs of this process are initialized CABAC internal variables. 



   ISO/IEC 23008-2 : 201x (E) 

169 Draft Rec. ITU-T H.HEVC (201x E) 

Current 
coding tree 
block

Two coding tree blocks

T

Left edge of picture Right edge of picture
 

Figure 9-2 – Spatial neighbour T that is used to invoke the coding tree block availability derivation process 
relative to the current coding tree block (informative) 

The context variables of the arithmetic decoding engine are initialized as follows. 

– If entropy_coding_sync_enabled_flag is equal to 1, and CtbAddrInRS % PicWidthInCtbsY is equal to 0, the 
following applies. 

– The location ( xT, yT ) of the top-left luma sample of the spatial neighbouring block T (Figure 9-2) is derived 
using the location ( x0, y0 ) of the top-left luma sample of the current coding tree block as follows. 

( xT, yT ) = ( x0 + 2 << Log2CtbSizeY − 1, y0 − 1 ) (9-3) 

– The availability derivation process for a block in z-scan order as specified in subclause 6.4.1 is invoked with the 
location ( xCurr, yCurr ) set equal to ( x0, y0 ) and the neighbouring location ( xN, yN ) set equal to ( xT, yT ) 
as the input and the output is assigned to availableFlagT. 

– The the synchronization process for context variables is invoked as follows. 

– If availableFlagT is equal to 1, the synchronization process for context variables as specified in 
subclause 9.2.1.3 is invoked with TableStateIdxWPP and TableMPSValWPP as input. 

– Otherwise, the initialization process for context variables is invoked as specified in subclause 9.2.1.1. 

– Otherwise, if CtbAddrInRS is equal to slice_segment_address and dependent_slice_segment_flag is equal to 1, the 
synchronization process for context variables as specified in subclause 9.2.1.3 is invoked with TableStateIdxDS and 
TableMPSValDS as input. 

– Otherwise the initialization process for context variables is invoked as specified in subclause 9.2.1.1. 

The initialization process for the arithmetic decoding engine is invoked as specified in subclause 9.2.1.4. 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 170 

First CTU in row && 
entropy_coding_sync_enabled_flag?

availableFlagT == 0?

Yes

Synchronization of 
context variables with 

TableStateIdxWPP and 
TableMPSValWPP

YesFirst CTU in slice segment and 
dependent_slice_segment_flag?

No

Synchronization of 
context variables with 
TableStateIdxDS and 

TableMPSValDS  

Initialization of 
decoding engine

No

Initialization

Availability process 
for spatial 

neighbouring block T

Yes

Done

Initialization of 
context variables 

No

First SE in 
independent slice segment | |

 tile?

No

Yes

 

Figure 9-3 – Illustration of CABAC initialization process (informative) 

 

9.2.1.1 Initialization process for context variables 

Outputs of this process are the initialized CABAC context variables indexed by ctxIdxTable and ctxIdx. 

Table 9-5 to Table 9-31 contain the values of the 8 bit variable initValue used in the initialization of context variables 
that are assigned to all syntax elements in subclauses 7.3.9 to 7.3.9.11 except for end_of_slice_segment_flag, 
end_of_sub_stream_one_bit and pcm_flag. 

For each context variable, the two variables pStateIdx and valMPS are initialized. 
NOTE 1 – The variable pStateIdx corresponds to a probability state index and the variable valMPS corresponds to the value of the 
most probable symbol as further described in subclause 9.2.3.2. 

From the 8 bit table entry initValue, the two 4 bit variables slopeIdx and intersecIdx are derived according to the 
following pseudo-code process: 

slopeIdx = initValue >> 4 
intersecIdx = initValue & 15 

Slope m and Intersec n are derived from the indices as follows: 



   ISO/IEC 23008-2 : 201x (E) 

171 Draft Rec. ITU-T H.HEVC (201x E) 

m = slopeIdx*5 − 45 
n = ( intersecIdx << 3 ) − 16 

The two values assigned to pStateIdx and valMPS for the initialization are derived from SliceQPY, which is derived in 
Equation 7-48. Given the variable m and n, the initialization is specified by the following pseudo-code process: 

preCtxState = Clip3( 1, 126, ( ( m * Clip3( 0, 51, SliceQPY ) ) >> 4 ) + n ) 
valMPS = ( preCtxState  <=  63) ? 0 : 1 
pStateIdx = valMPS ? (preCtxState − 64) : (63 − preCtxState) (9-4) 

In Table 9-4, the ctxIdx for which initialization is needed for each of the three initialization types, specified by the 
variable initType, are listed. Also listed is the table number that includes the values of initValue needed for the 
initialisation. For P and B slice type, the derivation of initType depends also on the value of the cabac_init_flag syntax 
element. The variable initType is derived as follows: 

if( slice_type = = I ) 
 initType = 0 
else if(slice_type = = P ) 
 initType = cabac_init_flag ? 2 : 1 
else 
 initType = cabac_init_flag ? 1 : 2 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 172 

Table 9-4 – Association of ctxIdx and syntax elements for each initializationType in the initialization process 

 
Syntax element ctxIdxTable 

initType 

0 1 2 

sao( ) 

 

sao_merge_left_flag 
sao_merge_up_flag 

Table 9-5 0 1 2 

sao_type_idx_luma 
sao_type_idx_chroma 

Table 9-6 0 1 2 

coding_quadtree( ) split_cu_flag Table 9-7 0..2 3..5 6..8 

coding_unit( ) cu_transquant_bypass_flag Table 9-8 0 1 2 

cu_skip_flag Table 9-9  0..2 3..5 

cu_qp_delta_abs Table 9-10 0..1 2..3 4..5 

pred_mode_flag Table 9-11  0 1 

part_mode Table 9-12 0 1..4 5..8 

prediction_unit( ) prev_intra_luma_pred_flag Table 9-13 0 1 2 

intra_chroma_pred_mode Table 9-14 0 1 2 

merge_flag Table 9-15  0 1 

merge_idx Table 9-16  0 1 

inter_pred_idc Table 9-17  0..4 5..9 

ref_idx_l0, ref_idx_l1 Table 9-18  0..1 2..3 

abs_mvd_greater0_flag Table 9-19  0 2 

abs_mvd_greater1_flag  Table 9-19  1 3 

mvp_l0_flag, mvp_l1_flag Table 9-20  0 1 

transform_tree( ) rqt_root_cbf Table 9-21  0 1 

split_transform_flag Table 9-22 0..2 3..5 6..8 

cbf_luma Table 9-23 0..1 2..3 4..5 

cbf_cb, cbf_cr Table 9-24 0..3 4..7 8..11 

residual_coding( ) transform_skip_flag[ ][ ][ 0 ] Table 9-25 0 1 2 

transform_skip_flag[ ][ ][ 1 ] 
transform_skip_flag[ ][ ][ 2 ] 

Table 9-25 3 4 5 

last_significant_coeff_x_prefix Table 9-26 0..17 18..35 36..53 

last_significant_coeff_y_prefix Table 9-27 0..17 18..35 36..53 

coded_sub_block_flag Table 9-28 0..3 4..7 8..11 

significant_coeff_flag Table 9-29 0..41 42..83 84..125 

coeff_abs_level_greater1_flag Table 9-30 0..23 24..47 48..71 

coeff_abs_level_greater2_flag Table 9-31 0..5 6..11 12..17 

 
NOTE 2 – ctxIdxTable equal to 0 and ctxIdx equal to 0 are associated with end_of_slice_segment_flag, 
end_of_sub_stream_one_bit and pcm_flag. The decoding process specified in subclause 9.2.3.2.4 applies to ctxIdxTable equal to 0 
and ctxIdx equal to 0. This decoding process, however, may also be implemented by using the decoding process specified in 
subclause 9.2.3.2.1. In this case, the initial values associated with ctxIdxTable equal to 0 and ctxIdx equal to 0 are specified to be 
pStateIdx = 63 and valMPS = 0, where pStateIdx = 63 represents a non-adapting probability state. 

 



   ISO/IEC 23008-2 : 201x (E) 

173 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-5 – Values of variable initValue for sao_merge_left_flag and sao_merge_up_flagctxIdx 

Initialization 
variable 

sao_merge_left_flag, 
sao_merge_up_flag 

ctxIdx 

0 1 2 

initValue 153 153 153 

 

Table 9-6 – Values of variable initValue for sao_type_idx_luma and sao_type_idx_chroma ctxIdx 

Initialization 
variable 

sao_type_idx_luma, 
sao_type_idx_chroma 

ctxIdx 

0 1 2 

initValue 200 185 160 

 

Table 9-7 – Values of variable initValue for split_cu_flag ctxIdx 

Initialization 
variable 

split_cu_flag ctxIdx 

0 1 2 3 4 5 6 7 8 

initValue 139 141 157 107 139 126 107 139 126 

 

Table 9-8 – Values of variable initValue for cu_transquant_bypass_flag ctxIdx 

Initialization 
variable 

cu_transquant_bypass_flag 
ctxIdx 

0 1 2 

initValue 154 154 154 

 

Table 9-9 – Values of variable initValue for cu_skip_flag ctxIdx 

Initialization 
variable 

cu_skip_flag ctxIdx 

0 1 2 3 4 5 

initValue 197 185 201 197 185 201 

 

Table 9-10 – Values of variable initValue for cu_qp_delta_abs ctxIdx 

Initialization 
variable 

cu_qp_delta_abs ctxIdx 

0 1 2 3 4 5 

initValue 154 154 154 154 154 154 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 174 

Table 9-11 – Values of variable initValue for pred_mode_flag 

Initialization 
variable 

pred_mode_flag ctxIdx 

0 1 

initValue 149 134 

 

Table 9-12 – Values of variable initValue for part_mode 

Initialization 
variable 

part_mode ctxIdx 

0 1 2 3 4 5 6 7 8 

initValue 184 154 139 154 154 154 139 154 154 

 

 

Table 9-13 – Values of variable initValue for prev_intra_luma_pred_flag ctxIdx 

Initializatio
n variable 

prev_intra_luma_pred_flag ctxIdx 

0 1 2 

initValue 184 154 183 

 

Table 9-14 – Values of variable initValue for intra_chroma_pred_mode ctxIdx 

Initialization 
variable 

intra_chroma_pred_mode 
ctxIdx 

0 1 2 

initValue 63 152 152 

 

Table 9-15 – Value of variable initValue for merge_flag ctxIdx 

Initialization 
variable 

merge_flag ctxIdx 

0 1 

initValue 110 154 

 

Table 9-16 – Values of variable initValue for merge_idx ctxIdx 

Initialization 
variable 

merge_idx ctxIdx 

0 1 

initValue 122 137 

 



   ISO/IEC 23008-2 : 201x (E) 

175 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-17 – Values of variable initValue for inter_pred_idc ctxIdx 

Initializatio
n variable 

inter_pred_idc ctxIdx 

0 1 2 3 4 5 6 7 8 9 

initValue 95 79 63 31 31 95 79 63 31 31 

 

Table 9-18 – Values of variable initValue for ref_idx_l0, ref_idx_l1 ctxIdx 

Initialization 
variable 

ref_idx_l0, ref_idx_l1 ctxIdx 

0 1 2 3 

initValue 153 153 153 153 

 

Table 9-19 – Values of variable initValue for abs_mvd_greater0_flag and abs_mvd_greater1_flag ctxIdx 

Initialization 
variable 

abs_mvd_greater0_flag, 
abs_mvd_greater1_flag ctxIdx 

0 1 2 3 

initValue 140 198 169 198 

 

Table 9-20 – Values of variable initValue for mvp_l0_flag, mvp_l1_flag ctxIdx 

Initialization 
variable 

mvp_l0_flag, 
mvp_l1_flag ctxIdx 

0 1 

initValue 168 168 

 

Table 9-21 – Values of variable initValue for rqt_root_cbf ctxIdx 

Initialization 
variable 

rqt_root_cbf 
ctxIdx 

0 1 

initValue 79 79 

 

Table 9-22 – Values of variable initValue for split_transform_flag ctxIdx 

Initialization 
variable 

split_transform_flag ctxIdx  

0 1 2 3 4 5 6 7 8 

initValue 153 138 138 124 138 94 224 167 122 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 176 

Table 9-23 – Values of variable initValue for cbf_luma ctxIdx  

Initialization 
variable 

cbf_luma ctxIdx 

0 1 2 3 4 5 

initValue 111 141 153 111 153 111 

 

Table 9-24 – Values of variable initValue for cbf_cb and cbf_cr ctxIdx 

Initialization 
variable 

cbf_cb and cbf_cr ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 

initValue 94 138 182 154 149 107 167 154 149 92 167 154 

 

Table 9-25 – Values of variable initValue for transform_skip_flag ctxIdx 

Initialization 
variable 

transform_skip_flag ctxIdx 

0 1 2 3 4 5 

initValue 139 139 139 139 139 139 

 

Table 9-26 – Values of variable initValue for last_significant_coeff_x_prefix ctxIdx 

Initialization 
variable 

last_significant_coefficient_x_prefix ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

initValue 110 110 124 125 140 153 125 127 140 109 111 143 127 111 79 108 123 63 

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

initValue 125 110 94 110 95 79 125 111 110 78 110 111 111 95 94 108 123 108 

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

initValue 125 110 124 110 95 94 125 111 111 79 125 126 111 111 79 108 123 93 

 

Table 9-27 – Values of variable initValue for last_significant_coeff_y_prefix ctxIdx 

Initialization 
variable 

last_significant_coefficient_y_prefix ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

initValue 110 110 124 125 140 153 125 127 140 109 111 143 127 111 79 108 123 63 

 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

initValue 125 110 94 110 95 79 125 111 110 78 110 111 111 95 94 108 123 108 

 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

initValue 125 110 124 110 95 94 125 111 111 79 125 126 111 111 79 108 123 93 

 

Table 9-28 – Values of variable initValue for coded_sub_block_flag ctxIdx 

Initialization 
variable 

coded_sub_block_flag ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 

initValue 91 171 134 141 121 140 61 154 121 140 61 154 

 



   ISO/IEC 23008-2 : 201x (E) 

177 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-29 – Values of variable initValue for significant_coeff_flag ctxIdx 

Initialization 
variable 

significant_coeff_flag ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

initValue 111 111 125 110 110 94 124 108 124 107 125 141 179 153 125 107 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

initValue 125 141 179 153 125 107 125 141 179 153 125 140 139 182 182 152 

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

initValue 136 152 136 153 136 139 111 136 139 111 155 154 139 153 139 123 

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

initValue 123 63 153 166 183 140 136 153 154 166 183 140 136 153 154 166 

 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

initValue 183 140 136 153 154 170 153 123 123 107 121 107 121 167 151 183 

 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

initValue 140 151 183 140 170 154 139 153 139 123 123 63 124 166 183 140 

 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 

initValue 136 153 154 166 183 140 136 153 154 166 183 140 136 153 154 170 

 112 113 114 115 116 117 118 119 120 121 122 123 124 125   

initValue 153 138 138 122 121 122 121 167 151 183 140 151 183 140   

 

Table 9-30 – Values of variable initValue for coeff_abs_level_greater1_flag ctxIdx 

Initialization 
variable 

coeff_abs_level_greater1_flag ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

initValue 140 92 137 138 140 152 138 139 153 74 149 92 139 107 122 152 

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

initValue 140 179 166 182 140 227 122 197 154 196 196 167 154 152 167 182 

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

initValue 182 134 149 136 153 121 136 137 169 194 166 167 154 167 137 182 

 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

initValue 154 196 167 167 154 152 167 182 182 134 149 136 153 121 136 122 

 64 65 66 67 68 69 70 71         

initValue 169 208 166 167 154 152 167 182         

 

Table 9-31 – Values of variable initValue for coeff_abs_level_greater2_flag ctxIdx 

Initialization 
variable 

coeff_abs_level_greater2_flag ctxIdx 

0 1 2 3 4 5 6 7 8 9 10 11 

initValue 138 153 136 167 152 152 107 167 91 122 107 167 

 12 13 14 15 16 17       

initValue 107 167 91 107 107 167       

 

9.2.1.2 Memorization process for context variables 

Inputs of this process are the CABAC context variables indexed by ctxIdxTable and ctxIdx. 

Output of this process are variables tableStateSync and tableMPSSync containing the values of the variables pStateIdx 
and valMPS used in the initialization process of context variables that are assigned to all syntax elements in subclauses 
7.3.9 to 7.3.9.11 except for end_of_slice_segment_flag, end_of_sub_stream_one_bit and pcm_flag. 

For each context variable, the corresponding entries pStateIdx and valMPS of tables tableStateSync and tableMPSSync 
are initialized to the corresponding pStateIdx and valMPS. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 178 

Second CTU in row && 
entropy_coding_sync_enabled_flag?

Memorization of context 
variables in TableStateIdxWPP 

and TableMPSValWPP

end_of_slice_segment_flag && 
dependent_slice_segment_flag?

No

Yes

Done

No

Memorization

Memorization of context 
variables in TableStateIdxDS 

and TableMPSValDS

Yes

 

Figure 9-4 – Illustration of CABAC memorization process (informative) 

 

9.2.1.3 Synchronization process for context variables 

Inputs of this process are variables tableStateSync and tableMPSSync containing the values of the variables pStateIdx 
and valMPS used in the memorization process of context variables that are assigned to all syntax elements in subclauses 
7.3.9 to 7.3.9.11 except for end_of_slice_segment_flag, end_of_sub_stream_one_bit and pcm_flag. 

Outputs of this process are the initialized CABAC context variables indexed by ctxIdxTable and ctxIdx.. 

For each context variable, the corresponding context variables pStateIdx and valMPS are initialized to the corresponding 
entries pStateIdx and valMPS of tables tableStateSync and tableMPSSync. 

9.2.1.4 Initialization process for the arithmetic decoding engine 

This process is invoked before decoding the first coding tree block of a slice segment. 

Outputs of this process are the initialized decoding engine registers codIRange and codIOffset both in 16 bit register 
precision. 

The status of the arithmetic decoding engine is represented by the variables codIRange and codIOffset. In the 
initialization procedure of the arithmetic decoding process, codIRange is set equal to 510 and codIOffset is set equal to 
the value returned from read_bits( 9 ) interpreted as a 9 bit binary representation of an unsigned integer with most 
significant bit written first. 

The bitstream shall not contain data that result in a value of codIOffset being equal to 510 or 511. 
NOTE – The description of the arithmetic decoding engine in this Specification utilizes 16 bit register precision. However, a 
minimum register precision of 9 bits is required for storing the values of the variables codIRange and codIOffset after invocation 
of the arithmetic decoding process (DecodeBin) as specified in subclause 9.2.3.2. The arithmetic decoding process for a binary 
decision (DecodeDecision) as specified in subclause 9.2.3.2.1 and the decoding process for a binary decision before termination 
(DecodeTerminate) as specified in subclause 9.2.3.2.4 require a minimum register precision of 9 bits for the variables codIRange 
and codIOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified in subclause 9.2.3.2.3 requires a 
minimum register precision of 10 bits for the variable codIOffset and a minimum register precision of 9 bits for the variable 
codIRange. 

9.2.2 Binarization process 

Input to this process is a request for a syntax element. 



   ISO/IEC 23008-2 : 201x (E) 

179 Draft Rec. ITU-T H.HEVC (201x E) 

Output of this process is the binarization of the syntax element, maxBinIdxCtx, ctxIdxOffset, and bypassFlag. 

Table 9-32 specifies the type of binarization process, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset associated with each 
syntax element. 

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the truncated Rice 
(TR), the k-th order Exp-Golomb (EGk) binarization process, and the fixed-length (FL) binarization process are given in 
subclauses 9.2.2.1 to 9.2.2.5, respectively. Other binarizations are specified in subclauses 9.2.2.6 to 9.2.2.9. 

The binarizations for the syntax element coeff_abs_level_remaining as specified in subclause 9.2.2.8 consist of bin 
strings given by a concatenation of prefix and suffix bit strings. For these binarization processes, the prefix and the suffix 
bit string are separately indexed using the binIdx variable as specified further in subclause 9.2.3. The two sets of prefix 
bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization suffix part, respectively. 

Associated with each binarization or binarization part of a syntax element is a specific value of the context index table 
(ctxIdxTable) variable and the related context index offset (ctxIdxOffset) variable and a specific value of the 
maxBinIdxCtx variable as given in Table 9-32. When two values for each of these variables are specified for one syntax 
element in Table 9-32, the value in the upper row is related to the prefix part while the value in the lower row is related 
to the suffix part of the binarization of the corresponding syntax element. 

The use of the DecodeBypass process and the variable bypassFlag is derived as follows. 

– If no value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-32 marked 
with "na", all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are 
decoded by invoking the DecodeBypass process as specified in subclause 9.2.3.2.3. In such a case, bypassFlag is set 
equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the 
DecodeBypass process is applied.  

– Otherwise, for each possible value of binIdx up to the specified value of maxBinIdxCtx given in Table 9-32, a 
specific value of the variable ctxIdx is further specified in subclause 9.2.3. In such a case, bypassFlag is set equal 
to 0.  

The possible values of the context index ctxIdx vary depending on the value of ctxIdxTable. The value assigned to 
ctxIdxOffset specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization 
part of a syntax element. 

ctxIdxTable = 0 and ctxIdx = ctxIdxOffset = 0 are assigned to the syntax elements end_of_slice_segment_flag, 
end_of_sub_stream_one_bit and pcm_flag as further specified in subclause 9.2.3.1. For parsing the value of the 
corresponding bin from the bitstream, the arithmetic decoding process for decisions before termination 
(DecodeTerminate) as specified in subclause 9.2.3.2.4 is applied.  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 180 

Table 9-32 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset 

Syntax element initType Type of binarization maxBinI
dxCtx 

ctxIdxTable ctxIdxOffset 

sao_merge_left_flag 
sao_merge_up_flag 

0 

FL, cMax = 1 

0 Table 9-5 0 

1 0 Table 9-5 1 

2 0 Table 9-5 2 

sao_type_idx_luma 
sao_type_idx_chroma 

0 

TU, cMax = 2 

0 Table 9-6 0 

1 0 Table 9-6 1 

2 0 Table 9-6 2 

sao_band_position na FL, cMax = 31 na na na, (Bypass) 

sao_offset_abs na TU,  
cMax = ( 1<< (Min( bitDepth, 10) − 5)) − 1 

na na na, (Bypass) 

sao_offset_sign na FL, cMax = 1 na na na, (Bypass) 

sao_eo_class_luma 
sao_eo_class_chroma na FL, cMax = 3 na na na, (Bypass) 

end_of_slice_segment_flag all FL, cMax = 1 0 0 0 

end_of_sub_stream_one_bit all FL, cMax = 1 0 0 0 

split_cu_flag 

0 

FL, cMax = 1 

0 Table 9-7 0 

1 0 Table 9-7 3 

2 0 Table 9-7 6 

cu_transquant_bypass_flag 

0 

FL, cMax = 1 

0 Table 9-8 0 

1 0 Table 9-8 1 

2 0 Table 9-8 2 

cu_skip_flag 
1 

FL, cMax = 1 
0 Table 9-9 0 

2 0 Table 9-9 3 

cu_qp_delta_abs 

0 

prefix and suffix as specified in 
subclause 9.2.2.6  

prefix: 1 
suffix: na 

prefix: Table 9-10 
suffix: na 

prefix: 0 
suffix: na, 
(Bypass) 

1 prefix: 1 
suffix: na 

prefix: Table 9-10 
suffix: na 

prefix: 2 
suffix: na, 
(Bypass) 

2 prefix: 1 
suffix: na 

prefix: Table 9-10 
suffix: na 

prefix: 4 
suffix: na, 
(Bypass) 

cu_qp_delta_sign na FL, cMax = 1 na na na, (Bypass) 

pred_mode_flag 
1 

FL, cMax = 1 
0 Table 9-11 0 

2 0 Table 9-11 1 

part_mode 

0 

as specified in subclause 9.2.2.7 

0 Table 9-11 0 

1 3 Table 9-11 1 

2 3 Table 9-11 5 

pcm_flag all FL, cMax = 1 0 0 0 



   ISO/IEC 23008-2 : 201x (E) 

181 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-32 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset 

Syntax element initType Type of binarization maxBinI
dxCtx 

ctxIdxTable ctxIdxOffset 

prev_intra_luma_pred_flag 

0 

FL, cMax = 1 

0 Table 9-13 0 

1 0 Table 9-13 1 

2 0 Table 9-13 2 

mpm_idx na TU, cMax = 2 na na na, (Bypass) 

rem_intra_luma_pred_mode na FL, cMax = 31 na na na, (Bypass) 

intra_chroma_pred_mode 

0 

prefix and suffix as specified in 
subclause  9.2.2.9 

prefix: 0 
suffix: na 

prefix: Table 9-14 
suffix: na 

prefix: 0 
suffix: na, 
(Bypass) 

1 prefix: 0 
suffix: na 

prefix: Table 9-14 
suffix: na 

prefix: 1 
suffix: na, 
(Bypass) 

2 prefix: 0 
suffix: na 

prefix: Table 9-14 
suffix: na 

prefix: 2 
suffix: na, 
(Bypass) 

merge_flag 
1 

FL, cMax = 1 
0 Table 9-15 0 

2 0 Table 9-15 1 

merge_idx 
1 

TU, cMax = MaxNumMergeCand − 1 
0 Table 9-16 0 

2 0 Table 9-16 1 

inter_pred_idc 
1 

as specified in subclause 9.2.2.10 
1 Table 9-17 0 

2 1 Table 9-17 5 

ref_idx_l0 
1 

TU, cMax = num_ref_idx_l0_active_minus1 
2 Table 9-18 0 

2 2 Table 9-18 2 

ref_idx_l1 
1 

TU, cMax = num_ref_idx_l1_active_minus1 
2 Table 9-18 0 

2 2 Table 9-18 2 

abs_mvd_greater0_flag[ ] 
1 

FL, cMax = 1 
0 Table 9-19 0 

2 0 Table 9-19 1 

abs_mvd_greater1_flag[ ] 
1 

FL, cMax = 1 
0 Table 9-19 2 

2 0 Table 9-19 3 

abs_mvd_minus2[ ] na EG1 na na na, (Bypass) 

mvd_sign_flag[ ] na FL, cMax = 1 na na na, (Bypass) 

mvp_l0_flag 
1 

FL, cMax = 1 
0 Table 9-20 0 

2 0 Table 9-20 1 

mvp_l1_flag 
1 

FL, cMax = 1 
0 Table 9-20 0 

2 0 Table 9-20 1 

rqt_root_cbf 
1 

FL, cMax = 1 
0 Table 9-21 0 

2 0 Table 9-21 1 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 182 

Table 9-32 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset 

Syntax element initType Type of binarization maxBinI
dxCtx 

ctxIdxTable ctxIdxOffset 

split_transform_flag 

0 

FL, cMax = 1 

0 Table 9-22 0 

1 0 Table 9-22 3 

2 0 Table 9-22 6 

cbf_luma 

0 

FL, cMax = 1 

0 Table 9-23 0 

1 0 Table 9-23 2 

2 0 Table 9-23 4 

cbf_cb, cbf_cr 

0 

FL, cMax = 1 

0 Table 9-24 0 

1 0 Table 9-24 4 

2 0 Table 9-24 8 

transform_skip_flag[ ][ ][ 0 ] 

0 

FL, cMax = 1 

0 Table 9-25 0 

1 0 Table 9-25 1 

2 0 Table 9-25 2 

transform_skip_flag[ ][ ][ 1 ] 
transform_skip_flag[ ][ ][ 2 ] 

0 

FL, cMax = 1 

0 Table 9-25 3 

1 0 Table 9-25 4 

2 0 Table 9-25 5 

last_significant_coeff_x_prefix 

0 

TU,  
cMax = ( log2TrafoSize << 1 ) − 1 

8 Table 9-26 0 

1 8 Table 9-26 18 

2 8 Table 9-26 36 

last_significant_coeff_y_prefix 

0 

TU,  
cMax = ( log2TrafoSize << 1 ) − 1 

8 Table 9-27 0 

1 8 Table 9-27 18 

2 8 Table 9-27 36 

last_significant_coeff_x_suffix na FL, cMax =  
 (last_significant_coeff_x_prefix >> 1) − 1 na na na, (Bypass) 

last_significant_coeff_y_suffix na FL, cMax =  
 (last_significant_coeff_y_prefix >> 1) − 1 na na na, (Bypass) 

coded_sub_block_flag 

0 

FL, cMax = 1 

0 Table 9-28 0 

1 0 Table 9-28 4 

2 0 Table 9-28 8 

significant_coeff_flag 

0 

FL, cMax = 1 

0 Table 9-29 0 

1 0 Table 9-29 42 

2 0 Table 9-29 84 

coeff_abs_level_greater1_flag 

0 

FL, cMax = 1 

0 Table 9-30 0 

1 0 Table 9-30 24 

2 0 Table 9-30 48 



   ISO/IEC 23008-2 : 201x (E) 

183 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-32 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset 

Syntax element initType Type of binarization maxBinI
dxCtx 

ctxIdxTable ctxIdxOffset 

coeff_abs_level_greater2_flag 

0 

FL, cMax = 1 

0 Table 9-31 0 

1 0 Table 9-31 6 

2 0 Table 9-31 12 

coeff_abs_level_remaining 

na 
prefix and suffix as specified in 

subclause 9.2.2.8 

prefix: na 
 

suffix: na 

prefix: na 
 

suffix: na 

prefix: na, 
(Bypass) 

suffix: na, 
(Bypass) 

coeff_sign_flag na FL, cMax = 1 na na na, (Bypass) 

 

9.2.2.1 Unary (U) binarization process 

Input to this process is a request for a U binarization for a syntax element. 

Output of this process is the U binarization of the syntax element. 

The bin string of a syntax element having (unsigned integer) value synVal is a bit string of length synVal + 1 indexed by 
binIdx. The bins for binIdx less than synVal are equal to 1. The bin with binIdx equal to synVal is equal to 0. 

Table 9-33 illustrates the bin strings of the unary binarization for a syntax element.  

Table 9-33 – Bin string of the unary binarization (informative) 

Value of syntax element Bin string 

0 (I_NxN) 0      

1 1 0     

2 1 1 0    

3 1 1 1 0   

4 1 1 1 1 0  

5 1 1 1 1 1 0 

…       

binIdx 0 1 2 3 4 5 

 

9.2.2.2 Truncated unary (TU) binarization process 

Input to this process is a request for a TU binarization for a syntax element and cMax. 

Output of this process is the TU binarization of the syntax element. 

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in subclause 9.2.2.1 
is invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins being 
equal to 1. 

NOTE – TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being 
decoded. 

9.2.2.3 Truncated Rice (TR) binarization process 

Input to this process is a request for a TR binarization for a syntax element, cRiceParam and cTRMax. 

Output of this process is the TR binarization of the syntax element. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 184 

A TR bin string is a concatenation of a prefix bit string and (when present) a suffix bit string. The prefix of the 
binarization is specified by invoking the TU binarization process for the prefix part of the value specified by 
synVal >> cRiceParam with cMax = cTRMax >> cRiceParam. When cTRMax is greater than synVal, the suffix of the 
TR bin string is present and is specified by the binary representation of 
synVal − ( ( synVal >> cRiceParam ) << cRiceParam ). 

NOTE – For the input parameter cRiceParam = 0 the TR binarization is exactly the TU binarization. 

9.2.2.4 k-th order Exp-Golomb (EGk) binarization process 

Input to this process is a request for an EGk binarization for a syntax element. 

Output of this process is the EGk binarization of the syntax element. 

The bin string of the EGk binarization process of a syntax element synVal is specified by a process equivalent to the 
following pseudo-code: 

absV = Abs( synVal ) 
stopLoop = 0 
do { 
 if( absV  >=  ( 1 << k ) ) { 
  put( 1 ) 
  absV = absV − ( 1 << k ) 
  k++ 
 } else { 
  put( 0 )                     (9-5) 
  while( k− − )  
   put( ( absV >> k )  &  1 ) 
  stopLoop = 1 
 } 
} while( !stopLoop ) 

NOTE – The specification for the k-th order Exp-Golomb (EGk) code uses 1's and 0's in reverse meaning for the unary part of the 
Exp-Golomb code of 0-th order as specified in subclause 9.1. 

9.2.2.5 Fixed-length (FL) binarization process 

Input to this process is a request for a FL binarization for a syntax element and cMax. 

Output of this process is the FL binarization of the syntax element. 

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where 
fixedLength = Ceil( Log2( cMax + 1 ) ). The indexing of bins for the FL binarization is such that the binIdx = 0 relates to 
the most significant bit with increasing values of binIdx towards the least significant bit. 

9.2.2.6 Binarization process for cu_qp_delta_abs 

Input to this process is a request for a binarization for the syntax element cu_qp_delta_abs. 

Output of this process is the binarization of the syntax element. 

The binarization of the syntax element cu_qp_delta_abs consists of a prefix part and (when present) a suffix part. The 
prefix of the binarization is specified by invoking the TU binarization process for the prefix part of the value specified by 
Min( synVal, 5 ) with cMax = 5. When prefix is greater than 4, the suffix bin string is derived using the EGk binarization 
as specified in subclause 9.2.2.4 for the suffix part ( cu_qp_delta_abs − 4 ) with the Exp-Golomb order k set equal to 0. 

9.2.2.7 Binarization process for part_mode 

Input to this process is a request for a binarization for the syntax element part_mode a luma location ( xC, yC ) 
specifying the top-left sample of the current luma coding block relative to the top left luma sample of the current picture, 
and a variable cLog2CbSize specifying the current luma coding block size. 

Output of this process is the binarization of the syntax element.  

The binarization for part_mode is given by Table 9-34 depending on CuPredMode[ xC ][ yC ] and cLog2CbSize. 



   ISO/IEC 23008-2 : 201x (E) 

185 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-34 – Binarization for part_mode 

CuPredMode[ xC ][ yC ] part_mode PartMode 

Bin string 

cLog2CbSize >  
Log2MinCbSizeY 

cLog2CbSize = = Log2MinCbSizeY 

!amp_enabled_flag amp_enabled_flag cLog2CbSize = = 3 cLog2CbSize > 3 

MODE_INTRA 
0 PART_2Nx2N - - 1 1 

1 PART_NxN - - 0 0 

MODE_INTER 

0 PART_2Nx2N 1 1 1 1 

1 PART_2NxN 01 011 01 01 

2 PART_Nx2N 00 001 00 001 

3 PART_NxN - - - 000 

4 PART_2NxnU  - 0100 - - 

5 PART_2NxnD  - 0101 - - 

6 PART_nLx2N - 0000 - - 

7 PART_nRx2N - 0001 - - 

 

9.2.2.8 Binarization process for coeff_abs_level_remaining 

Input to this process is a request for a binarization for the syntax element coeff_abs_level_remaining[ n ], and baseLevel. 

Output of this process is the binarization of the syntax element. 

The variables cLastAbsLevel and cLastRiceParam are derived as follows. 

– If n is equal to 15, cLastAbsLevel and cLastRiceParam are set equal to 0. 

– Otherwise ( n is less than 15 ), cLastAbsLevel is set equal to baseLevel + coeff_abs_level_remaining[ n + 1 ] and 
cLastRiceParam is set equal to the value of cRiceParam that has been derived during the invocation of the 
binarization process as specified in this subclause for the syntax element coeff_abs_level_remaining[ n + 1 ] of the 
same transform block. 

The variable cRiceParam is derived from cLastAbsLevel and cLastRiceParam as: 

cRiceParam = Min( cLastRiceParam + ( cLastAbsLevel > ( 3 * ( 1 << cLastRiceParam ) ) ? 1 : 0 ), 4 ) (9-6) 

The variable cTRMax is derived from cRiceParam as: 

cTRMax = 4 << cRiceParam (9-7) 

The binarization of coeff_abs_level_remaining consists of a prefix part and (when present) a suffix part.  

The prefix part of the binarization is derived by invoking the TR binarization process as specified in subclause 9.2.2.3 for 
the prefix part Min( cTRMax, coeff_abs_level_remaining[ n ] ) with the variables cRiceParam and cTRMax as the 
inputs. 

When the prefix bin string is equal to the bit string of length 4 with all bits equal to 1, the bin string consists of a prefix 
bin string and a suffix bin string. The suffix bin string is derived using the EGk binarization as specified in 
subclause 9.2.2.4 for the suffix part ( coeff_abs_level_remaining[ n ] − cTRMax ) with the Exp-Golomb order k set equal 
to cRiceParam + 1. 

9.2.2.9 Binarization process for intra_chroma_pred_mode 

Input to this process is a request for a binarization for the syntax element intra_chroma_pred_mode. 

Output of this process is the binarization of the syntax element. 

The binarization of the syntax element intra_chroma_pred_mode consists of a prefix part and (when present) a suffix 
part. Table 9-35 specifies the binarization of the prefix part and the suffix part. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 186 

Table 9-35 – Specification of prefix and suffix part for intra_chroma_pred_mode binarization 

Value of 
intra_chroma_pred_mode prefix suffix 

4 0 n/a 

0 1 00 

1 1 01 

2 1 10 

3 1 11 

 

9.2.2.10 Binarization process for inter_pred_idc 

Input to this process is a request for a binarization for the syntax element inter_pred_idc, the width and the height of the 
current luma prediction block nPbW and nPbH. 

Output of this process is the binarization of the syntax element. 

The binarization for inter_pred_idc is given by Table 9-36. 

Table 9-36 – Binarization for inter_pred_idc 

Value of 
inter_pred_idc 

Name of 
inter_pred_idc 

Bin string 

( nPbW + nPbH ) != 12 ( nPbW + nPbH ) = = 12 

0 Pred_L0 00 0 

1 Pred_L1 01 1 

2 Pred_BI 1 - 

 

9.2.3 Decoding process flow  

Input to this process is a binarization of the requested syntax element, maxBinIdxCtx, bypassFlag, ctxIdxTable and 
ctxIdxOffset as specified in subclause 9.2.2. 

Output of this process is the value of the syntax element. 

This process specifies how each bit of a bit string is parsed for each syntax element. 

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and 
the following applies. 

– If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.  

– Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed. 

While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin.  

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part, the variable 
binIdx is set equal to 0 for the first bin of each part of the bin string (prefix part or suffix part). In this case, after parsing 
the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in subclauses 9.2.2.3, 
9.2.2.6, 9.2.2.8 and 9.2.2.9 is invoked depending on the resulting prefix bit string as specified in subclauses 9.2.2.3, 
9.2.2.6, 9.2.2.8 and 9.2.2.9. 

Depending on the variable bypassFlag, the following applies. 

– If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.2.3.2.3 is applied for parsing the 
value of the bins from the bitstream.  

– Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps: 

1. Given binIdx, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset, ctxIdx is derived as specified in 
subclause 9.2.3.1. 



   ISO/IEC 23008-2 : 201x (E) 

187 Draft Rec. ITU-T H.HEVC (201x E) 

2. Given ctxIdxTable and ctxIdx, the value of the bin from the bitstream as specified in subclause 9.2.3.2 is 
decoded. 

9.2.3.1 Derivation process for ctxIdx 

Inputs to this process are binIdx, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset. 

Output of this process is ctxIdx. 

Table 9-37 shows the assignment of ctxIdx increments (ctxIdxInc) to binIdx for all syntax elements with context coded 
bins. 

The ctxIdx to be used with a specific binIdx is specified by first determining the ctxIdxTable and ctxIdxOffset associated 
with the syntax element. For each syntax element listed in Table 9-37, ctxIdxTable and ctxIdxOffset are specified in 
Table 9-32, the ctxIdx for a binIdx is the sum of ctxIdxOffset and ctxIdxInc, which is found in Table 9-37. When more 
than one value is listed in Table 9-37 for a binIdx, the assignment process for ctxIdxInc for that binIdx is further 
specified in the subclauses given in parenthesis of the corresponding table entry.  

All bins with binIdx greater than maxBinIdxCtx are parsed using the value of ctxIdx being assigned to binIdx equal to 
maxBinIdxCtx. 

All entries in Table 9-37 marked with "na" correspond to values of binIdx that do not occur for the corresponding syntax 
element. 

All entries in Table 9-37 marked with "bypass" correspond to values of binIdx that are decoded by invoking the 
DecodeBypass process as specified in subclause 9.2.3.2.3. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 188 

Table 9-37 – Assignment of ctxIdxInc to syntax elements with context coded bins 

Syntax element 
binIdx 

0 1 2 3 4 >=5 

sao_merge_left_flag 
sao_merge_up_flag 

0 na na na na na 

sao_type_idx_luma 
sao_type_idx_chroma 0 bypass na na na na 

split_cu_flag 0,1,2 
(subclause 9.2.3.1.1) 

na na na na na 

cu_transquant_bypass_flag 0 na na na na na 

cu_skip_flag 0,1,2 
(subclause 9.2.3.1.1) 

na na na na na 

cu_qp_delta_abs 0 1 1 1 1 bypass 

pred_mode_flag 0 na na na na na 

part_mode 
cLog2CbSize = = Log2MinCbSizeY 

0 1 2 bypass na na 

part_mode 
cLog2CbSize > Log2MinCbSizeY 

0 1 3 bypass na na 

prev_intra_luma_pred_flag 0 na na na na na 

intra_chroma_pred_mode 0 bypass bypass na na na 

merge_flag 0 na na na na na 

merge_idx 0 bypass bypass bypass na na 

inter_pred_idc[ x0 ][ y0 ] ( nPbW + nPbH ) != 12 
? CtDepth[ x0 ][ y0 ] : 4 

4 na na na na 

ref_idx_l0, ref_idx_l1 0 1 bypass bypass  na 

abs_mvd_greater0_flag[ ] 0 na na na na na 

abs_mvd_greater1_flag[ ] 0 na na na na na 

mvp_l0_flag, mvp_l1_flag 0 na na na na na 

rqt_root_cbf 0 na na na na na 

split_transform_flag 5 − log2TrafoSize na na na na na 

cbf_luma trafoDepth = = 0 ? 1 : 0 na na na na na 

cbf_cb, cbf_cr trafoDepth na na na na na 

transform_skip_flag[ ][ ][ 0 ] 0 na na na na na 

transform_skip_flag[ ][ ][ 1 ] 
transform_skip_flag[ ][ ][ 2 ] 

0 na na na na na 

last_significant_coeff_x_prefix 0..17 
(subclause 9.2.3.1.2) 

last_significant_coeff_y_prefix 0..17 
(subclause 9.2.3.1.2) 

coded_sub_block_flag 0..3 
(subclause 9.2.3.1.3) 

na na na na na 

significant_coeff_flag 0..41 
(subclause 9.2.3.1.4) 

na na na na na 

coeff_abs_level_greater1_flag 0..23 
(subclause 9.2.3.1.5) 

na na na na na 

coeff_abs_level_greater2_flag 0..5 
(subclause 9.2.3.1.6) 

na na na na na 

 



   ISO/IEC 23008-2 : 201x (E) 

189 Draft Rec. ITU-T H.HEVC (201x E) 

9.2.3.1.1 Derivation process of ctxIdxInc using left and above syntax elements 

Input to this process is the luma location ( xC, yC ) specifying the top-left luma sample of the current luma coding block 
relative to the top-left sample of the current picture. 

Output of this process is ctxIdxInc. 

The location ( xL, yL ) is set equal to ( xC − 1, yC ) and the variable availableL, specifying the availability of the coding 
block located directly to the left of the current coding block, is derived by invoking the availability derivation process for 
a block in z-scan order as specified in subclause 6.4.1 with the location ( xCurr, yCurr ) set equal to ( xC, yC ) and the 
neighbouring location ( xN, yN ) set equal to ( xL, yL ) as the input and the output is assigned to availableL.  

The location ( xA, yA ) is set equal to ( xC, yC − 1 ) and the variable availableA specifying the availability of the coding 
block located directly above the current coding block, is derived by invoking the availability derivation process for a 
block in z-scan order as specified in subclause 6.4.1 with the location ( xCurr, yCurr ) set equal to ( xC, yC ) and the 
neighbouring location ( xN, yN ) set equal to ( xA, yA ) as the input and the output is assigned to availableA.  

The assignment of ctxIdxInc for the syntax elements split_cu_flag and cu_skip_flag is specified in Table 9-38. 

Table 9-38 – Specification of ctxIdxInc using left and above syntax elements 

Syntax element condL condA ctxIdxInc 

split_cu_flag CtDepth[ xL ][ yL ]  >  CtDepth[ xC ][ yC ] CtDepth[ xA ][ yA ]  >  CtDepth[ xC ][ yC ] ( condL && availableL ) + 
( condA && availableA ) 

cu_skip_flag cu_skip_flag[ xL ][ yL ] cu_skip_flag[ xA ][ yA ] ( condL && availableL ) + 
( condA && availableA ) 

 

9.2.3.1.2 Derivation process of ctxIdxInc for the syntax elements last_significant_coeff_x_prefix and 
last_significant_coeff_y_prefix 

Inputs to this process are the binIdx, the colour component index cIdx, the transform block size log2TrafoSize. 

Output of this process is ctxIdxInc. 

The variables ctxOffset and ctxShift are derived as follows. 

– If cIdx is equal to 0, ctxOffset is set equal to 3 * ( log2TrafoSize − 2 ) + ( ( log2TrafoSize − 1 ) >> 2 ) and ctxShift 
is set equal to ( log2TrafoSize + 1 ) >> 2. 

– Otherwise (cIdx is greater than 0), ctxOffset is set equal to 15 and ctxShift is set equal to log2TrafoSize − 2. 

The variable ctxIdxInc is derived as follows. 

ctxIdxInc =  ( binIdx >> ctxShift )+ ctxOffset (9-8) 

9.2.3.1.3 Derivation process of ctxIdxInc for the syntax element coded_sub_block_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan position ( xS, yS ), the previously 
decoded bins of the syntax element coded_sub_block_flag and the size of the current transform block, log2TrafoSize. 

Output of this process is ctxIdxInc. 

The variable csbfCtx is derived using the current position ( xS, yS ), two previously decoded bins of the syntax element 
coded_sub_block_flag in scan order, and the size of the current transform block, log2TrafoSize, as follows. 

– csbfCtx is initialized with 0 as follows. 

csbfCtx  =  0  (9-9) 

– When xS is less than ( 1 << ( log2TrafoSize − 2 ) ) − 1, csbfCtx is modified as follows. 

csbfCtx  +=  coded_sub_block_flag[ xS + 1 ][ yS ] (9-10) 

– When yS is less than ( 1 << ( log2TrafoSize − 2 ) ) − 1, csbfCtx is modified as follows. 

csbfCtx  +=  coded_sub_block_flag[ xS ][ yS + 1 ] (9-11) 

The context index increment ctxIdxInc is derived using the colour component index cIdx and csbfCtx as follows. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 190 

– If cIdx is equal to 0, ctxIdxInc is derived as follows. 

ctxIdxInc  = Min( csbfCtx, 1)  (9-12) 

– Otherwise (cIdx is greater than 0), ctxIdxInc is derived as follows. 

ctxIdxInc  =  2  + Min( csbfCtx, 1)  (9-13) 

9.2.3.1.4 Derivation process of ctxIdxInc for the syntax element significant_coeff_flag 

Inputs to this process are the colour component index cIdx, the current coefficient scan position ( xC, yC ), the scan order 
index scanIdx, the transform block size log2TrafoSize. 

Output of this process is ctxIdxInc. 

The variable sigCtx depends on the current position ( xC, yC ), the colour component index cIdx, the transform block 
size and previsously decoded bins of the syntax element coded_sub_block_flag. For the derivation of sigCtx, the 
following applies. 

– If log2TrafoSize is equal to 2, sigCtx is derived using ctxIdxMap[ ] specified in Table 9-39 as follows.. 

sigCtx  =  ctxIdxMap[ (yC << 2) + xC ] (9-14) 

– Otherwise, if xC + yC is equal to 0, sigCtx is derived as follows. 

sigCtx  =  0  (9-15) 

– Otherwise, sigCtx is derived using previous values of coded_sub_block_flag as follows. 

– The horizontal and vertical sub-block positions xS and yS are set equal to (xC >> 2) and (yC >> 2), 
respectively. 

– The variable prevCsbf is set equal to 0. 

– When xS is less than ( 1 << ( log2TrafoSize − 2 ) ) − 1, the following applies. 

prevCsbf  +=  coded_sub_block_flag[ xS + 1 ][ yS ] (9-16) 

– When yS is less than ( 1 << ( log2TrafoSize − 2 ) ) − 1, the following applies. 

prevCsbf  +=  ( coded_sub_block_flag[ xS ][ yS + 1 ] << 1 ) (9-17) 

– The inner sub-block positions xP and yP are set equal to ( xC & 3 ) and ( yC & 3 ), respectively. 

– The variable sigCtx is derived as follows. 

– If prevCsbf is equal to 0, the following applies. 

sigCtx  =  ( xP + yP = =  0 ) ? 2 : ( xP + yP < 3 ) ? 1: 0 (9-18) 

– Otherwise, if prevCsbf is equal to 1, the following applies. 

sigCtx  =  ( yP = =  0 ) ? 2 : ( yP = =  1 ) ? 1: 0 (9-19)  

– Otherwise, if prevCsbf is equal to 2, the following applies. 

sigCtx  =  ( xP = =  0 ) ? 2 : ( xP = =  1 ) ? 1: 0 (9-20) 

– Otherwise (prevCsbf is equal to 3), the following applies. 

sigCtx  =  2 (9-21) 

– The variable sigCtx is modified as follows. 

– If cIdx is equal to 0, the following applies. 

– When ( xS + yS ) is greater than 0, the following applies. 

sigCtx += 3  (9-22) 



   ISO/IEC 23008-2 : 201x (E) 

191 Draft Rec. ITU-T H.HEVC (201x E) 

– The variable sigCtx is modified as follows. 

– If log2TrafoSize is equal to 3, the following applies. 

sigCtx += ( scanIdx = = 0 ) ? 9 : 15 (9-23) 

– Otherwise, the following applies. 

sigCtx += 21  (9-24) 

– Otherwise (cIdx is greater than 0), the following applies. 

– If log2TrafoSize is equal to 3, the following applies. 

sigCtx += 9  (9-25) 

– Otherwise, the following applies. 

sigCtx += 12  (9-26) 

The context index increment ctxIdxInc is derived using the colour component index cIdx and sigCtx as follows. 

– If cIdx is equal to 0, ctxIdxInc is derived as follows. 

ctxIdxInc  =  sigCtx  (9-27) 

– Otherwise (cIdx is greater than 0), ctxIdxInc is derived as follows. 

ctxIdxInc  =  27  +  sigCtx  (9-28) 

Table 9-39 – Specification of ctxIdxMap[ i ] 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

ctxIdxMap[ i ] 0 1 4 5 2 3 4 5 6 6 8 8 7 7 8 

 

9.2.3.1.5 Derivation process of ctxIdxInc for the syntax element coeff_abs_level_greater1_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan index i and the current coefficient 
scan index n within the current sub-block. 

Output of this process is ctxIdxInc. 

The variable ctxSet specifies the current context set and for its derivation the following applies. 

– If this process is invoked for the first time for the current sub-block scan index i, the following applies. 

– The variable ctxSet is initialized as follows. 

– If the current sub-block scan index i is equal to 0 or cIdx is greater than 0, the following applies. 

ctxSet  =  0  (9-29) 

– Otherwise (i is greater than 0 and cIdx is equal to 0), the following applies. 

ctxSet  =  2  (9-30) 

– The variable lastGreater1Ctx is derived as follows. 

– If the current sub-block with scan index i is the first one to be processed in this subclause for the current 
transform block, the variable lastGreater1Ctx is set equal to 1. 

– Otherwise, the variable lastGreater1Ctx is set equal to the value of greater1Ctx that has been derived during 
the last invocation of the process specified in this subclause for the syntax element 
coeff_abs_level_greater1_flag for the previous sub-block with scan index i + 1. 

– When lastGreater1Ctx is equal to 0, ctxSet is incremented by one as follows. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 192 

ctxSet  =  ctxSet  +  1  (9-31) 

– The variable greater1Ctx is set equal to 1. 

– Otherwise (this process is not invoked for the first time for the current sub-block scan index i), the following 
applies. 

– The variable ctxSet is set equal to the variable ctxSet that has been derived during the last invocation of the 
process specified in this subclause. 

– The variable greater1Ctx is set equal to the variable greater1Ctx that has been derived during the last invocation 
of the process specified in this subclause.  

– When greater1Ctx is greater than 0, the variable lastGreater1Flag is set equal to the syntax element 
coeff_abs_level_greater1_flag that has been used during the last invocation of the process specified in this 
subclause and greater1Ctx is modifed as follows. 

– If lastGreater1Flag is equal to 1, greater1Ctx is set equal to 0. 

– Otherwise (lastGreater1Flag is equal to 0), greater1Ctx is incremented by 1. 

The context index increment ctxIdxInc is derived using the current context set ctxSet and the current context greater1Ctx 
as follows. 

ctxIdxInc  =  ( ctxSet  *  4 )  +  Min( 3, greater1Ctx ) (9-32) 

When cIdx is greater than 0, ctxIdxInc is modified as follows. 

ctxIdxInc =  ctxIdxInc  +  16  (9-33) 

9.2.3.1.6 Derivation process of ctxIdxInc for the syntax element coeff_abs_level_greater2_flag 

Inputs to this process are the colour component index cIdx, the current sub-block scan index i and the current coefficient 
scan index n within the current sub-block. 

Output of this process is ctxIdxInc. 

The variable ctxSet specifies the current context set and is set to the variable ctxSet that has been derived in 
subclause 9.2.3.1.5 for the same subset i. 

The context index increment ctxIdxInc is set equal to the variable ctxSet as follows. 

ctxIdxInc  =  ctxSet  (9-34) 

When cIdx is greater than 0, ctxIdxInc is modified as follows. 

ctxIdxInc =  ctxIdxInc  +  4  (9-35) 

9.2.3.2  Arithmetic decoding process 

Inputs to this process are the bypassFlag, ctxIdxTable, and ctxIdx as derived in subclause 9.2.3.1, and the state variables 
codIRange and codIOffset of the arithmetic decoding engine. 

Output of this process is the value of the bin. 

Figure 9-5 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context 
index table ctxIdxTable and the ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdxTable, ctxIdx), 
which is specified as follows.  

– If bypassFlag is equal to 1, DecodeBypass( ) as specified in subclause 9.2.3.2.3 is invoked. 

– Otherwise, if bypassFlag is equal to 0, ctxIdxTable is equal  0 and ctxIdx is equal to 0, DecodeTerminate( ) as 
specified in subclause 9.2.3.2.4 is invoked. 

– Otherwise (bypassFlag is equal to 0, ctxIdxTable is not equal to 0 and ctxIdx is not equal to 0), DecodeDecision( ) 
as specified in subclause 9.2.3.2.1 is applied. 



   ISO/IEC 23008-2 : 201x (E) 

193 Draft Rec. ITU-T H.HEVC (201x E) 

bypassFlag = = 1?

DecodeBypass

ctxIdxTable = = 0 
&& ctxIdx = = 0 ?

No

Yes

Done

No

DecodeBin(ctxIdxTable, ctxIdx)

DecodeTerminate

Yes

DecodeDecision(ctxIdxTable, ctxIdx)

 

Figure 9-5 – Overview of the arithmetic decoding process for a single bin (informative) 
NOTE – Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p( 0 ) and 
p( 1 ) = 1 − p( 0 ) of a binary decision ( 0, 1 ), an initially given code sub-interval with the range codIRange will be subdivided 
into two sub-intervals having range p( 0 ) * codIRange and codIRange − p( 0 ) * codIRange, respectively. Depending on the 
decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code 
string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the 
most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or 
LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS 
(valMPS), which is either 0 or 1. 
The arithmetic core engine in this Specification has three distinct properties: 

– The probability estimation is performed by means of a finite-state machine with a table-based transition process between 64 
different representative probability states { pLPS(pStateIdx) | 0 <= pStateIdx < 64 } for the LPS probability pLPS. The 
numbering of the states is arranged in such a way that the probability state with index pStateIdx = 0 corresponds to an LPS 
probability value of 0.5, with decreasing LPS probability towards higher state indices. 

– The range codIRange representing the state of the coding engine is quantized to a small set {Q1,…,Q4} of pre-set 
quantization values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed 
product values of Qi * pLPS(pStateIdx) allows a multiplication-free approximation of the product 
codIRange * pLPS(pStateIdx). 

– For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a 
separate simplified encoding and decoding bypass process is used.  

9.2.3.2.1 Arithmetic decoding process for a binary decision 

Inputs to this process are ctxIdxTable, ctxIdx, codIRange, and codIOffset. 

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset. 

Figure 9-6 shows the flowchart for decoding a single decision (DecodeDecision): 

1. The value of the variable codIRangeLPS is derived as follows. 

– Given the current value of codIRange, the variable qCodIRangeIdx is derived by 

qCodIRangeIdx =( codIRange  >>  6 ) & 3  (9-36) 

– Given qCodIRangeIdx and pStateIdx associated with ctxIdxTable and ctxIdx, the value of the variable 
rangeTabLPS as specified in Table 9-40 is assigned to codIRangeLPS: 

codIRangeLPS = rangeTabLPS[ pStateIdx ][ qCodIRangeIdx ] (9-37) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 194 

2. The variable codIRange is set equal to codIRange − codIRangeLPS and the following applies. 

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 − valMPS, 
codIOffset is decremented by codIRange, and codIRange is set equal to codIRangeLPS. 

– Otherwise, the variable binVal is set equal to valMPS. 

Given the value of binVal, the state transition is performed as specified in subclause 9.2.3.2.1.1. Depending on the 
current value of codIRange, renormalization is performed as specified in subclause 9.2.3.2.2. 

9.2.3.2.1.1 State transition process 

Inputs to this process are the current pStateIdx, the decoded value binVal and valMPS values of the context variable 
associated with ctxIdxTable and ctxIdx. 

Outputs of this process are the updated pStateIdx and valMPS of the context variable associated with ctxIdx. 

Depending on the decoded value binVal, the update of the two variables pStateIdx and valMPS associated with ctxIdx is 
derived as specified by the following pseudo-code: 

if( binVal  = =  valMPS )  
 pStateIdx = transIdxMPS( pStateIdx ) 
else {    (9-38) 
 if( pStateIdx  = =  0 ) 
  valMPS = 1 − valMPS 
 pStateIdx = transIdxLPS( pStateIdx ) 
} 

Table 9-41 specifies the transition rules transIdxMPS( ) and transIdxLPS( ) after decoding the value of valMPS and 
1 − valMPS, respectively. 



   ISO/IEC 23008-2 : 201x (E) 

195 Draft Rec. ITU-T H.HEVC (201x E) 

 

Figure 9-6 – Flowchart for decoding a decision 

[Ed. (BB): add ctxIdxTable to the figure] 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 196 

Table 9-40 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx  

pStateIdx 
qCodIRangeIdx 

pStateIdx 
qCodIRangeIdx 

0 1 2 3 0 1 2 3 

0 128 176 208 240 32 27 33 39 45 

1 128 167 197 227 33 26 31 37 43 

2 128 158 187 216 34 24 30 35 41 

3 123 150 178 205 35 23 28 33 39 

4 116 142 169 195 36 22 27 32 37 

5 111 135 160 185 37 21 26 30 35 

6 105 128 152 175 38 20 24 29 33 

7 100 122 144 166 39 19 23 27 31 

8 95 116 137 158 40 18 22 26 30 

9 90 110 130 150 41 17 21 25 28 

10 85 104 123 142 42 16 20 23 27 

11 81 99 117 135 43 15 19 22 25 

12 77 94 111 128 44 14 18 21 24 

13 73 89 105 122 45 14 17 20 23 

14 69 85 100 116 46 13 16 19 22 

15 66 80 95 110 47 12 15 18 21 

16 62 76 90 104 48 12 14 17 20 

17 59 72 86 99 49 11 14 16 19 

18 56 69 81 94 50 11 13 15 18 

19 53 65 77 89 51 10 12 15 17 

20 51 62 73 85 52 10 12 14 16 

21 48 59 69 80 53 9 11 13 15 

22 46 56 66 76 54 9 11 12 14 

23 43 53 63 72 55 8 10 12 14 

24 41 50 59 69 56 8 9 11 13 

25 39 48 56 65 57 7 9 11 12 

26 37 45 54 62 58 7 9 10 12 

27 35 43 51 59 59 7 8 10 11 

28 33 41 48 56 60 6 8 9 11 

29 32 39 46 53 61 6 7 9 10 

30 30 37 43 50 62 6 7 8 9 

31 29 35 41 48 63 2 2 2 2 

 



   ISO/IEC 23008-2 : 201x (E) 

197 Draft Rec. ITU-T H.HEVC (201x E) 

Table 9-41 – State transition table 

pStateIdx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

transIdxLPS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12 

transIdxMPS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

pStateIdx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

transIdxLPS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24 

transIdxMPS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

pStateIdx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

transIdxLPS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33 

transIdxMPS 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

pStateIdx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

transIdxLPS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63 

transIdxMPS 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63 

 

9.2.3.2.2 Renormalization process in the arithmetic decoding engine  

Inputs to this process are bits from slice segment data and the variables codIRange and codIOffset. 

Outputs of this process are the updated variables codIRange and codIOffset. 

A flowchart of the renormalization is shown in Figure 9-7. The current value of codIRange is first compared to 256 and 
further steps are specified as follows. 

– If codIRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished; 

– Otherwise (codIRange is less than 256), the renormalization loop is entered. Within this loop, the value of 
codIRange is doubled, i.e. left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits( 1 ). 

The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon 
completion of this process. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 198 

codIRange <  256

Done

RenormD

Yes

NocodIRange = codIRange << 1
codIOffset = codIOffset << 1

codIOffset = codIOffset | read_bits(1)

 

Figure 9-7 – Flowchart of renormalization 

9.2.3.2.3 Bypass decoding process for binary decisions 

Inputs to this process are bits from slice segment data and the variables codIRange and codIOffset. 

Outputs of this process are the updated variable codIOffset and the decoded value binVal. 

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-8 shows a flowchart of the 
corresponding process. 

First, the value of codIOffset is doubled, i.e. left-shifted by 1 and a single bit is shifted into codIOffset by using 
read_bits( 1 ). Then, the value of codIOffset is compared to the value of codIRange and further steps are specified as 
follows. 

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codIOffset is 
decremented by codIRange. 

– Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0. 

The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon 
completion of this process. 

 

Figure 9-8 – Flowchart of bypass decoding process 

9.2.3.2.4 Decoding process for binary decisions before termination 

Inputs to this process are bits from slice segment data and the variables codIRange and codIOffset. 



   ISO/IEC 23008-2 : 201x (E) 

199 Draft Rec. ITU-T H.HEVC (201x E) 

Outputs of this process are the updated variables codIRange and codIOffset, and the decoded value binVal. 

This decoding process applies to decoding of end_of_slice_segment_flag, end_of_sub_stream_one_bit and pcm_flag 
corresponding to ctxIdxTable equal to 0 and ctxIdx equal to 0. Figure 9-9 shows the flowchart of the corresponding 
decoding process, which is specified as follows. 

First, the value of codIRange is decremented by 2. Then, the value of codIOffset is compared to the value of codIRange 
and further steps are specified as follows. 

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1, no renormalization is 
carried out, and CABAC decoding is terminated. The last bit inserted in register codIOffset is equal to 1. When 
decoding end_of_slice_segment_flag, this last bit inserted in register codIOffset is interpreted as rbsp_stop_one_bit. 

– Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0 and renormalization is 
performed as specified in subclause 9.2.3.2.2. 

NOTE – This procedure may also be implemented using DecodeDecision(ctxIdxTable, ctxIdx) with ctxIdxTable = 0 and 
ctxIdx = 0. In the case where the decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxIdxTable, 
ctxIdx) and a decoding process would have to adjust its bitstream pointer accordingly to properly decode following syntax 
elements. 

codIOffset >= codIRange

binVal = 1 binVal = 0

Yes No

Done

DecodeTerminate

RenormD

codIRange = codIRange-2

 

Figure 9-9 – Flowchart of decoding a decision before termination 

9.2.4 Arithmetic encoding process (informative)  

This subclause does not form an integral part of this Specification. 

Inputs to this process are decisions that are to be encoded and written. 

Outputs of this process are bits that are written to the RBSP. 

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine 
described in subclause 9.2.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e. procedures 
are called in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision, 
EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and 
DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable 
codILow pointing to the lower end of a sub-interval and a value of the variable codIRange specifying the corresponding 
range of that sub-interval. 

9.2.4.1 Initialization process for the arithmetic encoding engine (informative) 

This subclause does not form an integral part of this Specification. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 200 

This process is invoked before encoding the first coding block of a slice segment, and after encoding any 
pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a coding unit with pcm_flag equal 
to 1. 

Outputs of this process are the values codILow, codIRange, firstBitFlag, bitsOutstanding, and BinCountsInNALunits of 
the arithmetic encoding engine. 

In the initialization procedure of the encoder, codILow is set equal to 0, and codIRange is set equal to 510. Furthermore, 
firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0. 

Depending on whether the current slice segment is the first slice segment of a coded picture, the following applies. 

– If the current slice segment is the first slice segment of a coded picture, the counter BinCountsInNALunits is set 
equal to 0. 

– Otherwise (the current slice segment is not the first slice segment of a coded picture), the counter 
BinCountsInNALunits is not modified. The value of BinCountsInNALunits is the result of encoding all the slice 
segments of a coded picture that precede the current slice segment in decoding order. After initializing for the first 
slice segment of a coded picture as specified in this subclause, BinCountsInNALunits is incremented as specified in 
subclauses 9.2.4.2, 9.2.4.4, and 9.2.4.5. 

NOTE – The minimum register precision required for storing the values of the variables codILow and codIRange after invocation 
of any of the arithmetic encoding processes specified in subclauses 9.2.4.2, 9.2.4.4, and 9.2.4.5 is 10 bits and 9 bits, respectively. 
The encoding process for a binary decision (EncodeDecision) as specified in subclause 9.2.4.2 and the encoding process for a 
binary decision before termination (EncodeTerminate) as specified in subclause 9.2.4.5 require a minimum register precision of 
10 bits for the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The bypass encoding 
process for binary decisions (EncodeBypass) as specified in subclause 9.2.4.4 requires a minimum register precision of 11 bits for 
the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The precision required for the 
counters bitsOutstanding and BinCountsInNALunits should be sufficiently large to prevent overflow of the related registers. When 
maxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice segment and 
maxBinCountInPic denotes the maximum total number of binary decisions to encode a picture, the minimum register precision 
required for the variables bitsOutstanding and BinCountsInNALunits is given by Ceil( Log2( maxBinCountInSlice + 1 ) ) and 
Ceil( Log2( maxBinCountInPic + 1 ) ), respectively. 

9.2.4.2 Encoding process for a binary decision (informative) 

This subclause does not form an integral part of this Specification. 

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded, and the variables codIRange, 
codILow and BinCountsInNALunits. 

Outputs of this process are the variables codIRange, codILow, and BinCountsInNALunits. 

Figure 9-10 shows the flowchart for encoding a single decision. In a first step, the variable codIRangeLPS is derived as 
follows. 

Given the current value of codIRange, codIRange is mapped to the index qCodIRangeIdx of a quantized value of 
codIRange by using Equation 9-36. The value of qCodIRangeIdx and the value of pStateIdx associated with ctxIdx are 
used to determine the value of the variable rangeTabLPS as specified in Table 9-40, which is assigned to codIRangeLPS. 
The value of codIRange − codIRangeLPS is assigned to codIRange. 

In a second step, the value of binVal is compared to valMPS associated with ctxIdx. When binVal is different from 
valMPS, codIRange is added to codILow and codIRange is set equal to the value codIRangeLPS. Given the encoded 
decision, the state transition is performed as specified in subclause 9.2.3.2.1.1. Depending on the current value of 
codIRange, renormalization is performed as specified in subclause 9.2.4.3. Finally, the variable BinCountsInNALunits is 
incremented by 1. 



   ISO/IEC 23008-2 : 201x (E) 

201 Draft Rec. ITU-T H.HEVC (201x E) 

EncodeDecision(ctxIdx,binVal)

binVal !=
valMPS

pStateIdx != 0

valMPS = 1 – valMPS

pStateIdx = transIdxLPS[pStateIdx] pStateIdx = transIdxMPS[pStateIdx]

RenormE

Done

Yes No

Yes

No

qCodIRangeIdx = (codIRange >> 6) & 3
codIRangeLPS = rangeTabLPS[pStateIdx][qCodIRangeIdx]

codIRange = codIRange  codIRangeLPS−

codILow = codILow + codIRange
codIRange = codIRangeLPS

BinCountsInNALunits = BinCountsInNALunits + 1 

 

Figure 9-10 – Flowchart for encoding a decision 

9.2.4.3 Renormalization process in the arithmetic encoding engine (informative) 

This subclause does not form an integral part of this Specification. 

Inputs to this process are the variables codIRange, codILow, firstBitFlag, and bitsOutstanding. 

Outputs of this process are zero or more bits written to the RBSP and the updated variables codIRange, codILow, 
firstBitFlag, and bitsOutstanding. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 202 

Renormalization is illustrated in Figure 9-11. 

RenormE

Done

codIRange < 256

codILow < 256

PutBit(0)

codILow >= 512

PutBit(1)

codILow = codILow  512−

Yes

Yes

No Yes

No

No

codILow = codILow 256
bitsOutstanding = bitsOutstanding + 1

− 

codIRange = codIRange << 1
codILow = codILow << 1

 

Figure 9-11 – Flowchart of renormalization in the encoder 

The PutBit( ) procedure described in Figure 9-12 provides carry over control. It uses the function WriteBits( B, N ) that 
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes 
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the 
encoding process. 



   ISO/IEC 23008-2 : 201x (E) 

203 Draft Rec. ITU-T H.HEVC (201x E) 

WriteBits(B, 1)

bitsOutstanding > 0
Yes

firstBitFlag = 0

Yes

WriteBits(1  B, 1)
bitsOutstanding = bitsOutstanding – 1

−

 

Figure 9-12 – Flowchart of PutBit(B) 

9.2.4.4 Bypass encoding process for binary decisions (informative) 

This subclause does not form an integral part of this Specification. 

Inputs to this process are the variables binVal, codILow, codIRange, bitsOutstanding, and BinCountsInNALunits. 

Output of this process is a bit written to the RBSP and the updated variables codILow, bitsOutstanding, and 
BinCountsInNALunits. 

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the 
specification of this process as given in Figure 9-13. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 204 

EncodeBypass(binVal)

binVal != 0

codILow = codILow + codIRange

codILow = codILow << 1

codILow = codILow  1024−

codILow < 512

Done

Yes No

No Yes

NoYes

codILow = codILow  512
bitsOutstanding = bitsOutstanding + 1

−

codILow >=
1024

 

Figure 9-13 – Flowchart of encoding bypass 

9.2.4.5 Encoding process for a binary decision before termination (informative) 

This subclause does not form an integral part of this Specification. 

Inputs to this process are the variables binVal, codIRange, codILow, bitsOutstanding, and BinCountsInNALunits. 

Outputs of this process are zero or more bits written to the RBSP and the updated variables codILow, codIRange, 
bitsOutstanding, and BinCountsInNALunits. 

This encoding routine shown in Figure 9-14 applies to encoding of end_of_slice_segment_flag, 
end_of_sub_stream_one_bit and pcm_flag, all associated with ctxIdx equal to 0.  



   ISO/IEC 23008-2 : 201x (E) 

205 Draft Rec. ITU-T H.HEVC (201x E) 

 

Figure 9-14 – Flowchart of encoding a decision before termination 

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in 
Figure 9-15 is applied. In this flushing procedure, the last bit written by WriteBits( B, N )  is equal to 1. When encoding 
end_of_slice_segment_flag, this last bit is interpreted as the rbsp_stop_one_bit. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 206 

EncodeFlush

codIRange = 2

RenormE

PutBit((codILow >> 9) & 1)

WriteBits(((codILow >> 7) & 3) | 1, 2)

Done
 

Figure 9-15 – Flowchart of flushing at termination 

9.2.4.6 Byte stuffing process (informative) 

This subclause does not form an integral part of this Specification. 

This process is invoked after encoding the last coding block of the last slice segment of a picture and after encapsulation. 

Inputs to this process are the number of bytes NumBytesInVclNALunits of all VCL NAL units of a picture, the number 
of minimum CUs PicSizeInMinCbsY in the picture, and the number of binary symbols BinCountsInNALunits resulting 
from encoding the contents of all VCL NAL units of the picture. 

NOTE – The value of BinCountsInNALunits is the result of encoding all slice segments of a coded picture. After initializing for 
the first slice segment of a coded picture as specified in subclause 9.2.4.1, BinCountsInNALunits is incremented as specified in 
subclauses 9.2.4.2, 9.2.4.4, and 9.2.4.5. 

Outputs of this process are zero or more bytes appended to the NAL unit. 

Let the variable k be set equal to Ceil( ( Ceil( 3 * ( 32 * BinCountsInNALunits − RawMinCuBits * PicSizeInMinCbsY ) 
÷ 1024 ) − NumBytesInVclNALunits ) ÷ 3 ). Depending on the variable k the following applies. 

– If k is less than or equal to 0, no cabac_zero_word is appended to the NAL unit.  

– Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after 
encapsulation, where the first two bytes 0x0000 represent a cabac_zero_word and the third byte 0x03 represents an 
emulation_prevention_three_byte. 

10 Specification of bitstream subsets 
Subclause 10.1 specifies the sub-bitstream extraction process. 

10.1 Sub-bitstream extraction process 
It is requirement of bitstream conformance that any sub-bitstream that is included in the output of the process specified in 
this subclause with tIdTarget equal to any value in the range of 0 to 6, inclusive, and with layerIdSetTarget containing 
the value 0 only shall be conforming to the requirements of bitstream conformance to this Specification. 

NOTE – A conforming bitstream contains one or more coded slice segment NAL units with nuh_reserved_zero_6bits equal to 0 
and TemporalId equal to 0. 

Inputs to this process are a bitstream, a variable tIdTarget and a set layerIdSetTarget. 

Output of this process is a sub-bitstream. 

The sub-bitstream is derived by removing from the bitstream all NAL units with TemporalId greater than tIdTarget or 
nuh_reserved_zero_6bits not among the values included in layerIdSetTarget. 



   ISO/IEC 23008-2 : 201x (E) 

207 Draft Rec. ITU-T H.HEVC (201x E) 

Annex A 
 

Profiles, tiers and levels 
 

(This annex forms an integral part of this Recommendation | International Standard) 

A.1 Overview of profiles, tiers and levels 
Profiles, tiers and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the 
bitstreams. Profiles, tiers and levels may also be used to indicate interoperability points between individual decoder 
implementations. 

NOTE 1 – This Specification does not include individually selectable "options" at the decoder, as this would increase 
interoperability difficulties. 

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to 
that profile. 

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile. 

Each level of a tier specifies a set of limits on the values that may be taken by the syntax elements of this Specification. 
The same set of tier and level definitions is used with all profiles, but individual implementations may support a different 
tier and within a tier a different level for each supported profile. For any given profile, a level of a tier generally 
corresponds to a particular decoder processing load and memory capability. 

The profiles that are specified in subclause A.3 are also referred to as the profiles specified in Annex A. 

A.2 Requirements on video decoder capability 
Capabilities of video decoders conforming to this Specification are specified in terms of the ability to decode video 
streams conforming to the constraints of profiles and levels specified in this annex. For each such profile, the level 
supported for that profile shall also be expressed. 

Specific values are specified in this annex for the syntax elements general_profile_idc, general_tier_flag, and 
general_level_idc. All other values of profile_idc, general_tier_flag, and level_idc are reserved for future use by ITU-T | 
ISO/IEC. 

NOTE – Decoders should not infer that when a reserved value of general_profile_idc, general_tier_flag or general_level_idc falls 
between the values specified in this Specification that this indicates intermediate capabilities between the specified profiles or 
levels, as there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values. 
[Ed. (GJS): Do we really mean that? Perhaps we should say exactly the opposite of what this statement says.] 

A.3 Profiles 

A.3.1 General 

All constraints for picture parameter sets that are specified are constraints for picture parameter sets that are activated in 
the bitstream. All constraints for sequence parameter sets that are specified are constraints for sequence parameter sets 
that are activated in the bitstream. 

The variable RawCtuBits is derived as 

RawCtuBits = CtbSizeY * CtbSizeY * BitDepthY + 
  2 * ( CtbWidthC * CtbHeightC ) * BitDepthC (A-1) 

 

A.3.2 Main profile 

Bitstreams conforming to the Main profile shall obey the following constraints: 

– Sequence parameter sets shall have chroma_format_idc equal to 1 only. 

– Sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only. 

– Sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only. 

– Log2CtbSizeY shall be in the range from 4 to 6, inclusive. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 208 

– When a picture parameter set has tiles_enabled_flag is equal to 1, it shall have entropy_coding_sync_enabled_flag 
equal to 0. 

– When a picture parameter set has tiles_enabled_flag is equal to 1, ColumnWidthInLumaSamples[ i ] shall be greater 
than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 
RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 
num_tile_rows_minus1, inclusive. 

– The number of times read_bits( 1 ) is called in subclauses 9.2.3.2.2 and 9.2.3.2.3 when parsing coding_tree_unit( ) 
data for any coding tree unit shall be less than or equal to 4 * RawCtuBits / 3. 

– The level constraints specified for the Main profile in subclause A.4 shall be fulfilled. 

Conformance of a bitstream to the Main profile is indicated by general_profile_idc being equal to 1 or 
general_profile_compatibility_flag[ 1 ] being equal to 1. 

NOTE – When general_profile_compatibility_flag[ 1 ] is equal to 1, general_profile_compatibility_flag[ 2 ] should also be equal 
to 1. 

Decoders conforming to the Main profile at a specific level (identified by a specific value of general_level_idc) shall be 
capable of decoding all bitstreams for which the all of following conditions apply: 

– general_profile_compatibility_flag[ 1 ] is equal to 1. 

– general_level_idc represents a level lower than or equal to the specified level. 

– general_tier_flag represents a tier lower than or equal to the specified tier. 

A.3.3 Main 10 profile 

Bitstreams conforming to the Main 10 profile shall obey the following constraints: 

– Sequence parameter sets shall have chroma_format_idc equal to 1 only. 

– Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 2, inclusive. 

– Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 2, inclusive. 

– Log2CtbSizeY shall be in the range from 4 to 6, inclusive. 

– When a picture parameter set has tiles_enabled_flag is equal to 1, it shall have entropy_coding_sync_enabled_flag 
equal to 0. 

– When a picture parameter set has tiles_enabled_flag is equal to 1, ColumnWidthInLumaSamples[ i ] shall be greater 
than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 
RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 
num_tile_rows_minus1, inclusive. 

– The number of times read_bits( 1 ) is called in subclauses 9.2.3.2.2 and 9.2.3.2.3 when parsing coding_tree_unit( ) 
data for any coding tree unit shall be less than or equal to 4 * RawCtuBits / 3. 

– The level constraints specified for the Main 10 profile in subclause A.4 shall be fulfilled. 

Conformance of a bitstream to the Main 10 profile is indicated by general_profile_idc being equal to 2 or 
general_profile_compatibility_flag[ 2 ] being equal to 1. 

Decoders conforming to the Main 10 profile at a specific level (identified by a specific value of general_level_idc) shall 
be capable of decoding all bitstreams for which the all of following conditions apply: 

– general_profile_compatibility_flag[ 1 ] is equal to 1 or general_profile_compatibility_flag[ 2 ] is equal to 1. 

– general_level_idc represents a level lower than or equal to the specified level. 

– general_tier_flag represents a tier lower than or equal to the specified tier. 

A.3.4 Main Still Picture profile 

Bitstreams conforming to the Main Still Picture profile shall obey the following constraints: 

– The bitstream shall contain only one picture. 

– Sequence parameter sets shall have chroma_format_idc equal to 1 only. 

– Sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only. 

– Sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only. 



   ISO/IEC 23008-2 : 201x (E) 

209 Draft Rec. ITU-T H.HEVC (201x E) 

– Sequence parameter sets shall have sps_max_dec_pic_buffering[ sps_max_sub_layers_minus1 ] equal to 0 only. 

– Log2CtbSizeY shall be in the range from 4 to 6, inclusive. 

– When a picture parameter set has tiles_enabled_flag is equal to 1, it shall have entropy_coding_sync_enabled_flag 
equal to 0. 

– When a picture parameter set has tiles_enabled_flag is equal to 1, ColumnWidthInLumaSamples[ i ] shall be greater 
than or equal to 256 for all values of i in the range of 0 to num_tile_columns_minus1, inclusive, and 
RowHeightInLumaSamples[ j ] shall be greater than or equal to 64 for all values of j in the range of 0 to 
num_tile_rows_minus1, inclusive. 

– The number of times read_bits( 1 ) is called in subclauses 9.2.3.2.2 and 9.2.3.2.3 when parsing coding_tree_unit( ) 
data for any coding tree unit shall be less than or equal to 4 * RawCtuBits / 3. 

– The level constraints specified for the Main Still Picture profile in subclause A.4 shall be fulfilled. 

Conformance of a bitstream to the Main Still Picture profile is indicated by general_profile_idc being equal to 3 or 
general_profile_compatibility_flag[ 3 ] being equal to 1. 

Decoders conforming to the Main Still Picture profile at a specific level (identified by a specific value of 
general_level_idc) shall be capable of decoding all bitstreams for which the all of following conditions apply: 

– general_profile_compatibility_flag[ 3 ] is equal to 1. 

– general_level_idc represents a level lower than or equal to the specified level. 

– general_tier_flag represents a tier lower than or equal to the specified tier. 

A.4 Tiers and levels 

A.4.1 General tier and level limits 

For purposes of comparison of tier capabilities, the tier with general_tier_flag equal to 0 shall be considered to be a lower 
tier than the tier with general_tier_flag equal to 1. 

For purposes of comparison of level capabilities, a particular level shall be considered to be a lower level than some 
other level if the level is listed a higher row of Table A-1 than the other level. [Ed. (GJS): If we follow the guidance in 
the note above, comparison of level values will not necessarily work properly when a reserved level value is used in the 
future.] 

The following is specified for expressing the constraints in this annex. 

– Let access unit n be the n-th access unit in decoding order, with the first access unit being access unit 0.  

– Let picture n be the coded picture or the corresponding decoded picture of access unit n. 

– Let the variable cpbBrVclFactor be equal to 1000. 

– Let the variable cpbBrNalFactor be equal to 1100. 

Bitstreams conforming to a profile at a specified level shall obey the following constraints for each bitstream 
conformance test as specified in Annex C: 

a) PicSizeInSamplesY <= MaxLumaPS, where MaxLumaPS is specified in Table A-1. 

b) pic_width_in_luma_samples <= Sqrt( MaxLumaPS * 8 ) 

c) pic_height_in_luma_samples <= Sqrt( MaxLumaPS * 8 ) 

d) sps_max_dec_pic_buffering[ HighestTid ] <= MaxDpbSize, where MaxDpbSize is derived as specified by the 
following: 
 
  if ( PicSizeInSamplesY <= ( MaxLumaPS >> 2 ) ) 
   MaxDpbSize = Min( 4 * maxDpbPicBuf, 16 ) 
  else if ( PicSizeInSamplesY <= ( MaxLumaPS >> 1 ) ) 
   MaxDpbSize = Min( 2 * maxDpbPicBuf, 16 ) 
  else if ( PicSizeInSamplesY <= ( ( 3 * MaxLumaPS ) >> 2 ) ) 
   MaxDpbSize = Min( (4 * maxDpbPicBuf) / 3,  16 ) 
  else 
   MaxDpbSize = maxDpbPicBuf 
where MaxLumaPS is specified in Table A-1 and maxDpbPicBuf is equal to 6. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 210 

e) For level 5 and higher levels, the variable CtbSizeY shall be equal to 32 or 64. 

f) The value of NumPocTotalCurr shall be less than or equal to 8. 

g) The value of num_tile_columns_minus1 shall be less than MaxTileCols and num_tile_rows_minus1 shall be 
less than MaxTileRows, where MaxTileCols and MaxTileRows are as specified in Table A-1. 

h) For the VCL HRD parameters, CpbSize[ i ] <= cpbBrVclFactor * MaxCPB for at least one value of i in the 
range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where CpbSize[ i ] is specified in subclause E.2.3 based 
on parameters specified in subclause C.1 and MaxCPB is specified in Table A-1 in units of cpbBrVclFactor 
bits. 

i) For the NAL HRD parameters, CpbSize[ i ] <= cpbBrNalFactor * MaxCPB for at least one value of i in the 
range of 0 to cpb_cnt_minus1[ HighestTid ], inclusive, where CpbSize[ i ] is specified in subclause E.2.3 based 
on parameters specified in subclause C.1 and MaxCPB is specified in Table A-1 in units of cpbBrNalFactor 
bits. 

 
Table A-1 specifies the limits for each level. The use of the MinCR parameter column of Table A-1 is specified in 
subclause A.4.2. 

A tier and level to which the bitstream conforms shall be indicated by the syntax element general_level_idc as follows. 
– general_tier_flag equal to 0 indicates conformance to the Main tier, and general_tier_flag equal to 1 indicates 

conformance to the High tier, according to the tier constraint specifications in Table A-1. general_tier_flag shall be 
equal to 0 for levels below level 4 (corresponding to the entries in Table A-1 marked with "-"). 

– level_idc shall be set equal to a value of 30 times the level number specified in Table A-1. 

[Ed. (YK): Setting general_level_idc to 30 times instead of 10 times the level number helps avoid the level 1b problem 
that occurred in AVC. (GJS): However, it only gives us a limited range of higher values.] 
 

Table A-1 – General tier and level limits 

L
evel 

M
ax lum

a picture size 
M

axL
um

aPS (sam
ples) 

M
ax C

PB size 
M

axC
PB

 (1000 
bits) 

M
ax slice segm

ents per picture 
M

axSliceSegm
entsPerPicture 

M
ax # of tile row

s M
axT

ileR
ow

s 

M
ax # of tile colum

ns 
M

axT
ileC

ols 

M
ain tier 

H
igh tier 

1 36 864  350 - 16 1 1 

2 122 880  1 500 - 16 1 1 

2.1 245 760 3 000 - 20 1 1 

3 552 960 6 000 - 30 2 2 

3.1 983 040 10 000 - 40 3 3 

4 2 228 224 12 000 30 000 75 5 5 

4.1 2 228 224 20 000 50 000 75 5 5 

5 8 912 896 25 000 100 000 200 11 10 

5.1 8 912 896 40 000 160 000 200 11 10 

5.2 8 912 896 60 000 240 000 200 11 10 

6 35 651 584 60 000 240 000 600 22 20 

6.1 35 651 584 120 000 480 000 600 22 20 

6.2 35 651 584 240 000 800 000 600 22 20 

Informative subclause A.4.3 shows the effect of these limits on picture rates for several example picture formats. 



   ISO/IEC 23008-2 : 201x (E) 

211 Draft Rec. ITU-T H.HEVC (201x E) 

A.4.2 Profile-specific level limits for the Main and Main 10 profiles 

The following is specified for expressing the constraints in this annex. 

– Let the variable fR be set to 1 ÷ 300. 

Bitstreams conforming to the Main or Main 10 profile at a specified tier and level shall obey the following constraints for 
each bitstream conformance test as specified in Annex C: 

a) The nominal removal time of access unit n (with n > 0) from the CPB as specified in subclause C.2.3, satisfies 
the constraint that tr,n( n ) − tr( n − 1 ) is greater than or equal to Max( PicSizeInSamplesY ÷ MaxLumaSR, fR ) 
for the value of PicSizeInSamplesY of picture n − 1, where MaxLumaSR is the value specified in Table A-2 
that applies to picture n − 1. 

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.3.3, 
satisfies the constraint that ∆to,dpb( n ) >= Max( PicSizeInSamplesY ÷ MaxLumaSR, fR ) for the value of 
PicSizeInSamplesY of picture n, where MaxLumaSR is the value specified in Table A-2 for picture n, provided 
that picture n is a picture that is output and is not the last picture of the bitstream that is output. 

c) The removal time of access unit 0 shall satisfy the constraint that the number of slice segments in picture 0 is 
less than or equal to Min( MaxSliceSegmentsPerPicture * MaxLumaSR / MaxLumaPS * ( tr( 0 ) − tr,n( 0 )) + 
MaxSliceSegmentsPerPicture * PicSizeInSamplesY / MaxLumaPS, MaxSliceSegmentsPerPicture ), for the 
value of PicSizeInSamplesY of picture 0, where MaxSliceSegmentsPerPicture, MaxLumaPS and MaxLumaSR 
are the values specified in Table A-1 and Table A-2, respectively, that apply to picture 0. 

d) The difference between consecutive removal time of access units n and n − 1 (with n > 0) shall satisfy the 
constraint that the number of slice segments in picture n is less than or equal to 
Min( MaxSliceSegmentsPerPicture * MaxLumaSR / MaxLumaPS * ( tr( n ) − tr( n − 1 ) ), 
MaxSliceSegmentsPerPicture ), where MaxSliceSegmentsPerPicture, MaxLumaPS and MaxLumaSR are the 
values specified in Table A-1 and Table A-2, respectively, that apply to picture n. 

e) For the VCL HRD parameters, BitRate[ i ] <= cpbBrVclFactor * MaxBR and 
CpbSize[ i ] <= cpbBrVclFactor * MaxCPB for at least one value of i in the range of 0 to 
cpb_cnt_minus1[ HighestTid ], inclusive, where BitRate[ i ] and CpbSize[ i ] are specified in subclause E.2.3 
based on parameters specified in subclause C.1, MaxCPB is specified in Table A-1 in units of cpbBrVclFactor 
bits, and MaxBR is specified in Table A-2 in units of cpbBrVclFactor bits/s. 

f) For the NAL HRD parameters, BitRate[ i ] <= cpbBrNalFactor * MaxBR and 
CpbSize[ i ] <= cpbBrNalFactor * MaxCPB for at least one value of i, where BitRate[ i ] and CpbSize[ i ] are 
specified in subclause E.2.3 based on parameters specified in subclause C.1, MaxCPB is specified in Table A-1 
in units of cpbBrNalFactor bits, and MaxBR is specified in Table A-2 in units of cpbBrNalFactor bits/s. 

g) The sum of the NumBytesInNALunit variables for access unit 0 is less than or equal to 
1.5 * ( Max( PicSizeInSamplesY, fR * MaxLumaSR ) + MaxLumaSR * ( tr( 0 ) − tr,n( 0 ) )) ÷ MinCR for the 
value of PicSizeInSamplesY of picture 0, where MaxLumaPR and MinCR are the values specified in Table A-1 
that apply to picture 0. 

h) The sum of the NumBytesInNALunit variables for access unit n with n > 0 is less than or equal to 
1.5 * MaxLumaSR * ( tr( n ) − tr( n − 1 ) ) ÷ MinCR, where MaxLumaSR and MinCR are the values specified 
in Table A-1 that apply to picture n. 

i) The removal time of access unit 0 shall satisfy the constraint that the number of tiles in picture 0 is less than or 
equal to Min( MaxTileCols * MaxTileRows * 120 * ( tr( 0 ) − tr,n( 0 )) + 
MaxTileCols * MaxTileRows * PicSizeInSamplesY / MaxLumaPS, MaxTileCols * MaxTileRows ), for the 
value of PicSizeInSamplesY of picture 0, where MaxTileCols and MaxTileRows are the values specified in 
Table A-1 that apply to picture 0. 

j) The difference between consecutive removal time of access units n and n − 1 (with n > 0) shall satisfy the 
constraint that the number of tiles in picture n is less than or equal to 
Min( MaxTileCols * MaxTileRows * 120 * ( tr( n ) − tr( n − 1 )), MaxTileCols * MaxTileRows ), where 
MaxTileCols and MaxTileRows are the values specified in Table A-1 that apply to picture n. 

[Ed. Note (KM): Check against Annex E. (GJS) What needs to be checked?] 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 212 

k)  

Table A-2 – Tier and level limits for the Main and Main 10 profiles 

L
evel 

M
ax lum

a sam
ple rate 

M
axL

um
aSR

 
(sam

ples/sec) 

M
ax bit rate 

M
axB

R
 (1000 

bits/s) 

M
in C

om
pression R

atio 
M

inC
R

 

M
ain tier 

H
igh tier 

1 552 960  128 - 2 

2 3 686 400  1 500 - 2 

2.1 7 372 800 3 000 - 2 

3 16 588 800 6 000 - 2 

3.1 33 177 600 10 000 - 2 

4 66 846 720 12 000 30 000 4 

4.1 133 693 440 20 000 50 000 4 

5 267 386 880 25 000 100 000 6 

5.1 534 773 760 40 000 160 000 8 

5.2 1 069 547 520 60 000 240 000 8 

6 1 069 547 520 60 000 240 000 8 

6.1 2 139 095 040 120 000 480 000 8 

6.2 4 278 190 080 240 000 800 000 6 

 

A.4.3 Effect of level limits on picture rate for the Main and Main 10 profiles (informative) 

This subclause does not form an integral part of this Specification. 

Informative Tables A-3 and A-4 provide examples of maximum picture rates for the Main and Main 10 profiles for 
various picture formats when  MinCbSizeY is equal to 64. 



   ISO/IEC 23008-2 : 201x (E) 

213 Draft Rec. ITU-T H.HEVC (201x E) 

Table A-3 – Maximum picture rates (pictures per second) at level 1 to 4.3 for some example picture sizes 
when MinCbSizeY is equal to 64 

Level:       1 2 2.1 3 3.1 4 4.1 

Max luma picture 
size (samples):       36 864 122 880 245 760 

            
552 960  983 040 2 228 224 2 228 224 

Max luma sample 
rate (samples/sec)       552 960 3 686 400 7 372 800 16 588 800 33 177 600 66 846 720 133 693 440 

Format nickname 
Luma 
width 

Luma 
height 

Luma 
picture size              

SQCIF 128 96 16 384  33.7 225.0 300.0 300.0 300.0 300.0 300.0 

QCIF 176 144 36 864  15.0 100.0 200.0 300.0 300.0 300.0 300.0 

QVGA 320 240 81 920  - 45.0 90.0 202.5 300.0 300.0 300.0 

525 SIF 352 240 98 304  - 37.5 75.0 168.7 300.0 300.0 300.0 

CIF 352 288 122 880  - 30.0 60.0 135.0 270.0 300.0 300.0 

525 HHR 352 480 196 608  - - 37.5 84.3 168.7 300.0 300.0 

625 HHR 352 576 221 184  - - 33.3 75.0 150.0 300.0 300.0 

Q720p 640 360 245 760 - - 30.0 67.5 135.0 272.0 300.0 

VGA 640 480 327 680  - - - 50.6 101.2 204.0 300.0 

525 4SIF 704 480 360 448  - - - 46.0 92.0 185.4 300.0 

525 SD 720 480 393 216  - - - 42.1 84.3 170.0 300.0 

4CIF 704 576 405 504  - - - 40.9 81.8 164.8 300.0 

625 SD 720 576 442 368  - - - 37.5 75.0 151.1 300.0 

480p (16:9) 864 480 458 752  - - - 36.1 72.3 145.7 291.4 

SVGA 800 600 532 480  - - - 31.1 62.3 125.5 251.0 

QHD 960 540 552 960  - - - 30.0 60.0 120.8 241.7 

XGA 1024 768 786 432  - - - - 42.1 85.0 170.0 

720p HD 1280 720 983 040  - - - - 33.7 68.0 136.0 

4VGA 1280 960 1 228 800  - - - - - 54.4 108.8 

SXGA 1280 1024 1 310 720  - - - - - 51.0 102.0 

525 16SIF 1408 960 1 351 680  - - - - - 49.4 98.9 

16CIF 1408 1152 1 622 016  - - - - - 41.2 82.4 

4SVGA 1600 1200 1 945 600  - - - - - 34.3 68.7 

1080 HD 1920 1080 2 088 960  - - - - - 32.0 64.0 

2Kx1K 2048 1024 2 097 152  - - - - - 31.8 63.7 

2Kx1080 2048 1080 2 228 224  - - - - - 30.0 60.0 

4XGA 2048 1536 3 145 728  - - - - - - - 

16VGA 2560 1920 4 915 200  - - - - - - - 

3616x1536 (2.35:1) 3616 1536 5 603 328  - - - - - - - 

3672x1536 (2.39:1) 3680 1536 5 701 632  - - - - - - - 

3840x2160 (4*HD) 3840 2160 8 355 840 - - - - - - - 

4Kx2K 4096 2048 8 388 608  - - - - - - - 

4096x2160 4096 2160 8 912 896  - - - - - - - 

4096x2304 (16:9) 4096 2304 9 437 184  - - - - - - - 

7680x4320 7680 4320 33 423 360  - - - - - - - 

8192x4096 8192 4096 33 554 432 - - - - - - - 

8192x4320 8192 4320 35 651 584 - - - - - - - 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 214 

Table A-4 – Maximum picture rates (pictures per second) at level 5 to 6.2 for some example picture sizes 
when MinCbSizeY is equal to 64 

Level:       5 5.1 5.2 6 6.1 6.2 

Max luma picture 
size (samples):       8 912 896 8 912 896 8 912 896 35 651 584 35 651 584 35 651 584 

Max luma sample 
rate (samples/sec)       267 386 880 534 773 760 1 069 547 520 1 069 547 520 2 139 095 040 4 278 190 080 

Format nickname 
Luma 
width 

Luma 
height 

Luma 
picture size             

SQCIF 128 96 16 384  300.0 300.0 300.0 300.0 300.0 300.0 

QCIF 176 144 36 864  300.0 300.0 300.0 300.0 300.0 300.0 

QVGA 320 240 81 920  300.0 300.0 300.0 300.0 300.0 300.0 

525 SIF 352 240 98 304  300.0 300.0 300.0 300.0 300.0 300.0 

CIF 352 288 122 880  300.0 300.0 300.0 300.0 300.0 300.0 

525 HHR 352 480 196 608  300.0 300.0 300.0 300.0 300.0 300.0 

625 HHR 352 576 221 184  300.0 300.0 300.0 300.0 300.0 300.0 

Q720p 640 360 245 760 300.0 300.0 300.0 300.0 300.0 300.0 

VGA 640 480 327 680  300.0 300.0 300.0 300.0 300.0 300.0 

525 4SIF 704 480 360 448  300.0 300.0 300.0 300.0 300.0 300.0 

525 SD 720 480 393 216  300.0 300.0 300.0 300.0 300.0 300.0 

4CIF 704 576 405 504  300.0 300.0 300.0 300.0 300.0 300.0 

625 SD 720 576 442 368  300.0 300.0 300.0 300.0 300.0 300.0 

480p (16:9) 864 480 458 752  300.0 300.0 300.0 300.0 300.0 300.0 

SVGA 800 600 532 480  300.0 300.0 300.0 300.0 300.0 300.0 

QHD 960 540 552 960  300.0 300.0 300.0 300.0 300.0 300.0 

XGA 1024 768 786 432  300.0 300.0 300.0 300.0 300.0 300.0 

720p HD 1280 720 983 040  272.0 300.0 300.0 300.0 300.0 300.0 

4VGA 1280 960 1 228 800  217.6 300.0 300.0 300.0 300.0 300.0 

SXGA 1280 1024 1 310 720  204.0 300.0 300.0 300.0 300.0 300.0 

525 16SIF 1408 960 1 351 680  197.8 300.0 300.0 300.0 300.0 300.0 

16CIF 1408 1152 1 622 016  164.8 300.0 300.0 300.0 300.0 300.0 

4SVGA 1600 1200 1 945 600  137.4 274.8 300.0 300.0 300.0 300.0 

1080 HD 1920 1080 2 088 960  128.0 256.0 300.0 300.0 300.0 300.0 

2Kx1K 2048 1024 2 097 152  127.5 255.0 300.0 300.0 300.0 300.0 

2Kx1080 2048 1080 2 228 224  120.0 240.0 300.0 300.0 300.0 300.0 

4XGA 2048 1536 3 145 728  85.0 170.0 300.0 300.0 300.0 300.0 

16VGA 2560 1920 4 915 200  54.4 108.8 217.6 217.6 300.0 300.0 

3616x1536 (2.35:1) 3616 1536 5 603 328  47.7 95.4 190.8 190.8 300.0 300.0 

3672x1536 (2.39:1) 3680 1536 5 701 632  46.8 93.7 187.5 187.5 300.0 300.0 

3840x2160 (4*HD) 3840 2160 8 355 840 32.0 64.0 128.0 256.0 300.0 300.0 

4Kx2K 4096 2048 8 388 608  31.8 63.7 127.5 127.5 255.0 300.0 

4096x2160 4096 2160 8 912 896  30.0 60.0 120.0 120.0 240.0 300.0 

4096x2304 (16:9) 4096 2304 9 437 184  - - - 113.3 226.6 300.0 

7680x4320 7680 4320 33 423 360  - - - 32.0 64.0 128.0 

8192x4096 8192 4096 33 554 432 - - - 31.8 63.7 127.5 

8192x4320 8192 4320 35 651 584 - - - 30.0 60.0 120.0 

The following should be noted in regard to the examples shown in Tables A-3 and A-4: 
– This Specification is a variable-picture-size specification. The specific listed picture sizes are illustrative examples 

only. 
– The example luma picture sizes were computed by rounding up the luma width and luma height to multiples of 64 

before computing the product of these quantities, to reflect the potential use of MinCbSizeY equal to 64 for these 
picture sizes, as pic_width_in_luma_samples and pic_height_in_luma_samples are each required to be a multiple of 
MinCbSizeY. For some illustrated values of luma width and luma height, a somewhat higher number of pictures per 
second can be supported when MinCbSizeY is less than 64. 



   ISO/IEC 23008-2 : 201x (E) 

215 Draft Rec. ITU-T H.HEVC (201x E) 

– As used in the examples, "525" refers to typical use for environments using 525 analogue scan lines (of which 
approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue 
scan lines (of which approximately 576 lines contain the visible picture region). 

– XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka 
2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625 
D-1 aka 625 ITU-R BT.601. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 216 

Annex B 
 

Byte stream format 
 

(This annex forms an integral part of this Recommendation | International Standard) 

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or 
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need 
to be identifiable from patterns in the data, such as Rec. ITU-T H.222.0 | ISO/IEC 13818-1 systems or Rec. ITU-T H.320 
systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first 
byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc. 

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit 
syntax structure contains one start code prefix followed by one nal_unit( NumBytesInNALunit ) syntax structure. It may 
(and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or 
more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may 
also contain one or more additional leading_zero_8bits syntax elements. 

B.1 Byte stream NAL unit syntax and semantics 

B.1.1 Byte stream NAL unit syntax 

 
byte_stream_nal_unit( NumBytesInNALunit ) { C Descriptor 
 while( next_bits( 24 )  !=  0x000001 && 
    next_bits( 32 ) != 0x00000001 ) 

  

  leading_zero_8bits  /* equal to 0x00 */  f(8) 
 if( next_bits( 24 ) != 0x000001 )   
  zero_byte  /* equal to 0x00 */  f(8) 
 start_code_prefix_one_3bytes  /* equal to 0x000001 */  f(24) 
 nal_unit( NumBytesInNALunit )   
 while( more_data_in_byte_stream( ) && 
    next_bits( 24 ) != 0x000001 && 
    next_bits( 32 ) != 0x00000001 ) 

  

  trailing_zero_8bits  /* equal to 0x00 */  f(8) 
}   

B.1.2 Byte stream NAL unit semantics 

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the 
byte stream NAL units (see subclause 7.4.1.4). The content of each byte stream NAL unit is associated with the same 
access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.4.3). 

leading_zero_8bits is a byte equal to 0x00. 
NOTE – The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as 
shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the 
four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will be 
considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit. 

zero_byte is a single byte equal to 0x00. 

When one or more of the following conditions are true, the zero_byte syntax element shall be present: 
– The nal_unit_type within the nal_unit( ) is equal to VPS_NUT, SPS_NUT or PPS_NUT, 
– The byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as 

specified by subclause 7.4.1.4.3. 
start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a 
start code prefix. 

trailing_zero_8bits is a byte equal to 0x00. 



   ISO/IEC 23008-2 : 201x (E) 

217 Draft Rec. ITU-T H.HEVC (201x E) 

B.2 Byte stream NAL unit decoding process 
Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax 
structures. 

Output of this process consists of a sequence of NAL unit syntax structures. 

At the beginning of the decoding process, the decoder initializes its current position in the byte stream to the beginning 
of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current 
position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next 
four bytes in the bitstream form the four-byte sequence 0x00000001. 

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax 
structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) 
and the last NAL unit in the byte stream has been decoded: 

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte 
stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte 
stream is set equal to the position of the byte following this discarded byte. 

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and 
discarded and the current position in the byte stream is set equal to the position of the byte following this 
three-byte sequence. 

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte 
stream up to and including the last byte that precedes the location of one or more of the following conditions: 
– A subsequent byte-aligned three-byte sequence equal to 0x000000, 
– A subsequent byte-aligned three-byte sequence equal to 0x000001, 
– The end of the byte stream, as determined by unspecified means. 

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is 
advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit( NumBytesInNALunit ) and is 
decoded using the NAL unit decoding process. 

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified 
means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the 
next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts 
and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward 
one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form 
the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by 
unspecified means). 

B.3 Decoder byte-alignment recovery (informative) 
This subclause does not form an integral part of this Specification. 

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the 
bit-oriented byte alignment detection procedure described in this subclause. 

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the 
positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's byte 
stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 
00000001' (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the 
first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with 
the encoder and positioned at the start of a NAL unit in the byte stream. 

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte 
sequences 0x000001 and 0x000003. 

When the three-byte sequence 0x000001 is detected, this is a start code prefix. 

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be 
discarded as specified in subclause 7.4.1. 

When an error in the bitstream syntax is detected (e.g. a non-zero value of the forbidden_zero_bit or one of the 
three-byte or four-byte sequences that are prohibited in subclause 7.4.1), the decoder may consider the detected condition 
as an indication that byte alignment may have been lost and may discard all bitstream data until the detection of byte 
alignment at a later position in the bitstream as described in this subclause. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 218 

 

Annex C 
 

Hypothetical reference decoder 
 

(This annex forms an integral part of this Recommendation | International Standard) 

C.1 General 
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance. 

Two types of bitstreams or bitstream subsets are subject to HRD conformance checking for this Specification. The first 
type, called a Type I bitstream, is a NAL unit stream containing only the VCL NAL units and NAL units with 
nal_unit_type equal to FD_NUT (filler data NAL units) for all access units in the bitstream. The second type, called a 
Type II bitstream, contains, in addition to the VCL NAL units and filler data NAL units for all access units in the 
bitstream, at least one of the following: 
– additional non-VCL NAL units other than filler data NAL units, 
– all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form 

a byte stream from the NAL unit stream (as specified in Annex B). 

Figure C-1 shows the types of bitstream conformance points checked by the HRD. 

H.264(09)_FC-1

VCL NAL units
Non-VCL NAL units other
than filter data NAL units

Byte stream format
encapsulation
(see Annex B)

Filter data NAL units

 

Figure C-1 – Structure of byte streams and NAL unit streams for HRD conformance checks [Ed. (KJS): Text 
renders poorly on screen – redraw the figure. (BB): change filter data NAL units to filler data NAL units when 

redrawing.] 

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the 
HRD, are specified in the semantic subclauses of clause 7, Annexes D and E. 

Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter sets 
are signalled through the hrd_parameters( ) syntax structure, which may be part of the sequence parameter set syntax 
structure or the video parameter set syntax structure. 

Multiple tests may be needed for checking the conformance of a bitstream, which is referred to as the bitstream under 
test in the following. For each test, the following steps apply in the order listed: 

1. An operation point under test, denoted as TargetOp, is selected. The OpLayerIdSet of TargetOp contains the set 
of nuh_reserved_zero_6bits values present in the bitstream subset associated with TargetOp, which is a subset 
of nuh_reserved_zero_6bits values present in the bitstream under test. The OpTid of TargetOp is equal to the 
highest TemporalId present in the bitstream subset associated with TargetOp. 

2. TargetDecLayerIdSet is set to OpLayerIdSet of TargetOp, and HighestTid is set to OpTid of TargetOp, and 
BitstreamToDecode is set to the bitstream subset associated with TargetOp, i.e. the output of the sub-bitstream 



   ISO/IEC 23008-2 : 201x (E) 

219 Draft Rec. ITU-T H.HEVC (201x E) 

extraction process as specified in subclause 10.1 with the bitstream under test, HighestTid and 
TargetDecLayerIdSet as inputs. 

3. The hrd_parameters( ) syntax structure and the sub_layer_hrd_parameters( ) syntax structure applicable to 
TargetOp are selected. If TargetDecLayerIdSet contains all nuh_reserved_zero_6bits values present in the 
bitstream under test, the hrd_parameters( ) syntax structure in the active sequence parameter set (or provided 
through an external means not specified in this Specification) is selected. Otherwise, the hrd_parameters( ) 
syntax structure in the active video parameter set (or provided through some external means not specified in this 
Specification) that applies to TargetOp is selected. Within the selected hrd_parameters( ) syntax structure, if 
BitstreamToDecode is a Type I bitstream, the sub_layer_hrd_parameters( HighestTid ) syntax structure that 
immediately follows the condition "if( vcl_hrd_parameters_present_flag )" is selected and the variable 
NalHrdModeFlag is set equal to 0; otherwise (BitstreamToDecode is a Type II bitstream), the 
sub_layer_hrd_parameters( HighestTid ) syntax structure that immediately follows either the condition 
"if( vcl_hrd_parameters_present_flag )" (in this case the variable NalHrdModeFlag is set equal to 0) or the 
condition "if( nal_hrd_parameters_present_flag )" (in this case the variable NalHrdModeFlag is set equal to 1) 
is selected. When BitstreamToDecode is a Type II bitstream and NalHrdModeFlag is equal to 0, all non-VLC 
NAL units except for filler data NAL units are discarded from BitstreamToDecode, and the remaining bitstream 
is assigned to BitstreamToDecode. 
 
[Ed. (BB): Better define two sets of syntax elements one with "nal_" and one with "vcl_" prefix, instead of 
using the variable NalHrdModeFlag.] 

4. An access unit associated with a buffering period SEI message (present in BitstreamToDecode in a scalable 
nesting SEI message or available through external means not specified in this Specification) applicable to 
TargetOp is selected as the HRD initialization point and referred to as access unit 0. 

5. For each access unit in BitstreamToDecode starting from access unit 0, the buffering period SEI message 
(present in BitstreamToDecode in a scalable nesting SEI message or available through external means not 
specified in this Specification) that is associated with the access unit and applies to TargetOp is selected, the 
picture timing SEI message (present in BitstreamToDecode in a scalable nesting SEI message or available 
through external means not specified in this Specification) that is associated with the access unit and applies to 
TargetOp is selected, and when SubPicCpbFlag is equal to 1 and sub_pic_cpb_params_in_pic_timing_sei_flag 
is equal to 0, the decoding unit information SEI messages (present in BitstreamToDecode in a scalable nesting 
SEI message or available through external means not specified in this Specification) that are associated with 
decoding units in the access unit and apply to TargetOp are selected. 

6. A value of SchedSelIdx is selected. The selected SchedSelIdx shall be in the range of 0 to 
cpb_cnt_minus1[ HighestTid ], inclusive, where cpb_cnt_minus1[ HighestTid ] is found in the 
sub_layer_hrd_parameters( HighestTid ) syntax structure as selected above. 

7. When the coded picture in access unit 0 has nal_unit_type equal to CRA_NUT or BLA_W_LP, and 
rap_cpb_params_present_flag in the selected buffering period SEI message is equal to 1, either of the following 
applies for selection of the initial CPB removal delay and delay offset. 
– The default initial CPB removal delay and delay offset represented by 

initial_cpb_removal_delay[ SchedSelIdx ] and initial_cpb_removal_offset[ SchedSelIdx ] are selected 
depending on NalHrdModeFlag as specified under step 3 above, the variable DefaultInitCpbParamsFlag is 
set equal to 1. 

– The alternative initial CPB removal delay and delay offset represented by 
initial_alt_cpb_removal_delay[ SchedSelIdx ] and initial_alt_cpb_removal_offset[ SchedSelIdx ] selected 
depending on NalHrdModeFlag as specified under step 3 above, the variable DefaultInitCpbParamsFlag is 
set equal to 0, and the RASL access units associated with access unit 0 are discarded from 
BitstreamToDecode and the remaining bitstream is still assigned to BitstreamToDecode. 

8. When sub_pic_cpb_params_present_flag in the selected hrd_parameters( ) syntax structure is equal to 1, the 
CPB is scheduled to operate either at the access unit level (in which case the variable SubPicCpbFlag is set 
equal to 0) or at the sub-picture level (in which case the variable SubPicCpbFlag is set equal to 1). 

For each operation point under test, the number of bitstream conformance tests to be performed is equal to 
n0 * n1 * ( n2 * 2 + n3) *n4, where the values of n0, n1, n2, n3, and n4 are specified as follows: 
– n0 is derived as follows. 

– If BitstreamToDecode is a Type I bitstream, n0 is equal to 1. 
– Otherwise (BitstreamToDecode is a Type II bitstream), n0 is equal to 2. 

– n1 is equal to cpb_cnt_minus1[ HighestTid ] + 1. 
– n2 is the number of access units in BitstreamToDecode that each is associated with a buffering period SEI message 

applicable to TargetOp and for each of which both of the following conditions are true: 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 220 

– nal_unit_type is equal to CRA_NUT or BLA_W_LP for the VCL NAL units; 
– The associated buffering period SEI message applicable to TargetOp has rap_cpb_params_present_flag 

equal to 1. 
– n3 is the number of access units in BitstreamToDecode BitstreamToDecode that each is associated with a buffering 

period SEI message applicable to TargetOp and for each of which one or both of the following conditions are true: 
– nal_unit_type is equal to neither CRA_NUT nor BLA_W_LP for the VCL NAL units; 
– The associated buffering period SEI message applicable to TargetOp has rap_cpb_params_present_flag 

equal to 0. 
– n4 is derived as follows: 

– If sub_pic_cpb_params_present_flag in the selected hrd_parameters( ) syntax structure is equal to 0, n4 is 
equal to 1; 

– Otherwise, n4 is equal to 2. 

When BitstreamToDecode is a Type II bitstream, if the sub_layer_hrd_parameters( HighestTid ) syntax structure that 
immediately follows the condition "if( vcl_hrd_parameters_present_flag )" is selected, the test is conducted at the Type I 
conformance point shown in Figure C-1, and only VCL and filler data NAL units are counted for the input bit rate and 
CPB storage; otherwise (the sub_layer_hrd_parameters( HighestTid ) syntax structure that immediately follows the 
condition "if( nal_hrd_parameters_present_flag )" is selected, the test is conducted at the Type II conformance point 
shown in Figure C-1, and all NAL units (of a Type II NAL unit stream) or all bytes (of a byte stream) are counted for the 
input bit rate and CPB storage. 

NOTE 1 – NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C-1 
are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C-1 for the same values 
of InitCpbRemovalDelay[ SchedSelIdx ], BitRate[ SchedSelIdx ], and CpbSize[ SchedSelIdx ] for the VBR case 
(cbr_flag[ SchedSelIdx ] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow 
into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the 
time a next picture is scheduled to begin to arrive. For example, when decoding a coded video sequence conforming to one or 
more of the profiles specified in Annex A using the decoding process specified in clauses 2-9, when NAL HRD parameters are 
provided for the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile 
conformance in item f) of subclause A.4.2 but also fall within the bounds set for VCL HRD parameters for profile conformance in 
item e) of subclause A.4.2, conformance of the VCL HRD for the Type I conformance point is also assured to fall within the 
bounds of item e) of subclause A.4.2. 

All video parameter sets, sequence parameter sets and picture parameter sets referred to in the VCL NAL units, and the 
corresponding buffering period, picture timing and decoding unit information SEI messages shall be conveyed to the 
HRD, in a timely manner, either in the bitstream (by non-VCL NAL units), or by other means not specified in this 
Specification. 

In Annexes C, D, and E, the specification for "presence" of non-VCL NAL units that contain video parameter sets, 
sequence parameter sets, picture parameter sets. buffering period SEI messages, picture timing SEI messages, or 
decoding unit information SEI messages is also satisfied when those NAL units (or just some of them) are conveyed to 
decoders (or to the HRD) by other means not specified by this Specification. For the purpose of counting bits, only the 
appropriate bits that are actually present in the bitstream are counted. 

NOTE 2 – As an example, synchronization of such a non-VCL NAL unit, conveyed by means other than presence in the bitstream, 
with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the 
non-VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream. 

When the content of such a non-VCL NAL unit is conveyed for the application by some means other than presence 
within the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax as 
specified in this Specification. 

NOTE 3 – When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the 
requirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present in 
the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data is 
supplied by some other means not specified in this Specification. 

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB), 
and output cropping as shown in Figure C-2. 



   ISO/IEC 23008-2 : 201x (E) 

221 Draft Rec. ITU-T H.HEVC (201x E) 

Output cropping

Coded picture
buffer (CPB)

Decoding process
(instantaneous)

Reference
fields or frames

Decoded picture
buffer (DPB)

Fields of frames

Fields of frames

Access units

Type I or type II bitstream

Output cropped fields of frames
 

Figure C-2 – HRD buffer model 

[Ed. (JS): Remove "fields" from figure. (DF) Rename "frames" to "pictures"? (GJS): Yes, and I believe our current 
model now always stores the current picture, so the bypass around the DPB should be removed. (YK): And, "Access 
units" -> "decoding units"; "Reference fields or frames" -> "reference pictures"; "Fields of frames" (first instance) -> 
"decoded decoding units"; "Fields of frames" (second instance) -> "decoded pictures"; "Output cropped fields of frames" 
-> "Output cropped pictures"; (MH): There should be two arrows out from DPB, Output cropping (for pics with 
PicOutputFlag equal to 1) and Removal (for pics with PicOutputFlag equal to 0). (GJS): Be careful with the term 
"reference pictures". I personally don't see a need for an arrow to show removal of pictures with PicOutputFlag equal to 
0. Arrows are to show what comes out of a process, and those just don't come out. It may be confusing to show them 
coming out, unless the arrow leads to a picture of a trash can.] 

For each bitstream conformance test, the CPB size (number of bits) is CpbSize[ SchedSelIdx ] as specified in 
subclause E.2.3, where SchedSelIdx and the HRD parameters are specified above in this subclause. The DPB size 
(number of picture storage buffers) is sps_max_dec_pic_buffering[ HighestTid ]. 

The variable SubPicCpbPreferredFlag is either specified by external means, or when not specified by external means, set 
to 0. 

When the value of the variable SubPicCpbFlag has not been set by step 8 above in this subclause, it is derived as follows: 

SubPicCpbFlag = SubPicCpbPreferredFlag  &&  sub_pic_cpb_params_present_flag (C-1) 

If SubPicCpbFlag is equal to 0, the CPB operates at access unit level and each decoding unit is an access unit. Otherwise 
the CPB operates at sub-picture level and each decoding unit is a subset of an access unit. 

The HRD operates as follows. Data associated with decoding units that flow into the CPB according to a specified arrival 
schedule are delivered by the HSS. The data associated with each decoding unit are removed and decoded 
instantaneously by the instantaneous decoding process at the CPB removal time of the decoding unit. Each decoded 
picture is placed in the DPB. A decoded picture is removed from the DPB when it becomes no longer needed for inter-
prediction reference and no longer needed for output. 

For each bitstream conformance test, the operation of the CPB is specified in subclause C.2, the instantaneous decoder 
operation is specified in clauses 2-9, the operation of the DPB is specified in subclause C.3, and the output cropping is 
specified in subclause C.3.3 and subclause .C.5.3. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 222 

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and 
buffer sizes is specified in subclauses E.1.2 and E.2.2. The HRD is initialized as specified by the buffering period SEI 
message specified in subclauses D.1.2 and D.2.2. The removal timing of decoding units from the CPB and output timing 
of decoded pictures from the DPB are specified in the picture timing SEI message and/or in the decoding unit 
information SEI message specified in subclauses D.1.3, D.1.21, D.2.3, and D.2.21. All timing information relating to a 
specific decoding unit shall arrive prior to the CPB removal time of the decoding unit. 

The requirements for bitstream conformance are specified in subclause C.4, and the HRD is used to check conformance 
of bitstreams as specified above in this subclause and  to check conformance of decoders as specified in subclause C.5. 

NOTE 4 – While conformance is guaranteed under the assumption that all picture-rates and clocks used to generate the bitstream 
match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value. 

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the 
number of bits in a CPB just prior to or after removal of a decoding unit is not necessarily an integer. 

The variable tc is derived as follows and is called a clock tick: 

tc = num_units_in_tick ÷ time_scale  (C-1) 

The variable tc_sub is derived as follows and is called a sub-picture clock tick: 

tc_sub = tc ÷ ( tick_divisor_minus2 + 2 )  (C-2) 

[Ed. (GJS): Instead of sending num_units_in_tick and requiring it to be an integer multiple of the tick divisor, it would 
make more sense to send the tick divisor and a multiplier m use that to compute num_units_in_tick = m times the tick 
divisor.] 

The following is specified for expressing the constraints in this annex: 

– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0 (i.e. the 0-th 
access unit). 

– Let picture n be the coded picture or the decoded picture of access unit n. 

– Let decoding unit m be the m-th decoding unit in decoding order with the first decoding unit being decoding unit 0. 
[Ed. (KJS): Numbering relative to beginning of bitstream or access unit? (GJS): I think it's relative to the first decoding 
unit in the access unit that initializes the HRD.] 

C.2 Operation of coded picture buffer (CPB) 

C.2.1 General 

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the 
Type I and Type II conformance points shown in Figure C-1, and the set of CPB parameters is selected as specified in 
subclause C.1. 

C.2.2 Timing of decoding unit  arrival 

The HRD is initialized at access unit 0 selected as specified in subclause C.1. Prior to HRD initialization, the CPB is 
empty. 

NOTE 1 – After initialization, the HRD is not initialized again by subsequent buffering period SEI messages. 

Each access unit is referred to as access unit n, where the number n identifies the particular access unit. The access unit 
that is associated with the buffering period SEI message that initializes the CPB is referred to as access unit 0. The value 
of n is incremented by 1 for each subsequent access unit in decoding order. 

Each decoding unit is referred to as decoding unit m, where the number m identifies the particular decoding unit. The 
first decoding unit in decoding order in access unit 0 is referred to as decoding unit 0. The value of m is incremented by 1 
for each subsequent decoding unit in decoding order. 

When sub_pic_cpb_params_present_flag is equal to 1, the following process in this subclause is invoked first with the 
variable subPicParamsFlag set equal to 0 and a decoding unit being considered as an access unit during the invocation of 
the process, for derivation of the initial and final arrival times for access unit n, and then invoked with subPicParamsFlag 
set equal to 1 and a decoding unit being considered as a subset of an access unit during the invocation of the process, for 
derivation of the initial and final arrival times for the decoding units in access unit n. 

The variables InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are derived as 
follows: 



   ISO/IEC 23008-2 : 201x (E) 

223 Draft Rec. ITU-T H.HEVC (201x E) 

– If one or more of the following conditions are true, InitCpbRemovalDelay[ SchedSelIdx ] and 
InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to the values of the buffering period SEI message syntax 
elements initial_alt_cpb_removal_delay[ SchedSelIdx ] and initial_alt_cpb_removal_offset[ SchedSelIdx ], 
respectively, which are selected depending on NalHrdModeFlag as specified in subclause C.1. 

– Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_DLP or 
BLA_N_LP, and the value of rap_cpb_params_present_flag of the buffering period SEI message is equal to 1. 

– Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_LP or is a 
CRA access unit, and the value of rap_cpb_params_present_flag of the buffering period SEI message is equal 
to 1, and one or more of the following conditions are true. 
– UseAltCpbParamsFlag is equal to 1 
– DefaultInitCpbParamsFlag is equal to 0 

– The values of sub_pic_cpb_params_present_flag and subPicParamsFlag are both equal to 1. 
NOTE 2 – The values of sub_pic_cpb_params_present_flag and rap_cpb_params_present_flag cannot be both equal to 1. 

– Otherwise, InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to 
the values of the buffering period SEI message syntax elements initial_cpb_removal_delay[ SchedSelIdx ] and 
initial_cpb_removal_offset[ SchedSelIdx ], respectively, which are selected depending on NalHrdModeFlag as 
specified in subclause C.1. 

The time at which the first bit of decoding unit m begins to enter the CPB is referred to as the initial arrival time tai( m ). 

The initial arrival time of decoding unit m is derived as follows. 

– If the decoding unit is decoding unit 0 (i.e. m = 0), tai( 0 ) = 0, 

– Otherwise (the decoding unit is decoding unit m with m > 0), the following applies: 

– If cbr_flag[ SchedSelIdx ] is equal to 1, the initial arrival time for decoding unit m, is equal to the final arrival 
time (which is derived below) of decoding unit m − 1, i.e. 

tai( m ) = taf( m − 1 )  (C-3) 

– Otherwise (cbr_flag[ SchedSelIdx ] is equal to 0), the initial arrival time for decoding unit m is derived by 

tai( m ) = Max( taf( m − 1 ), tai,earliest( m ) )  (C-4) 

where tai,earliest( m ) is derived as follows. 

– If decoding unit m is not the first decoding unit of a subsequent buffering period, tai,earliest( m ) is derived as 

tai,earliest( m ) = tr,n( m ) − ( InitCpbRemovalDelay[ SchedSelIdx ] + 
 InitCpbRemovalDelayOffset[ SchedSelIdx ] ) ÷ 90000 (C-5) 

with tr,n( m ) being the nominal removal time of decoding unit m from the CPB as specified in 
subclause C.2.3. 

– Otherwise (decoding unit m is the first decoding unit of a subsequent buffering period), tai,earliest( m ) is 
derived as 

tai,earliest( m ) = tr,n( m ) − ( InitCpbRemovalDelay[ SchedSelIdx ] ÷ 90000 ) (C-6) 

The final arrival time for decoding unit m is derived by 

taf( m ) = tai( m ) + b( m ) ÷ BitRate[ SchedSelIdx ]  (C-7) 

where b( m ) is the size in bits of decoding unit m, counting the bits of the VCL NAL units and the filler data NAL units 
for the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the Type I 
and Type II conformance points are as shown in Figure C-1. 

The values of SchedSelIdx, BitRate[ SchedSelIdx ], and CpbSize[ SchedSelIdx ] are constrained as follows. 

– If the content of the selected hrd_parameters( ) syntax structures for the access unit containing decoding unit m and 
the previous access unit differ, the HSS selects a value SchedSelIdx1 of SchedSelIdx from among the values of 
SchedSelIdx provided in the selected hrd_parameters( ) syntax structures for the access unit containing decoding 
unit m that results in a BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] for the access unit containing decoding 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 224 

unit m. The value of BitRate[ SchedSelIdx1 ] or CpbSize[ SchedSelIdx1 ] may differ from the value of 
BitRate[ SchedSelIdx0 ] or CpbSize[ SchedSelIdx0 ] for the value SchedSelIdx0 of SchedSelIdx that was in use for 
the previous access unit. 

– Otherwise, the HSS continues to operate with the previous values of SchedSelIdx, BitRate[ SchedSelIdx ] and 
CpbSize[ SchedSelIdx ]. 

When the HSS selects values of BitRate[ SchedSelIdx ] or CpbSize[ SchedSelIdx ] that differ from those of the previous 
access unit, the following applies. 

– The variable BitRate[ SchedSelIdx ] comes into effect at time tai( m ) 

– The variable CpbSize[ SchedSelIdx ] comes into effect as follows. 

– If the new value of CpbSize[ SchedSelIdx ] is greater than the old CPB size, it comes into effect at time 
tai( m ). 

– Otherwise, the new value of CpbSize[ SchedSelIdx ] comes into effect at the CPB removal time of the last 
decoding unit of the access unit containing decoding unit m. 

NOTE 3 – When SubPicCpbFlag is equal to 0, each decoding unit is an access unit, hence the initial and final CPB arrival times of 
access unit n are the initial and final CPB arrival times of decoding unit n. 

C.2.3 Timing of decoding unit removal and decoding of decoding unit 

The variables InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are derived as 
follows. 

– If one or more of the following conditions are true, InitCpbRemovalDelay[ SchedSelIdx ] and 
InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to the values of the buffering period SEI message syntax 
elements initial_alt_cpb_removal_delay[ SchedSelIdx ] and initial_alt_cpb_removal_offset[ SchedSelIdx ], 
respectively, which are selected depending on NalHrdModeFlag as specified in subclause C.1. 

– Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_DLP or 
BLA_N_LP, and the value of rap_cpb_params_present_flag of the buffering period SEI message is equal to 1; 

– Access unit 0 is a BLA access unit for which the coded picture has nal_unit_type equal to BLA_W_LP or is a 
CRA access unit, and the value of rap_cpb_params_present_flag of the buffering period SEI message is equal 
to 1, and one or more of the following condtions are true; 
– UseAltCpbParamsFlag is equal to 1; 
– DefaultInitCpbParamsFlag is equal to 0. 

– Otherwise, InitCpbRemovalDelay[ SchedSelIdx ] and InitCpbRemovalDelayOffset[ SchedSelIdx ] are set equal to 
the values of the buffering period SEI message syntax elements initial_cpb_removal_delay[ SchedSelIdx ] and 
initial_cpb_removal_offset[ SchedSelIdx ], respectively, which are selected depending on NalHrdModeFlag as 
specified in subclause C.1. 

The nominal removal time of the access unit n from the CPB is specified as follows. 

– If access unit n is the access unit with n being equal to 0 (the access unit that initializes the HRD), the nominal 
removal time of the access unit from the CPB is specified by 

tr,n( 0 ) = InitCpbRemovalDelay[ SchedSelIdx ] ÷ 90000 (C-8) 

– Otherwise, the following applies. 

– When access unit n is the first access unit of a buffering period that does not initialize the HRD, the nominal 
removal time of the access unit n from the CPB is specified by 

tr,n( n ) = tr,n( nb ) + tc * ( au_cpb_removal_delay_minus1( n ) + 1 ) (C-9) 

where tr,n( nb ) is the nominal removal time of the first access unit of the previous buffering period, and 
au_cpb_removal_delay_minus1( n ) is the value of au_cpb_removal_delay_minus1 in the picture timing SEI 
message, selected as specified in subclause C.1, associated with access unit n. 

– When access unit n is the first access unit of a buffering period, nb is set equal to n at the nominal removal time 
tr,n( n ) of the access unit n. 

– When access unit n is not the first access unit of a buffering period, tr,n( n ) is given by Equation C-9, where 
tr,n( nb ) is the nominal removal time of the first access unit of the current buffering period. 



   ISO/IEC 23008-2 : 201x (E) 

225 Draft Rec. ITU-T H.HEVC (201x E) 

When sub_pic_cpb_params_present_flag is equal to 1, the following applies. 

– The variable CpbRemovalDelay( m ) is derived as follows. 

– If sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 0, the variable CpbRemovalDelay( m ) is set to the 
value of du_spt_cpb_removal_delay in the decoding unit information SEI message, selected as specified in 
subclause C.1, associated with decoding unit m. 

– Otherwise, if du_common_cpb_removal_delay_flag is equal to 0, the variable CpbRemovalDelay( m ) is set to 
the value of du_cpb_removal_delay_minus1[ i ] + 1 for decoding unit m in the picture timing SEI message, 
selected as specified in subclause C.1, associated with access unit n, where the value of i is 0 for the first 
num_nalus_in_du_minus1[ 0 ] + 1 consecutive decoding units in the access unit that contains decoding unit m, 
the value of i is 1 for the subsequent num_nalus_in_du_minus1[ 1 ] + 1 decoding units in the same access unit, 
the value of i is 2 for the subsequent num_nalus_in_du_minus1[ 2 ] + 1 decoding units in the same access unit, 
etc. 

– Otherwise, the variable CpbRemovalDelay( m ) is set to the value of 
du_common_cpb_removal_delay_minus1 + 1 in the picture timing SEI message, selected as specified in 
subclause C.1, associated with access unit n. 

– The nominal removal time of decoding unit m from the CPB is specified as follows, where tr,n( n ) is the nominal 
removal time of access unit n. 

– If decoding unit m is the last decoding unit in access unit n, the nominal removal time of decoding unit m 
tr,n( m ) is set to tr,n( n ). 

– Otherwise, (i.e. decoding unit m is not the last decoding unit in access unit n), the nominal removal time of 
decoding unit m tr,n( m ) is derived as follows. 

if( sub_pic_cpb_params_in_pic_timing_sei_flag ) 
 tr,n( m ) = tr,n( m + 1 ) − tc_sub * CpbRemovalDelay( m ) (C-10) 
else 
 tr,n( m ) = tr,n( n ) − tc_sub * CpbRemovalDelay( m ) 

The removal time of access unit n from the CPB is specified as follows, where taf( m ) and tr,n( m ) are the final arrival 
time and nominal removal time of the last decoding unit in access unit n. 

if( !low_delay_hrd_flag  | |  tr,n( n ) >= taf( n ) ) 
 tr( n ) = tr,n( n ) 
else if( sub_pic_cpb_params_present_flag )  (C-11) 
 tr( n ) = tr,n( n ) + Max( ( tc_sub * Ceil( ( taf( m ) − tr,n( m ) ) ÷ tc_sub ) ), 
    ( tc * Ceil( ( taf( n ) − tr,n( n ) ) ÷ tc ) ) ) 
else 
 tr( n ) = tr,n( n ) + tc * Ceil( ( taf( n ) − tr,n( n ) ) ÷ tc) 

When SubPicCpbFlag is equal to 1, the removal time of decoding unit m from the CPB is specified as follows. 

– If low_delay_hrd_flag is equal to 0 or tr,n( m ) >= taf( m ), the removal time of decoding unit m is specified by 

tr( m ) = tr,n( m )  (C-12) 

– Otherwise, if decoding unit m is not the last decoding unit of access unit n, the removal time of decoding unit m is 
specified by 

tr( m ) = tr,n( m ) + tc_sub * Ceil( ( taf( m ) − tr,n( m ) ) ÷ tc_sub ) (C-13) 

– Otherwise, if decoding unit m is the last decoding unit of access unit n, the removal time of decoding unit m is 
specified by 

tr( m ) = tr,n( n )  (C-14) 

NOTE – When low_delay_hrd_flag is equal to 1 and tr,n( m ) < taf( m ), the size of decoding unit m, b( m ), is so large that it 
prevents removal at the nominal removal time. 

At the CPB removal time of decoding unit m, the decoding unit is instantaneously decoded. 

Picture n is considered as decoded when the last decoding unit of the picture is decoded. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 226 

C.3 Operation of the decoded picture buffer (DPB) 

C.3.1 General 

The specifications in this subclause apply independently to each set of DPB parameters selected as specified in 
subclause C.1. 

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers may contain a decoded 
picture that is marked as "used for reference" or is held for future output. Prior to initialization, the DPB is empty (the 
DPB fullness is set to zero). The following steps of the subclauses of this subclause happen in the sequence as listed 
below. 

C.3.2 Removal of pictures from the DPB 

The removal of pictures from the DPB before decoding of the current picture (but after parsing the slice header of the 
first slice of the current picture) happens instantaneously at the CPB removal time of the first decoding unit of access 
unit n (containing the current picture) and proceeds as follows. 

The decoding process for reference picture set as specified in subclause 8.3.2 is invoked. 

When the current picture is an IDR or a BLA picture, the following applies: 
1. When the IDR or BLA picture is not the first picture decoded and the value of pic_width_in_luma_samples or 

pic_height_in_luma_samples or sps_max_dec_pic_buffering[ HighestTid ] derived from the active sequence 
parameter set is different from the value of pic_width_in_luma_samples or pic_height_in_luma_samples or 
sps_max_dec_pic_buffering[ HighestTid ] derived from the sequence parameter set that was active for the 
preceding picture, respectively, no_output_of_prior_pics_flag is inferred to be equal to 1 by the HRD, 
regardless of the actual value of no_output_of_prior_pics_flag. 

NOTE – Decoder implementations should try to handle picture or DPB size changes more gracefully than the HRD in regard to 
changes in pic_width_in_luma_samples, pic_height_in_luma_samples, or sps_max_dec_pic_buffering[ HighestTid ]. 

2. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all picture storage buffers in the 
DPB are emptied without output of the pictures they contain, and DPB fullness is set to 0. 

When both of the following conditions are true for any pictures k in the DPB, all such pictures k in the DPB are removed 
from the DPB. 

– picture k is marked as "unused for reference" 

– picture k has PicOutputFlag equal to 0 or its DPB output time is less than or equal to the CPB removal time of 
the first decoding unit (denoted as decoding unit m) of the current picture n; i.e. to,dpb( k ) <= tr( m ) 

When a picture is removed from the DPB, the DPB fullness is decremented by one. 

C.3.3 Picture output 

The following happens instantaneously at the CPB removal time of access unit n, tr( n ). 

When picture n has PicOutputFlag equal to 1, its DPB output time to,dpb( n ) is derived by 

to,dpb( n ) = tr( n ) + tc * pic_dpb_output_delay( n )  (C-15) 

where pic_dpb_output_delay( n ) is the value of pic_dpb_output_delay specified in the picture timing SEI message 
associated with access unit n. 

The output of the current picture is specified as follows. 

– If PicOutputFlag is equal to 1 and to,dpb( n ) = tr( n ), the current picture is output. 

– Otherwise, if PicOutputFlag is equal to 0, the current picture is not output, but will be stored in the DPB as specified 
in subclause C.3.4. 

– Otherwise (PicOutputFlag is equal to 1 and to,dpb( n ) > tr( n ) ), the current picture is output later and will be stored 
in the DPB (as specified in subclause C.3.4) and is output at time to,dpb( n ) unless indicated not to be output by the 
decoding or inference of no_output_of_prior_pics_flag equal to 1 at a time that precedes to,dpb( n ). 

When output, the picture shall be cropped, using the conformance cropping window specified in the active sequence 
parameter set. 

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of ∆to,dpb( n ) 
is defined as: 



   ISO/IEC 23008-2 : 201x (E) 

227 Draft Rec. ITU-T H.HEVC (201x E) 

∆to,dpb( n ) = to,dpb( nn ) − to,dpb( n )  (C-16) 

where nn indicates the picture that follows picture n in output order and has PicOutputFlag equal to 1. 

C.3.4 Current decoded picture marking and storage 

The following happens instantaneously at the CPB removal time of access unit n, tr( n ). 

The current decoded picture is stored in the DPB in an empty picture storage buffer, the DPB fullness is incremented by 
one, and the current picture is marked as "used for short-term reference". 

C.4 Bitstream conformance 
A bitstream of coded data conforming to this Specification shall fulfil all requirements specified in this subclause. 

The bitstream shall be constructed according to the syntax, semantics, and constraints specified in this Specification 
outside of this annex. 

The first coded picture in a bitstream shall be a RAP picture, i.e. an IDR picture or a CRA picture or a BLA picture. 

The bitstream is tested by the HRD for conformance as specified below: 

For each current picture that is decoded, let the variables maxPicOrderCnt and minPicOrderCnt be set equal to the 
maximum and the minimum, respectively, of the PicOrderCntVal values of the following pictures: 

– The current picture. 

– The previous picture in decoding order that has TemporalId equal to 0. 

– The short-term reference pictures in the reference picture set of the current picture. 

– All pictures n that have PicOutputFlag equal to 1 and tr( n ) < tr( currPic ) and to,dpb( n )  >=  tr( currPic ), where 
currPic is the current picture. 

All of the following conditions shall be fulfilled for each of the bitstream conformance tests. 

1. For each access unit n, with n>0, associated with a buffering period SEI message, with ∆tg,90( n ) specified by 

∆tg,90( n ) = 90000 * ( tr,n( n ) − taf( n − 1 ) )  (C-17) 

the value of InitCpbRemovalDelay[ SchedSelIdx ] shall be constrained as follows. 
– If cbr_flag[ SchedSelIdx ] is equal to 0, 

InitCpbRemovalDelay[ SchedSelIdx ] <= Ceil( ∆tg,90( n ) ) (C-18) 

– Otherwise (cbr_flag[ SchedSelIdx ] is equal to 1), 

Floor( ∆tg,90( n ) ) <= InitCpbRemovalDelay[ SchedSelIdx ] <= Ceil( ∆tg,90( n ) ) (C-19) 

NOTE 4 – The exact number of bits in the CPB at the removal time of each picture may depend on which buffering 
period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified 
constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the 
HRD may be initialized at any one of the buffering period SEI messages. 

2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB 
size. The CPB shall never overflow. 

3. A CPB underflow is specified as the condition in which the nominal CPB removal time of decoding unit m 
tr,n( m ) is less than the final CPB arrival time of decoding unit m taf( m ) for at least one value of m. When 
low_delay_hrd_flag is equal to 0, the CPB shall never underflow. 

4. When low_delay_hrd_flag is equal to 1, a CPB underflow may occur at decoding unit m. In this case, the final 
CPB arrival time of access unit n containing decoding unit m taf( n ) shall be greater than the nominal CPB 
removal time of access unit n containing decoding unit m tr,n( n ). [Ed. (GJS): Does "shall" make sense here?] 

5. The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall 
satisfy the constraints on tr,n( n ) and tr( n ) expressed in subclauses A.4.1 through A.4.2. 

6. For each current picture that is decoded, after invocation of the process for removal of pictures from the DPB as 
specified in subclause C.3.2, the number of decoded pictures in the DPB, including all pictures n that are marked 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 228 

as "used for reference" or that have PicOutputFlag equal to 1 and tr( n ) < tr( currPic ), where currPic is the current 
picture, shall be less than or equal to Max( 0, sps_max_dec_pic_buffering[ HighestTid ] − 1). 

7. All reference pictures shall be present in the DPB when needed for prediction. Each picture that has 
PicOutputFlag equal to 1 shall be present in the DPB at its DPB output time unless it is removed from the DPB 
before its output time by one of the processes specified in subclause C.3. 

8. For each current picture that is decoded, the he value of maxPicOrderCnt − minPicOrderCnt shall be less than 
MaxPicOrderCntLsb / 2. 

9. The value of ∆to,dpb( n ) as given by Equation C-16, which is the difference between the output time of a picture 
and that of the first picture following it in output order and having PicOutputFlag equal to 1, shall satisfy the 
constraint expressed in subclause A.4.1 for the profile, tier and level specified in the bitstream using the decoding 
process specified in clauses 2–9. 

10. For each current picture, when sub_pic_cpb_params_in_pic_timing_sei_flag is equal to 1, the following 
relationship shall apply, where tr,n( n ) is the nominal CPB removal time of the current access unit and tr,n( m ) is 
the nominal CPB removal time of the first decoding unit in the current access unit in decoding order. 

tr,n( n ) − tr,n( m )  = =  tc_sub * ∑
=

+
inus1ng_units_mnum_decodi

0i
1_minus1[i]oval_delaydu_cpb_rem  (C-20) 

C.5 Decoder conformance 

C.5.1 General 

A decoder conforming to this Specification shall fulfil all requirements specified in this subclause. 

A decoder claiming conformance to a specific profile, tier and level shall be able to successfully decode all bitstreams 
that conform to the bitstream conformance requirements specified in subclause C.4, in the manner specified in Annex A, 
provided that all video parameter sets, sequence parameter sets and picture parameter sets referred to in the VCL NAL 
units, and appropriate buffering period and picture timing SEI messages are conveyed to the decoder, in a timely manner, 
either in the bitstream (by non-VCL NAL units), or by external means not specified by this Specification. 

When a bitstream contains syntax elements that have values that are specified as reserved and it is specified that decoders 
shall ignore values of the syntax elements or NAL units containing the syntax elements having the reserved values, and 
the bitstream is otherwise conforming to this Specification, a conforming decoder shall decode the bitstream in the same 
manner as it would decode a conforming bitstream and shall ignore the syntax elements or the NAL units containing the 
syntax elements having the reserved values as specified. 

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order 
conformance. 

To check conformance of a decoder, test bitstreams conforming to the claimed profile, tier and level, as specified by 
subclause C.4 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test 
(DUT). All pictures output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the 
values of all samples that are output by the DUT for the corresponding picture shall be equal to the values of the samples 
output by the HRD. [Ed. (YK): So a conforming decoder is allowed to output some arbitrary junk pictures in addition to 
those pictures output by the HRD. Should it actually be further restricted that a conforming decoder may output some 
additional pictures, but only those included in the bitstream, and decoded and output using the same decoding process 
and output process for the pictures that are also output by the HRD? (GJS) Yes, that it what is intended, and the text 
should be modified to express that – and it should only be allowed to output those pictures that have PicOutputFlag equal 
to 1 and only those corresponding to the applicable (parsed or inferred) value of no_output_of_prior_pics_flag.] 

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only 
from the subset of values of SchedSelIdx for which the bit rate and CPB size are restricted as specified in Annex A for 
the specified profile, tier and level, or with "interpolated" delivery schedules as specified below for which the bit rate and 
CPB size are restricted as specified in Annex A. The same delivery schedule is used for both the HRD and the DUT. 

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minus1[ HighestTid ] 
greater than 0, the decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an 
"interpolated" delivery schedule specified as having peak bit rate r, CPB size c( r ), and initial CPB removal delay 
( f( r ) ÷ r ) as follows: 

α = ( r − BitRate[ SchedSelIdx − 1 ] ) ÷ ( BitRate[ SchedSelIdx ] − BitRate[ SchedSelIdx − 1 ] ), (C-21) 

c( r ) = α * CpbSize[ SchedSelIdx ] + (1 − α) * CpbSize[ SchedSelIdx−1 ], (C-22) 



   ISO/IEC 23008-2 : 201x (E) 

229 Draft Rec. ITU-T H.HEVC (201x E) 

f( r ) = α ∗ InitCpbRemovalDelay[ SchedSelIdx ] * BitRate[ SchedSelIdx ] +  
  ( 1 − α ) ∗ InitCpbRemovalDelay[ SchedSelIdx − 1 ] * BitRate[ SchedSelIdx − 1 ] (C-23) 

for any SchedSelIdx > 0 and r such that BitRate[ SchedSelIdx − 1 ] <= r <= BitRate[ SchedSelIdx ] such that r and c( r ) 
are within the limits as specified in Annex A for the maximum bit rate and buffer size for the specified profile, tier and 
level. 

NOTE 1 – InitCpbRemovalDelay[ SchedSelIdx ] can be different from one buffering period to another and have to be re-
calculated. 

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery time 
of the first bit) of picture output is the same for both the HRD and the DUT up to a fixed delay. 

For output order decoder conformance, the following applies. 

– The HSS delivers the bitstream BitstreamToDecode to the DUT "by demand" from the DUT, meaning that the HSS 
delivers bits (in decoding order) only when the DUT requires more bits to proceed with its processing. 

NOTE 2 – This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest decoding 
unit. 

– A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the 
schedules specified in the bitstream BitstreamToDecode such that the bit rate and CPB size are restricted as 
specified in Annex A. The order of pictures output shall be the same for both the HRD and the DUT. 

– The HRD CPB size is given by CpbSize[ SchedSelIdx ] as specified in subclause E.2.3, where SchedSelIdx and the 
HRD parameters are selected as specified in subclause C.1. The DPB size is given by 
sps_max_dec_pic_buffering[ HighestTid ]. Removal time from the CPB for the HRD is the final bit arrival time and 
decoding is immediate. The operation of the DPB of this HRD is as described in subclauses C.5.2 through C.5.4. 

C.5.2 Operation of the output order DPB 

The decoded picture buffer contains picture storage buffers. Each of the picture storage buffers contains a decoded 
picture that is marked as "used for reference" or is held for future output. At HRD initialization, the DPB is empty. The 
following steps happen in the order as listed below. 

C.5.3 Output and removal of pictures from the DPB 

The output and removal of pictures from the DPB before decoding of the current picture (but after parsing the slice 
header of the first slice of the current picture) happens instantaneously when the first decoding unit of the access unit 
containing the current picture is removed from the CPB and proceeds as follows. 

The decoding process for reference picture set as specified in subclause 8.3.2 is invoked. 

– If the current picture is an IDR or a BLA picture, the following applies. 
1. When the IDR or BLA picture is not the first picture decoded and the value of pic_width_in_luma_samples or 

pic_height_in_luma_samples or sps_max_dec_pic_buffering[ HighestTid ] for any possible value of i derived 
from the active sequence parameter set is different from the value of pic_width_in_luma_samples or 
pic_height_in_luma_samples or sps_max_dec_pic_buffering[ HighestTid ] derived from the sequence 
parameter set that was active for the preceding picture, respectively, no_output_of_prior_pics_flag is inferred 
to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag. 

NOTE – Decoder implementations should try to handle picture or DPB size changes more gracefully than the HRD in 
regard to changes in pic_width_in_luma_samples, pic_height_in_luma_samples or 
sps_max_dec_pic_buffering[ HighestTid ]. 

2. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all picture storage buffers in 
the DPB are emptied without output of the pictures they contain. 

3. When no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, picture storage 
buffers containing a picture that is marked as "not needed for output" and "unused for reference" are emptied 
(without output), and all non-empty picture storage buffers in the DPB are emptied by repeatedly invoking the 
"bumping" process specified in subclause C.5.3.1. 

– Otherwise (the current picture is not an IDR or a BLA picture), picture storage buffers containing a picture which 
are marked as "not needed for output" and "unused for reference" are emptied (without output). When one or more 
of the following conditions are true, the "bumping" process specified in subclause C.5.3.1 is invoked repeatedly 
until there is an empty picture storage buffer to store the current decoded picture. 

1. The number of pictures in the DPB that are marked as "needed for output" is greater than 
sps_max_num_reorder_pics[ HighestTid ], 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 230 

2. The number of pictures in the DPB is equal to sps_max_dec_pic_buffering[ HighestTid]. 

C.5.3.1 "Bumping" process 

The "bumping" process is invoked in the following cases. 
– The current picture is an IDR or a BLA picture and no_output_of_prior_pics_flag is not equal to 1 and is not 

inferred to be equal to 1, as specified in subclause C.5.3. 
– The current picture is neither an IDR picture nor a BLA picture, and the number of pictures in the DPB that are 

marked as "needed for output" is greater than sps_max_num_reorder_pics[ HighestTid ], as specified in 
subclause C.5.3.  

– The current picture is neither an IDR picture nor a BLA picture, and the number of pictures in the DPB is equal to 
sps_max_dec_pic_buffering[ HighestTid ], as specified in subclause C.5.3. 

The "bumping" process consists of the following ordered steps: 
1. The picture that is first for output is selected as the one having the smallest value of PicOrderCntVal of all 

pictures in the DPB marked as "needed for output". 
2. The picture is cropped, using the conformance cropping window specified in the active sequence parameter set 

for the picture, the cropped picture is output, and the picture is marked as "not needed for output". 
3. If the picture storage buffer that included the picture that was cropped and output contains a picture marked as 

"unused for reference", the picture storage buffer is emptied. 

C.5.4 Picture decoding, marking and storage 

The following happens instantaneously when the last decoding unit of access unit n containing the current picture is 
removed from the CPB. 

The current picture is considered as decoded after the last decoding unit of the picture is decoded. The current decoded 
picture is stored in an empty picture storage buffer in the DPB, and the following applies. 
– If the current decoded picture has PicOutputFlag equal to 1, it is marked as "needed for output". 
– Otherwise (the current decoded picture has PicOutputFlag equal to 0), it is marked as "not needed for output". 

The current decoded picture is marked as "used for short-term reference". 

 



   ISO/IEC 23008-2 : 201x (E) 

231 Draft Rec. ITU-T H.HEVC (201x E) 

Annex D 
 

Supplemental enhancement information 
 

(This annex forms an integral part of this Recommendation | International Standard) 

This annex specifies syntax and semantics for SEI message payloads. 

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not required 
for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to process 
this information for output order conformance to this Specification (see Annex C for the specification of conformance). 
Some SEI message information is required to check bitstream conformance and for output timing decoder conformance. 

In subclause C.5.2, specification for presence of SEI messages are also satisfied when those messages (or some subset of 
them) are conveyed to decoders (or to the HRD) by other means not specified by this Specification. When present in the 
bitstream, SEI messages shall obey the syntax and semantics specified in subclause 7.3.7 and this annex. When the 
content of an SEI message is conveyed for the application by some means other than presence within the bitstream, the 
representation of the content of the SEI message is not required to use the same syntax specified in this annex. For the 
purpose of counting bits, only the appropriate bits that are actually present in the bitstream are counted. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 232 

D.1 SEI payload syntax 

D.1.1 General SEI message syntax 

 
sei_payload( payloadType, payloadSize ) { Descriptor 
 if( nal_unit_type  = =  PREFIX_SEI_NUT )  
  if( payloadType  = =  0 )  
   buffering_period( payloadSize )  
  else if( payloadType  = =  1 )  
   pic_timing( payloadSize )  
  else if( payloadType  = =  2 )  
   pan_scan_rect( payloadSize )  
  else if( payloadType  = =  3 )  
   filler_payload( payloadSize )  
  else if( payloadType  = =  4 )  
   user_data_registered_itu_t_t35( payloadSize )  
  else if( payloadType  = =  5 )  
   user_data_unregistered( payloadSize )  
  else if( payloadType  = =  6 )  
   recovery_point( payloadSize )  
  else if( payloadType  = =  9 )  
   scene_info( payloadSize )  
  else if( payloadType  = =  15 )  
   full_frame_snapshot( payloadSize )  
  else if( payloadType  = =  16 )  
   progressive_refinement_segment_start( payloadSize )  
  else if( payloadType  = =  17 )  
   progressive_refinement_segment_end( payloadSize )  
  else if( payloadType  = =  19 )  
   film_grain_characteristics( payloadSize )  
  else if( payloadType  = =  22 )  
   post_filter_hint( payloadSize )  
  else if( payloadType  = =  23 )  
   tone_mapping_info( payloadSize )  
  else if( payloadType  = =  45 )  
   frame_packing_arrangement( payloadSize )  
  else if( payloadType  = =  47 ) [Ed. (GJS): Check numbering w.r.t. AVC.]  
   display_orientation( payloadSize )  
  else if( payloadType  = =  128 )  
   sop_description( payloadSize )  
  else if( payloadType  = =  129 )  
   active_parameter_sets( payloadSize )  
  else if( payloadType  = =  130 )  
   decoding_unit_info( payloadSize )  
  else if( payloadType  = =  131 )  
   tl0_index( payloadSize )  
  else if( payloadType  = =  133 )  
   scalable_nesting( payloadSize )  
  else if( payloadType  = =  134 )  



   ISO/IEC 23008-2 : 201x (E) 

233 Draft Rec. ITU-T H.HEVC (201x E) 

   region_refresh_info( payloadSize )  
  else  
   reserved_sei_message( payloadSize )  
 else /* nal_unit_type  = =  SUFFIX_SEI_NUT */  
  if( payloadType  = =  132)  
   decoded_picture_hash( payloadSize )  
  else  
   reserved_sei_message( payloadSize )  
 if( more_data_in_payload( ) ) {  
  if( payload_extension_present( ) )  
   reserved_payload_extension_data u(v) 
  payload_bit_equal_to_one /* equal to 1 */ f(1) 
  while( !byte_aligned( ) )  
   payload_bit_equal_to_zero /* equal to 0 */ f(1) 
 }  
}  

 

D.1.2 Buffering period SEI message syntax 

 
buffering_period( payloadSize ) { Descriptor 
 bp_seq_parameter_set_id ue(v) 
 if( !sub_pic_cpb_params_present_flag )  
  rap_cpb_params_present_flag u(1) 
 if( NalHrdBpPresentFlag ) {  
  for( i = 0; i <= CpbCnt; i++ ) {  
   initial_cpb_removal_delay[ i ] u(v) 
   initial_cpb_removal_offset[ i ] u(v) 
   if( sub_pic_cpb_params_present_flag  | | 
     rap_cpb_params_present_flag ) { 

 

    initial_alt_cpb_removal_delay[ i ] u(v) 
    initial_alt_cpb_removal_offset[ i ] u(v) 
   }  
  }  
 }  
 if( VclHrdBpPresentFlag ) {  
  for( i = 0; i <= CpbCnt; i++ ) {  
   initial_cpb_removal_delay[ i ] u(v) 
   initial_cpb_removal_offset[ i ] u(v) 
   if( sub_pic_cpb_params_present_flag  | | 
     rap_cpb_params_present_flag) { 

 

    initial_alt_cpb_removal_delay[ i ] u(v) 
    initial_alt_cpb_removal_offset[ i ] u(v) 
   }  
  }  
 }  
}  



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 234 

 

D.1.3 Picture timing SEI message syntax 

 
pic_timing( payloadSize ) { Descriptor 
 if( frame_field_info_present_flag ) {  
  pic_struct u(4) 
  progressive_source_idc u(2) 
  duplicate_flag u(1) 
 }  
 au_cpb_removal_delay_minus1 u(v) 
 pic_dpb_output_delay u(v) 
 if( sub_pic_cpb_params_present_flag  && 
   sub_pic_cpb_params_in_pic_timing_sei_flag ) { 

 

  num_decoding_units_minus1 ue(v) 
  du_common_cpb_removal_delay_flag u(1) 
  if( du_common_cpb_removal_delay_flag )  
   du_common_cpb_removal_delay_minus1 u(v) 
  for( i = 0; i <= num_decoding_units_minus1; i++ ) {  
   num_nalus_in_du_minus1[ i ] ue(v) 
   if( !du_common_cpb_removal_delay_flag  && 
     i < num_decoding_units_minus1 ) 

 

    du_cpb_removal_delay_minus1[ i ] u(v) 
  }  
 }  
}  

 

D.1.4 Pan-scan rectangle SEI message syntax 

The syntax table is specified in subclause D.1.3 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.5 Filler payload SEI message syntax 

The syntax table is specified in subclause D.1.4 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.6 User data registered by Rec. ITU-T T.35 SEI message syntax 

The syntax table is specified in subclause D.1.5 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.7 User data unregistered SEI message syntax 

The syntax table is specified in subclause D.1.6 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.8 Recovery point SEI message syntax 

 
recovery_point( payloadSize ) { Descriptor 
 recovery_poc_cnt se(v) 
 exact_match_flag u(1) 
 broken_link_flag u(1) 
}  

[Ed. (YK): The broken_link_flag is not useful anymore after the introduction of BLA pictures, and therefore should be 
removed from the recovery point SEI message. (GJS): It seems potentially redundant, but perhaps not harmful to keep.] 

 



   ISO/IEC 23008-2 : 201x (E) 

235 Draft Rec. ITU-T H.HEVC (201x E) 

D.1.9 Scene information SEI message syntax 

The syntax table is specified in subclause D.1.10 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.10 Full-frame snapshot SEI message syntax 

The syntax table is specified in subclause D.1.16 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.11 Progressive refinement segment start SEI message syntax 

The syntax table is specified in subclause D.1.17 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.12 Progressive refinement segment end SEI message syntax 

The syntax table is specified in subclause D.1.18 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.13 Film grain characteristics SEI message syntax 

The syntax table is specified in subclause D.1.20 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 

D.1.14 Post-filter hint SEI message syntax 

The syntax table is specified in subclause D.1.23 of Rec. ITU-T H.264 | ISO/IEC 14496-10. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 236 

D.1.15 Tone mapping information SEI message syntax 

 
tone_mapping_info( payloadSize ) { Descriptor 
 tone_map_id ue(v) 
 tone_map_cancel_flag u(1) 
 if( !tone_map_cancel_flag ) {  
  tone_map_repetition_period ue(v) 
  coded_data_bit_depth u(8) 
  target_bit_depth u(8) 
  model_id ue(v) 
  if( model_id  = =  0 ) {  
   min_value u(32) 
   max_value u(32) 
  } else if( model_id  = =  1 ) {  
   sigmoid_midpoint u(32) 
   sigmoid_width u(32) 
  } else if( model_id   = =  2 )  
   for( i = 0; i < ( 1  <<  target_bit_depth ); i++ )  
    start_of_coded_interval[ i ] u(v) 
  else if( model_id  = =  3 ) {  
   num_pivots u(16) 
   for( i = 0; i < num_pivots; i++ ) {  
    coded_pivot_value[ i ] u(v) 
    target_pivot_value[ i ] u(v) 
   }  
  } else if( model_id = = 4 ) {  
   camera_iso_sensitivity_idc u(8) 
   if( camera_iso_sensitivity_idc  = =  Extended_ISO )  
    camera_iso_sensitivity u(v) 
   exposure_index_idc u(8) 
   if( exposure_index_idc  = =  Extended_ISO )  
    exposure_index_rating u(v) 
   sign_image_exposure_value u(1) 
   image_exposure_value0 u(v) 
   image_exposure_value1 u(v) 
   ref_screen_lw u(v) 
   max_image_white_level u(v) 
   black_level_code_value u(8) 
   white_level_code_value u(8) 
   max_white_level_code_value u(8) 
  }  
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

237 Draft Rec. ITU-T H.HEVC (201x E) 

D.1.16 Frame packing arrangement SEI message syntax 

 
frame_packing_arrangement( payloadSize ) { Descriptor 
 frame_packing_arrangement_id ue(v) 
 frame_packing_arrangement_cancel_flag u(1) 
 if( !frame_packing_arrangement_cancel_flag ) {  
  frame_packing_arrangement_type u(7) 
  quincunx_sampling_flag u(1) 
  content_interpretation_type u(6) 
  spatial_flipping_flag u(1) 
  frame0_flipped_flag u(1) 
  field_views_flag u(1) 
  current_frame_is_frame0_flag u(1) 
  frame0_self_contained_flag u(1) 
  frame1_self_contained_flag u(1) 
  if ( !quincunx_sampling_flag  && 
   frame_packing_arrangement_type != 5 ) { 

 

   frame0_grid_position_x u(4) 
   frame0_grid_position_y u(4) 
   frame1_grid_position_x u(4) 
   frame1_grid_position_y u(4) 
  }  
  frame_packing_arrangement_reserved_byte u(8) 
  frame_packing_arrangement_repetition_period ue(v) 
 }  
 upsampled_aspect_ratio_flag u(1) 
}  

 

D.1.17 Display orientation SEI message syntax 

 
display_orientation( payloadSize ) { Descriptor 
 display_orientation_cancel_flag u(1) 
 if( !display_orientation_cancel_flag ) {  
  hor_flip u(1) 
  ver_flip u(1) 
  anticlockwise_rotation u(16) 
  display_orientation_repetition_period ue(v) 
  display_orientation_extension_flag u(1) 
 }  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 238 

D.1.18 SOP description SEI message syntax 

 
sop_description( payloadSize ) { Descriptor 
 sop_seq_parameter_set_id ue(v) 
 num_pics_in_sop_minus1 ue(v) 
 for( i = 0; i <= num_pics_in_sop_minus1; i++ ) {  
  sop_desc_nal_ref_flag[ i ] u(1) 
  sop_desc_temporal_id[ i ] u(3) 
  st_rps_idx[ i ] ue(v) 
  if( i > 0 )  
   poc_delta[ i ] se(v) 
 }  
}  

 

D.1.19 Decoded picture hash SEI message syntax 

 
decoded_picture_hash( payloadSize ) { Descriptor 
 hash_type u(8) 
 for( cIdx = 0; cIdx < ( chroma_format_idc  = =  0 ? 1 : 3 ); cIdx++ )  
  if( hash_type  = =  0 )  
   for( i = 0; i < 16; i++)  
    picture_md5[ cIdx ][ i ] b(8) 
  else if( hash_type  = =  1 )  
   picture_crc[ cIdx ] u(16) 
  else if( hash_type  = =  2 )  
   picture_checksum[ cIdx ] u(32) 
}  

 

D.1.20 Active parameter sets SEI message syntax 

 
active_parameter_sets( payloadSize ) { Descriptor 
 active_vps_id u(4) 
 num_sps_ids_minus1 ue(v) 
 for( i = 0; i  <=  num_sps_ids_minus1; i++ )  
  active_seq_parameter_set_id[ i ] ue(v) 
}  

 

D.1.21 Decoding unit information SEI message syntax 

 
decoding_unit_info( payloadSize ) { Descriptor 
 decoding_unit_idx ue(v) 
 if( !sub_pic_cpb_params_in_pic_timing_sei_flag )  
 du_spt_cpb_removal_delay u(v) 
}  

 



   ISO/IEC 23008-2 : 201x (E) 

239 Draft Rec. ITU-T H.HEVC (201x E) 

D.1.22 Temporal level zero index SEI message syntax 

 
tl0_index( payloadSize ) { Descriptor 
 tl0_idx u(8) 
 rap_idx u(8) 
}  

 

D.1.23 Scalable nesting SEI message syntax 

 
scalable_nesting( payloadSize ) { Descriptor 
 bitstream_subset_flag u(1) 
 nesting_op_flag u(1) 
 if( nesting_op_flag ) {  
  default_op_flag u(1) 
  nesting_num_ops_minus1 ue(v) 
  for( i = default_op_flag; i <= nesting_num_ops_minus1; i++ ) {  
   nesting_max_temporal_id_plus1[ i ] u(3) 
   nesting_op_idx[ i ] ue(v) 
  }  
 } else {  
  all_layers_flag u(1) 
  if( !all_layers_flag ) {  
   nesting_no_op_max_temporal_id_plus1 u(3) 
   nesting_num_layers_minus1 ue(v) 
   for( i = 0; i <= nesting_num_layers_minus1; i++ )  
    nesting_layer_id[ i ] u(6) 
  }  
 }  
 while( !byte_aligned( ) )  
  nesting_zero_bit /* equal to 0 */ u(1) 
 do  
  sei_message( )  
 while( more_rbsp_data( ) )  
}  

 

D.1.24 Region refresh information SEI message syntax 

 
region_refresh_info( payloadSize ) { Descriptor 
 refreshed_region_flag u(1) 
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 240 

D.1.25 Reserved SEI message syntax 

 
reserved_sei_message( payloadSize ) { Descriptor 
 for( i = 0; i < payloadSize; i++ )  
  reserved_sei_message_payload_byte b(8) 
}  

 

D.2 SEI payload semantics 

D.2.1 General SEI payload semantics 

reserved_payload_extension_data shall not be present in bitstreams conforming to this version of this Specification. 
However, decoders conforming to this version of this Specification shall ignore the presence and value of 
reserved_payload_extension_data. When present, the length, in bits, of reserved_payload_extension_data is equal to 
8 * payloadSize − nEarlierBits − nPayloadZeroBits − 1, where nEarlierBits is the number of bits in the SEI payload 
syntax structure that precede the reserved_payload_extension_data syntax element, and nPayloadZeroBits is the number 
of payload_bit_equal_to_zero syntax elements at the end of the SEI payload syntax structure. 

payload_bit_equal_to_one shall be equal to 1. 

payload_bit_equal_to_zero shall be equal to 0. 

The semantics and persistence scope for each SEI message are specified in the semantics specification for each particular 
SEI message. 

NOTE – Persistence information for prefix and suffix SEI messages is informatively summarized in Tables D-1 and D-2. 



   ISO/IEC 23008-2 : 201x (E) 

241 Draft Rec. ITU-T H.HEVC (201x E) 

Table D-1 – Persistence scope of prefix SEI messages (informative) 

SEI message Persistence scope 
buffering period The remainder of the bitstream 
Picture timing The access unit containing the SEI message 

Pan-scan rectangle Specified by the syntax of the SEI message 
Filler payload The access unit containing the SEI message 

User data registered Unspecified 
User data unregistered Unspecified 

Recovery point Specified by the syntax of the SEI message 

Scene information 

The access unit containing the SEI message and up to but not 
including the next access unit, in decoding order, that contains a 

scene information SEI message [Ed. (GJS): Seems incorrect. 
That's a big problem for a splicer if it reaches beyond the end of 

the coded video sequence.] 
Full-frame snapshot The access unit containing the SEI message 

Progressive refinement segment start Specified by the syntax of the SEI message 
Progressive refinement segment end The access unit containing the SEI message 

Film grain characteristics Specified by the syntax of the SEI message 

Post-filter hint The access unit containing the SEI message [Ed. (GJS): Current 
semantics of this message are vague about scope.] 

Tone mapping information Specified by the syntax of the SEI message 
Frame packing arrangement Specified by the syntax of the SEI message 

Display orientation Specified by the syntax of the SEI message 

Structure of pictures The SOP [Ed. (GJS): Undefined term] containing the access unit 
that contains the SEI message 

Field indication The access unit containing the SEI message 
[Ed. (GJS): Check this.] 

Active parameter sets The coded video sequence containing the SEI message 
Decoding unit information The decoding unit containing the SEI message 
Temporal level zero index The access unit containing the SEI message 

Scalable nesting 
Depending on the nested SEI messages. Each nested SEI 

message has the same persistence scope as if the SEI message 
was not nested 

Region refresh information 

The set of VCL NAL units within the access unit starting from 
the VCL NAL unit following the SEI message up to but not 

including the VCL NAL unit following the next SEI NAL unit 
containing a region refresh information SEI message (if any) 

 

Table D-2 – Persistence scope of suffix SEI messages (informative) 

SEI message Persistence scope 
Decoded picture hash The access unit containing the SEI message 

 

D.2.2 Buffering period SEI message semantics 

A buffering period SEI message provides initial CPB removal delay and initial CPB removal delay offset information for 
initialization of the HRD at the position of the associated access unit in decoding order. 

The following applies for the buffering period SEI message syntax and semantics: 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 242 

– The syntax elements initial_cpb_removal_delay_length_minus1 and sub_pic_cpb_params_present_flag, and the 
variables NalHrdBpPresentFlag and VclHrdBpPresentFlag are found in or derived from syntax elements found in 
the hrd_parameters( ) syntax structure that is applicable to at least one of the operation points to which the buffering 
period SEI message applies. 

– The variables CpbSize[ i ], BitRate[ i ] and CpbCnt are derived from syntax elements found in the 
sub_layer_hrd_parameters( ) syntax structure that is applicable to at least one of the operation points to which the 
buffering period SEI message applies. 

– Any two operation points that the buffering period SEI message applies to having different OpTid values tIdA and 
tIdB indicate that the values of cpb_cnt_minus1[ tIdA ] and cpb_cnt_minus1[ tIdB ] coded in the hrd_parameters( ) 
syntax structure(s) applicable to the two operation points are identical. 

– Any two operation points that the buffering period SEI message applies to having different OpLayerIdSet values 
layerIdSetA and layerIdSetB indicate that the values of nal_hrd_parameters_present_flag and 
vcl_hrd_parameters_present_flag, respectively, for the two hrd_parameters( ) syntax structures applicable to the two 
operation points are identical. 

– The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the operation 
points to which the buffering period SEI message applies. 

If NalHrdBpPresentFlag or VclHrdBpPresentFlag are equal to 1, a buffering period SEI message applicable to the 
specified operation points may be associated with any access unit in the coded video sequence, and a buffering period 
SEI message applicable to the specified operation points shall be associated with each RAP access unit, and with each 
access unit associated with a recovery point SEI message. Otherwise (NalHrdBpPresentFlag and VclHrdBpPresentFlag 
are both equal to 0), no access unit in the coded video sequence shall be associated with a buffering period SEI message 
applicable to the specified operation points. 

NOTE 1 – For some applications, frequent presence of buffering period SEI messages may be desirable. 

When an SEI NAL unit that contains a buffering period SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

[Ed. (YK): This restriction should only apply to SEI NAL units with nuh_reserved_zero_6bits equal to 0. Since 
nuh_reserved_zero_6bits is required to be equal to 0 in this version of this Specification, now we don't have to mention 
nuh_reserved_zero_6bits equal to 0, but it may be safer if we do say it now, though it is not needed. Similar for other SEI 
messages below.] 

[Ed. (KJS): Consider parsing dependency of this message on SPS/VUI.] 

bp_seq_parameter_set_id specifies the sps_seq_parameter_set_id for the sequence parameter set that is active for the 
coded picture associated with the buffering period SEI message. The value of bp_seq_parameter_set_id shall be equal to 
the value of pps_seq_parameter_set_id in the picture parameter set referenced by the slice_pic_parameter_set_id of the 
slice segment headers of the coded picture associated with the buffering period SEI message. The value of 
bp_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

rap_cpb_params_present_flag equal to 1 specifies the presence of the initial_alt_cpb_removal_delay[ i ] and 
initial_alt_cpb_removal_offset[ i ] syntax elements. When not present, the value of rap_cpb_params_present_flag is 
inferred to be equal to 0. When the associated picture is neither a CRA picture nor a BLA picture, the value of 
rap_cpb_params_present_flag shall be equal to 0. 

initial_cpb_removal_delay[ i ] and initial_alt_cpb_removal_delay[ i ] specify the default and the alternative initial 
CPB removal delays, respectively, for the i-th CPB. The syntax elements have a length in bits given by 
initial_cpb_removal_delay_length_minus1 + 1, and are in units of a 90 kHz clock. The values of the syntax elements 
shall not be equal to 0 and shall be less than or equal to 90000 * ( CpbSize[ i ] ÷ BitRate[ i ] ), the time-equivalent of the 
CPB size in 90 kHz clock units. 

initial_cpb_removal_offset[ i ] and initial_alt_cpb_removal_offset[ i ] specify the default and the alternative initial 
CPB removal offsets, respectively, for the i-th CPB to specify the initial delivery time of coded data units to the CPB. 
The syntax elements have a length in bits given by initial_cpb_removal_delay_length_minus1 + 1 and are in units of a 90 
kHz clock. These syntax elements are not used by decoders and may be needed only for the delivery scheduler (HSS) 
specified in Annex C. 

NOTE 2 – Encoders are recommended not to include the alternative initial CPB removal delay and delay offset parameters in 
buffering period SEI messages associated with CRA or BLA pictures that have associated RASL and RADL pictures that are 
interleaved in decoding order. 

Over the entire coded video sequence, the sum of initial_cpb_removal_delay[ i ] and initial_cpb_removal_offset[ i ] shall 
be constant for each value of i, and the sum of initial_alt_cpb_removal_delay[ i ] and initial_alt_cpb_removal_offset[ i ] 
shall be constant for each value of i. 



   ISO/IEC 23008-2 : 201x (E) 

243 Draft Rec. ITU-T H.HEVC (201x E) 

D.2.3 Picture timing SEI message semantics 

The picture timing SEI message provides CPB removal delay and DPB output delay information for the access unit 
associated with the SEI message. 

The following applies for the picture timing SEI message syntax and semantics: 

– The syntax elements and variable sub_pic_cpb_params_present_flag, sub_pic_cpb_params_in_pic_timing_sei_flag, 
au_cpb_removal_delay_length_minus1, dpb_output_delay_length_minus1, du_cpb_removal_delay_length_minus1, 
and CpbDpbDelaysPresentFlag are found in or derived from syntax elements found in the hrd_parameters( ) syntax 
structure that is applicable to at least one of the operation points to which the picture timing SEI message applies. 

– The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the operation 
points to which the picture timing SEI message applies. 

NOTE 1 – The syntax of the picture timing SEI message is dependent on the content of the hrd_parameters( ) syntax structures 
applicable to the operation points to which the picture timing SEI message applies. These hrd_parameters( ) syntax structures are 
in the video parameter set and/or the sequence parameter set that are active for the coded picture associated with the picture timing 
SEI message. When the picture timing SEI message is associated with a CRA access unit that is the first access unit in the 
bitstream, an IDR access unit, or a BLA access unit, unless it is preceded by a buffering period SEI message within the same 
access unit, the activation of the video parameter set and the sequence parameter set (and, for IDR or BLA pictures that are not the 
first picture in the bitstream, the determination that the coded picture is an IDR picture or a BLA picture) does not occur until the 
decoding of the first coded slice segment NAL unit of the coded picture. Since the coded slice segment NAL unit of the coded 
picture follows the picture timing SEI message in NAL unit order, there may be cases in which it is necessary for a decoder to 
store the RBSP containing the picture timing SEI message until determining the active video parameter set and the active sequence 
parameter set for the coded picture, and then perform the parsing of the picture timing SEI message. 

The presence of picture timing SEI message in the bitstream is specified as follows. 

– If frame_field_info_present_flag is equal to 1 or CpbDpbDelaysPresentFlag is equal to 1, one picture timing SEI 
message applicable to the specified operation points shall be associated with every access unit of the coded video 
sequence. 

– Otherwise, no access unit of the coded video sequence shall be associated with picture timing SEI messages 
applicable to the specified operation points. 

When an SEI NAL unit that contains a picture timing SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

pic_struct indicates whether a picture should be displayed as a frame or as one or more fields and, for the display of 
frames when fixed_pic_rate_within_cvs_flag is equal to 1, may indicate a frame doubling or tripling repetition period for 
displays that use a fixed frame refresh interval equal to ∆te,dpb( n ) as given by Equation E-51. The interpretation of 
pic_struct is specified by Table D-3. 

When present, it is a requirement of bitstream conformance that the value of pic_struct shall be constrained such that 
exactly one of the following conditions is true: 

– The value of pic_struct is equal to 0, 7, or 8 for all pictures in the coded video sequence. 

– The value of pic_struct is equal to 1, 2, 9, 10, 11, or 12 for all pictures in the coded video sequence. 

– The value of pic_struct shall be equal to 3, 4, 5, or 6 for all pictures in the coded video sequence. 

When fixed_pic_rate_within_cvs_flag is equal to 1, frame doubling is indicated by pic_struct equal to 7, which indicates 
that the frame should be displayed two times consecutively on displays with a frame refresh interval equal to ∆te,dpb( n ) 
as given by Equation E-51, and frame tripling is indicated by pic_struct equal to 8, which indicates that the frame should 
be displayed three times consecutively on displays with a frame refresh interval equal to ∆te,dpb( n ) as given by 
Equation E-51. 

NOTE 2 – Frame doubling can be used to facilitate the display, for example, of 25 Hz progressive-scan video on a 50 Hz 
progressive-scan display or 30 Hz progressive-scan video on a 60 Hz progressive-scan display. Using frame doubling and frame 
tripling in alternating combination on every other frame can be used to facilitiate the display of 24 Hz progressive-scan video on a 
60 Hz progressive-scan display. 

The nominal vertical and horizontal sampling locations of samples in top and bottom fields for 4:2:0, 4:2:2, and 4:4:4 
chroma formats are shown in Figure D-3, Figure D-4, and Figure D-5, respectively. 

Association indicators for fields (pic_struct equal to 9 though 12) provide hints to associate fields of complementary 
parity together as frames. The parity of a field can be top or bottom, and the parity of two fields is considered 
complementary when the parity of one field is top and the parity of the other field is bottom. 

When frame_field_info_present_flag is equal to 1, it is a requirement of bitstream conformance that the constraints 
specified in the third column of Table D-3 shall apply. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 244 

NOTE 3 – When frame_field_info_present_flag is equal to 0, then in many cases default values may be inferred or indicated by 
other means. In the absence of other indications of the intended display type of a picture, the decoder should infer the value of 
pic_struct as equal to 0 when frame_field_info_present_flag is equal to 0. 

progressive_source_idc equal to 1 indicates that the scan type of the associated picture should be interpreted as 
progressive. progressive_source_idc equal to 0 indicates that the scan type of the associated picture should be interpreted 
as interlaced. progressive_source_idc equal to 2 indicates that the scan type of the associated picture is unknown. 
progressive_source_idc equal to 3 is reserved for future use by ITU-T | ISO/IEC. When frame_field_info_present_flag is 
equal to 0, in the absence of other indications of the appropriate interpretation of the associated picture, the value of 
progressive_source_idc should be inferred to be equal to 1. 

duplicate_flag equal to 1 indicates that the current picture is indicated to be a duplicate of a previous picture in output 
order. duplicate_flag equal to 0 indicates that the current picture is not indicated to be a duplicate of a previous picture in 
output order. 

NOTE 4 – The duplicate_flag should be used to mark coded pictures known to have originated from a repetition process such as 
3:2 pull-down or other such duplication and picture rate interpolation methods. This flag would commonly be used when a video 
feed is encoded as a field sequence in a "transport pass-through" fashion, with known duplicate pictures tagged by setting 
duplicate_flag equal to 1. 
NOTE 5 – When field_seq_flag is equal to 1 and duplicate_flag is equal to 1, this should be interpreted as an indication that the 
access unit contains a duplicated field of the previous field in output order with the same parity as the current field unless a pairing 
is otherwise indicated by the use of a pic_struct value in the range of 9 to 12, inclusive. 

Table D-3 – Interpretation of pic_struct 

Value Indicated display of picture Restrictions 
0 (progressive) frame field_seq_flag shall be 0 
1 top field field_seq_flag shall be 1 
2 bottom field field_seq_flag shall be 1 
3 top field, bottom field, in that order field_seq_flag shall be 0 
4 bottom field, top field, in that order field_seq_flag shall be 0 
5 top field, bottom field, top field 

repeated, in that order 
field_seq_flag shall be 0 

6 bottom field, top field, bottom field 
repeated, in that order 

field_seq_flag shall be 0 

7 frame doubling field_seq_flag shall be 0 
fixed_pic_rate_within_cvs_flag shall be 1 

8 frame tripling field_seq_flag shall be 0 
fixed_pic_rate_within_cvs_flag shall be 1 

9 top field paired with previous 
bottom field in output order 

field_seq_flag shall be 1 

10 bottom field paired with previous 
top field in output order 

field_seq_flag shall be 1 

11 top field paired with next bottom 
field in output order 

field_seq_flag shall be 1 

12 bottom field paired with next top 
field in output order 

field_seq_flag shall be 1 

13..15 reserved for future use by 
ITU-T | ISO/IEC 

 

 



   ISO/IEC 23008-2 : 201x (E) 

245 Draft Rec. ITU-T H.HEVC (201x E) 

Guide:
X – Location of luma sample
O – Location of chroma sample

Top
Field

Guide:
X – Location of luma sample
O – Location of chroma sample

Bottom
Field

 

Figure D-3 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields 

 

Top
Field

Guide:
X – Location of luma sample
O – Location of chroma sample

Guide:
X – Location of luma sample
O – Location of chroma sample

Bottom
Field

 

Figure D-4 – Nominal vertical and horizontal sampling locations of 4:2:2 samples in top and bottom fields 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 246 

Top
Field

Guide:
X – Location of luma sample
O – Location of chroma sample

Bottom
Field

Guide:
X – Location of luma sample
O – Location of chroma sample  

Figure D-5 – Nominal vertical and horizontal sampling locations of 4:4:4 samples in top and bottom fields 

 

au_cpb_removal_delay_minus1 plus 1 specifies the number clock ticks between the nominal CPB removal time of the 
access unit associated with the picture timing SEI message and the preceding access unit in decoding order that 
contained a buffering period SEI message. This value is also used to calculate an earliest possible time of arrival of 
access unit data into the CPB for the HSS. The syntax element is a fixed length code whose length in bits is given by 
au_cpb_removal_delay_length_minus1 + 1. 

NOTE 6 – The value of au_cpb_removal_delay_length_minus1 that determines the length (in bits) of the syntax element 
au_cpb_removal_delay_minus1 is the value of au_cpb_removal_delay_length_minus1 coded in the video parameter set or the 
sequence parameter set that is active for the coded picture associated with the picture timing SEI message, although 
au_cpb_removal_delay_minus1 specifies a number of clock ticks relative to the removal time of the preceding access unit 
containing a buffering period SEI message, which may be an access unit of a different coded video sequence. 

pic_dpb_output_delay is used to compute the DPB output time of the picture. It specifies how many clock ticks to wait 
after removal of the last decoding unit in an access unit from the CPB before the decoded picture is output from the DPB. 

NOTE 7 – A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or 
"used for long-term reference". 
NOTE 8 – Only one pic_dpb_output_delay is specified for a decoded picture. 

The length of the syntax element pic_dpb_output_delay is given in bits by dpb_output_delay_length_minus1 + 1. When 
sps_max_dec_pic_buffering[ minTid ] is equal to 1, where minTid is the minimum of the OpTid values of all operation 
points the picture timing SEI message applies to, pic_dpb_output_delay shall be equal to 0. 

The output time derived from the pic_dpb_output_delay of any picture that is output from an output timing conforming 
decoder shall precede the output time derived from the pic_dpb_output_delay of all pictures in any subsequent coded 
video sequence in decoding order. 

The picture output order established by the values of this syntax element shall be the same order as established by the 
values of PicOrderCntVal. 

For pictures that are not output by the "bumping" process because they precede, in decoding order, an IDR or BLA 
picture with no_output_of_prior_pics_flag equal to 1 or inferred to be equal to 1, the output times derived from 
pic_dpb_output_delay shall be increasing with increasing value of PicOrderCntVal relative to all pictures within the 
same coded video sequence. 

num_decoding_units_minus1 plus 1 specifies the number of decoding units in the access unit the picture timing SEI 
message is associated with. The value of num_decoding_units_minus1 shall be in the range of 0 to PicSizeInCtbsY − 1, 
inclusive. 

du_common_cpb_removal_delay_flag equal to 1 specifies that the syntax element 
du_common_cpb_removal_delay_minus1 is present. du_common_cpb_removal_delay_flag equal to 0 specifies that the 
syntax element du_common_cpb_removal_delay_minus1 is not present.  

du_common_cpb_removal_delay_minus1 plus 1 specifies the duration, in units of  sub-picture clock ticks (see 
subclause E.2.2), between the nominal CPB removal times of any two consecutive decoding units in decoding order in 



   ISO/IEC 23008-2 : 201x (E) 

247 Draft Rec. ITU-T H.HEVC (201x E) 

the access unit associated with the picture timing SEI message. This value is also used to calculate an earliest possible 
time of arrival of decoding unit data into the CPB for the HSS, as specified in Annex C. The syntax element is a fixed 
length code whose length in bits is given by du_cpb_removal_delay_length_minus1 + 1. 

num_nalus_in_du_minus1[ i ] plus 1 specifies the number of NAL units in the i-th decoding unit of the access unit the 
picture timing SEI message is associated with. The value of num_nalus_in_du_minus1[ i ] shall be in the range of 0 to 
PicSizeInCtbsY − 1, inclusive. 

The first decoding unit of the access unit consists of the first num_nalus_in_du_minus1[ 0 ] + 1 consecutive NAL units 
in decoding order in the access unit. The i-th (with i greater than 0) decoding unit of the access unit consists of the 
num_nalus_in_du_minus1[ i ] + 1 consecutive NAL units immediately following the last NAL unit in the previous 
decoding unit of the access unit, in decoding order. There shall be at least one VCL NAL unit in each decoding unit. All 
non-VCL NAL units associated with a VCL NAL unit shall be included in the same decoding unit as the VCL NAL unit. 

du_cpb_removal_delay_minus1[ i ] plus 1 specifies the duration, in units of sub-picture clock ticks, between the 
nominal CPB removal times of the ( i + 1 )-th decoding unit and the i-th decoding unit, in decoding order, in the access 
unit associated with the picture timing SEI message. The value of 
du_cpb_removal_delay_minus1[ num_decoding_units_minus1 ] is inferred to be equal to 0. This value is also used to 
calculate an earliest possible time of arrival of decoding unit data into the CPB for the HSS, as specified in Annex C. The 
syntax element is a fixed length code whose length in bits is given by du_cpb_removal_delay_length_minus1 + 1. 

D.2.4 Pan-scan rectangle SEI message semantics 

The semantics specified in subclause D.2.3 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a pan-scan rectangle SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

D.2.5 Filler payload SEI message semantics 

The semantics specified in subclause D.2.4 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

D.2.6 User data registered by ITU-T Rec. T.35 SEI message semantics 

The semantics specified in subclause D.2.5 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

D.2.7 User data unregistered SEI message semantics 

The semantics specified in subclause D.2.6 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

D.2.8 Recovery point SEI message semantics 

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable 
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the coded 
video sequence. When the decoding process is started with the access unit in decoding order associated with the recovery 
point SEI message, all decoded pictures at or subsequent to the recovery point in output order specified in this SEI 
message are indicated to be correct or approximately correct in content. Decoded pictures produced by random access at 
or before the picture associated with the recovery point SEI message need not be correct in content until the indicated 
recovery point, and the operation of the decoding process starting at the picture associated with the recovery point SEI 
message may contain references to pictures unavailable in the decoded picture buffer. 

In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of 
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process 
was begun at the location of a previous IDR access unit in decoding order. 

NOTE 1 – The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for 
the decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the 
pictures that were used for reference when the bitstream was originally encoded (e.g. due to a splicing operation performed during 
the generation of the bitstream). 

The recovery point is specified as a count in units of PicOrderCntVal increments subsequent to PicOrderCntVal of the 
current access unit at the position of the SEI message. 

When random access is performed to start decoding from the access unit associated with the recovery point SEI message, 
picture, the associated picture is considered as the first picture in the bitstream, and the variables prevPicOrderCntLsb 
and prevPicOrderCntMsb used in derivation of PicOrderCntVal are both set to be equal to 0. 

NOTE 2 – When HRD information is present in the bitstream, a buffering period SEI message should be associated with the 
access unit associated with the recovery point SEI message in order to establish initialization of the HRD buffer model after a 
random access. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 248 

Any sequence or picture parameter set RBSP that is referred to by a picture associated with a recovery point SEI 
message or by any picture following such a picture in decoding order shall be available to the decoding process prior to 
its activation, regardless of whether or not the decoding process is started at the beginning of the bitstream or with the 
access unit, in decoding order, that is associated with the recovery point SEI message. 

When an SEI NAL unit that contains a recovery point SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

recovery_poc_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output order 
are indicated to be correct or approximately correct in content starting at the output order position of the picture that has 
PicOrderCntVal equal to the PicOrderCntVal of the current picture plus the value of recovery_poc_cnt. The value of 
recovery_poc_cnt shall be in the range of −MaxPicOrderCntLsb / 2 to MaxPicOrderCntLsb / 2 − 1. 

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order 
derived by starting the decoding process at the access unit associated with the recovery point SEI message will be an 
exact match to the pictures that would be produced by starting the decoding process at the location of a previous RAP 
access unit, if any, in the bitstream. The value 0 indicates that the match may not be exact and the value 1 indicates that 
the match will be exact. When exact_match_flag is equal to 1, it is a requirement of bitstream conformance that the 
decoded pictures at and subsequent to the specified recovery point in output order derived by starting the decoding 
process at the access unit associated with the recovery point SEI message shall be an exact match to the pictures that 
would be produced by starting the decoding process at the location of a previous RAP access unit, if any, in the 
bitstream. 

NOTE 3 – When performing random access, decoders should infer all references to unavailable reference pictures as references to 
pictures containing only intra coding blocks and having sample values given by Y equal to ( 1 << ( BitDepthY − 1 ) ), Cb and Cr 
both equal to ( 1 << ( BitDepthC − 1 ) ) (mid-level grey), regardless of the value of exact_match_flag. 

When exact_match_flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding 
process and is not specified by this Specification. 

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the 
recovery point SEI message and is assigned further semantics as follows: 

– If broken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous 
RAP access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to the 
access unit associated with the recovery point SEI message in decoding order should not be displayed until the 
specified recovery point in output order. 

– Otherwise (broken_link_flag is equal to 0), no indication is given regarding any potential presence of visual 
artefacts. 

[Ed. (YK): The broken_link_flag is not useful anymore after the introduction of BLA pictures, and therefore should be 
removed from the recovery point SEI message.] 

Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are 
specified to be correct or approximately correct in content. 

D.2.9 Scene information SEI message semantics 

The semantics specified in subclause D.2.10 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a scene information SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

D.2.10 Full-frame snapshot SEI message semantics 

The semantics specified in subclause D.2.16 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a full-frame SEI message and has nuh_reserved_zero_6bits equal to 0 is present, 
the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

D.2.11 Progressive refinement segment start SEI message semantics 

The semantics specified in subclause D.2.17 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a progressive refinement segment start SEI message and has 
nuh_reserved_zero_6bits equal to 0 is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL 
unit in the access unit. 

D.2.12 Progressive refinement segment end SEI message semantics 

The semantics specified in subclause D.2.18 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 



   ISO/IEC 23008-2 : 201x (E) 

249 Draft Rec. ITU-T H.HEVC (201x E) 

When an SEI NAL unit that contains a progressive refinement segment end SEI message and has 
nuh_reserved_zero_6bits equal to 0 is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL 
unit in the access unit. 

D.2.13 Film grain characteristics SEI message semantics 

The semantics specified in subclause D.2.20 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a film grain characteristics SEI message and has nuh_reserved_zero_6bits equal to 
0 is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

D.2.14 Post-filter hint SEI message semantics 

The semantics specified in subclause D.2.23 of ITU-T Rec. H.264 | ISO/IEC 14496-10 apply. 

When an SEI NAL unit that contains a post-filter hint SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. [Ed. (GJS): How 
is it necessary to say that?] 

D.2.15 Tone mapping information SEI message semantics 

This SEI message provides information to enable remapping of the colour samples of the output decoded pictures for 
customization to particular display environments. The remapping process maps coded sample values in the RGB colour 
space (specified in Annex E) to target sample values. The mappings are expressed in terms of the RGB colour space and 
should be applied to each RGB component separately or are expressed in terms of luma and should be applied to the 
luma component of the decoded image. 

When an SEI NAL unit that contains a tone mapping information SEI message and has nuh_reserved_zero_6bits equal 
to 0 is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

tone_map_id contains an identifying number that may be used to identify the purpose of the tone mapping model. The 
value of tone_map_id shall be in the range of 0 to 232 − 2, inclusive. 

Values of tone_map_id from 0 to 255 and from 512 to 231 − 1 may be used as determined by the application. Values of 
tone_map_id from 256 to 511 and from 231 to 232 − 2 are reserved for future use by ITU-T | ISO/IEC. Decoders shall 
ignore (remove from the bitstream and discard) all tone mapping information SEI messages containing a value of 
tone_map_id in the range of 256 to 511 or in the range of 231 to 232 − 2, and bitstreams shall not contain such values. 

NOTE 1 – The tone_map_id can be used to support tone mapping operations that are suitable for different display scenarios. For 
example, different values of tone_map_id may correspond to different display bit depths. 

tone_map_cancel_flag equal to 1 indicates that the tone mapping information SEI message cancels the persistence of 
any previous tone mapping information SEI message in output order. tone_map_cancel_flag equal to 0 indicates that 
tone mapping information follows. 

tone_map_repetition_period specifies the persistence of the tone mapping information SEI message and may specify a 
picture order count interval within which another tone mapping information SEI message with the same value of 
tone_map_id or the end of the coded video sequence shall be present in the bitstream. The value of 
tone_map_repetition_period shall be in the range of 0 to 16 384, inclusive. 

tone_map_repetition_period equal to 0 specifies that the tone map information applies to the current decoded picture 
only. 

tone_map_repetition_period equal to 1 specifies that the tone map information persists in output order until any of the 
following conditions are true: 
– A new coded video sequence begins. 
– A picture in an access unit containing a tone mapping information SEI message with the same value of tone_map_id 

is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ). 

tone_map_repetition_period equal to 0 or equal to 1 indicates that another tone mapping information SEI message with 
the same value of tone_map_id may or may not be present. 

tone_map_repetition_period greater than 1 specifies that the tone map information persists until any of the following 
conditions are true: 
– A new coded video sequence begins. 
– A picture in an access unit containing a tone mapping information SEI message with the same value of tone_map_id 

is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ) and less than or equal to 
PicOrderCnt( CurrPic ) + tone_map_repetition_period. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 250 

tone_map_repetition_period greater than 1 indicates that another tone mapping information SEI message with the same 
value of tone_map_id shall be present for a picture in an access unit that is output having PicOrderCnt( ) greater than 
PicOrderCnt( CurrPic ) and less than or equal to PicOrderCnt( CurrPic ) + tone_map_repetition_period; unless the 
bitstream ends or a new coded video sequence begins without output of such a picture. 

coded_data_bit_depth specifies the BitDepthY of the luma component of the coded video sequence. It is used to 
identify the tone mapping information SEI message that is intended for use with the coded video sequence. If tone 
mapping information SEI messages are present that have coded_data_bit_depth that is not equal to BitDepthY, these refer 
to the hypothetical result of a transcoding operation performed to convert the coded video to the BitDepthY 
corresponding to the value of coded_data_bit_depth. 

The value of coded_data_bit_depth shall be in the range of 8 to 14, inclusive. Values of coded_data_bit_depth from 0 to 
7 and from 15 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream 
and discard) all tone mapping SEI messages that contain a coded_data_bit_depth in the range of 0 to 7 or in the range of 
15 to 255, and bitstreams shall not contain such values. 

target_bit_depth specifies the bit depth of the output of the dynamic range mapping function (or tone mapping function) 
described by the tone mapping information SEI message. The tone mapping function specified with a particular 
target_bit_depth is suggested to be reasonable for all display bit depths that are less than or equal to the target_bit_depth. 

The value of target_bit_depth shall be in the range of 1 to 16, inclusive, or 255 to indicate an unspecified value. Values 
of target_bit_depth equal to 0 and in the range of 17 to 254 are reserved for future use by ITU-T | ISO/IEC. Decoders 
shall ignore (remove from the bitstream and discard) all tone mapping SEI messages that contain a value of 
target_bit_depth equal to 0 or in the range of 17 to 254, and bitstreams shall not contain such values. 

model_id specifies the model utilized for mapping the coded data into the target_bit_depth range. Values greater than 4 
are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream and discard) all tone 
mapping SEI messages that contain a value of model_id greater than 4, and bitstreams shall not contain such values. 

NOTE 2 – A model_id of 0 corresponds to a linear mapping with clipping; a model_id of 1 corresponds to a sigmoidal mapping; a 
model_id of 2 corresponds to a user-defined table mapping, and a model_id of 3 corresponds to a piece-wise linear mapping, 
model_id of 4 corresponds to luminance dynamic range information. 

min_value specifies the RGB sample value in the coded data that maps to the minimum value in the signalled 
target_bit_depth. It is used in combination with the max_value parameter. All values in the coded data that are less than 
or equal to min_value are mapped to this minimum value in the target_bit_depth representation. 

max_value specifies the RGB sample value in the coded data that maps to the maximum value in the signalled 
target_bit_depth. It is used in combination with the min_value parameter. All values in the coded data that are larger than 
or equal to max_value are mapped to this maximum value in the target_bit_depth representation. 

sigmoid_midpoint specifies the RGB sample value of the coded data that is mapped to the centre point of the 
target_bit_depth representation. It is used in combination with the sigmoid_width parameter. 

sigmoid_width specifies the distance between two coded data values that approximately correspond to the 5% and 95% 
values of the target_bit_depth representation, respectively. It is used in combination with the sigmoid_midpoint 
parameter and is interpreted according to the following function: 


























 −−
+

−
=

dthsigmoid_wi
dpointsigmoid_mii

if
_depthtarget_bit

)(*6exp1

12Round)(  (E-24) 

where f( i ) denotes the function that maps an RGB sample value i from the coded data to a resulting RGB sample value 
in the target_bit_depth representation. 

start_of_coded_interval[ i ] specifies the beginning point of an interval in the coded data such that all RGB sample 
values that are greater than or equal to start_of_coded_interval[ i ] and less than start_of_coded_interval[ i + 1 ] are 
mapped to i in the target bit depth representation. The value of start_of_coded_interval[ 2target_bit_depth ] is equal to 
2coded_bit_depth. The number of bits used for the representation of the start_of_coded_interval is 
( ( coded_data_bit_depth + 7 ) >> 3 ) << 3. 

num_pivots specifies the number of pivot points in the piece-wise linear mapping function without counting the two 
default end points, (0, 0) and (2coded_data_bit_depth − 1, 2target_bit_depth − 1) . 

coded_pivot_value[ i ] specifies the value in the coded_data_bit_depth corresponding to the i-th pivot point. The 
number of bits used for the representation of the coded_pivot_value is ( ( coded_data_bit_depth + 7 ) >> 3 ) << 3. 



   ISO/IEC 23008-2 : 201x (E) 

251 Draft Rec. ITU-T H.HEVC (201x E) 

target_pivot_value[ i ] specifies the value in the reference target_bit_depth corresponding to the i-th pivot point. The 
number of bits used for the representation of the target_pivot_value is ( ( target_bit_depth + 7 ) >> 3 ) << 3. 

camera_iso_sensitivity_idc specifies the camera sensitivity to light in ISO number (ISO 12232:2006). Table D-4 shows 
the mapping of camera_iso_sensitivity_idc to the camera sensitivity to light in ISO number. When 
camera_iso_sensitivity_idc indicates Extended_ISO, the ISO number is specified by camera_iso_sensitivity. 

camera_iso_sensitivity specifies the camera sensitivity to light in ISO number (ISO 12232:2006). 

exposure_index_idc specifies exposure index rating setting of the camera in ISO number (ISO 12232:2006). Table D-4 
shows the mapping of exposure_index_idc to the exposure index rating setting of the camera in ISO number. When 
exposure_index_idc indicates Extended_ISO, the ISO number is specified by exposure_index_rating. 

exposure_index_rating specifies exposure index rating setting of the camera in ISO number (ISO 12232:2006). 

Table D-4 – Mapping of camera_iso_sensitivity_idc and exposure_index_idc to ISO numbers 

camera_iso_sensitivity_idc or 
exposure_index_idc 

ISO number 

0 Unspecified 
1 10 
2 12 
3 16 
4 20 
5 25 
6 32 
7 40 
8 50 
9 64 

10 80 
11 100 
12 125 
13 160 
14 200 
15 250 
16 320 
17 400 
18 500 
19 640 
20 800 
21 1000 
22 1250 
23 1600 
24 2000 
25 2500 
26 3200 
27 4000 
28 5000 
29 6400 
30 8000 

31-254 Reserved 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 252 

255 Extended_ISO 

sign_image_exposure_value specifies the sign of exposure value used in the image production process relative to 
exposure index rating of the camera. sign_image_exposure_value equal to 0 indicates that the exposure value is positive. 
sign_image_exposure_value equal to 1 indicates that the exposure value is negative. 

image_exposure_value0 and image_exposure_value1 specify the numerator and the denominator of the magnitude of 
the exposure value used in the image production process relative to exposure index rating of the camera. 

The magnitude of the exposure value used in the image production process relative to exposure index rating of the 
camera is given by image_exposure_value0 ÷ image_exposure_value1. 

NOTE 3 – For example, in case the exposure value is set to +1/2 at production stage, sign_image_exposure_value is set to 0, 
image_exposure_value0 may be set to 1 and image_exposure_value1 may be set to 2. 

screen_lw specifies reference screen luminance setting for white level used for image production process in units of 
cd/m2. 

max_image_white_level specifies the luminance dynamic range of image expressed as an integer percentage in 
reference to the nominal white level. 

black_level_code_value specifies the luma sample value of the coded data in which the black level is assigned. 

whitle_level_code_value specifies luma sample value of the coded data in which the white level is assigned. 

max_whitle_level_code_value specifies the luma sample value of the coded data in which the maximum video white 
level is assigned. 

D.2.16 Frame packing arrangement SEI message semantics 

This SEI message informs the decoder that the output cropped decoded picture contains samples of multiple distinct 
spatially packed constituent frames that are packed into one frame using an indicated frame packing arrangement 
scheme. This information can be used by the decoder to appropriately rearrange the samples and process the samples of 
the constituent frames appropriately for display or other purposes (which are outside the scope of this Specification). 

When an SEI NAL unit that contains a frame packing arrangement SEI message and has nuh_reserved_zero_6bits equal 
to 0 is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

This SEI message may be associated with pictures that are either frames or fields. The frame packing arrangement of the 
samples is specified in terms of the sampling structure of a frame in order to define a frame packing arrangement 
structure that is invariant with respect to whether a picture is a single field of such a packed frame or is a complete 
packed frame. 

frame_packing_arrangement_id contains an identifying number that may be used to identify the usage of the frame 
packing arrangement SEI message. The value of frame_packing_arrangement_id shall be in the range of 0 to 232 − 2, 
inclusive. 

Values of frame_packing_arrangement_id from 0 to 255 and from 512 to 231 − 1 may be used as determined by the 
application. Values of frame_packing_arrangement_id from 256 to 511 and from 231 to 232 − 2 are reserved for future use 
by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream and discard) all frame packing arrangement SEI 
messages containing a value of frame_packing_arrangement_id in the range of 256 to 511 or in the range of 231 to 
232 − 2, and bitstreams shall not contain such values. 

frame_packing_arrangement_cancel_flag equal to 1 indicates that the frame packing arrangement SEI message 
cancels the persistence of any previous frame packing arrangement SEI message in output order. 
frame_packing_arrangement_cancel_flag equal to 0 indicates that frame packing arrangement information follows. 

frame_packing_arrangement_type indicates the type of packing arrangement of the frames as specified in Table D-8. 

 



   ISO/IEC 23008-2 : 201x (E) 

253 Draft Rec. ITU-T H.HEVC (201x E) 

Table D-8 – Definition of frame_packing_arrangement_type 
 

Value Interpretation 

0 Each component plane of the decoded frames contains a "checkerboard" based interleaving of 
corresponding planes of two constituent frames as illustrated in Figure D-1. 

1 Each component plane of the decoded frames contains a column based interleaving of corresponding 
planes of two constituent frames as illustrated in Figure D-2 and Figure D-3. 

2 Each component plane of the decoded frames contains a row based interleaving of corresponding planes of 
two constituent frames as illustrated in Figure D-4 and Figure D-5. 

3 Each component plane of the decoded frames contains a side-by-side packing arrangement of 
corresponding planes of two constituent frames as illustrated in Figure D-6, Figure D-7, and Figure D-10. 

4 Each component plane of the decoded frames contains a top-bottom packing arrangement of 
corresponding planes of two constituent frames as illustrated in Figure D-8 and Figure D-9. 

5 The component planes of the decoded frames in output order form a temporal interleaving of alternating 
first and second constituent frames as illustrated in Figure D-11. 

6 Each decoded frame constitutes a single frame without the use of a frame packing of multiple consituent 
frames (see NOTE 5). 

7 Each component plane of the decoded frames contains a rectangular region frame packing arrangement of 
corresponding planes of two constituent frames as illustrated in Figure D-12. 

 
NOTE 1 – Figure D-1 to Figure D-10 provide typical examples of rearrangement and upconversion processing for various packing 
arrangement schemes. Actual characteristics of the constituent frames are signalled in detail by the subsequent syntax elements of 
the frame packing arrangement SEI message. In Figure D-1 to Figure D-10, an upconversion processing is performed on each 
constituent frame to produce frames having the same resolution as that of the decoded frame. An example of the upsampling 
method to be applied to a quincunx sampled frame as shown in Figure D-1 or Figure D-10 is to fill in missing positions with an 
average of the available spatially neighbouring samples (the average of the values of the available samples above, below, to the 
left and to the right of each sample to be generated). The actual upconversion process to be performed, if any, is outside the scope 
of this Specification. 
NOTE 2 – When the output time of the samples of constituent frame 0 differs from the output time of the samples of constituent 
frame 1 (i.e., when field_views_flag is equal to 1 or frame_packing_arrangement_type is equal to 5) and the display system in use 
presents two views simultaneously, the display time for constituent frame 0 should be delayed to coincide with the display time for 
constituent frame 1. (The display process is not specified in this Recommendation | International Standard.) 
NOTE 3 – When field_views_flag is equal to 1 or frame_packing_arrangement_type is equal to 5, the value 0 for 
fixed_pic_rate_within_cvs_flag is not expected to be prevalent in industry use of this SEI message. 
NOTE 4 – frame_packing_arrangement_type equal to 5 describes a temporal interleaving process of different views. 
NOTE 5 – The value of frame_packing_arrangement_type equal to 6 is used to signal presence of 2D content (that is not frame 
packed) in 3D services that use such a mix of contents. The frame_packing_arrangement_type value of 6 should only be used with 
frame pictures and with content_interpretation_type equal to 0. 
NOTE 6 – Figure D-12 provides an illustration of the rearrangement process for the frame_packing_arrangement_type value of 7. 

All other values of frame_packing_arrangement_type are reserved for future use by ITU-T | ISO/IEC. It is a requirement 
of bitstream conformance that the bitstreams shall not contain such other values of frame_packing_arrangement_type. 

quincunx_sampling_flag equal to 1 indicates that each colour component plane of each constituent frame is quincunx 
sampled as illustrated in Figure D-1 or Figure D-10, and quincunx_sampling_flag equal to 0 indicates that the colour 
component planes of each constituent frame are not quincunx sampled. 

When frame_packing_arrangement_type is equal to 0, it is a requirement of bitstream conformance that quincunx_
sampling_flag shall be equal to 1. When frame_packing_arrangement_type is equal to 5, 6, or 7, it is a requirement of 
bitstream conformance that quincunx_sampling_flag shall be equal to 0. 

NOTE 7 – For any chroma format (4:2:0, 4:2:2, or 4:4:4), the luma plane and each chroma plane is quincunx sampled as 
illustrated in Figure D-1 when quincunx_sampling_flag is equal to 1. 

Let croppedWidth and croppedHeight be the width and height, respectively, of the cropped frame output from the 
decoder in units of luma samples, derived as follows: 

croppedWidth = pic_width_in_luma_samples − 
   SubWidthC * ( conf_win_right_offset + conf_win_left_offset ) (D-1) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 254 

croppedHeight = pic_height_in_luma_samples − 
   SubHeightC * ( conf_win_bottom_offset + conf_win_top_offset ) (D-2) 

When frame_packing_arrangement_type is equal to 7, it is a requirement of bitstream conformance that both of the 
following conditions shall be true: 

– croppedWidth is an integer multiple of 3 * SubWidthC 

– croppedHeight is an integer multiple of 3 * SubHeightC 

Let oneThirdWidth and oneThirdHeight be derived as follows: 

oneThirdWidth = croppedWidth / 3  (D-3) 

oneThirdHeight = croppedHeight / 3  (D-4) 

When frame_packing_arrangement_type is equal to 7, the frame packing arrangement is composed of four rectangular 
regions as illustrated in Figure D-12. The upper left region contains consituent frame 0 and has corner points (xA, yA) 
(at upper left), (xB − 1, yB) (at upper right), (xC − 1, yC − 1) (at lower right) and (xD, yD − 1) (at lower left). 
Constituent frame 1 is decomposed into three regions, denoted as R1, R2 and R3. Region R1 has corner points (xB, yB) 
(at upper left), (xL − 1, yL) (at upper right), (xI − 1, yI − 1) (at lower right) and (xC, yC − 1) (at lower left); region R2 
has corner points (xD, yD) (at upper left), (xG − 1, yG) (at upper right), (xE, yE − 1) (at lower left) and (xF − 1, yF − 1) 
(at lower right); region R3 has corner points (xG, yG) (at upper left), (xC − 1, yC) (at upper right), (xF, yF − 1) (at lower 
left) and (xH − 1, yH − 1) (at lower right). The (x, y) locations of points (xA, yA) to (xL, yL) are calculated as follows in 
units of luma sample coordinate positions: 

(xA, yA) = ( SubWidthC * conf_win_left_offset, 
      SubHeightC * conf_win_top_offset ) (D-5) 

(xB, yB) = ( SubWidthC * conf_win_left_offset + 2 * oneThirdWidth, 
      SubHeightC * conf_win_top_offset ) (D-6) 

(xC, yC) = ( SubWidthC * conf_win_left_offset + 2 * oneThirdWidth, 
      SubHeightC * conf_win_top_offset + 2 * oneThirdHeight ) (D-7) 

(xD, yD) = ( SubWidthC * conf_win_left_offset, 
      SubHeightC * conf_win_top_offset + 2 * oneThirdHeight ) (D-8) 

(xE, yE) = ( SubWidthC * conf_win_left_offset, 
      SubHeightC * conf_win_top_offset + croppedHeight ) (D-9) 

(xF, yF) = ( SubWidthC * conf_win_left_offset + oneThirdWidth, 
      SubHeightC * conf_win_top_offset + croppedHeight ) (D-10) 

(xG, yG) = ( SubWidthC * conf_win_left_offset + oneThirdWidth, 
      SubHeightC * conf_win_top_offset + 2 * oneThirdHeight ) (D-11) 

(xH, yH) = ( SubWidthC * conf_win_left_offset + 2 * oneThirdWidth, 
      SubHeightC * conf_win_top_offset + croppedHeight ) (D-12) 

(xI, yI) = ( SubWidthC * conf_win_left_offset + croppedWidth, 
      SubHeightC * conf_win_top_offset + 2 * oneThirdHeight ) (D-13) 

(xL, yL) = ( SubWidthC * conf_win_left_offset + croppedWidth, 
      SubHeightC * conf_win_top_offset + croppedHeight ) (D-14) 

When frame_packing_arrangement_type is equal to 7, constituent frame 0 is obtained by cropping from the decoded 
frames the region R0 enclosed by points A, B, C, and D, and constituent frame 1 is obtained by stacking vertically the 
regions R2 and R3, obtained by cropping the areas enclosed by points D, G, F, and E and G, C, F, and H, respectively, 
and then placing the resulting rectangle to the right of the region R1, obtained by cropping the area enclosed by points B, 
L, I, and C, as illustrated in Figure D-12. 



   ISO/IEC 23008-2 : 201x (E) 

255 Draft Rec. ITU-T H.HEVC (201x E) 

content_interpretation_type indicates the intended interpretation of the constituent frames as specified in Table D-9. 
Values of content_interpretation_type that do not appear in Table D-9 are reserved for future specification by ITU-T | 
ISO/IEC. 

When frame_packing_arrangement_type is not equal to 6, for each specified frame packing arrangement scheme, there 
are two constituent frames that are referred to as frame 0 and frame 1. 

Table D-9 – Definition of content_interpretation_type 

Value Interpretation 

0 Unspecified relationship between the frame packed constituent frames 

1 Indicates that the two constituent frames form the left and right views of a stereo view scene, with 
frame 0 being associated with the left view and frame 1 being associated with the right view 

2 Indicates that the two constituent frames form the right and left views of a stereo view scene, with 
frame 0 being associated with the right view and frame 1 being associated with the left view 

 
NOTE 8 – The value 2 for content_interpretation_type is not expected to be prevalent in industry use of this SEI message. 
However, the value was specified herein for purposes of completeness. 

spatial_flipping_flag equal to 1, when frame_packing_arrangement_type is equal to 3 or 4, indicates that one of the two 
constituent frames is spatially flipped relative to its intended orientation for display or other such purposes. 

When frame_packing_arrangement_type is equal to 3 or 4 and spatial_flipping_flag is equal to 1, the type of spatial 
flipping that is indicated is as follows: 

– If frame_packing_arrangement_type is equal to 3, the indicated spatial flipping is horizontal flipping. 

– Otherwise (frame_packing_arrangement_type is equal to 4), the indicated spatial flipping is vertical flipping. 

When frame_packing_arrangement_type is not equal to 3 or 4, it is a requirement of bitstream conformance that 
spatial_flipping_flag shall be equal to 0. When frame_packing_arrangement_type is not equal to 3 or 4, the value 1 for 
spatial_flipping_flag is reserved for future use by ITU-T | ISO/IEC. When frame_packing_arrangement_type is not equal 
to 3 or 4, decoders shall ignore the value 1 for spatial_flipping_flag. 

frame0_flipped_flag, when spatial_flipping_flag is equal to 1, indicates which one of the two constituent frames is 
flipped. 

When spatial_flipping_flag is equal to 1, frame0_flipped_flag equal to 0 indicates that frame 0 is not spatially flipped 
and frame 1 is spatially flipped, and frame0_flipped_flag equal to 1 indicates that frame 0 is spatially flipped and frame 1 
is not spatially flipped. 

When spatial_flipping_flag is equal to 0, it is a requirement of bitstream conformance that frame0_flipped_flag shall be 
equal to 0. When spatial_flipping_flag is equal to 0, the value 1 for spatial_flipping_flag is reserved for future use by 
ITU-T | ISO/IEC. When spatial_flipping_flag is equal to 0, decoders shall ignore the value of frame0_flipped_flag. 

field_views_flag equal to 1 indicates that all pictures in the current coded video sequence are coded as complementary 
field pairs. All fields of a particular parity are considered a first constituent frame and all fields of the opposite parity are 
considered a second constituent frame. When frame_packing_arrangement_type is not equal to 2, it is a requirement of 
bitstream conformance that the field_views_flag shall be equal to 0. When frame_packing_arrangement_type is not equal 
to 2, the value 1 for field_views_flag is reserved for future use by ITU-T | ISO/IEC. When frame_
packing_arrangement_type is not equal to 2, decoders shall ignore the value of field_views_flag. 

current_frame_is_frame0_flag equal to 1, when frame_packing_arrangement is equal to 5, indicates that the current 
decoded frame is constituent frame 0 and the next decoded frame in output order is constituent frame 1, and the display 
time of the constituent frame 0 should be delayed to coincide with the display time of constituent frame 1. 
current_frame_is_frame0_flag equal to 0, when frame_packing_arrangement is equal to 5, indicates that the current 
decoded frame is constituent frame 1 and the previous decoded frame in output order is constituent frame 0, and the 
display time of the constituent frame 1 should not be delayed for purposes of stereo-view pairing. 

When frame_packing_arrangement_type is not equal to 5, the constituent frame associated with the upper-left sample of 
the decoded frame is considered to be consitutuent frame 0 and the other constituent frame is considered to be constituent 
frame 1. When frame_packing_arrangement_type is not equal to 5, it is a requirement of bitstream conformance that 
current_frame_is_frame0_flag shall be equal to 0. When frame_packing_arrangement_type is not equal to 5, the value 1 
for current_frame_is_frame0_flag is reserved for future use by ITU-T | ISO/IEC. When frame_packing_
arrangement_type is not equal to 5, decoders shall ignore the value of current_frame_is_frame0_flag. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 256 

frame0_self_contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for the 
samples of constituent frame 0 of the coded video sequence refer to samples of any constituent frame 1. 
frame0_self_contained_flag equal to 0 indicates that some inter prediction operations within the decoding process for the 
samples of constituent frame 0 of the coded video sequence may or may not refer to samples of some constituent 
frame 1. When frame_packing_arrangement_type is equal to 0 or 1, it is a requirement of bitstream conformance that 
frame0_self_contained_flag shall be equal to 0. When frame_packing_arrangement_type is equal to 0 or 1, the value 1 
for frame0_self_contained_flag is reserved for future use by ITU-T | ISO/IEC. When frame_packing_arrangement_type 
is equal to 0 or 1, decoders shall ignore the value of frame0_self_contained_flag. Within a coded video sequence, the 
value of frame0_self_contained_flag in all frame packing arrangement SEI messages shall be the same. 

frame1_self_contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for the 
samples of constituent frame 1 of the coded video sequence refer to samples of any constituent frame 0. 
frame1_self_contained_flag equal to 0 indicates that some inter prediction operations within the decoding process for the 
samples of constituent frame 1 of the coded video sequence may or may not refer to samples of some constituent 
frame 0. When frame_packing_arrangement_type is equal to 0 or 1, it is a requirement of bitstream conformance that 
frame1_self_contained_flag shall be equal to 0. When frame_packing_arrangement_type is equal to 0 or 1, the value 1 
for frame1_self_contained_flag is reserved for future use by ITU-T | ISO/IEC. When frame_packing_arrangement_type 
is equal to 0 or 1, decoders shall ignore the value of frame1_self_contained_flag. Within a coded video sequence, the 
value of frame1_self_contained_flag in all frame packing arrangement SEI messages shall be the same. 

NOTE 9 – When frame0_self_contained_flag is equal to 1 or frame1_self_contained_flag is equal to 1, and 
frame_packing_arrangement_type is equal to 2, it is expected that the decoded frame should not be an MBAFF frame. 

When quincunx_sampling_flag is equal to 0 and frame_packing_arrangement_type is not equal to 5, two (x, y) 
coordinate pairs are specified to determine the indicated luma sampling grid alignment for constituent frame 0 and 
constituent frame 1, relative to the upper left corner of the rectangular area represented by the samples of the 
corresponding constituent frame. 

NOTE 10 – The location of chroma samples relative to luma samples can be indicated by the chroma_sample_loc_type_top_field 
and chroma_sample_loc_type_bottom_field syntax elements in the VUI parameters. 

frame0_grid_position_x (when present) specifies the x component of the (x, y) coordinate pair for constituent frame 0. 

frame0_grid_position_y (when present) specifies the y component of the (x, y) coordinate pair for constituent frame 0. 

frame1_grid_position_x (when present) specifies the x component of the (x, y) coordinate pair for constituent frame 1. 

frame1_grid_position_y (when present) specifies the y component of the (x, y) coordinate pair for constituent frame 1. 

When quincunx_sampling_flag is equal to 0 and frame_packing_arrangement_type is not equal to 5 the (x, y) coordinate 
pair for each constituent frame is interpreted as follows: 

– If the (x, y) coordinate pair for a constituent frame is equal to (0, 0), this indicates a default sampling grid alignment 
specified as follows: 

– If frame_packing_arrangement_type is equal to 1 or 3, the indicated position is the same as for the (x, y) 
coordinate pair value (4, 8), as illustrated in Figure D-2 and Figure D-6. 

– Otherwise (frame_packing_arrangement_type is equal to 2 or 4), the indicated position is the same as for the 
(x, y) coordinate pair value (8, 4), as illustrated in Figure D-4 and Figure D-8. 

– Otherwise, if the (x, y) coordinate pair for a constituent frame is equal to (15, 15), this indicates that the sampling 
grid alignment is unknown or unspecified or specified by other means not specified in this Recommendation | 
International Standard. 

– Otherwise, the x and y elements of the (x, y) coordinate pair specify the indicated horizontal and vertical sampling 
grid alignment positioning to the right of and below the upper left corner of the rectangular area represented by the 
corresponding constituent frame, respectively, in units of one sixteenth of the luma sample grid spacing between the 
samples of the columns and rows of the constituent frame that are present in the decoded frame (prior to any 
upsampling for display or other purposes). 

NOTE 11 – The spatial location reference information frame0_grid_position_x, frame0_grid_position_y, frame1_grid_position_x, 
and frame1_grid_position_y is not provided when quincunx_sampling_flag is equal to 1 because the spatial alignment in this case 
is assumed to be such that constituent frame 0 and constituent frame 1 cover corresponding spatial areas with interleaved quincunx 
sampling patterns as illustrated in Figure D-1 and Figure D-10. 
NOTE 12 – When frame_packing_arrangement_type is equal to 2 and field_views_flag is equal to 1, it is suggested that 
frame0_grid_position_y should be equal to frame1_grid_position_y. 

frame_packing_arrangement_reserved_byte is reserved for future use by ITU-T | ISO/IEC. It is a requirement of 
bitstream conformance that the value of frame_packing_arrangement_reserved_byte shall be equal to 0. All other values 



   ISO/IEC 23008-2 : 201x (E) 

257 Draft Rec. ITU-T H.HEVC (201x E) 

of frame_packing_arrangement_reserved_byte are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore 
(remove from the bitstream and discard) the value of frame_packing_arrangement_reserved_byte. 

frame_packing_arrangement_repetition_period specifies the persistence of the frame packing arrangement SEI 
message and may specify a frame order count interval within which another frame packing arrangement SEI message 
with the same value of frame_packing_arrangement_id or the end of the coded video sequence shall be present in the 
bitstream. The value of frame_packing_arrangement_repetition_period shall be in the range of 0 to 16 384, inclusive. 

frame_packing_arrangement_repetition_period equal to 0 specifies that the frame packing arrangement SEI message 
applies to the current decoded frame only. 

frame_packing_arrangement_repetition_period equal to 1 specifies that the frame packing arrangement SEI message 
persists in output order until any of the following conditions are true: 

– A new coded video sequence begins. 
– A frame in an access unit containing a frame packing arrangement SEI message with the same value of 

frame_packing_arrangement_id is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ). 

frame_packing_arrangement_repetition_period equal to 0 or equal to 1 indicates that another frame packing arrangement 
SEI message with the same value of frame_packing_arrangement_id may or may not be present. 

frame_packing_arrangement_repetition_period greater than 1 specifies that the frame packing arrangement SEI message 
persists until any of the following conditions are true: 

– A new coded video sequence begins. 

– A frame in an access unit containing a frame packing arrangement SEI message with the same value of 
frame_packing_arrangement_id is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ) and less than 
or equal to PicOrderCnt( CurrPic ) + frame_packing_arrangement_repetition_period. 

frame_packing_arrangement_repetition_period greater than 1 indicates that another frame packing arrangement SEI 
message with the same value of frame_packing_arrangement_frames_id shall be present for a frame in an access unit 
that is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ) and less than or equal to 
PicOrderCnt( CurrPic ) + frame_packing_arrangement_repetition_period; unless the bitstream ends or a new coded video 
sequence begins without output of such a frame. 

upsampled_aspect_ratio_flag equal to 1 indicates that the sample aspect ratio (SAR) indicated by the VUI parameters 
of the sequence parameter set identifies the SAR of the samples after the application of an upconversion process to 
produce a higher resolution frame from each constituent frame as illustrated in Figure D-1 to Figure D-10. 
upsampled_aspect_ratio_flag equal to 0 indicates that the SAR indicated by the VUI parameters of the sequence 
parameter set identifies the SAR of the samples before the application of any such upconversion process. 

NOTE 13 – The default display window parameters in the VUI parameters of the sequence parameter set can be used by an 
encoder to indicate to a decoder that does not interpret the frame packing arrangement SEI message that the default display 
window is an area within only one of the two constituent frames. 

NOTE 14 – The SAR indicated in the VUI parameters should indicate the preferred display picture shape for the packed decoded 
frame output by a decoder that does not interpret the frame packing arrangement SEI message. When 
upsampled_aspect_ratio_flag is equal to 1, the SAR produced in each upconverted colour plane is indicated to be the same as the 
SAR indicated in the VUI parameters in the examples shown in Figure D-1 to Figure D-10. When upsampled_aspect_ratio_flag is 
equal to 0, the SAR produced in each colour plane prior to upconversion is indicated to be the same as the SAR indicated in the 
VUI parameters in the examples shown in Figure D-1 to Figure D-10. 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 258 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X O X O X O X O

O X O X O X O X

X O X O X O X O

O X O X O X O X

X O X O X O X O

O X O X O X O X

X O X O X O X O

O X O X O X O X

Interleaved color 
component plane of a 

checkerboard interleaved 
decoded frame

Checkerboard 
interleaving 

decomposition

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-1 – Rearrangement and upconversion of checkerboard interleaving  
(frame_packing_arrangement_type equal to 0) 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

Interleaved color 
component plane of 
a column interleaved 

decoded frame 

Column interleaving 
decomposition

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1 

O

O

O

O

X

 

Figure D-2 – Rearrangement and upconversion of column interleaving  
with frame_packing_arrangement_type equal to 1, quincunx_sampling_flag equal to 0, 

and (x, y) equal to (0, 0) or (4, 8) for both constituent frames 



   ISO/IEC 23008-2 : 201x (E) 

259 Draft Rec. ITU-T H.HEVC (201x E) 

 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

X O X O X O X O

X O X O X O X

Interleaved color 
component plane of 
a column interleaved 

decoded frame 

Column interleaving 
decomposition

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1 

O

O

O

O

X

 

Figure D-3 – Rearrangement and upconversion of column interleaving with 
frame_packing_arrangement_type equal to 1, quincunx_sampling_flag equal to 0,  

(x, y) equal to (0, 0) or (4, 8) for constituent frame 0 and (x, y) equal to (12, 8) for constituent frame 1 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

Interleaved color 
component plane of a 

row interleaved 
decoded frame

Row 
interleaving 

decomposition

X X X X

X X X XX X X X

X X X XX X X X

X X X XX X X X

X X X X

O O O O

O O O OO O O O

O O O OO O O O

O O O OO O O O

O O O O O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-4 – Rearrangement and upconversion of row interleaving with 
frame_packing_arrangement_type equal to 2, quincunx_sampling_flag equal to 0, 

and (x, y) equal to (0, 0) or (8, 4) for both constituent frames 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 260 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

Interleaved color 
component plane of a 

row interleaved 
decoded frame

Row 
interleaving 

decomposition

X X X X

X X X XX X X X

X X X XX X X X

X X X XX X X X

X X X X

O O O O

O O O OO O O O

O O O OO O O O

O O O OO O O O

O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-5 – Rearrangement and upconversion of row interleaving with 
frame_packing_arrangement_type equal to 2, quincunx_sampling_flag equal to 0,  

(x, y) equal to (0, 0) or (8, 4) for constituent frame 0, and (x, y) equal to (8, 12) for constituent frame 1 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

Interleaved color 
component plane of 
side-by-side packed 

decoded frame

Side-by-side 
packing 

rearrangement

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1 

O

O

O

O

X

 

Figure D-6 – Rearrangement and upconversion of side-by-side packing arrangement with 
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, 

and (x, y) equal to (0, 0) or (4, 8) for both constituent frames 



   ISO/IEC 23008-2 : 201x (E) 

261 Draft Rec. ITU-T H.HEVC (201x E) 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

X OX OX OX O

X OX OX OX

Interleaved color 
component plane of 
side-by-side packed 

decoded frame

Side-by-side 
packing 

rearrangement

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O

OO O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1 

O

O

O

O

X

 

Figure D-7 – Rearrangement and upconversion of side-by-side packing arrangement with 
frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, 

(x, y) equal to (12, 8) for constituent frame 0, and (x, y) equal to (0, 0) or (4, 8) for constituent frame 1 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

Interleaved color 
component plane of a 

top-bottom packed 
decoded frame

Top-bottom 
packing 

rearrangement

X X X X

X X X XX X X X

X X X XX X X X

X X X XX X X X

X X X X

O O O O

O O O OO O O O

O O O OO O O O

O O O OO O O O

O O O O O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-8 – Rearrangement and upconversion of top-bottom packing arrangement with 
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, 

and (x, y) equal to (0, 0) or (8, 4) for both constituent frames 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 262 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

X

O

X

O

X

O

X

O

O

X

O

X

O

X

O

X

Interleaved color 
component plane of a 

top-bottom packed 
decoded frame

Top-bottom 
packing 

rearrangement

X X X X

X X X XX X X X

X X X XX X X X

X X X XX X X X

X X X X

O O O O

O O O OO O O O

O O O OO O O O

O O O OO O O O

O O O O O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-9 – Rearrangement and upconversion of top-bottom packing arrangement with 
frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, 

(x, y) equal to (8, 12) for constituent frame 0, and (x, y) equal to (0, 0) or (8, 4) for constituent frame 1 

Samples of color 
component plane of 
constituent frame 0

Samples of color 
component plane of 
constituent frame 1

Upconversion 
processing

X OX OX OX O

OX OX OX OX

X OX OX OX O

OX OX OX OX

X OX OX OX O

OX OX OX OX

X OX OX OX O

OX OX OX OX

Side-by-side packed color 
component plane of a 
decoded frame with 
quincunx sampling

Side-by-side  
quincunx packing 

rearrangement

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Upconversion 
processing

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

Upconverted color 
component plane of 
constituent frame 0 

Upconverted color 
component plane of 
constituent frame 1  

Figure D-10 – Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling 
(frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1) 



   ISO/IEC 23008-2 : 201x (E) 

263 Draft Rec. ITU-T H.HEVC (201x E) 

Samples of color 
component plane of 
constituent frames 0

Sequentially decoded frames with 
temporal interleaving frame arrangement

Temporal 
interleaving 

decomposition

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

2N

2N+2

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

2N+1
2N+3

Samples of color 
component plane of 
constituent frames 1

t

t

2N+3

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

2N

2N+1

2N+2

 

Figure D-11 – Rearrangement of a temporal interleaving frame arrangement  
(frame_packing_arrangement_type equal to 5) 

 

 

Figure D-12 – Rearrangement and upconversion of rectangular region frame packing arrangement 
(frame_packing_arrangement_type equal to 7) 

 

D.2.17 Display orientation SEI message semantics 

This SEI message informs the decoder of a transformation that is recommended to be applied to the output decoded and 
cropped picture prior to display. 

When an SEI NAL unit that contains a display orientation SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

display_orientation_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous 
display orientation SEI message in output order. display_orientation_cancel_flag equal to 0 indicates that display 
orientation information follows. 

hor_flip equal to 1 indicates that the cropped decoded picture should be flipped horizontally for display. hor_flip equal 
to 0 indicates that the decoded picture should not be flipped horizontally. 

When hor_flip is equal to 1, the cropped decoded picture should be flipped as follows for each colour component Z = L, 
Cb, and Cr, letting dZ be the final cropped array of output samples for the component Z: 

for( x = 0; x < croppedWidthInSamplesZ; x++ ) [Ed. (GJS): More properly account for cropping.] 
 for( y = 0; y < croppedHeightInSamplesZ; y++ ) 
  dZ[ x ][ y ] = Z[ croppedWidthInSamplesZ − x − 1 ][ y ] 

ver_flip equal to 1 indicates that the cropped decoded picture should be flipped vertically (in addition to any horizontal 
flipping when hor_flip is equal to 1) for display. ver_flip equal to 0 indicates that the decoded picture should not be 
flipped vertically. 

When ver_flip is equal to 1, the cropped decoded picture should be flipped as follows for each colour component Z = L, 
Cb, and Cr, letting dZ be the final cropped array of output samples for the component Z: 

for( x = 0; x < croppedWidthInSamplesZ; x++ ) 
 for( y = 0; y < croppedHeightInSamplesZ; y++ ) 
  dZ[ x ][ y ] = Z[ x ][ croppedWidthInSamplesZ − y − 1 ] 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 264 

anticlockwise_rotation specifies the recommended anticlockwise rotation of the decoded picture (after applying 
horizontal and/or vertical flipping when hor_flip or ver_flip is set) prior to display. The decoded picture should be 
rotated by 360 * anticlockwise_rotation ÷ 216 degrees (2 * π * anticlockwise_rotation ÷ 216 radians, where π is 
Archimedes' Constant (3.141 592 653 589 793 …) in the anticlockwise direction prior to display. For example, 
anticlockwise_rotation equal to 0 indicates no rotation and anticlockwise_rotation equal to 16 384 indicates 90 degrees 
(π ÷ 2 radians) rotation in the anticlockwise direction. 

NOTE – It is possible for equivalent transformations to be expressed in multiple ways using these syntax elements. For example, 
the combination of having both hor_flip and ver_flip equal to 1 with anticlockwise_rotation equal to 0 can alternatively be 
expressed by having both hor_flip and ver_flip equal to 1 with anticlockwise_rotation equal to 0x8000000, and the combination of 
hor_flip equal to 1 with ver_flip equal to 0 and anticlockwise_rotation equal to 0 can alternatively be expressed by having hor_flip 
equal to 0 with ver_flip equal to 1 and anticlockwise_rotation equal to 0x8000000. 

display_orientation_repetition_period specifies the persistence of the display orientation SEI message and may specify 
a picture order count interval within which another display orientation SEI message or the end of the coded video 
sequence shall be present in the bitstream. The value of display_orientation_repetition_period shall be in the range 0 to 
16 384, inclusive. 

display_orientation_repetition_period equal to 0 specifies that the display orientation SEI message applies to the current 
decoded picture only. 

display_orientation_repetition_period equal to 1 specifies that the display orientation SEI message persists in output 
order until one or more of the following conditions are true: 
– A new coded video sequence begins. 
– A picture in an access unit containing a display orientation SEI message is output having PicOrderCnt( ) greater 

than PicOrderCnt( CurrPic ).  

display_orientation_repetition_period greater than 1 specifies that the display orientation SEI message persists until one 
or more of the following conditions are true: 
– A new coded video sequence begins. 
– A picture in an access unit containing a display orientation SEI message is output having PicOrderCnt( ) greater 

than PicOrderCnt( CurrPic ) and less than or equal to 
PicOrderCnt( CurrPic ) + display_orientation_repetition_period. 

display_orientation_repetition_period greater than 1 indicates that another display orientation SEI message shall be 
present for a picture in an access unit that is output having PicOrderCnt( ) greater than PicOrderCnt( CurrPic ) and less 
than or equal to PicOrderCnt( CurrPic ) + display_orientation_repetition_period; unless the bitstream ends or a new 
coded video sequence begins without output of such a picture. [Ed. (GJS): Check POC variable use.] 

display_orientation_extension_flag equal to 0 indicates that no additional data follows within the post-filter hint SEI 
message. The value of display_orientation_extension_flag shall be equal to 0. The value of 1 for 
display_orientation_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that 
follows the value of 1 for display_orientation_extension_flag in a display orientation SEI message. 

D.2.18 SOP description SEI message semantics 

The SOP description SEI message indicates constraints that apply in the SOP that starts with the current access unit. 
[Ed.(GJS): Define SOP – what is it?] 

The SOP description SEI message shall not be present in any access unit with TemporalId greater than 0. 

When an SEI NAL unit that contains a SOP description SEI message and has nuh_reserved_zero_6bits equal to 0 is 
present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

sop_seq_parameter_set_id specifies the sps_seq_parameter_set_id value for the sequence parameter set. The value of 
sop_seq_parameter_set_id shall be in the range of 0 to 15, inclusive. 

num_pics_in_sop_minus1 + 1 specifies the number of pictures in the SOP. 

sop_desc_nal_ref_flag[ i ] equal to 0 indicates the i-th picture in decoding order within the SOP has a nal_unit_type 
equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, RSV_VCL_N12, or RSV_VCL_N14. 
[Ed. TK. This was changed since nal_ref_flag has been removed. Perhaps sop_desc_nal_ref_flag[ i ] can be removed if 
no longer useful.] 

sop_desc_temporal_id[ i ] specifies the TemporalId value of the i-th picture in decoding order within the SOP. 

st_rps_idx[ i ] specifies the short-term reference picture set included in the sequence parameter set identified by 
sop_seq_parameter_set_id and used by the i-th picture in decoding order within the SOP. 



   ISO/IEC 23008-2 : 201x (E) 

265 Draft Rec. ITU-T H.HEVC (201x E) 

poc_delta[ i ] specifies the difference between the picture order count values of the i-th picture in decoding order within 
the SOP and the (i−1)-th picture in decoding order within the SOP. 

The bitstream may not contain all the pictures described in a SOP description. For example, the bitstream may have been 
subject to TemporalId based sub-bitstream extraction, but pictures that have TemporalId values no longer existing in the 
extracted bitstream may still be present in the SOP description SEI message. The following constraints specify that the 
pictures that are present in the bitstream must match to the information given in the SOP description SEI message. 
[Ed. (GJS): This paragraph seems normative. Improve phrasing. Does it contradict other statements within the annex?] 

The variable picOrderCntExp[ i ] is derived as follows. 

picOrderCntExp[ 0 ] = PicOrderCntVal of the current picture 
for( i = 1; i <= num_pics_in_sop_minus1; i++ ) 
 picOrderCntExp[ i ] = picOrderCntExp[ i − 1 ] + poc_delta[ i ] 

The variable nalRefFlag[ j ] is specified as follows for the j-th picture in decoding order starting from j equal to 0 for the 
first picture of the SOP containing the picture associated with the SEI message. 
– If the j-th picture had nal_unit_type equal to TRAIL_N, TSA_N, STSA_N, RADL_N, RASL_N, RSV_VCL_N10, 

RSV_VCL_N12, or RSV_VCL_N14, nalRefFlag[ j ] is set to 0. 
– Otherwise, nalRefFlag[ j ] is set to 1. 

Let tId[ j ], stRpsIdx[ j ], and picOrderCntVal[ j ] be the values of TemporalId, st_rps_idx, and PicOrderCntVal that are 
in effect for the j-th picture in decoding order starting from j equal to 0 for the first picture of the SOP containing the 
picture associated with the SEI message. Let currSeqParamSet be the previous sequence parameter set RBSP in decoding 
order with sps_seq_parameter_set_id equal to sop_seq_parameter_set_id. long_term_ref_pics_present_flag shall be 
equal to 0 in currSeqParamSet. [Ed. (GJS): This seems to introduce some confusion with respect to uses of the same 
variable names in other places in the text. I suggest using subscripts rather than array symbols here.] 

It is a requirement of bitstream conformance that when the SOP description SEI message, the following constraints shall 
apply for each picture i from picture 0 to picture num_pics_in_sop_minus1 when picOrderCntExp[ i ] is equal to 
picOrderCntVal[ j ], where j is greater than 0 and picOrderCntVal[ j − 1 ] is less than or equal to 
picOrderCntExp[ num_pics_in_sop_minus1 ]: 
– nalRefFlag[ j ] shall be equal to sop_desc_nal_ref_flag[ i ]. 
– tId[ j ] shall be equal to sop_desc_temporal_id[ i ]. 
– stRpsIdx[ j ] shall be equal to st_rps_idx[ i ]. 
– currSeqParamSet shall be the active sequence parameter set RBSP for picture j. 

 

D.2.19 Decoded picture hash SEI message semantics 

This message provides a hash for each colour component of the decoded picture in the current access unit. 
NOTE 1 – The decoded picture hash SEI message is a suffix SEI message. 

Prior to computing the hash, the decoded picture data is arranged into one or three strings of bytes called 
pictureData[ cIdx ] of lengths dataLen[ cIdx ] according to the following pseudocode process: 

 for( cIdx = 0; cIdx < ( chroma_format_idc  = =  0 ) ? 1 : 3; cIdx++ ) { 
  if (cIdx  = =  0) { 
   compWidth[ cIdx ] = pic_width_in_luma_samples 
   compHeight[ cIdx ] = pic_height_in_luma_samples 
   compDepth[ cIdx ] = BitDepthY 
  } else { 
   compWidth[ cIdx ] = pic_width_in_luma_samples / SubWidthC 
   compHeight[ cIdx ] = pic_height_in_luma_samples / SubHeightC 
   compDepth[ cIdx ] = BitDepthC 
  } 
  iLen = 0 
  for( i = 0; i < compWidth[ cIdx ] * compHeight[ cIdx ]; i++ ) { 
   pictureData[ cIdx ][ iLen++ ] = component[ cIdx ][ i ] & 0xFF 
   if( compDepth[ cIdx ] > 8 ) 
    pictureData[ cIdx ][ iLen++ ] = component[ cIdx ][ i ] >> 8 
  } 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 266 

  dataLen[ cIdx ] = iLen 
 } 

where component[ cIdx ][ i ] is an array in raster scan order of decoded sample values in two's complement 
representation. 

hash_type indicates the method used to calculate the checksum according to Table D-10. 

 

Table D-10 – Interpretation of hash_type 

hash_type Method 
0 MD5 (RFC 1321) 
1 CRC 
2 Checksum 

3..255 Reserved 

 

[Ed. (GJS): Add normative reference to RFC 1321.] 

 

picture_md5[ cIdx ][ i ] is the 16-byte MD5 hash of the colour component cIdx of the decoded picture. [Ed. (YK): Is 
colour component cIdx a precise description?] The value of picture_md5[ cIdx ][ i ] shall be equal to the value of 
digestVal[ cIdx ] obtained by performing the following pseudocode process using the MD5 functions defined in 
RFC 1321: 

 MD5Init( context ) 
 MD5Update( context, pictureData[ cIdx ], dataLen[ cIdx ] ) 
 MD5Final( digestVal[ cIdx ], context ) 

picture_crc[ cIdx ] is the cyclic redundancy check (CRC) of the colour component cIdx of the decoded picture. The 
value of picture_crc[ cIdx ] shall be equal to the value of crcVal[ cIdx ] obtained by performing the following 
pseudocode process: 

 crc = 0xFFFF 
 pictureData[ cIdx ][  dataLen[ cIdx ] ] = 0 
 pictureData[ cIdx ][  dataLen[ cIdx ] + 1 ] = 0 
 for( bitIdx = 0; bitIdx < ( dataLen[ cIdx ]  + 2 ) * 8; bitIdx++ ) { 
  dataByte = pictureData[ cIdx ][ bitIdx >> 3 ] 
  crcMsb = ( crc >> 15 ) & 1 
  bitVal = ( dataByte >> (7 − ( bitIdx & 7 ) ) ) & 1 
  crc = ( ( ( crc << 1 ) + bitVal ) & 0xFFFF ) ^ ( crcMsb * 0x1021 ) 
 } 
 crcVal[ cIdx ] = crc 

 
NOTE 2 – The same CRC specification is found in Rec. ITU-T H.271. 

picture_checksum[ cIdx ] is the checksum of the colour component cIdx of the decoded picture. The value of 
picure_checksum[ cIdx ] shall be equal to the value of checksumVal[ cIdx ] obtained by performing the following 
pseudocode process. 

 sum = 0 
 for( y = 0; y < compHeight[ cIdx ]; y++ ) 
  for( x = 0; x < compWidth[ cIdx ]; x++ ) { 
   xorMask = ( x & 0xFF ) ^ ( y & 0xFF ) ^ ( x >> 8 ) ^ ( y >> 8 ) 
   sum = ( sum + ( ( component[ cIdx ][ y * compWidth[ cIdx ] + x ] & 0xFF ) ^ xorMask ) ) 
    & 0xFFFFFFFF 
   if( compDepth[ cIdx ] > 8 ) 
    sum = ( sum + ( ( component[ cIdx ][ y * compWidth[ cIdx ] + x ] >> 8 ) ^ xorMask ) ) 
            & 0xFFFFFFFF 
  } 
 checksumVal[ cIdx ] = sum 

 



   ISO/IEC 23008-2 : 201x (E) 

267 Draft Rec. ITU-T H.HEVC (201x E) 

D.2.20 Active parameter sets SEI message semantics 

The active parameter sets SEI message provides indicates which video parameter set is active for the VCL NAL units of 
the access unit associated with the SEI message. The SEI message may also provide information on which sequence 
parameter set is active for the VCL NAL units of the access unit associated with the SEI message, and possibly other 
information. 

When an SEI NAL unit that contains an active parameter sets SEI message and has nuh_reserved_zero_6bits equal to 0 
is present, the SEI NAL unit shall precede, in decoding order, the first VCL NAL unit in the access unit. 

active_vps_id identifies [Ed. (GJS): How? Clarify what syntax element this is referring to.] the video parameter set that 
is active for the VCL NAL units of the access unit associated with the SEI message. The value of active_vps_id shall be 
in the range of 0 to 15, inclusive. 

num_sps_ids_minus1 plus 1 specifies the number of sequence parameter sets that are active for the VCL NAL units of 
the access unit associated with the active parameter sets SEI message. The value of num_sps_ids_minus1 shall be in the 
range of 0 to 15, inclusive. In bitstreams conforming to this version of this Specification, num_sps_ids_minus1 shall be 
equal to 0. However, decoders shall allow other values to appear in the num_sps_ids_minus1 syntax. 

active_seq_parameter_set_id[ i ] specifies the sps_seq_parameter_set_id of the i-th sequence parameter set that is 
active for the VCL NAL units of the access unit associated with the SEI message. [Ed. (GJS): Vague. What does it mean 
for i equal to 0? What does it mean for i not equal to 0? What does it mean at all?] The value of 
active_seq_parameter_set_id[ i ] shall be in the range of 0 to 15, inclusive. [Ed. (GJS): Does that constraint apply to the 
values for i > 0?] 

D.2.21 Decoding unit information SEI message semantics 

The decoding unit information SEI message provides CPB removal delay information for the decoding unit associated 
with the SEI message. 

The following applies for the decoding unit information SEI message syntax and semantics: 

– The syntax elements sub_pic_cpb_params_present_flag, sub_pic_cpb_params_in_pic_timing_sei_flag, and 
au_cpb_removal_delay_length_minus1, and the variable CpbDpbDelaysPresentFlag are found in or derived from 
syntax elements in the hrd_parameters( ) syntax structure that is applicable to at least one of the operation points to 
which the decoding unit information SEI message applies. 

– The bitstream (or a part thereof) refers to the bitstream subset (or a part thereof) associated with any of the operation 
points to which the decoding unit information SEI message applies. 

The presence of the decoding unit information SEI message in the bitstream is specified as follows. 
– If CpbDpbDelaysPresentFlag is equal to 1 and sub_pic_cpb_params_present_flag is equal to 1, one decoding unit 

information SEI message applicable to the specified operation points may be present in each decoding unit in the 
coded video sequence. 

– Otherwise (CpbDpbDelaysPresentFlag is equal to 0 or sub_pic_cpb_params_present_flag is equal to 0), no access 
unit in the coded video sequence shall be associated with a decoding unit information SEI message applicable to the 
specified operation points. 

The set of NAL units associated with a decoding unit information SEI message consists, in decoding order, of the SEI 
NAL unit containing the decoding unit information SEI message and all subsequent NAL units in the access unit up to 
but not including any subsequent SEI NAL unit containing a decoding unit information SEI message. 

decoding_unit_idx specifies the index, starting from 0, to the list of decoding units in the current access unit, of the 
decoding unit associated with the decoding unit information SEI message. The value of decoding_unit_idx shall be in the 
range of 0 to PicSizeInCtbsY − 1, inclusive. 

A decoding unit identified by a particular value of duIdx includes and only includes all NAL units associated with all 
decoding unit information SEI messages that have decoding_unit_idx equal to duIdx. Such a decoding unit is also 
referred to as associated with the decoding unit information SEI messages having decoding_unit_idx equal to duIdx. 

For any two decoding units duA and duB in one access unit with decoding_unit_idx equal to duIdxA and duIdxB, 
respectively, where duIdxA is less than duIdxB, duA shall precede duB in decoding order. 

A NAL unit of one decoding unit shall not reside, in decoding order, between any two NAL units of another decoding 
unit. 

du_spt_cpb_removal_delay specifies the duration, in units of sub-picture clock ticks, between removal from the CPB of 
the last decoding unit in decoding order in the current access unit and the decoding unit associated with the decoding unit 
information SEI message. This value is also used to calculate an earliest possible time of arrival of decoding unit data 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 268 

into the CPB for the HSS, as specified in Annex C. The syntax element is represented by a fixed length code whose 
length in bits is given by du_cpb_removal_delay_length_minus1 + 1. When the decoding unit associated with the 
decoding unit information SEI message is the last decoding unit in the current access unit, the value of 
du_spt_cpb_removal_delay shall be equal to 0. 

D.2.22 Temporal level zero index SEI message semantics 

The temporal level zero index SEI message can assist the decoder for detecting when coded pictures with TemporalId 
equal to 0 are missing. 

When a temporal level zero index SEI message is present for the current access unit and the current picture has 
RapPicFlag equal to 0, a temporal level zero index SEI message shall also be present for the preceding access unit in 
decoding order with TemporalId equal to 0: 

tl0_idx is a temporal level zero index as follows: 
– If TemporalId is equal to 0, tl0_idx indicates the temporal level zero index for the current access unit. 
– Otherwise, tl0_idx indicates the temporal level zero index of the preceding access unit in decoding order with 

TemporalId equal to 0. 

The variable picForReference is specified as follows: 
– If TemporalId is equal to sps_max_sub_layers_minus1 and nal_unit_type is equal to TRAIL_N, TSA_N, STSA_N, 

RADL_N, RASL_N, RSV_VCL_N10, RSV_VCL_N12 or RSV_VCL_N14, picForReference is equal to 0. 
– Otherwise, picForReference is equal to 1. 

[Ed. (JB): May want to define this variable earlier and make it global, so that it can also be used for the SOP description 
SEI message.] 

When the bitstream contains a preceding access unit in decoding order that has TemporalId equal to 0 and the preceding 
access unit that has TemporalId equal to 0 has an associated temporal level 0 index SEI message, the variable 
prevTL0Idx is set to the value of tl0_idx that is associated with the preceding access unit in decoding order that has 
TemporalId equal to 0. 

The following constraints apply to the value of tl0_idx: 
– If the current access unit contains a NAL unit with RapPicFlag equal to 1, tl0_idx shall be equal to 0. 
– Otherwise, the following applies: 

– If the TemporalId of the current access unit is equal to 0 and picForReference is equal to 1, tl0_idx shall be 
equal to ( prevTL0Idx + 1 ) % 65536. 

– Otherwise, tl0_idx shall be equal to prevTL0Idx. 

rap_idx is the RAP index for the current access unit. When the bitstream contains a preceding access unit in decoding 
order with RapPicFlag equal to 1 and the preceding access unit in decoding order with RapPicFlag equal to 1 has an 
associated temporal level 0 index SEI message, the following constraints apply to the value of rap_idx: 
– If the current access unit has RapPicFlag equal to 1, rap_idx shall differ in value from the value of rap_idx of the 

temporal level zero index SEI message of the preceding access unit in decoding order with RapPicFlag equal to 1. 
– Otherwise, rap_idx shall be equal to the value of rap_idx of the temporal level zero index SEI message of the 

preceding access unit in decoding order with RapPicFlag equal to 1. 

D.2.23 Scalable nesting SEI message semantics 

The scalable nesting SEI message provides a mechanism to associate SEI messages with bitstream subsets corresponding 
to various operation points or with specific layers or sub-layers. 

A scalable nesting SEI message contains one or more SEI messages. An SEI message contained in a scalable nesting SEI 
message is referred to as a nested SEI message. An SEI message not contained in a scalable nesting SEI message is 
referred to as a non-nested SEI message. 

A buffering period SEI message and an SEI message of any other type shall not be nested in the same scalable nesting 
SEI message. A picture timing SEI message and an SEI message of any other type shall not be nested in the same 
scalable nesting SEI message. 

bitstream_subset_flag equal to 0 specifies that the nested SEI messages apply to specific layers or sub-layers. 
bitstream_subset_flag equal to 1 specifies that the nested SEI messages apply to one or more sub-bitstreams resulting 
from a sub-bitstream extraction process of subclause 10.1 with inputs specified by the syntax elements of the scalable 
nesting SEI message as specified below. 



   ISO/IEC 23008-2 : 201x (E) 

269 Draft Rec. ITU-T H.HEVC (201x E) 

When the nested SEI messages are picture buffering SEI messages, picture timing SEI messages or decoding unit 
information SEI messages, bitstream_subset_flag shall be equal to 1. 

Depending on the value of bitstream_subset_flag, the layers or sub-layers, or the operation points to which the nested 
SEI messages apply are specified by deriving the sets nestingLayedIdSet[ i ] and the variables maxTemporalId[ i ] from 
syntax element values as specified below. 

nesting_op_flag equal to 0 specifies that the set nestingLayerIdSet[ 0 ] is specified by all_layers_flag and, when present, 
nesting_layer_id[ i ] for all i values in the range of 0 to nesting_num_layers_minus1, inclusive, and that the variable 
maxTemporalId[ 0 ] is specified by nesting_no_op_max_temporal_id_plus1. nesting_op_flag equal to 1 specifies that the 
set nestingLayerIdSet[ i ] and the variable maxTemporalId[ i ] are specified by nesting_num_ops_minus1, 
default_op_flag, nesting_max_temporal_id_plus1[ i ], when present, and nesting_op_idx[ i ], when present. 

default_op_flag equal to 1 specifies that maxTemporalId[ 0 ] is equal to nuh_temporal_id_plus1 of the current SEI NAL 
unit minus 1 and that nestingLayerIdSet[ 0 ] contains all integer values in the range of 0 to nuh_reserved_zero_6bits of 
the current SEI NAL unit, inclusive. 

nesting_num_ops_minus1 plus 1 minus default_op_flag specifies the number of the following nesting_op_idx[ i ] 
syntax elements. The value of nesting_num_ops_minus1 shall be in the range of 0 to 1023, inclusive. 

If nesting_op_flag is equal to 0, the variable nestingNumOps is set equal to 1; otherwise, the variable nestingNumOps is 
set equal to nesting_num_ops_minus1 + 1. 

nesting_max_temporal_id_plus1[ i ] is used to specify the variable maxTemporalId[ i ]. The value of 
nesting_max_temporal_id_plus1[ i ] shall be greater than or equal to nuh_temporal_id_plus1 of the current SEI NAL 
unit. The variable maxTemporalId[ i ] is set equal to nesting_max_temporal_id_plus1[ i ] − 1. 

nesting_op_idx[ i ] is used to specify the set nestingLayerIdSet[ i ]. The value of nesting_ ops_idx[ i ] shall be in the 
range of 0 to 1023, inclusive. 

The set nestingLayerIdSet[ i ] is set equal to the OpLayerIdSet of the nesting_op_idx[ i ]-th operation point set specified 
by the active video parameter set. 

all_layers_flag equal to 0 specifies that the set nestingLayerIdSet[ 0 ] is specified by nesting_layer_id[ i ] for all i values 
in the range of 0 to nesting_num_layers_minus1, inclusive. all_layers_flag equal to 1 specifies that the set 
nestingLayerIdSet[ 0 ] consists of all values of nuh_reserved_zero_6bits present in the current access unit that are greater 
than or equal to nuh_reserved_zero_6bits of the current SEI NAL unit. 

nesting_no_op_max_temporal_id_plus1 minus 1 specifies the value of maxTemporalId[ 0 ] when nesting_op_flag is 
equal to 0 and all_layers_flag is equal to 0. The value of nesting_no_op_max_temporal_id_plus1 shall not be equal to 0. 

nesting_num_layers_minus1 plus 1 specifies the number of the following nesting_layer_id[ i ] syntax elements. The 
value of nesting_num_layers_minus1 shall be in the range of 0 to 63, inclusive. 

nesting_layer_id[ i ] specifies the i-th nuh_reserved_zero_6bits value included in the set nestingLayerIdSet[ 0 ]. The set 
nestingLayerIdSet[ 0 ] is set to consist of nesting_layer_id[ i ] for all i values in the range of 0 to 
nesting_num_layers_minus1, inclusive. 

When bitstream_subset_flag is equal to 0, the nested SEI messages apply to the sets of layers or sub-layers 
subLayerSet[ i ] for all i values in the range of 0 to nestingNumOps – 1, where the VCL NAL units of the layers or sub-
layers in each set subLayerSet[ i ] are with nuh_reserved_zero_6bits included in the set nestingLayerIdSet[ i ] and with 
nuh_temporal_id_plus1 in the range of nuh_temporal_id_plus1 of the current SEI NAL unit to maxTemporalId[ i ] + 1, 
inclusive. 

When bitstream_subset_flag is equal to 1, the nested SEI messages apply to sub-bitstreams subBitstream[ i ] for all i 
values in the range of 0 to nestingNumOps − 1, inclusive, where each sub-bitstream subBitstream[ i ] is the output of the 
sub-bitstream extraction process of subclause 10.1 with the bitstream, HighestTid, and targetDecLayerIdSet as inputs. 
nesting_zero_bit shall be equal to 0. 

D.2.24 Region refresh information SEI message semantics 

The region refresh information SEI message indicates whether the slice segments that the current SEI message applies to 
belong to a refreshed region of the current picture (as defined below). 

An access unit that is not a RAP access unit and that contains a recovery point SEI message is referred to as a gradual 
decoding refresh (GDR) access unit, and its corresponding picture is referred to as a GDR picture. The access unit 
corresponding to the the indicated recovery point is referred to as the recovery point access unit and the corresponding 
picture is referred to as the recovery point picture. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 270 

Let gdrPicSet be the set of pictures starting from a GDR picture to the recovery point picture, inclusive, in decoding 
order. When the decoding process is started from a GDR access unit, the refreshed region in each picture of the 
gdrPicSet is indicated to be the region of the picture that is correct or approximately correct in content, and the refreshed 
region in the recovery point picture covers the entire picture. 

The slice segments to which a region refresh information SEI message applies consists of all slice segments within the 
access unit that follow the SEI NAL unit containing the region refresh information SEI message and precede the next the 
SEI NAL unit containing a region refresh information SEI message (if any) in decoding order. These slice segments are 
referred to as the slice segments associated with the region refresh information SEI message. 

Let gdrAuSet be the set of access units corresponding to gdrPicSet. A gdrAuSet and the corresponding gdrPicSet are 
referred to as being associated with the recovery point SEI message contained in the GDR access unit. 

Region refresh information SEI messages shall not be present in an access unit unless the access unit is included in a 
gdrAuSet associated with a recovery point SEI message. When any access unit that is included in a gdrAuSet contains 
one or more region refresh information SEI messages, all access units in the gdrAuSet except for the recovery point 
access unit shall contain one or more region refresh information SEI messages. 

refreshed_region_flag equal to 1 indicates that the slice segments associated with the current SEI message belong to the 
refreshed region in the current picture. refreshed_region_flag equal to 0 indicates that the slice segments associated with 
the current SEI message may not belong to the refreshed region in the current picture. 

When one or more region refresh information SEI messages are present in an access unit and the first slice segment of 
the access unit in decoding order does not have an associated region refresh information SEI message, the value of 
refreshed_region_flag for the slice segments that precede the first region refresh information SEI message is inferred to 
be equal to 0. 

When any region refresh SEI message is included in a recovery point access unit, the first slice segment of the access 
unit in decoding order shall have an associated region refresh SEI message, and the value of refreshed_region_flag shall 
be equal to 1 in all region refresh SEI messages in the access unit. 

When one or more region refresh information SEI messages are present in an access unit, the refreshed region in a 
picture is specified as the set of CTUs in all slice segments of the access unit that are associated with region refresh 
information SEI messages that have refreshed_region_flag equal to 1. Other slice segments belong to the non-refreshed 
region of the picture. 

It is a requirement of bitstream conformance that when a dependent slice segment belongs to the refreshed region, the 
preceding slice segment in decoding order shall also belong to the refreshed region. 

Let gdrRefreshedSliceSegmentSet be the set of all slice segments that belong to the refreshed regions in the gdrPicSet. 
When a gdrAuSet contains one or more region refresh information SEI messages, it is a requirement of bitstream 
conformance that the following constraints all apply: 
– The refreshed region in the first picture included in the corresponding gdrPicSet in decoding order that contains any 

refreshed region shall contain only coding units that are coded in an intra coding mode. 
– For each picture included in the gdrPicSet, the syntax elements in gdrRefreshedSliceSegmentSet shall be 

constrained such that no samples or motion vector values outside of gdrRefreshedSliceSet are used for inter 
prediction in the decoding process of any samples within gdrRefreshedSliceSegmentSet. 

– For any picture that follows the recovery point picture in output order, the syntax elements in the slice segments of 
the picture shall be constrained such that no samples or motion vector values outside of gdrRefreshedSliceSet are 
used for inter prediction in the decoding process of the picture other than those of the recovery point picture or other 
pictures that follow the recovery point picture in both decoding order and output order. 

 

D.2.25 Reserved SEI message semantics 

The reserved SEI message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. It is a 
requirement of bitstream conformance that bitstreams shall not contain reserved SEI messages until and unless the use of 
such messages has been specified by ITU-T | ISO/IEC. Decoders that encounter reserved SEI messages shall discard 
their content without effect on the decoding process, except as specified in the future by ITU-T | ISO/IEC. 

 



   ISO/IEC 23008-2 : 201x (E) 

271 Draft Rec. ITU-T H.HEVC (201x E) 

Annex E 
 

Video usability information 
 

(This annex forms an integral part of this Recommendation | International Standard) 

This annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets. 

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming 
decoders are not required to process this information for output order conformance to this Specification (see Annex C for 
the specification of output order conformance). Some VUI parameters are required to check bitstream conformance and 
for output timing decoder conformance.  

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of 
them) are conveyed to decoders (or to the HRD) by other means not specified by this Specification. When present in the 
bitstream, VUI parameters shall follow the syntax and semantics specified in this annex. When the content of VUI 
parameters is conveyed for the application by some means other than presence within the bitstream, the representation of 
the content of the VUI parameters is not required to use the same syntax specified in this annex. For the purpose of 
counting bits, only the appropriate bits that are actually present in the bitstream are counted. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 272 

E.1 VUI syntax 

E.1.1 VUI parameters syntax 

 
vui_parameters( ) { Descriptor 
 aspect_ratio_info_present_flag u(1) 
 if( aspect_ratio_info_present_flag ) {  
  aspect_ratio_idc u(8) 
  if( aspect_ratio_idc  = =  Extended_SAR ) {  
   sar_width u(16) 
   sar_height u(16) 
  }  
 }  
 overscan_info_present_flag u(1) 
 if( overscan_info_present_flag )  
  overscan_appropriate_flag u(1) 
 video_signal_type_present_flag u(1) 
 if( video_signal_type_present_flag ) {  
  video_format u(3) 
  video_full_range_flag u(1) 
  colour_description_present_flag u(1) 
  if( colour_description_present_flag ) {  
   colour_primaries u(8) 
   transfer_characteristics u(8) 
   matrix_coefficients u(8) 
  }  
 }  
 chroma_loc_info_present_flag u(1) 
 if( chroma_loc_info_present_flag ) {  
  chroma_sample_loc_type_top_field ue(v) 
  chroma_sample_loc_type_bottom_field ue(v) 
 }  
 neutral_chroma_indication_flag u(1) 
 field_seq_flag u(1) 
 frame_field_info_present_flag u(1) 
 default_display_window_flag u(1) 
 if ( default_display_window_flag ) {  
  def_disp_win_left_offset ue(v) 
  def_disp_win_right_offset ue(v) 
  def_disp_win_top_offset ue(v) 
  def_disp_win_bottom_offset ue(v) 
 }  
 hrd_parameters_present_flag u(1) 
 if( hrd_parameters_present_flag ) [Ed. (GJS): Syntax element naming 
convention violation.] 

 

  hrd_parameters( 1, sps_max_sub_layers_minus1 ) [Ed. (BB): Syntax 
element naming convention violation.] 

 

 poc_proportional_to_timing_flag u(1) 
 if( poc_proportional_to_timing_flag  &&  timing_info_present_flag )  
  num_ticks_poc_diff_one_minus1 ue(v) 



   ISO/IEC 23008-2 : 201x (E) 

273 Draft Rec. ITU-T H.HEVC (201x E) 

 bitstream_restriction_flag u(1) 
 if( bitstream_restriction_flag ) {  
  tiles_fixed_structure_flag u(1) 
  motion_vectors_over_pic_boundaries_flag u(1) 
  restricted_ref_pic_lists_flag u(1) 
  min_spatial_segmentation_idc [Ed. (GJS): It seems inconsistent to use a 
u(8) here rather than ue(v) like what was done for other similar VUI parameters. 
Also, u(8) limits the degree of parallelism that can be indicated to only 64 
threads. A limit more like 0..4095 would seem more appropriate.] 

u(8) 

  max_bytes_per_pic_denom ue(v) 
  max_bits_per_mincu_denom ue(v) 
  log2_max_mv_length_horizontal ue(v) 
  log2_max_mv_length_vertical ue(v) 
 }  
}  

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 274 

E.1.2 HRD parameters syntax 

 
hrd_parameters( commonInfPresentFlag, maxNumSubLayersMinus1 ) { Descriptor 
 if( commonInfPresentFlag ) {  
  timing_info_present_flag u(1) 
  if( timing_info_present_flag ) {  
   num_units_in_tick u(32) 
   time_scale u(32) 
  }  
  nal_hrd_parameters_present_flag u(1) 
  vcl_hrd_parameters_present_flag u(1) 
  if( nal_hrd_parameters_present_flag | | vcl_hrd_parameters_present_flag ){  
   sub_pic_cpb_params_present_flag u(1) 
   if( sub_pic_cpb_params_present_flag ) {  
    tick_divisor_minus2 u(8) 
    du_cpb_removal_delay_length_minus1 u(5) 
    sub_pic_cpb_params_in_pic_timing_sei_flag u(1) 
   }  
   bit_rate_scale u(4) 
   cpb_size_scale u(4) 
   if( sub_pic_cpb_params_present_flag )  
    cpb_size_du_scale u(4) 
   initial_cpb_removal_delay_length_minus1 u(5) 
   au_cpb_removal_delay_length_minus1 u(5) 
   dpb_output_delay_length_minus1 u(5) 
  }  
 }  
 for( i = 0; i  <= maxNumSubLayersMinus1; i++ ) {  
  fixed_pic_rate_general_flag[ i ] u(1) 
  if( !fixed_pic_rate_general_flag[ i ] )  
   fixed_pic_rate_within_cvs_flag[ i ] u(1) 
  if( fixed_pic_rate_within_cvs_flag[ i ] )  
   elemental_duration_in_tc_minus1[ i ] ue(v) 
  low_delay_hrd_flag[ i ] u(1) 
  cpb_cnt_minus1[ i ] ue(v) 
  if( nal_hrd_parameters_present_flag )  
   sub_layer_hrd_parameters( i )  
  if( vcl_hrd_parameters_present_flag )  
   sub_layer_hrd_parameters( i )  
 }  
}  

 



   ISO/IEC 23008-2 : 201x (E) 

275 Draft Rec. ITU-T H.HEVC (201x E) 

E.1.3 Sub-layer HRD parameters syntax 

 
sub_layer_hrd_parameters( tId ) { Descriptor 
 for( i = 0; i <= CpbCnt; i++ ) {  
  bit_rate_value_minus1[ i ] ue(v) 
  cpb_size_value_minus1[ i ] ue(v) 
  if( sub_pic_cpb_params_present_flag )  
   cpb_size_du_value_minus1[ i ] ue(v) 
  cbr_flag[ i ] u(1) 
 }  
}  

 

E.2 VUI semantics 

E.2.1 VUI parameters semantics 

aspect_ratio_info_present_flag equal to 1 specifies that aspect_ratio_idc is present. aspect_ratio_info_present_flag 
equal to 0 specifies that aspect_ratio_idc is not present. 

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E-1 shows the meaning of the 
code. When aspect_ratio_idc indicates Extended_SAR, the sample aspect ratio is represented by sar_width : sar_height. 
When the aspect_ratio_idc syntax element is not present, aspect_ratio_idc value is inferred to be equal to 0. 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 276 

Table E-1 – Interpretation of sample aspect ratio indicator 

aspect_ratio_idc Sample aspect 
ratio 

(informative) 
Examples of use 

0 Unspecified 
 

 

1 1:1 
("square") 

7680x4320 16:9 frame without horizontal overscan 
3840x2160 16:9 frame without horizontal overscan 
1280x720 16:9 frame without horizontal overscan 
1920x1080 16:9 frame without horizontal overscan (cropped from 1920x1088) 
640x480 4:3 frame without horizontal overscan 

2 12:11 720x576 4:3 frame with horizontal overscan 
352x288 4:3 frame without horizontal overscan 

3 10:11 720x480 4:3 frame with horizontal overscan 
352x240 4:3 frame without horizontal overscan 

4 16:11 720x576 16:9 frame with horizontal overscan 
528x576 4:3 frame without horizontal overscan 

5 40:33 720x480 16:9 frame with horizontal overscan 
528x480 4:3 frame without horizontal overscan 

6 24:11 352x576 4:3 frame without horizontal overscan 
480x576 16:9 frame with horizontal overscan 

7 20:11 352x480 4:3 frame without horizontal overscan 
480x480 16:9 frame with horizontal overscan 

8 32:11 352x576 16:9 frame without horizontal overscan 
9 80:33 352x480 16:9 frame without horizontal overscan 
10 18:11 480x576 4:3 frame with horizontal overscan 
11 15:11 480x480 4:3 frame with horizontal overscan 
12 64:33 528x576 16:9 frame without horizontal overscan 
13 160:99 528x480 16:9 frame without horizontal overscan 
14 4:3 1440x1080 16:9 frame without horizontal overscan 
15 3:2 1280x1080 16:9 frame without horizontal overscan 
16 2:1 960x1080 16:9 frame without horizontal overscan 

17..254 Reserved  
255 Extended_SAR  

 
NOTE 1 – For the examples in Table E-1, the term "without horizontal overscan" refers to display processes in which the display 
area matches the area of the cropped decoded pictures and the term "with horizontal overscan" refers to display processes in which 
some parts near the left and/or right border of the cropped decoded pictures are not visible in the display area. As an example, the 
entry "720x576 4:3 frame with horizontal overscan" for aspect_ratio_idc equal to 2 refers to having an area of 704x576 luma 
samples (which has an aspect ratio of 4:3) of the cropped decoded frame (720x576 luma samples) that is visible in the display 
area. 

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units). 

sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width). 

sar_width and sar_height shall be relatively prime or equal to 0. When aspect_ratio_idc is equal to 0 or sar_width is 
equal to 0 or sar_height is equal to 0, the sample aspect ratio is unspecified by this Specification. 

overscan_info_present_flag equal to 1 specifies that the overscan_appropriate_flag is present. When 
overscan_info_present_flag is equal to 0 or is not present, the preferred display method for the video signal is 
unspecified. 

overscan_appropriate_flag equal to 1 indicates that the cropped decoded pictures output are suitable for display using 
overscan. overscan_appropriate_flag equal to 0 indicates that the cropped decoded pictures output contain visually 
important information in the entire region out to the edges of the cropping rectangle of the picture, such that the cropped 
decoded pictures output should not be displayed using overscan. Instead, they should be displayed using either an exact 
match between the display area and the cropping rectangle, or using underscan. As used in this paragraph, the term 
"overscan" refers to display processes in which some parts near the borders of the cropped decoded pictures are not 
visible in the display area. The term "underscan" describes display processes in which the entire cropped decoded 



   ISO/IEC 23008-2 : 201x (E) 

277 Draft Rec. ITU-T H.HEVC (201x E) 

pictures are visible in the display area, but they do not cover the entire display area. For display processes that neither use 
overscan nor underscan, the display area exactly matches the area of the cropped decoded pictures. 

NOTE 2 – For example, overscan_appropriate_flag equal to 1 might be used for entertainment television programming, or for a 
live view of people in a videoconference, and overscan_appropriate_flag equal to 0 might be used for computer screen capture or 
security camera content. 

video_signal_type_present_flag equal to 1 specifies that video_format, video_full_range_flag and 
colour_description_present_flag are present. video_signal_type_present_flag equal to 0, specify that video_format, 
video_full_range_flag and colour_description_present_flag are not present. 

video_format indicates the representation of the pictures as specified in Table E-2, before being coded in accordance 
with this Specification. When the video_format syntax element is not present, video_format value is inferred to be equal 
to 5. 

Table E-2 – Meaning of video_format 

video_format Meaning 

0 Component 
1 PAL 
2 NTSC 
3 SECAM 
4 MAC 
5 Unspecified video format 
6 Reserved 
7 Reserved 

 

video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E′Y, E′PB, and 
E′PR or E′R, E′G, and E′B real-valued component signals. 

When the video_full_range_flag syntax element is not present, the value of video_full_range_flag is inferred to be equal 
to 0. 

colour_description_present_flag equal to 1 specifies that colour_primaries, transfer_characteristics and 
matrix_coefficients are present. colour_description_present_flag equal to 0 specifies that colour_primaries, 
transfer_characteristics and matrix_coefficients are not present. 

colour_primaries indicates the chromaticity coordinates of the source primaries as specified in Table E-3 in terms of the 
CIE 1931 definition of x and y as specified by ISO 11664-1. 

When the colour_primaries syntax element is not present, the value of colour_primaries is inferred to be equal to 2 (the 
chromaticity is unspecified or is determined by the application). 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 278 

Table E-3 – Colour primaries 

Value Primaries Informative Remark 

0 Reserved For future use by ITU-T | ISO/IEC 
1 primary x y 

green 0.300 0.600 
blue 0.150 0.060 
red 0.640 0.330 
white D65 0.3127 0.3290 

Rec. ITU-R BT.709-5 
Rec. ITU-R BT.1361 conventional colour gamut 
system and extended colour gamut system 
IEC 61966-2-1 (sRGB or sYCC) 
IEC 61966-2-4 
Society of Motion Picture and Television 
Engineers RP 177 (1993) Annex B 

2 Unspecified Image characteristics are unknown or are 
determined by the application. 

3 Reserved For future use by ITU-T | ISO/IEC 
4 primary x y 

green 0.21 0.71 
blue 0.14 0.08 
red 0.67 0.33 
white C 0.310 0.316 

Rec. ITU-R BT.470-6 System M (historical) 
United States National Television System 
Committee 1953 Recommendation for 
transmission standards for colour television 
United States Federal Communications 
Commission Title 47 Code of Federal Regulations 
(2003) 73.682 (a) (20) 

5 primary x y 
green 0.29 0.60 
blue 0.15 0.06 
red 0.64 0.33 
white D65 0.3127 0.3290 

Rec. ITU-R BT.470-6 System B, G (historical) 
Rec. ITU-R BT.601-6 625 
Rec. ITU-R BT.1358 625 
Rec. ITU-R BT.1700 625 PAL and 625 SECAM 

6 primary x y 
green 0.310 0.595 
blue 0.155 0.070 
red 0.630 0.340 
white D65 0.3127 0.3290 

Rec. ITU-R BT.601-6 525 
Rec. ITU-R BT.1358 525 
Rec. ITU-R BT.1700 NTSC 
Society of Motion Picture and Television 
Engineers 170M (2004) 
(functionally the same as the value 7) 

7 primary x y 
green 0.310 0.595 
blue 0.155 0.070 
red 0.630 0.340 
white D65 0.3127 0.3290 

Society of Motion Picture and Television 
Engineers 240M (1999) 
(functionally the same as the value 6) 

8 primary x y 
green 0.243 0.692 (Wratten 58) 
blue 0.145 0.049 (Wratten 47) 
red 0.681 0.319 (Wratten 25) 
white C 0.310 0.316 

Generic film (colour filters using Illuminant C) 

9 primary x y 
green 0.170 0.797 
blue 0.131 0.046 
red 0.708 0.292 
white D65 0.3127 0.3290 

Rec. ITU-R BT.2020 

10..255 Reserved For future use by ITU-T | ISO/IEC 

 

transfer_characteristics indicates the opto-electronic transfer characteristic of the source picture as specified in 
Table E-4 as a function of a linear optical intensity input Lc with a nominal real-valued range of 0 to 1. 

When the transfer_characteristics syntax element is not present, the value of transfer_characteristics is inferred to be 
equal to 2 (the transfer characteristics are unspecified or are determined by the application). 



   ISO/IEC 23008-2 : 201x (E) 

279 Draft Rec. ITU-T H.HEVC (201x E) 

Table E-4 – Transfer characteristics 

Value Transfer Characteristic Informative Remark 

0 Reserved For future use by ITU-T | ISO/IEC 
1 V = 1.099 * Lc0.45 − 0.099 for 1 >= Lc >= 0.018 

V = 4.500 * Lc for 0.018 > Lc >= 0 
Rec. ITU-R BT.709-5 
Rec. ITU-R BT.1361 conventional 
colour gamut system 
(functionally the same as the value 6) 

2 Unspecified Image characteristics are unknown or 
are determined by the application. 

3 Reserved For future use by ITU-T | ISO/IEC 
4 Assumed display gamma 2.2 Rec. ITU-R BT.470-6 System M 

(historical) 
United States National Television 
System Committee 1953 
Recommendation for transmission 
standards for colour television 
United States Federal Communications 
Commission Title 47 Code of Federal 
Regulations (2003) 73.682 (a) (20) 
Rec. ITU-R BT.1700 (2007 revision) 
625 PAL and 625 SECAM 

5 Assumed display gamma 2.8 Rec. ITU-R BT.470-6 System B, G 
(historical) 

6 V = 1.099 * Lc0.45 − 0.099  for 1 >= Lc >= 0.018 
V = 4.500 * Lc for 0.018 > Lc >= 0 

Rec. ITU-R BT.601-6 525 or 625 
Rec. ITU-R BT.1358 525 or 625 
Rec. ITU-R BT.1700 NTSC 
Society of Motion Picture and 
Television Engineers 170M (2004) 
(functionally the same as the value 1) 

7 V = 1.1115 * Lc0.45 − 0.1115 for 1 >= Lc >= 0.0228 
V = 4.0 * Lc for 0.0228 > Lc >= 0 

Society of Motion Picture and 
Television Engineers 240M (1999) 

8 V = Lc for 1 > Lc >= 0 Linear transfer characteristics 
9 V = 1.0 + Log10( Lc ) ÷ 2  for 1 >= Lc >= 0.01 

V = 0.0 for 0.01 > Lc >= 0 
Logarithmic transfer characteristic 
(100:1 range) 

10 V = 1.0 + Log10( Lc ) ÷ 2.5  for 1 >= Lc >= Sqrt( 10 ) ÷ 1000 
V = 0.0 for Sqrt( 10 ) ÷ 1000 > Lc >= 0 

Logarithmic transfer characteristic 
(100 * Sqrt( 10 ) : 1 range) 

11 V = 1.099 * Lc0.45 − 0.099 for Lc >= 0.018 
V = 4.500 * Lc for 0.018 > Lc > −0.018 
V = −1.099 * ( −Lc )0.45 + 0.099 for −0.018 >= Lc 

IEC 61966-2-4 

12 V = 1.099 * Lc0.45 − 0.099 for 1.33 > Lc >= 0.018 
V = 4.500 * Lc for 0.018 > Lc >= −0.0045 
V = −( 1.099 * ( −4 * Lc )0.45 − 0.099 ) ÷ 4 for −0.0045 > Lc >= −0.25 

Rec. ITU-R BT.1361 extended colour 
gamut system 

13 V = 1.055 * Lc(1 ÷ 2.4) − 0.055  for 1 >= Lc >= 0.0031308 
V = 12.92 * Lc for  0.0031308 > Lc >= 0 

IEC 61966-2-1 (sRGB or sYCC) 

14 V =1.099 * Lc0.45 − 0.099 for 1 >= Lc >= 0.018 
V = 4.500 * Lc for  0.018 > Lc >= 0 

Rec. ITU-R BT.2020 for 10 bit system 

15 V =1.0993* Lc0.45 − 0.0993 for 1 >= Lc >= 0.0181 
V = 4.500 * Lc for 0.0181 > Lc >= 0 

Rec. ITU-R BT.2020 for 12 bit system 

15..255 Reserved For future use by ITU-T | ISO/IEC 

 

matrix_coefficients describes the matrix coefficients used in deriving luma and chroma signals from the green, blue, and 
red primaries, as specified in Table E-5. 

matrix_coefficients shall not be equal to 0 unless one or more of the following conditions are true: 

– BitDepthC is equal to BitDepthY, 

– chroma_format_idc is equal to 3 (4:4:4). 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 280 

The specification of the use of matrix_coefficients equal to 0 under all other conditions is reserved for future use by 
ITU-T | ISO/IEC. 

matrix_coefficients shall not be equal to 8 unless one of the following conditions is true: 

– BitDepthC is equal to BitDepthY, 

– BitDepthC is equal to BitDepthY + 1 and chroma_format_idc is equal to 3 (4:4:4). 

The specification of the use of matrix_coefficients equal to 8 under all other conditions is reserved for future use by 
ITU-T | ISO/IEC. 

When the matrix_coefficients syntax element is not present, the value of matrix_coefficients is inferred to be equal to 2 
(unspecified). 

The interpretation of matrix_coefficients, together with colour_primaries and transfer_characteristics, is specified by the 
following equations. 

ER, EG, and EB are defined as "linear-domain" real-valued signals based on the indicated colour primaries before 
application of the transfer characteristics function. The application of the transfer characteristics function is denoted by 
( x )′ for an argument x. The signals E′R, E′G, and E′B are determined by application of the transfer characteristics 
function as follows: 

E′R = ( ER )′  (E-1) 

E′G = ( EG )′  (E-2) 

E′B = ( EB )′  (E-3) 

The range of E′R, E′G, and E′B is specified as follows: 
– If transfer_characteristics is not equal to 11 or 12, E′R, E′G, and E′B are real numbers with values in the range of 0 

to 1. 
– Otherwise, (transfer_characteristics is equal to 11 (IEC 61966-2-4) or 12 (Rec. ITU-R BT.1361 extended colour 

gamut system)), E′R, E′G and E′B are real numbers with a larger range not specified in this Specification. 
Nominal white is specified as having E′R equal to 1, E′G equal to 1, and E′B equal to 1. 
Nominal black is specified as having E′R equal to 0, E′G equal to 0, and E′B equal to 0. 

The interpretation of matrix_coefficients is specified as follows: 
– If video_full_range_flag is equal to 0, the following applies: 

– If matrix_coefficients is equal to 1, 4, 5, 6, 7, 9, or 10, the following equations apply: 

Y = Clip1Y( Round( ( 1 << ( BitDepthY − 8 ) ) * ( 219 * E′Y + 16 ) ) ) (E-4) 

Cb = Clip1C( Round( ( 1 << ( BitDepthC − 8 ) ) * ( 224 * E′PB + 128 ) ) ) (E-5) 

Cr = Clip1C( Round( ( 1 << ( BitDepthC − 8 ) ) * ( 224 * E′PR + 128 ) ) ) (E-6) 

– Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply: 

R = Clip1Y( ( 1 << ( BitDepthY − 8 ) ) * ( 219 * E′R + 16 ) ) (E-7) 

G = Clip1Y( ( 1 << ( BitDepthY − 8 ) ) * ( 219 * E′G + 16 ) ) (E-8) 

B = Clip1Y( ( 1 << ( BitDepthY − 8 ) ) * ( 219 * E′B + 16 ) ) (E-9) 

– Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is 
unknown or is determined by the application. 

– Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, 8, 9, or 10), the interpretation of the 
matrix_coefficients syntax element is reserved for future definition by ITU-T | ISO/IEC. 

– Otherwise (video_full_range_flag is equal to 1), the following applies: 
– If matrix_coefficients is equal to 1, 4, 5, 6, or 7, the following equations apply: 

Y = Clip1Y( Round( ( ( 1 << BitDepthY ) − 1 ) * E′Y ) ) (E-10) 



   ISO/IEC 23008-2 : 201x (E) 

281 Draft Rec. ITU-T H.HEVC (201x E) 

Cb = Clip1C( Round( ( ( 1 << BitDepthC ) − 1 )  * E′PB + ( 1 << ( BitDepthC − 1 ) ) ) ) (E-11) 

Cr = Clip1C( Round( ( ( 1 << BitDepthC ) − 1 )  * E′PR + ( 1 << ( BitDepthC − 1 ) ) ) ) (E-12) 

– Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply: 

R = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′R )  (E-13) 

G = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′G )  (E-14) 

B = Clip1Y( ( ( 1 << BitDepthY ) − 1 ) * E′B )  (E-15) 

– Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is 
unknown or is determined by the application. 

– Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, or 8), the interpretation of the 
matrix_coefficients syntax element is reserved for future definition by ITU-T | ISO/IEC. 

The variables E′Y, E′PB, and E′PR (for matrix_coefficients not equal to 0 or 8) or Y, Cb, and Cr (for matrix_coefficients 
equal to 0 or 8) are specified as follows: 
– If matrix_coefficients is not equal to 0, 8, or 10, the following equations apply: 

E′Y = KR * E′R + ( 1 − KR − KB ) * E′G + KB * E′B  (E-16) 

E′PB = 0.5 * ( E′B − E′Y ) ÷ ( 1 − KB )  (E-17) 

E′PR = 0.5 * ( E′R − E′Y ) ÷ ( 1 − KR )  (E-18) 

NOTE 3 – E′Y is a real number with the value 0 associated with nominal black and the value 1 associated with nominal white. E′PB 
and E′PR are real numbers with the value 0 associated with both nominal black and nominal white. When transfer_characteristics is 
not equal to 11 or 12, E′Y is a real number with values in the range of 0 to 1. When transfer_characteristics is not equal to 11 or 12, 
E′PB and E′PR are real numbers with values in the range of −0.5 to 0.5. When transfer_characteristics is equal to 11 (IEC 61966-2-
4), or 12 (ITU-R BT.1361 extended colour gamut system), E′Y, E′PB and E′PR are real numbers with a larger range not specified in 
this Specification. 

– Otherwise, if matrix_coefficients is equal to 0, the following equations apply: 

Y   = Round( G )  (E-19) 

Cb = Round( B )  (E-20) 

Cr = Round( R )  (E-21) 

– Otherwise, if matrix_coefficients is equal to 8, the following applies: 
– If BitDepthC is equal to BitDepthY, the following equations apply: 

Y   = Round( 0.5 * G + 0.25 * ( R + B ) )  (E-22) 

Cb = Round( 0.5 * G − 0.25 * ( R + B ) ) + ( 1 << ( BitDepthC − 1 ) ) (E-23) 

Cr = Round( 0.5 * (R − B ) ) + ( 1 << ( BitDepthC − 1 ) ) (E-24) 

NOTE 4 – For purposes of the YCgCo nomenclature used in Table E-5, Cb and Cr of Equations E-23 and E-24 may be referred to 
as Cg and Co, respectively. The inverse conversion for the above three equations should be computed as: 

t   = Y − ( Cb − ( 1 << ( BitDepthC − 1 ) ) )  (E-25) 
G = Clip1Y( Y + ( Cb − ( 1 << ( BitDepthC − 1 ) ) ) ) (E-26) 
B = Clip1Y( t − ( Cr − ( 1 << ( BitDepthC − 1 ) ) ) )  (E-27) 
R = Clip1Y( t + ( Cr − ( 1 << ( BitDepthC − 1 ) ) ) )  (E-28) 

– Otherwise (BitDepthC is not equal to BitDepthY), the following equations apply: 

Cr = Round( R ) − Round( B ) + ( 1 << ( BitDepthC − 1 ) ) (E-29) 

t = Round( B ) + ( ( Cr − ( 1 << ( BitDepthC − 1 ) ) ) >> 1 ) (E-30) 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 282 

Cb = Round( G ) − t + ( 1 << ( BitDepthC − 1 ) ) (E-31) 

Y = t + ( ( Cb − ( 1 << ( BitDepthC − 1 ) ) ) >> 1 ) (E-32) 

NOTE 5 – For purposes of the YCgCo nomenclature used in Table E-5, Cb and Cr of Equations E-31 and E-29 may be referred to 
as Cg and Co, respectively. The inverse conversion for the above four equations should be computed as. 

t   = Y − ( ( Cb − ( 1 << ( BitDepthC − 1 ) ) ) >> 1 ) (E-33) 
G = Clip1Y( t + ( Cb − ( 1 << ( BitDepthC − 1 ) ) ) ) (E-34) 
B = Clip1Y( t − ( ( Cr − ( 1 << ( BitDepthC − 1 ) ) ) >> 1 ) ) (E-35) 
R = Clip1Y( B + ( Cr − ( 1 << ( BitDepthC − 1 ) ) ) ) (E-36) 

– Otherwise (matrix_coefficients is equal to 10), the following equations apply: 

EY = KR * ER + ( 1 − KR − KB ) * EG + KB * EB  (E-37) 

E′Y = ( EY )′  (E-38) 

NOTE 6 – In this case, EY is defined from the "linear-domain" signals for ER, EG, and EB, prior to application of the transfer 
characteristics function, which is then applied to produce the signal E′Y. EY and E′Y are analogue with the value 0 associated with 
nominal black and the value 1 associated with nominal white. 

E′PB = ( E′B − E′Y ) ÷ 1.9404        for −0.9702 <= E′B − E′Y <= 0 (E-39) 

E′PB = ( E′B − E′Y ) ÷ 1.5816        for 0 < E′B − E′Y <= 0.7908 (E-40) 

E′PR = ( E′R − E′Y ) ÷ 1.7184        for −0.8592 <= E′R − E′Y  <= 0 (E-41) 

E′PR = ( E′R − E′Y ) ÷ 0.9936        for 0 < E′R − E′Y  <= 0.4968 (E-42) 

 



   ISO/IEC 23008-2 : 201x (E) 

283 Draft Rec. ITU-T H.HEVC (201x E) 

Table E-5 – Matrix coefficients 

Value Matrix Informative remark 

0 GBR Typically referred to as RGB; see Equations E-19 to E-21 
IEC 61966-2-1 (sRGB) 

1 KR = 0.2126; KB = 0.0722 ITU-R Rec. BT.709-5 
ITU-R Rec. BT.1361 conventional colour gamut system and extended 
colour gamut system 
IEC 61966-2-1 (sYCC) 
IEC 61966-2-4 xvYCC709 
Society of Motion Picture and Television Engineers RP 177 (1993) 
Annex B 

2 Unspecified Image characteristics are unknown or are determined by the application. 
3 Reserved For future use by ITU-T | ISO/IEC 
4 KR = 0.30;   KB = 0.11 United States Federal Communications Commission Title 47 Code of 

Federal Regulations (2003) 73.682 (a) (20) 
5 KR = 0.299; KB = 0.114 ITU-R Rec. BT.470-6 System B, G (historical) 

ITU-R Rec. BT.601-6 625 
ITU-R Rec. BT.1358 625 
ITU-R Rec. BT.1700 625 PAL and 625 SECAM 
IEC 61966-2-4 xvYCC601 
(functionally the same as the value 6) 

6 KR = 0.299; KB = 0.114 ITU-R Rec. BT.601-6 525 
ITU-R Rec. BT.1358 525 
ITU-R Rec. BT.1700 NTSC 
Society of Motion Picture and Television Engineers 170M (2004) 
(functionally the same as the value 5) 

7 KR = 0.212; KB = 0.087 Society of Motion Picture and Television Engineers 240M (1999) 
8 YCgCo See Equations E-22 to E-36 
9 KR = 0.2627; KB = 0.0593 Rec. ITU-R BT.2020 non-constant luminance system; 

see Equations E-16 to E-18 
10 KR = 0.2627; KB = 0.0593 Rec. ITU-R BT.2020 constant luminance system 

see Equations E-37 to E-42 
11..255 Reserved For future use by ITU-T | ISO/IEC 

 

chroma_loc_info_present_flag equal to 1 specifies that chroma_sample_loc_type_top_field and 
chroma_sample_loc_type_bottom_field are present. chroma_loc_info_present_flag equal to 0 specifies that 
chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not present. 

When chroma_format_idc is not equal to 1, chroma_loc_info_present_flag should be equal to 0. 

chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field specify the location of chroma 
samples as follows: 

– If chroma_format_idc is equal to 1 (4:2:0 chroma format), chroma_sample_loc_type_top_field and 
chroma_sample_loc_type_bottom_field specify the location of chroma samples for the top field and the bottom 
field, respectively, as shown in Figure E-1. 

– Otherwise (chroma_format_idc is not equal to 1), the values of the syntax elements 
chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be ignored. When 
chroma_format_idc is equal to 2 (4:2:2 chroma format) or 3 (4:4:4 chroma format), the location of chroma samples 
is specified in subclause 6.2. When chroma_format_idc is equal to 0, there is no chroma sample array. 

The value of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be in the range of 0 
to 5, inclusive. When the chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not 
present, the values of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field is inferred to be 
equal to 0. 

NOTE 7 – When coding progressive source material, chroma_sample_loc_type_top_field and 
chroma_sample_loc_type_bottom_field should have the same value. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 284 

 

= Chroma sample type 0

= Chroma sample type 2

= Chroma sample type 1

= Chroma sample type 3

= Chroma sample type 4 = Chroma sample type 5

= Luma sample top field = Luma sample bottom field

Luma sample position indications:

Chroma sample position indications,
where gray fill indicates a bottom field sample type
and no fill indicates a top field sample type:

Interpretation of symbols:

...

...

 

Figure E-1 – Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0 
chroma format) as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field 

 

neutral_chroma_indication_flag equal to 1 indicates that the value of all decoded chroma samples is equal 
to 1 << ( BitDepthC − 1 ). neutral_chroma_indication_flag equal to 0 provides no indication of decoded chroma sample 
values. When neutral_chroma_indication_flag is equal to 1, it is a requirement of bitstream conformance that the value of 
all decoded chroma samples produced by the decoding process shall be equal to 1 << ( BitDepthC − 1 ). When 
neutral_chroma_indication_flag is not present, it is inferred to be equal to 0. 

NOTE 8 – When neutral_chroma_indication_flag is equal to 1, it is not necessary for the decoder to apply the specified decoding 
process in order to determine the value of the decoded chroma samples. 

field_seq_flag equal to 1 indicates that the coded video sequence conveys pictures that represent fields, and specifies 
that a picture timing SEI message shall be present in every access unit of the current coded video sequence. 
field_seq_flag equal to 0 indicates that the coded video sequence conveys pictures that represent frames and that a 
picture timing SEI message may or may not be present in any access unit of the current coded video sequence. When 
field_seq_flag is not present, it is inferred to be equal to 0. 

NOTE 9 – The specified decoding process does not treat access units conveying pictures that represent fields or frames differently. 
A sequence of pictures that represent fields would therefore be coded with the picture dimensions of an individual field. For 
example, access units containing pictures that represent 1080i fields would commonly have cropped output dimensions of 
1920x540, while the sequence picture rate would commonly express the rate of the source fields (typically between 50 and 60 Hz), 
instead of the source frame rate (typically between 25 and 30 Hz). 



   ISO/IEC 23008-2 : 201x (E) 

285 Draft Rec. ITU-T H.HEVC (201x E) 

frame_field_info_present _flag equal to 1 specifies that picture timing SEI messages are present for every picture and 
include the pic_struct, progressive_source_idc, and duplicate_flag syntax elements. frame_field_info_present_flag equal 
to 0 specifies that the pic_struct syntax element is not present in picture timing SEI messages. When field_seq_flag is 
equal to 1, frame_field_info_present_flag shall be equal to 1. When frame_field_info_present_flag is not present, its 
value is inferred to be equal to 0. 

default_display_window_flag equal to 1 indicates that the default display window parameters follow next in the VUI. 
default_display_window_flag equal to 0 indicates that the default display window parameters are not present. The 
default display window parameters identify the area within the conformance rectangle that is suggested to be displayed in 
the absence of any alternative indication (provided within the bitstream or by external means not specified in this 
Specification) of preferred display characteristics. 

def_disp_win_left_offset, def_disp_win_right_offset, def_disp_win_top_offset, and def_disp_win_bottom_offset 
specify the samples of the pictures in the coded video sequence that are within the default display window, in terms of a 
rectangular region specified in picture coordinates for display. When default_display_window_flag is equal to 0, the 
values of def_disp_win_left_offset, def_disp_win_right_offset, def_disp_win_top_offset, and 
def_disp_win_bottom_offset are inferred to be equal to 0. 

The following variables are derived from the default display window parameters. 

leftOffset = conf_win_left_offset + def_disp_win_left_offset (E-43) 
rightOffset = conf_win_right_offset + def_disp_win_right_offset (E-44) 
topOffset = conf_win_top_offset + def_disp_win_top_offset (E-45) 
bottomOffset = conf_win_bottom_offset + def_disp_win_bottom_offset (E-46) 

The default display window contains the luma samples with horizontal picture coordinates from SubWidthC * leftOffset 
to pic_width_in_luma_samples − ( SubWidthC * rightOffset + 1 ) and vertical picture coordinates from 
SubHeightC * topOffset to pic_height_in_luma_samples − ( SubHeightC * bottomOffset + 1 ), inclusive. It is a 
requirement of bitstream conformance that the value of leftOffset shall be in the range of 0 to 
( pic_width_in_luma_samples / SubWidthC ) − ( rightOffset + 1 ), inclusive; and the value of topOffset shall be in the 
range of 0 to ( pic_height_in_luma_samples / SubHeightC ) − ( bottomOffset + 1 ), inclusive. 

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the samples 
having picture coordinates ( x / SubWidthC, y / SubHeightC ), where ( x, y ) are the picture coordinates of the specified 
luma samples. 

hrd_parameters_present_flag equal to 1 specifies that the syntax structure hrd_parameters( ) is present in the 
vui_parameters( ) syntax structue. hrd_parameters_present_flag equal to 0 specifies that the syntax structure 
hrd_parameters( ) is not present in the vui_parameters( ) syntax structue. 

poc_proportional_to_timing_flag equal to 1 indicates that the picture order count value for each picture in the coded 
video sequence that is not the first picture in the coded video sequence, in decoding order, is proportional to the output 
time of the picture relative to the output time of the first picture in the coded video sequence. 
poc_proportional_to_timing_flag equal to 0 indicates that the picture order count value for each picture in the coded 
video sequence that is not the first picture in the coded video sequence, in decoding order, may or may not be 
proportional to the output time of the picture relative to the output time of the first picture in the coded video sequence. 

num_ticks_poc_diff_one_minus1 plus 1 specifies the number of clock ticks [Ed. (GJS): Clarify "clock tick".] 
corresponding to a difference of picture order count values equal to 1. 

bitstream_restriction_flag equal to 1, specifies that the following coded video sequence bitstream restriction 
parameters are present. bitstream_restriction_flag equal to 0, specifies that the following coded video sequence bitstream 
restriction parameters are not present. 

tiles_fixed_structure_flag equal to 1 indicates that each picture parameter set that is active in the coded video sequence 
has the same value of the syntax elements num_tile_columns_minus1, num_tile_rows_minus1, uniform_spacing_flag, 
column_width_minus1[ i ], row_height_minus1[ i ] and loop_filter_across_tiles_enabled_flag, when present. 
tiles_fixed_structure_flag equal to 0 indicates that tiles syntax elements in different picture parameter sets may or may 
not have the same value. When the tiles_fixed_structure_flag syntax element is not present, it is inferred to be equal to 0. 

NOTE 10 – The signalling of tiles_fixed_structure_flag equal to 1 is a guarantee to a decoder that each picture in the coded video 
sequence has the same number of tiles distributed in the same way which might be useful for workload allocation in the case of 
multi-threaded decoding. 

motion_vectors_over_pic_boundaries_flag equal to 0 indicates that no sample outside the picture boundaries and no 
sample at a fractional sample position for which the sample value is derived using one or more samples outside the 
picture boundaries is used for inter prediction of any sample. motion_vectors_over_pic_boundaries_flag equal to 1 
indicates that one or more samples outside picture boundaries may be used in inter prediction. When the 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 286 

motion_vectors_over_pic_boundaries_flag syntax element is not present, motion_vectors_over_pic_boundaries_flag 
value is inferred to be equal to 1. 

restricted_ref_pic_lists_flag equal to 1 indicates that all P and B slices (if present) that belong to the same picture have 
an identical reference picture list 0, and that all B slices (if present) that belong to the same picture have an identical 
reference picture list 1. 

min_spatial_segmentation_idc, when not equal to 0, establishes a bound on the maximum possible size of distinct 
coded spatial segmentation regions in the pictures of the coded video sequence. When min_spatial_segmentation_idc is 
not present, it is inferred to be equal to 0. 

The variable minSpatialSegmentation is derived from min_spatial_segmentation_idc as follows. 

minSpatialSegmentationTimes4 = min_spatial_segmentation_idc + 4 (E-47) 

A slice is said to contain a specific luma sample when the coding block that contains the luma sample is contained in the 
slice. Correspondingly, a tile is said to contain a specific luma sample when the coding block that contains the luma 
sample is contained in the tile. 

Depending on the value of min_spatial_segmentation_idc, the following applies: 

– If min_spatial_segmentation_idc is equal to 0, no limit on the maximum size of spatial segments is indicated. 

– Otherwise (min_spatial_segmentation_idc is not equal to 0), it is a requirement of bitstream conformance that 
exactly one of the following conditions shall be true: 

– In each picture parameter set that is activated within the coded video sequence, tiles_enabled_flag is equal to 0 
and entropy_coding_sync_enabled_flag is equal to 0, and there is no slice in the coded video sequence that 
contains more than ( 4 * PicSizeInSamplesY ) / minSpatialSegmentationTimes4 luma samples. 

– In each picture parameter set that is activated within the coded video sequence, tiles_enabled_flag is equal to 1 
and entropy_coding_sync_enabled_flag is equal to 0, and there is no tile in the coded video sequence that 
contains more than ( 4 * PicSizeInSamplesY ) / minSpatialSegmentationTimes4 luma samples. 

– In each picture parameter set that is activated within the coded video sequence, tiles_enabled_flag is equal to 0 
and entropy_coding_sync_enabled_flag is equal to 1, and the syntax elements pic_width_in_luma_samples, 
pic_height_in_luma_samples and the variable CtbSizeY obey the following constraint: 

( 2 * pic_height_in_luma_samples + pic_width_in_luma_samples ) * CtbSizeY 
  <= ( 4 * PicSizeInSamplesY ) / minSpatialSegmentationTimes4  (E-48) 

NOTE 11 – The syntax element min_spatial_segmentation_idc can be used by a decoder to calculate the maximum number of 
luma samples to be processed by one processing thread, making the assumption that the decoder maximally utilizes the parallel 
decoding information. However, it is important to be aware that there may be some inter-dependencies between the different 
threads – e.g. due to entropy coding synchronization or deblocking filtering across tile or slice boundaries. To aid decoders in 
planning the decoding workload distribution, encoders are encouraged to set the value of min_spatial_segmentation_idc to the 
highest possible value for which one of the above three conditions is true. For example, for the case when tiles_enabled_flag is 
equal to 0 and entropy_coding_sync_enabled_flag is equal to 1, encoders should set min_spatial_segmentation_idc equal to 
4 * PicSizeInSamplesY / ( ( 2 * pic_height_in_luma_samples + pic_width_in_luma_samples ) * CtbSizeY ) − 4. 

max_bytes_per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units 
associated with any coded picture in the coded video sequence. 

The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of 
bytes of VCL NAL unit data (i.e. the total of the NumBytesInNALunit variables for the VCL NAL units) for the picture. 
The value of max_bytes_per_pic_denom shall be in the range of 0 to 16, inclusive. 

Depending on max_bytes_per_pic_denom the following applies: 

– If max_bytes_per_pic_denom is equal to 0, no limits are indicated. 

– Otherwise (max_bytes_per_pic_denom is not equal to 0), it is a requirement of bitstream conformance that no coded 
picture shall be represented in the coded video sequence by more than the following number of bytes. 

( PicSizeInMinCbsY * RawMinCuBits ) ÷ ( 8 * max_bytes_per_pic_denom ) (E-49) 

When the max_bytes_per_pic_denom syntax element is not present, the value of max_bytes_per_pic_denom is inferred 
to be equal to 2. 



   ISO/IEC 23008-2 : 201x (E) 

287 Draft Rec. ITU-T H.HEVC (201x E) 

max_bits_per_mincu_denom indicates an upper bound for the number of coded bits of coding_unit( ) data for any 
coding block in any picture of the coded video sequence. The value of max_bits_per_mincu_denom shall be in the range 
of 0 to 16, inclusive. [Ed. Improve syntax element name.] 

Depending on max_bits_per_mincu_denom, the following applies: 

– If max_bits_per_mincu_denom is equal to 0, no limit is specified by this syntax element. 

– Otherwise (max_bits_per_mincu_denom is not equal to 0), it is a requirement of bitstream conformance that no 
coded coding_unit( ) shall be represented in the bitstream by more than the following number of bits. 

( 128 + RawMinCuBits ) ÷ max_bits_per_mincu_denom * ( 2 << ( log2CbSize − Log2MinCbSizeY ) ) (E-50) 

where log2CbSize is the value of log2CbSize for the given coding block and the number of bits of coding_unit( ) data for 
the same coding block is given by the number of times read_bits( 1 ) is called in subclauses 9.2.3.2.2 and 9.2.3.2.3. 

When the max_bits_per_mincu_denom is not present, the value of max_bits_per_mincu_denom is inferred to be equal 
to 1. 

log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a 
decoded horizontal and vertical motion vector component, respectively, in ¼ luma sample units, for all pictures in the 
coded video sequence. A value of n asserts that no value of a motion vector component is outside the range from −2n to 
2n − 1, inclusive, in units of ¼ luma sample displacement. The value of log2_max_mv_length_horizontal shall be in the 
range of 0 to 16, inclusive. The value of log2_max_mv_length_vertical shall be in the range of 0 to 15, inclusive. When 
log2_max_mv_length_horizontal is not present, the values of log2_max_mv_length_horizontal and 
log2_max_mv_length_vertical is inferred to be equal to 15. 

NOTE 12 – The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by 
profile, tier and level limits as specified in Annex A. 

E.2.2 HRD parameters semantics 

The hrd_parameters( ) syntax structure provides HRD parameters used in the HRD operations for an operation point set. 
When the hrd_parameters( ) syntax structure is included in a video parameter set, the applicable operation point set to 
which the hrd_parameters( ) syntax structure applies is specified by the corresponding hrd_op_set_idx[ i ] syntax 
element in the video parameter set. When the hrd_parameters( ) syntax structure is included in a sequence parameter set, 
the operation point set to which the hrd_parameters( ) syntax structure applies is the operation point set that has 
OpLayerIdSet containing all nuh_reserved_zero_6bits values present in the coded video sequence. 

For interpretation of the following semantics, the bitstream (or a part thereof) refers to the bitstream subset (or a part 
thereof) associated with the operation point set to which the hrd_parameters( ) syntax structure applies. 

timing_info_present_flag equal to 1 specifies that num_units_in_tick and time_scale are present in the 
hrd_parameters( ) syntax structure. timing_info_present_flag equal to 0 specifies that num_units_in_tick and time_scale 
are not present in the hrd_parameters( ) syntax structure. When not present, the value of timing_info_present_flag is 
inferred to be 0. [Ed. (GJS): I'm worried about this statement. What if it is present in the VPS but not in the VUI, or vice-
versa? In that case, which value of timing_info_present_flag is used to determine the presence or absence of 
num_ticks_poc_diff_one_minus1?] 

num_units_in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to 
one increment (called a clock tick) of a clock tick counter. num_units_in_tick shall be greater than 0. A clock tick is the 
minimum interval of time that can be represented in the coded data when sub_pic_cpb_params_present_flag is equal 
to 0. For example, when the picture rate of a video signal is 25 Hz, time_scale may be equal to 27 000 000 and 
num_units_in_tick may be equal to 1 080 000. See Equation C-1. 

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures 
time using a 27 MHz clock has a time_scale of 27 000 000. time_scale shall be greater than 0. 

nal_hrd_parameters_present_flag equal to 1 specifies that NAL HRD parameters (pertaining to Type II bitstream 
conformance) are present in the hrd_parameters( ) syntax structure. nal_hrd_parameters_present_flag equal to 0 specifies 
that NAL HRD parameters are not present in the hrd_parameters( ) syntax structure. 

NOTE 1 – When nal_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without 
provision of the NAL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in 
this Specification. 

The variable NalHrdBpPresentFlag is derived as follows: 

– If one or more of the following conditions are true, the value of NalHrdBpPresentFlag is set equal to 1: 

– nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1, 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 288 

– The need for presence of buffering periods for NAL HRD operation to be present in the bitstream in buffering 
period SEI messages is determined by the application, by some means not specified in this Specification. 

– Otherwise, the value of NalHrdBpPresentFlag is set equal to 0. 

vcl_hrd_parameters_present_flag equal to 1 specifies that VCL HRD parameters (pertaining to all bitstream 
conformance) are present in the hrd_parameters( ) syntax structure. vcl_hrd_parameters_present_flag equal to 0 specifies 
that VCL HRD parameters are not present in the hrd_parameters( ) syntax structure. 

NOTE 2 – When vcl_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without 
provision of the VCL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in 
this Specification. 

The variable VclHrdBpPresentFlag is derived as follows: 

– If one or more of the following conditions are true, the value of VclHrdBpPresentFlag is set equal to 1: 

– vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1, 

– The need for presence of buffering periods for VCL HRD operation to be present in the bitstream in buffering 
period SEI messages is determined by the application, by some means not specified in this Specification. 

– Otherwise, the value of VclHrdBpPresentFlag is set equal to 0. 

The variable CpbDpbDelaysPresentFlag is derived as follows: 

– If one or more of the following conditions are true, the value of CpbDpbDelaysPresentFlag is set equal to 1: 

– nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1, 

– vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1, 

– The need for presence of CPB and DPB output delays to be present in the bitstream in picture timing SEI 
messages is determined by the application, by some means not specified in this Specification. 

– Otherwise, the value of CpbDpbDelaysPresentFlag is set equal to 0. 

sub_pic_cpb_params_present_flag equal to 1 specifies that sub-picture level CPB removal delay parameters are 
present and the CPB may operate at access unit level or sub-picture level. sub_pic_cpb_params_present_flag equal to 0 
specifies that sub-picture level CPB removal delay parameters are not present and the CPB operates at access unit level. 
When sub_pic_cpb_params_present_flag is not present, its value is inferred to be equal to 0. 

tick_divisor_minus2 is used to specify the sub-picture clock tick. A sub-picture clock tick is the minimum interval of 
time that can be represented in the coded data when sub_pic_cpb_params_present_flag is equal to 1. 

du_cpb_removal_delay_length_minus1 plus 1 specifies the length, in bits, of the du_cpb_removal_delay_minus1[ i ] 
and du_common_cpb_removal_delay_minus1 syntax elements of the picture timing SEI message and the 
du_spt_cpb_removal_delay syntax element in the decoding unit information SEI message. 

sub_pic_cpb_params_in_pic_timing_sei_flag equal to 1 specifies that sub-picture level CPB removal delay parameters 
are present in picture timing SEI messages and no decoding unit information SEI message is available (in the coded 
video sequence or provided through external means not specified in this Specification). 
sub_pic_cpb_params_in_pic_timing_sei_flag equal to 0 specifies that sub-picture level CPB removal delay parameters 
are present in decoding unit information SEI messages and picture timing SEI messages do not include sub-picture level 
CPB removal delay parameters. When the sub_pic_cpb_params_in_pic_timing_sei_flag syntax element is not present, it 
is inferred to be equal to 0. 

bit_rate_scale (together with bit_rate_value_minus1[ i ]) specifies the maximum input bit rate of the i-th CPB. 

cpb_size_scale (together with cpb_size_value_minus1[ i ]) specifies the CPB size of the i-th CPB when the CPB 
operates at the access unit level. 

cpb_size_du_scale (together with cpb_size_du_value_minus1[ i ]) specifies the CPB size of the i-th CPB when the CPB 
operates at sub-picture level. 

initial_cpb_removal_delay_length_minus1 plus 1 specifies the length, in bits, of the initial_cpb_removal_delay[ i ] and 
initial_cpb_removal_offset[ i ] syntax elements of the buffering period SEI message. When the 
initial_cpb_removal_delay_length_minus1 syntax element is not present, it is inferred to be equal to 23. 

au_cpb_removal_delay_length_minus1 plus 1 specifies the length, in bits, of the au_cpb_removal_delay_minus1 
syntax element in the picture timing SEI message. When the au_cpb_removal_delay_length_minus1 syntax element is 
not present, it is inferred to be equal to 23. 



   ISO/IEC 23008-2 : 201x (E) 

289 Draft Rec. ITU-T H.HEVC (201x E) 

dpb_output_delay_length_minus1 plus 1 specifies the length, in bits, of the pic_dpb_output_delay syntax element in 
the picture timing SEI message. When the dpb_output_delay_length_minus1 syntax element is not present, it is inferred 
to be equal to 23. 

fixed_pic_rate_general_flag[ i ] equal to 1 indicates that, when HighestTid is equal to i, the temporal distance between 
the HRD output times of consecutive pictures in output order is constrained as specified below. 
fixed_pic_rate_general_flag[ i ] equal to 0 indicates that this constraint may not apply. 

When fixed_pic_rate_general_flag[ i ] is not present, it is inferred to be equal to 0. 

fixed_pic_rate_within_cvs_flag[ i ] equal to 1 indicates that, when HighestTid is equal to i, the temporal distance 
between the HRD output times of consecutive pictures in output order is constrained as specified below. 
fixed_pic_rate_within_cvs_flag[ i ] equal to 0 indicates that this constraint may not apply. 

When fixed_pic_rate_general_flag[ i ] is equal to 1, the value of fixed_pic_rate_within_cvs_flag[ i ] is inferred to be 
equal to 1. 

elemental_duration_in_tc_minus1[ i ] plus 1 (when present) specifies, when HighestTid is equal to i, the temporal 
distance, in clock ticks, between the elemental units that specify the HRD output times of consecutive pictures in output 
order as specified below. The value of elemental_duration_in_tc_minus1[ i ] shall be in the range of 0 to 2047, inclusive. 

For each picture n where n indicates the n-th picture (in output order) that is output and picture n is not the last picture in 
the bitstream (in output order) that is output, the value of ∆te,dpb( n ) is specified by 

∆te,dpb( n ) = ∆to,dpb( n ) ÷ DeltaToDivisor  (E-51) 

where ∆to,dpb( n ) is specified in Equation C-16 and DeltaToDivisor is specified by Table E-6 based on the value of 
frame_field_info_present_flag and pic_struct for the coded video sequence containing picture n. Entries marked "-" in 
Table E-6 indicate a lack of dependence of DeltaToDivisor on the corresponding syntax element. 

When HighestTid is equal to i and fixed_pic_rate_general_flag[ i ] is equal to 1 for a coded video sequence containing 
picture n, the value computed for ∆te,dpb( n ) shall be equal to tc * ( elemental_duration_in_tcs_minus1[ i ] + 1 ), wherein 
tc is as specified in Equation C-1 (using the value of tc for the coded video sequence containing picture n) when one of 
the following conditions is true for the following picture nn that is specified for use in Equation C-16: 

– picture nn is in the same coded video sequence as picture n. 

– picture nn is in a different coded video sequence and fixed_pic_rate_general_flag[ i ] is equal to 1 in the coded video 
sequence containing picture nn, the value of num_units_in_tick ÷ time_scale is the same for both coded video 
sequences, and the value of elemental_duration_in_tc_minus1[ i ] is the same for both coded video sequences. 

When HighestTid is equal to i and fixed_pic_rate_within_cvs_flag[ i ] is equal to 1 for a coded video sequence 
containing picture n, the value computed for ∆te,dpb( n ) shall be equal to tc * 
( elemental_duration_in_tcs_minus1[ i ] + 1 ), wherein tc is as specified in Equation C-1 (using the value of tc for the 
coded video sequence containing picture n) when the following picture nn that is specified for use in Equation C-16 is in 
the same coded video sequence as picture n. 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 290 

Table E-6 – Divisor for computation of ∆te,dpb( n ) 

frame_field_info_present_flag pic_struct DeltaToDivisor 

0 - 1 
1 1 1 
1 2 1 
1 0 2 
1 3 2 
1 4 2 
1 5 3 
1 6 3 
1 7 2 
1 8 3 
1 9 1 
1 10 1 
1 11 1 
1 12 1 

 

low_delay_hrd_flag[ i ] specifies the HRD operational mode, when HighestTid is equal to i, as specified in Annex C. 
When fixed_pic_rate_within_cvs_flag[ i ] is equal to 1, low_delay_hrd_flag[ i ] shall be equal to 0. 

NOTE 3 – When low_delay_hrd_flag[ i ] is equal to 1, "big pictures" that violate the nominal CPB removal times due to the 
number of bits used by an access unit are permitted. It is expected, but not required, that such "big pictures" occur only 
occasionally. 

cpb_cnt_minus1[ i ] plus 1 specifies the number of alternative CPB specifications in the bitstream of the coded video 
sequence when HighestTid is equal to i. The value of cpb_cnt_minus1[ i ] shall be in the range of 0 to 31, inclusive. 
When low_delay_hrd_flag[ i ] is equal to 1, cpb_cnt_minus1[ i ] shall be equal to 0. When cpb_cnt_minus1[ i ] is not 
present, it is inferred to be equal to 0. 

E.2.3 Sub-layer HRD parameters semantics 

The variable CpbCnt is set equal to cpb_cnt_minus1[ tId ]. 

bit_rate_value_minus1[ i ] (together with bit_rate_scale) specifies the maximum input bit rate for the i th CPB. 
bit_rate_value_minus1[ i ] shall be in the range of 0 to 232 − 2, inclusive. For any i > 0, bit_rate_value_minus1[ i ] shall 
be greater than bit_rate_value_minus1[ i − 1 ]. The bit rate in bits per second is given by 

BitRate[ i ] = ( bit_rate_value_minus1[ i ] + 1 ) * 2(6 + bit_rate_scale) (E-52) 

When the bit_rate_value_minus1[ i ] syntax element is not present, the value of BitRate[ i ] is inferred to be equal to 
cpbBrVclFactor * MaxBR for VCL HRD parameters and to be equal to cpbBrNalFactor * MaxBR for NAL HRD 
parameters, where MaxBR, cpbBrVclFactor and cpbBrNalFactor are specified in subclause A.4. 

cpb_size_value_minus1[ i ] is used together with cpb_size_scale to specify the i-th CPB size when the CPB operates at 
the access unit level. cpb_size_value_minus1[ i ] shall be in the range of 0 to 232 − 2, inclusive. For any i greater than 0, 
cpb_size_value_minus1[ i ] shall be less than or equal to cpb_size_value_minus1[ i − 1 ]. 

When SubPicCpbFlag is equal to 0, the CPB size in bits is given by 

CpbSize[ i ] = ( cpb_size_value_minus1[ i ] + 1 ) * 2(4 + cpb_size_scale) (E-53) 

When SubPicCpbFlag is equal to 0 and the cpb_size_value_minus1[ i ] syntax element is not present, the value of 
CpbSize[ i ] is inferred to be equal to cpbBrVclFactor * MaxCPB for VCL HRD parameters and to be equal to 
cpbBrNalFactor * MaxCPB for NAL HRD parameters, where MaxCPB, cpbBrVclFactor and cpbBrNalFactor are 
specified in subclause A.4. 

cpb_size_du_value_minus1[ i ] is used together with cpb_size_du_scale to specify the i-th CPB size when the CPB 
operates at sub-picture level. cpb_size_du_value_minus1[ i ] shall be in the range of 0 to 232 − 2, inclusive. For any i 
greater than 0, cpb_size_du_value_minus1[ i ] shall be less than or equal to cpb_size_du_value_minus1[ i − 1 ]. 

When SubPicCpbFlag is equal to 1, the CPB size in bits is given by 



   ISO/IEC 23008-2 : 201x (E) 

291 Draft Rec. ITU-T H.HEVC (201x E) 

CpbSize[ i ] = ( cpb_size_du_value_minus1[ i ] + 1 ) * 2(4 + cpb_size_du_scale) (E-54) 

When SubPicCpbFlag is equal to 1 and the cpb_size_du_value_minus1[ i ] syntax element is not present, the value of 
CpbSize[ i ] is inferred to be equal to cpbBrVclFactor * MaxCPB for VCL HRD parameters and to be equal to 
cpbBrNalFactor * MaxCPB for NAL HRD parameters, where MaxCPB, cpbBrVclFactor and cpbBrNalFactor are 
specified in subclause A.4. 

cbr_flag[ i ] equal to 0 specifies that to decode this bitstream by the HRD using the i-th CPB specification, the 
hypothetical stream delivery scheduler (HSS) operates in an intermittent bit rate mode. cbr_flag[ i ] equal to 1 specifies 
that the HSS operates in a constant bit rate (CBR) mode. When the cbr_flag[ i ] syntax element is not present, the value 
of cbr_flag is inferred to be equal to 0. 

 



ISO/IEC 23008-2 : 201x (E) 

  Draft Rec. ITU-T H.HEVC (201x E) 292 

Bibliography 
[1] IEC 61966-2-1, Multimedia systems and equipment – Colour measurement and management – Part 2-1: Colour 

management. 

[2] IEC 61966-2-4, Multimedia systems – Colour measurement 

[3] Rec. ITU-R BT.1358, Studio parameters of 625 and 525 line progressive television systems 

[4] Rec. ITU-R BT.1361, Worldwide unified colorimetry and related characteristics of future television and imaging 
systems 

[5] Rec. ITU-R BT.1700, Characteristics of composite video signals for conventional analogue television systems 

[6] Rec. ITU R BT.601-6, Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 
aspect ratios 

[7] Rec. ITU-R BT.709-5, Parameter values for the HDTV standards for production and international programme 
exchange 

[8] Rec. ITU-R BT.470-6, Conventional Television Systems 

[9] Rec. ITU-R BT.2020, Parameter values for ultra-high definition television systems for production and 
international programme exchange 

[10] Rec. ITU-T H.271, Video back-channel messages for conveyance of status information and requests from a video 
receiver to a video sender 

[11] Society of Motion Picture and Television Engineers 170M (2004), Television – Composite Analog Video Signal – 
NTSC for Studio Applications 

[12] Society of Motion Picture and Television Engineers 240M (1999), Television – Signal Parameters – 1125-Line 
High-Definition Production 

[13] Society of Motion Picture and Television Engineers RP 177 (1993), Derivation of Basic Television Color 
Equations 

[14] United States Federal Communications Commission (2003), Title 47 Code of Federal Regulations 73.682 (a) (20) 

[15] United States National Television System Committee (1953), Recommendation for transmission standards for 
colour television 

 

 


	Abstract
	CONTENTS
	List of figures
	List of tables
	0 Introduction
	0.1 Prologue
	0.2 Purpose
	0.3 Applications
	0.4 Publication and versions of this Specification
	0.5 Profiles, tiers and levels
	0.6 Overview of the design characteristics
	0.7 How to read this Specification

	1 Scope
	2 Normative references
	2.1 General
	2.2 Identical Recommendations | International Standards
	2.3 Paired Recommendations | International Standards equivalent in technical content
	2.4 Additional references

	3 Definitions
	4 Abbreviations
	5 Conventions
	5.1 General
	5.2 Arithmetic operators
	5.3 Logical operators
	5.4 Relational operators
	5.5 Bit-wise operators
	5.6 Assignment operators
	5.7 Range notation
	5.8 Mathematical functions
	5.9 Order of operation precedence
	5.10 Variables, syntax elements, and tables
	5.11 Text description of logical operations
	5.12 Processes

	6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships
	6.1 Bitstream formats
	6.2 Source, decoded, and output picture formats
	6.3 Spatial subdivision of pictures, slices, slice segments, and tiles
	6.4 Availability processes
	6.4.1 Derivation process for z-scan order block availability
	6.4.2 Derivation process for prediction block availability

	6.5 Scanning processes
	6.5.1 Coding tree block raster and tile scanning conversion process
	6.5.2 Z-scan order array initialization process
	6.5.3 Up-right diagonal scan order array initialization process
	6.5.4 Horizontal scan order array initialization process
	6.5.5 Vertical scan order array initialization process


	7 Syntax and semantics
	7.1 Method of specifying syntax in tabular form
	7.2 Specification of syntax functions and descriptors
	7.3 Syntax in tabular form
	7.3.1 NAL unit syntax
	7.3.1.1 General NAL unit syntax
	7.3.1.2 NAL unit header syntax

	7.3.2 Raw byte sequence payloads, trailing bits, and byte alignment syntax
	7.3.2.1 Video parameter set RBSP syntax
	7.3.2.2 Sequence parameter set RBSP syntax
	7.3.2.3 Picture parameter set RBSP syntax
	7.3.2.4 Supplemental enhancement information RBSP syntax
	7.3.2.5 Access unit delimiter RBSP syntax
	7.3.2.6 End of sequence RBSP syntax
	7.3.2.7 End of bitstream RBSP syntax
	7.3.2.8 Filler data RBSP syntax
	7.3.2.9 Slice segment layer RBSP syntax
	7.3.2.10 RBSP slice segment trailing bits syntax
	7.3.2.11 RBSP trailing bits syntax
	7.3.2.12 Byte alignment syntax

	7.3.3 Profile, tier and level syntax
	7.3.4 Bit rate and picture rate information syntax
	7.3.5 Operation point set syntax
	7.3.6 Scaling list data syntax
	7.3.7 Supplemental enhancement information message syntax
	7.3.8 Slice segment header syntax
	7.3.8.1 General slice segment header syntax
	7.3.8.2 Short-term reference picture set syntax
	7.3.8.3 Reference picture list modification syntax
	7.3.8.4 Weighted prediction parameters syntax

	7.3.9 Slice segment data syntax
	7.3.9.1 General slice segment data syntax
	7.3.9.2 Coding tree unit syntax
	7.3.9.3 Sample adaptive offset syntax
	7.3.9.4 Coding quadtree syntax
	7.3.9.5 Coding unit syntax
	7.3.9.6 Prediction unit syntax
	7.3.9.7 PCM sample syntax
	7.3.9.8 Transform tree syntax
	7.3.9.9 Motion vector difference syntax
	7.3.9.10 Transform unit syntax
	7.3.9.11 Residual coding syntax


	7.4 Semantics
	7.4.1 NAL unit semantics
	7.4.1.1 General NAL unit semantics
	7.4.1.2 NAL unit header semantics
	7.4.1.3 Encapsulation of an SODB within an RBSP (informative)
	7.4.1.4 Order of NAL units and association to coded pictures, access units, and video sequences
	7.4.1.4.1 Order of video, sequence, and picture parameter set RBSPs and their activation
	7.4.1.4.2 Order of access units and association to coded video sequences
	7.4.1.4.3 Order of NAL units and coded pictures and association to access units
	7.4.1.4.4 Order of VCL NAL units and association to coded pictures


	7.4.2 Raw byte sequence payloads, trailing bits, and byte alignment semantics
	7.4.2.1 Video parameter set RBSP semantics
	7.4.2.2 Sequence parameter set RBSP semantics
	7.4.2.3 Picture parameter set RBSP semantics
	7.4.2.4 Supplemental enhancement information RBSP semantics
	7.4.2.5 Access unit delimiter RBSP semantics
	7.4.2.6 End of sequence RBSP semantics
	7.4.2.7 End of bitstream RBSP semantics
	7.4.2.8 Filler data RBSP semantics
	7.4.2.9 Slice segment layer RBSP semantics
	7.4.2.10 RBSP slice segment trailing bits semantics
	7.4.2.11 RBSP trailing bits semantics
	7.4.2.12 Byte alignment semantics

	7.4.3 Profile, tier and level semantics
	7.4.4 Bit rate and picture rate information semantics
	7.4.5 Operation point layer set semantics
	7.4.6 Scaling list data semantics
	7.4.7 Supplemental enhancement information message semantics
	7.4.8 Slice segment header semantics
	7.4.8.1 General slice segment header semantics
	7.4.8.2 Short-term reference picture set semantics
	7.4.8.3 Reference picture list modification semantics
	7.4.8.4 Weighted prediction parameters semantics

	7.4.9 Slice segment data semantics
	7.4.9.1 General slice segment data semantics
	7.4.9.2 Coding tree unit semantics
	7.4.9.3 Sample adaptive offset semantics
	7.4.9.4 Coding quadtree semantics
	7.4.9.5 Coding unit semantics
	7.4.9.6 Prediction unit semantics
	7.4.9.7 PCM sample semantics
	7.4.9.8 Transform tree semantics
	7.4.9.9 Motion vector difference semantics
	7.4.9.10 Transform unit semantics
	7.4.9.11 Residual coding semantics



	8 Decoding process
	8.1 General decoding process
	8.2 NAL unit decoding process
	8.3 Slice decoding process
	8.3.1 Decoding process for picture order count
	8.3.2 Decoding process for reference picture set
	8.3.3 Decoding process for generating unavailable reference pictures
	8.3.3.1 General decoding process for generating unavailable reference pictures
	8.3.3.2 Generation of one unavailable picture

	8.3.4 Decoding process for reference picture lists construction

	8.4 Decoding process for coding units coded in intra prediction mode
	8.4.1 General decoding process for coding units coded in intra prediction mode
	8.4.2 Derivation process for luma intra prediction mode
	8.4.3 Derivation process for chroma intra prediction mode
	8.4.4 Decoding process for intra blocks
	8.4.4.1 General decoding process for intra blocks
	8.4.4.2 Intra sample prediction
	8.4.4.2.1 General intra sample prediction
	8.4.4.2.2 Reference sample substitution process for intra sample prediction
	8.4.4.2.3 Filtering process of neighbouring samples
	8.4.4.2.4 Specification of Intra_Planar (0) prediction mode
	8.4.4.2.5 Specification of Intra_DC (1) prediction mode
	8.4.4.2.6 Specification of Intra_Angular (2..34) prediction mode



	8.5 Decoding process for coding units coded in inter prediction mode
	8.5.1 General decoding process for coding units coded in inter prediction mode
	8.5.2 Inter prediction process
	8.5.3 Decoding process for prediction units in inter prediction mode
	8.5.3.1 Derivation process for motion vector components and reference indices
	8.5.3.1.1 Derivation process for luma motion vectors for merge mode
	8.5.3.1.2 Derivation process for spatial merging candidates
	8.5.3.1.3 Derivation process for combined bi-predictive merging candidates
	8.5.3.1.4 Derivation process for zero motion vector merging candidates
	8.5.3.1.5 Derivation process for luma motion vector prediction
	8.5.3.1.6 Derivation process for motion vector predictor candidates
	8.5.3.1.7 Derivation process for temporal luma motion vector prediction
	8.5.3.1.8 Derivation process for collocated motion vectors
	8.5.3.1.9 Derivation process for chroma motion vectors

	8.5.3.2 Decoding process for inter prediction samples
	8.5.3.2.1 Reference picture selection process
	8.5.3.2.2 Fractional sample interpolation process
	8.5.3.2.2.1 Luma sample interpolation process
	8.5.3.2.2.2 Chroma sample interpolation process

	8.5.3.2.3 Weighted sample prediction process
	8.5.3.2.3.1 Default weighted sample prediction process
	8.5.3.2.3.2 Weighted sample prediction process



	8.5.4 Decoding process for the residual signal of coding units coded in inter prediction mode
	8.5.4.1 Decoding process for luma residual blocks
	8.5.4.2 Decoding process for chroma residual blocks


	8.6 Scaling, transformation and array construction process prior to deblocking filter process
	8.6.1 Derivation process for quantization parameters
	8.6.2 Scaling and transformation process
	8.6.3 Scaling process for transform coefficients
	8.6.4 Transformation process for scaled transform coefficients
	8.6.4.1 Transformation process

	8.6.5 Picture construction process prior to in-loop filter process

	8.7 In-loop filter process
	8.7.1 General
	8.7.2 Deblocking filter process
	8.7.2.1 Derivation process of transform block boundary
	8.7.2.2 Derivation process of prediction block boundary
	8.7.2.3 Derivation process of boundary filtering strength
	8.7.2.4 Edge filtering process
	8.7.2.4.1 Vertical edge filtering process
	8.7.2.4.2 Horizontal edge filtering process
	8.7.2.4.3 Decision process for luma block edges
	8.7.2.4.4 Filtering process for luma block edges
	8.7.2.4.5 Filtering process for chroma block edges
	8.7.2.4.6 Decision process for a luma sample
	8.7.2.4.7 Filtering process for a luma sample
	8.7.2.4.8 Filtering process for a chroma sample


	8.7.3 Sample adaptive offset process
	8.7.3.1 General
	8.7.3.2 Coding tree block modification process



	9 Parsing process
	9.1 Parsing process for 0-th order Exp-Golomb codes
	9.1.1 Mapping process for signed Exp-Golomb codes

	9.2 CABAC parsing process for slice segment data
	9.2.1 Initialization process
	9.2.1.1 Initialization process for context variables
	9.2.1.2 Memorization process for context variables
	9.2.1.3 Synchronization process for context variables
	9.2.1.4 Initialization process for the arithmetic decoding engine

	9.2.2 Binarization process
	9.2.2.1 Unary (U) binarization process
	9.2.2.2 Truncated unary (TU) binarization process
	9.2.2.3 Truncated Rice (TR) binarization process
	9.2.2.4 k-th order Exp-Golomb (EGk) binarization process
	9.2.2.5 Fixed-length (FL) binarization process
	9.2.2.6 Binarization process for cu_qp_delta_abs
	9.2.2.7 Binarization process for part_mode
	9.2.2.8 Binarization process for coeff_abs_level_remaining
	9.2.2.9 Binarization process for intra_chroma_pred_mode
	9.2.2.10 Binarization process for inter_pred_idc

	9.2.3 Decoding process flow
	9.2.3.1 Derivation process for ctxIdx
	9.2.3.1.1 Derivation process of ctxIdxInc using left and above syntax elements
	9.2.3.1.2 Derivation process of ctxIdxInc for the syntax elements last_significant_coeff_x_prefix and last_significant_coeff_y_prefix
	9.2.3.1.3 Derivation process of ctxIdxInc for the syntax element coded_sub_block_flag
	9.2.3.1.4 Derivation process of ctxIdxInc for the syntax element significant_coeff_flag
	9.2.3.1.5 Derivation process of ctxIdxInc for the syntax element coeff_abs_level_greater1_flag
	9.2.3.1.6 Derivation process of ctxIdxInc for the syntax element coeff_abs_level_greater2_flag

	9.2.3.2  Arithmetic decoding process
	9.2.3.2.1 Arithmetic decoding process for a binary decision
	9.2.3.2.1.1 State transition process

	9.2.3.2.2 Renormalization process in the arithmetic decoding engine
	9.2.3.2.3 Bypass decoding process for binary decisions
	9.2.3.2.4 Decoding process for binary decisions before termination


	9.2.4 Arithmetic encoding process (informative)
	9.2.4.1 Initialization process for the arithmetic encoding engine (informative)
	9.2.4.2 Encoding process for a binary decision (informative)
	9.2.4.3 Renormalization process in the arithmetic encoding engine (informative)
	9.2.4.4 Bypass encoding process for binary decisions (informative)
	9.2.4.5 Encoding process for a binary decision before termination (informative)
	9.2.4.6 Byte stuffing process (informative)



	10 Specification of bitstream subsets
	10.1 Sub-bitstream extraction process

	A  Annex A  Profiles, tiers and levels
	A.1 Overview of profiles, tiers and levels
	A.2 Requirements on video decoder capability
	A.3 Profiles
	A.3.1 General
	A.3.2 Main profile
	A.3.3 Main 10 profile
	A.3.4 Main Still Picture profile

	A.4 Tiers and levels
	A.4.1 General tier and level limits
	A.4.2 Profile-specific level limits for the Main and Main 10 profiles
	A.4.3 Effect of level limits on picture rate for the Main and Main 10 profiles (informative)


	B  Annex B  Byte stream format
	B.1 Byte stream NAL unit syntax and semantics
	B.1.1 Byte stream NAL unit syntax
	B.1.2 Byte stream NAL unit semantics

	B.2 Byte stream NAL unit decoding process
	B.3 Decoder byte-alignment recovery (informative)

	C Annex C  Hypothetical reference decoder
	C.1 General
	C.2 Operation of coded picture buffer (CPB)
	C.2.1 General
	C.2.2 Timing of decoding unit  arrival
	C.2.3 Timing of decoding unit removal and decoding of decoding unit

	C.3 Operation of the decoded picture buffer (DPB)
	C.3.1 General
	C.3.2 Removal of pictures from the DPB
	C.3.3 Picture output
	C.3.4 Current decoded picture marking and storage

	C.4 Bitstream conformance
	C.5 Decoder conformance
	C.5.1 General
	C.5.2 Operation of the output order DPB
	C.5.3 Output and removal of pictures from the DPB
	C.5.3.1 "Bumping" process

	C.5.4 Picture decoding, marking and storage


	D  Annex D  Supplemental enhancement information
	D.1 SEI payload syntax
	D.1.1 General SEI message syntax
	D.1.2 Buffering period SEI message syntax
	D.1.3 Picture timing SEI message syntax
	D.1.4 Pan-scan rectangle SEI message syntax
	D.1.5 Filler payload SEI message syntax
	D.1.6 User data registered by Rec. ITU-T T.35 SEI message syntax
	D.1.7 User data unregistered SEI message syntax
	D.1.8 Recovery point SEI message syntax
	D.1.9 Scene information SEI message syntax
	D.1.10 Full-frame snapshot SEI message syntax
	D.1.11 Progressive refinement segment start SEI message syntax
	D.1.12 Progressive refinement segment end SEI message syntax
	D.1.13 Film grain characteristics SEI message syntax
	D.1.14 Post-filter hint SEI message syntax
	D.1.15 Tone mapping information SEI message syntax
	D.1.16 Frame packing arrangement SEI message syntax
	D.1.17 Display orientation SEI message syntax
	D.1.18 SOP description SEI message syntax
	D.1.19 Decoded picture hash SEI message syntax
	D.1.20 Active parameter sets SEI message syntax
	D.1.21 Decoding unit information SEI message syntax
	D.1.22 Temporal level zero index SEI message syntax
	D.1.23 Scalable nesting SEI message syntax
	D.1.24 Region refresh information SEI message syntax
	D.1.25 Reserved SEI message syntax

	D.2 SEI payload semantics
	D.2.1 General SEI payload semantics
	D.2.2 Buffering period SEI message semantics
	D.2.3 Picture timing SEI message semantics
	D.2.4 Pan-scan rectangle SEI message semantics
	D.2.5 Filler payload SEI message semantics
	D.2.6 User data registered by ITU-T Rec. T.35 SEI message semantics
	D.2.7 User data unregistered SEI message semantics
	D.2.8 Recovery point SEI message semantics
	D.2.9 Scene information SEI message semantics
	D.2.10 Full-frame snapshot SEI message semantics
	D.2.11 Progressive refinement segment start SEI message semantics
	D.2.12 Progressive refinement segment end SEI message semantics
	D.2.13 Film grain characteristics SEI message semantics
	D.2.14 Post-filter hint SEI message semantics
	D.2.15 Tone mapping information SEI message semantics
	D.2.16 Frame packing arrangement SEI message semantics


	Figure D-1 – Rearrangement and upconversion of checkerboard interleaving  (frame_packing_arrangement_type equal to 0)
	Figure D-2 – Rearrangement and upconversion of column interleaving  with frame_packing_arrangement_type equal to 1, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8) for both constituent frames
	Figure D-3 – Rearrangement and upconversion of column interleaving with frame_packing_arrangement_type equal to 1, quincunx_sampling_flag equal to 0,  (x, y) equal to (0, 0) or (4, 8) for constituent frame 0 and (x, y) equal to (12, 8) for constituent...
	Figure D-4 – Rearrangement and upconversion of row interleaving with frame_packing_arrangement_type equal to 2, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4) for both constituent frames
	Figure D-6 – Rearrangement and upconversion of side-by-side packing arrangement with frame_packing_arrangement_type equal to 3, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (4, 8) for both constituent frames
	Figure D-8 – Rearrangement and upconversion of top-bottom packing arrangement with frame_packing_arrangement_type equal to 4, quincunx_sampling_flag equal to 0, and (x, y) equal to (0, 0) or (8, 4) for both constituent frames
	Figure D-10 – Rearrangement and upconversion of side-by-side packing arrangement with quincunx sampling (frame_packing_arrangement_type equal to 3 with quincunx_sampling_flag equal to 1)
	Figure D-11 – Rearrangement of a temporal interleaving frame arrangement  (frame_packing_arrangement_type equal to 5)
	Figure D-12 – Rearrangement and upconversion of rectangular region frame packing arrangement (frame_packing_arrangement_type equal to 7)
	D.2.17 Display orientation SEI message semantics
	D.2.18 SOP description SEI message semantics
	D.2.19 Decoded picture hash SEI message semantics
	D.2.20 Active parameter sets SEI message semantics
	D.2.21 Decoding unit information SEI message semantics
	D.2.22 Temporal level zero index SEI message semantics
	D.2.23 Scalable nesting SEI message semantics
	D.2.24 Region refresh information SEI message semantics
	D.2.25 Reserved SEI message semantics

	E  Annex E  Video usability information
	E.1 VUI syntax
	E.1.1 VUI parameters syntax
	E.1.2 HRD parameters syntax
	E.1.3 Sub-layer HRD parameters syntax

	E.2 VUI semantics
	E.2.1 VUI parameters semantics
	E.2.2 HRD parameters semantics
	E.2.3 Sub-layer HRD parameters semantics


	Bibliography



