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0 Introduction

This Recommendatiohinternational Standard, informally called JBIG2, defines a coding method for bi-level
images (e.g., black and white printed matter). These are images consisting of a single rectangular bit plane,
with each pixel taking on one of just two possible colours. Multiple colours are to be handled using an appropriate
higher level standard such as ITU-T Recommendation T.44. Itis being drafted by the Joint Bi-level Image Experts
Group (JBIG), a “Collaborative Team”, established in 1988, that reports both to ISO/IEC JTC 1/SC29/WG1 and
to ITU-T/SG8.

Compression of this type of image is also addressed by existing facsimile standards, for example by the com-
pression algorithms in ITU-T Recommendations T.4 (MH, MR), T.6 (MMR), T.82 (JBIG1), and T.85 (Application
profile of JIBIG1 for facsimile). Besides the obvious facsimile application, JBIG2 will be useful for document stor-
age and archiving, coding images on the World Wide Web, wireless data transmission, print spooling, and even
teleconferencing.

As the result of a process that ended in 1993, JBIG produced a first coding standard formally designated ITU-
T Recommendation T.8nternational Standard ISO/IEC 11544, which is informally known as JBIG or JBIG1.
JBIGL1 is intended to behave as lossless and progressive (lossy-to-lossless) coding. Though it has the capability
of lossy coding, the lossy images produced by JBIG1 have significantly lower quality than the original images
because the number of pixels in the lossy image cannot exceed one quarter of those in the original image.

On the contrary, JBIG2 was explicitly prepared for lossy, lossless, and lossy-to-lossless image compression.
The design goal for JBIG2 was to allow for lossless compression performance better than that of the existing
standards, and to allow for lossy compression at much higher compression ratios than the lossless ratios of the ex-
isting standards, with almost no visible degradation of quality. In addition, JBIG2 allows both quality-progressive
coding, with the progression going from lower to higher (or lossless) quality, and content-progressive coding,
successively adding different types of image data (for example, first text, then halftones). A typical JBIG2 en-
coder decomposes the input bi-level image into several regions and codes each of the regions separately using a
different coding method. Such content-based decomposition is very desirable especially in interactive multimedia
applications. JBIG2 can also handle a set of images (multiple page document) in an explicit manner.

As is typical with image compression standards, JBIG2 explicitly defines the requirements of a compliant
bitstream, and thus defines decoder behavior. JBIG2 does not explicitly define a standard encoder, but instead is
flexible enough to allow sophisticated encoder design. In fact, encoder design will be a major differentiator among
competing JBIG2 implementations.

Although this document is phrased in terms of actions to be taken by decoders to interpret a bitstream, any
decoder that produces the correct result (as defined by those actions) is compliant, regardless of the actions it
actually takes.

Annexes A, B, C, D, E are normative, and thus form an integral part of this Specification. Annexes F, G, H, |
and J are informative, and thus do not form an integral part of this Specification.

0.1 Interpretation and use of the requirements

This section is informative and designed to aid in interpreting the requirements of this Recommejnidétiora-

tional Standard. The requirements are written to be as general as possible to allow a large amount of implementa-
tion flexibility. Hence the language of the requirements is not specific about applications or implementations. In
this section a correspondence is drawn between the general wording of the requirements and the intended use of
this Recommendatigninternational Standard in typical applications.

0.1.1 Subject matter for JBIG2 coding

JBIG2 is used to code bi-level documents. A bi-level document contains one or more pages. A typical page
contains some text data, that is, some characters of a small size arranged in horizontal or vertical rows. The
characters in the text part of a page are caffgohbolsn JBIG2. A page may also contain “halftone data”, that
is, gray-scale or colour multi-level images (e.qg., photographs) that have been dithered to produce bi-level images.
The periodic bitmap cells in the halftone part of the page are cabe¢krnsin JBIG2. In addition, a page may
contain other data, such as line art and noise. Such non-text, non-halftone data igeadeddata in JBIG2.

The JBIG2 image model treats text data and halftone data as special cases. It is expected that a JBIG2 en-
coder will divide the content of a page into a text region containing digitised text, a halftone region containing
digitised halftones, and a generic region containing the remaining digitised image data, such as line-art. In some
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circumstances, it is better (in image quality or compressed data size) to consider text or halftones as generic data;
conversely, in some circumstances it is better to consider generic data using one of the special cases.

An encoder is permitted to divide a single page into any number of regions, but often three regions will be
sufficient, one for textual symbols, one for halftone patterns, and the third for the generic remainder. In some
cases, not all types of data may be present, and the page may consist of fewer than three regions.

The various regions may overlap on the physical page. JBIG2 provides means to specify how the overlapping
regions are re-combined to form the final page image.

A text region consists of a number of symbols placed at specified locations on a background. The symbols
usually correspond to individual text characters. JBIG2 obtains much of its effectiveness by using individual
symbols more than once. To reuse a symbol, an encoder or decoder must have a succinct way of referring to it. In
JBIG2, the symbols are collected into one or more symbol dictionaries. A symbol dictionary is a set of bitmaps
of text symbols, indexed so that a symbol bitmap may be referred to by an index number.

A halftone region consists of a number of patterns placed along a regular grid. The patterns usually correspond
to gray-scale values. Indeed, the coding method of the pattern indices is designed as a gray-scale coder. Com-
pression can be realised by representing the binary pixels of one grid cell by a single integer, the halftone index
(which is usually a rendered gray-scale value). This many-to-one mapping (the pattern in a cell into a gray-scale
value) may have the effect that edge information present in the original bitmap is lost by halftone coding. For this
reason, lossless or near-lossless coding of halftones will often be better in image quality (though larger in size) if
the halftone is coded with generic coding rather than halftone coding.

0.1.2 Relationship between segments and documents

A JBIG2 file contains the information needed to decode a bi-level document. A JBIG2 file is composed of

segments A typical page is coded using several segments. In a simple case, there will be a page information

segment, a symbol dictionary segment, a text region segment, a pattern dictionary segment, a halftone region
segment, and an end-of-page segment. The page information segment provides general information about the
page, such as its size and resolution. The dictionary segments collect bitmaps referred to in the region segments.
The region segments describe the appearance of the text and halftone regions by referencing bitmaps from a
dictionary and specifying where they should appear on the page. The end-of-page segment marks the end of the

page.
0.1.3 Structure and use of segments

Each segment contains a segment header, a data header, and data. The segment header is used to convey segment
reference information and, in the case of multi-page documents, page association information. A data header
gives information used for decoding the data in the segment. The data describes an image region or a dictionary,

or provides other information.

Segments are numbered sequentially. A segment may refer to a lower-numbeaatiegrsegment. A region
segment is always associated with one specific page of the document. A dictionary segment may be associated
with one page of the document, or it may be associated with the document as a whole.

A region segment may refer to one or more earlier dictionary segments. The purpose of such a reference is to
allow the decoder to identify symbols in a dictionary segment that are present into the image.

A region segment may refer to an earlier region segment. The purpose of such a reference is to combine the
image described by the earlier segment with the current representation of the page.

A dictionary segment may refer to earlier dictionary segments. The symbols added to a dictionary segment
may be described directly, or may be described as refinements of symbols described previously, either in the same
dictionary segment or in earlier dictionary segments.

A JBIG2 file may be organised in two ways, sequential or random access. In the sequential organisation, each
segment’s segment header immediately precedes that segment’s data header and data, all in sequential order. In the
random access organisation, all the segment headers are collected together at the beginning of the file, followed
by the data (including data headers) for all the segments, in the same order. This second organisation permits a
decoder to determine all segment dependencies without reading the entire file.

A third way of encapulating of JBIG2-encoded data is to embed it in a non-JBIG2 file — this is sometimes
called theembedded organisatioin this case a different file format carries JBIG2 segments. The segment header,
data header, and data of each segment are stored together, but the embedding file format may store the segments
in any order, at any set of locations within its own structure.
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0.1.4 Internal representations

Decoded data must be stored before printing or display. While this Recommenfattemational Standard

does not specify how to store it, its decoding model presumes certain data structures, specifically buffers and
dictionaries. Figure 1 illustrates major decoder components and associated buffers. In this figure, decoding
procedures are outlined in bold lines, and memory components are outlined in non-bold lines. Also, bold arrows
indicate that one decoding procedure invokes another decoding procedure; for example, the symbol dictionary
decoding procedure invokes the generic region decoding procedure to decode the bitmaps for the symbols that
it defines. Non-bold arrows indicate flow of data: the text region decoding procedure reads symbols from the
symbol memory and draws them into the page buffer or an auxiliary buffer. Although it is not shown in Figure 1,
the encoded data stream flows to the decoding procedures, and the block labeled "Page and auxiliary buffers”
produces the final decoded page images.

The resources required to decode any given JBIG2 bitstream depend on the complexity of that bitstream.
Some techniques such as striping can be used to reduce decoder memory requirements. It is estimated that a full-
featured decoder may need two full-page buffers, plus about the same amount of dictionary memory, plus about
100 kilobytes of arithmetic coding context memory, to decode most bitstreams.

A buffer is a representation of a bitmap. A buffer is intended to hold a large amount of data, typically the size
of a page. A buffer may contain the description of a region or of an entire page. Even if the buffer describes only
aregion, it has information associated with it that specifies its placement on the page. Decoding a region segment
modifies the contents of a buffer.

There is one special buffer, tipage buffer It is intended that the decoder accumulate region data directly in
the page buffer until the page has been completely decoded; then the data can be sent to an output device or file.
Decoding arimmediateregion segment modifies the contents of the page buffer. The usual way of preparing a
page is to decode one or more immediate region segments, each one modifying the page buffer. The decoder may
output an incomplete page buffer, either as part of progressive transmission or in response to user input. Such
output is optional, and its content is not specified by this Recommenddtiternational Standard.

All other buffers are auxiliary buffers. It is intended that the decoder fill an auxiliary buffer, then later use it to
refine the page buffer. In an application, it will often be unnecessary to have any auxiliary buffers. Decoding an
intermediateregion segment modifies the contents of an auxiliary buffer. The decoder may use auxiliary buffers
to output pages other than those found in a complete page buffer, either as part of progressive transmission or
in response to user input. Such output is optional, and its content is not specified by this Recomméndation
International Standard.

A symbol dictionary consists of an indexed set of bitmaps. The bitmaps in a dictionary are typically small,
approximately the size of text characters. Unlike a buffer, a bitmap in a dictionary does not have page location
information associated with it.

0.1.5 Decoding results

Decoding a segment involves invocation of one or more decoding procedures. The decoding procedures to be
invoked are determined by the segment type.

The result of decoding a region segment is a bitmap stored in a buffer, possibly the page buffer. Decoding a re-
gion segment may fill a new buffer, or may modify an existing buffer. In typical applications, placing the data into
a buffer involves changing pixels from the background colour to the foreground colour, but this Recommendation
| International Standard specifies other permissible ways of changing a buffer’s pixels.

A typical page will be described by a number of one or more immediate region segments, each one resulting
in modification of the page buffer.

Just as it is possible to specify a new symbol in a dictionary by refining a previously specified symbol, it is
also possible to specify a new buffer by refining an existing buffer. However, a region may be refined only by
the generic refinement decoding procedure. Such a refinement does not make use of the internal structure of the
region in the buffer being refined. After a buffer has been refined, the original buffer is no longer available.

The result of decoding a dictionary segment is a new dictionary. The symbols in the dictionary may later be
placed into a buffer by the text region decoding procedure.

0.1.6 Decoding procedures

The generic region decoding procedufidls or modifies a buffer directly, pixel-by-pixel if arithmetic coding is
being used, or by runs of foreground and background pixels if MMR and Huffman coding are being used. In the

13



.

S

Page and
auxiliary
buffers

Text
region
decoding
procedure

Symbol
dictionary
decoding
procedure

Symbol
memory

Y

Generic
refinement
region
decoding
procedure

Generic
region
decoding
procedure

A

Context
memory

Halftone
region
decoding
procedure

Pattern
dictionary
decoding
procedure

Pattern
memory

L

J

Figure 1 — Block diagram of major decoder components.




Table 1 — Entities in the decoding process

JBIG2 JBIG2 Physical
Concept bitstream entity decoding entity representation
Document JBIG2 file JBIG2 decoder Output medium
or device
Page Collection of segments Implicit in control Page buffer
decoding procedure
Region Region segment Region decoding Page buffer or
procedure auxiliary buffer
Dictionary Dictionary segment Dictionary decoding List of symbols
procedure
Character Field within a symbol Symbol dictionary Symbol bitmap
dictionary segment decoding procedure
Gray-scale Field within a halftone Pattern dictionary Pattern
value dictionary segment decoding procedure

arithmetic coding case, the prediction context contains only pixels determined by data already decoded within the
current segment.

Thegeneric refinement region decoding procednmedifies a buffer pixel-by-pixel using arithmetic coding.

The prediction context uses pixels determined by data already decoded within the current segment as well as pixels
already present either in the page buffer or in an auxiliary buffer.

Thetext region decoding procedutakes symbols from one or more symbol dictionaries and places them in a
buffer. This procedure is invoked during the decoding of a text region segment. The text region segment contains
the position and index information for each symbol to the placed in the buffer; the bitmaps of the symbols are
taken from the symbol dictionaries.

The symbol dictionary decoding proceduceeates a symbol dictionary, that is, an indexed set of symbol
bitmaps. A bitmap in the dictionary may be coded directly; it may be coded as a refinement of a symbol already in
a dictionary; or it may be coded as an aggregation of two or more symbols already in dictionaries. This decoding
procedure is invoked during the decoding of a symbol dictionary segment.

The halftone region decoding procedutakes patterns from a pattern dictionary and places them in a buffer.
This procedure is invoked during the decoding of a halftone region segment. The halftone region segment contains
the position information for all the patterns to be placed in the buffer, as well as index information for the patterns
themselves. The patterns, the fixed-size bitmaps of the halftone, are taken from the halftone dictionaries.

The pattern dictionary decoding proceducgeates a dictionary, that is, an indexed set of fixed-size bitmaps
(patterns). The bitmaps in the dictionary are coded directly and jointly. This decoding procedure is invoked during
the decoding of a pattern dictionary segment.

Thecontrol decoding procedumecodes segment headers, which include segment type information. The seg-
ment type determines which decoding procedure must be invoked to decode the segment. The segment type also
determines where the decoded output from the segment will be placed. The segment reference information, also
present in the segment header and decoded by the control decoding procedure, determines which other segments
must be used to decode the current segment. The control decoding procedure affects everything shown in Figure 1,
and so is not shown there as a separate block.

Table 1 summarises the types of data being decoded, which decoding procedure is responsible for decoding
them, and what the final representations of the decoded data are.

0.2 Lossy coding

This specification does not define how to control lossy coding of bi-level images. Rather it defines how to perform
perfect reconstruction of a bitmap that the encoder has chosen to encode. If the encoder chooses to encode a
bitmap that is different than the original, the entire process becomes one of lossy coding. The different coding
methods allow for different methods of introducing loss in a profitable way.
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0.2.1 Symbol coding

Lossy symbol coding provides a natural way of doing lossy coding of text regions. The idea is to allow small
differences between the original symbol bitmap and the one indexed in the symbol dictionary. Compression gain
is effected by not having to code a large dictionary and, afterwards, by having a cheap symbol index coding as a
consequence of the smaller dictionary. It is up to the encoder to decide when two bitmaps are essentially the same
or essentially different. This technique was first described in [1].

The hazard of lossy symbol coding is to hawstitution errorsthat is, to have the encoder replace a bitmap
corresponding to one character by a bitmap depicting a different character, so that a human reader misreads the
character. The risk of substitution errors can be reduced by using intricate measures of difference between bitmaps
and/or by making sure that the critical pixels of the indexed bitmap are correct. One way to control this, described
in [5], is to index the possibly wrong symbol and then to apply refinement coding to that symbol bitmap. The idea
is to encode the basic character shape at little cost, then correct pixels that the encoder believes alter the meaning
of the character.

The process of beneficially introducing loss in textual regions may also take simpler forms such as removing
flyspecks from documents or regularizing edges of letters. Most likely such changes will lower the code length of
the region without affecting the general appearance of the region — possibly even improving the appearance.

A number of examples of performing this sort of lossy symbol coding with JBIG2 can be found in [7].

NOTE — Although the term “text region” is used for regions of the page coded using symbol coding, other
possible uses of symbol coding include coding line-art and other non-textual data.

0.2.2 Generic coding

To effect near-lossless coding using generic coding, the encoder applies a preprocess to an original image and
encodes the changed image losslessly. The difficulties are to ensure that the changes result in a lower code length
and that the quality of the changed image does not suffer badly from the changes. Two possible preprocesses are
given in [11]. These preprocesses flip pixels that, when flipped, significantly lower the total code length of the
region, but can be flipped without seriously impairing the visual quality. The preprocesses provide for effective
near-lossless coding of periodic halftones and for a moderate gain in compression for other data types. The
preprocesses are not well-suited for error diffused images and images dithered with blue noise as perceptually
lossless compression will not be achieved at a significantly lower rate than the lossless rate.

0.2.3 Halftone coding

Halftone coding is the natural way to obtain very high compressiopédoiodic halftones, such as clustered-dot
ordered dithered images. In contrast to lossy generic coding as described above, halftone coding does notintend to
preserve the original bitmap, although this is possible in special cases. Loss can also be introduced for additional
compression by not putting all the patterns of the original image into the dictionary, thereby reducing both the
number of halftone patterns and the number of bits required to specify which pattern is used in which location.

For lossy coding of error diffused images and images dithered with blue noise it is advisable to use halftone
coding with a small grid size. A reconstructed image will lack fine details and may display blockiness but will be
clearly recognizable. The blockiness may be reduced on the decoder side in a postprocess; for instance, by using
other reconstruction patterns than those that appear in the dictionary. Error diffused images may also be coded
losslessly, or with controlled loss as described above, using generic coding.

More details on performing this halftone coding can be found in [12].

0.2.4 Consequences of inadequate segmentation

In order to obtain optimum coding, both in terms of quality and file size, the correct form of encoding should
be used for the appropriate regions of the document pages. This subclause briefly describes the consequences of
errors in this segmentation.

Using lossy symbol coding for a document containing both text and halftone data will result in poor compres-
sion. Depending on the encoder, the quality of the halftone data may be good or bad. Using the form of lossy
symbol coding described in [5] the visual quality will probably not suffer.

Using lossy generic coding (using the preprocesses given in [11]) for a document containing both symbol and
halftone data usually results in good quality and moderate compression.
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Line art and regions of handwritten text may be coded efficiently using generic coding, but depending on the
encoder, these types of regions can also be very effectively coded with symbol coding.
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1 Scope

This Recommendatiohinternational Standard defines methods for coding bi-level images and sets of images
(documents consisting of multiple pages). It is particularly suitable for bi-level images consisting of text and
dithered (halftone) data.

The methods defined permit lossless (bit-preserving) coding, lossy coding, and progressive coding. In pro-
gressive coding, the first image is lossy; subsequent images may be lossy or lossless.

This Recommendatiohinternational Standard also defines file formats to enclose the coded bi-level image
data.
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2 Normative References

The following ITU-T Recommendations and International Standards contain provisions which, through references
in this text, constitute provisions of this Recommendatidmternational Standard. At the time of publication,

the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to
agreements based on this Recommendatloternational Standard are encouraged to investigate the possibility

of applying the most recent editions of the Recommendations and Standards listed below. Members of IEC and
ISO maintain registers of currently valid International Standards. The ITU-T Telecommunication Standardization
Bureau (TSB) maintains a list of the currently valid ITU-T Recommendations.

e ISO/IEC 8859-1:1987 to 1ISO 8859-10:1992, Information processing — 8-bit single byte coded graphic
character sets

e ISO/IEC 10646-1:1993, Information technology — Universal multiple-octet coded character set (UCS) —
Architecture and basic multilingual plane

e ITU-T T.6 (1988), Facsimile coding schemes and coding control functions for group 4 facsimile apparatus
— Terminal Equipment and Protocols for Telematic Services (Study Group XllII)
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3 Terms and Definitions

For the puposes of this Recommendalfidmternational Standard, the terms and definitions given in the following
apply.

3.1

Adaptive template pixel(s)

A special pixel(s), in a template, whose location is not fixed

3.2
Aggregation
A joining or merging of several individual symbols into a new symbol

3.3
Bi-level image
A rectangular array of bits

3.4

Bit

A binary digit, representing the valeor 1
3.5

Bitmap

A bi-level image

3.6
Buffer
A storage area used to hold a bitmap

3.7
Byte
Eight bits of data
3.8

Combination operator
An operator used to combine the prior contents of a bitmap with new values being drawn into that bitmap

3.9

Coordinate system

A numbering system for two-dimensional locations where locations are labelled by two numbers, the first one
increasing from left to right and the second one increasing from top to bottom.

3.10
Delta S
The difference in the S coordinates between two successive symbol instances in a non-empty strip

3.11
Delta T
The difference in the T coordinates between two successive non-empty strips

3.12
Decoding procedure
A component of a decoder that decodes a certain type of data

3.12.1
Integer decoding procedure
A decoding procedure whose output on each invocation is a single value

3.12.2
Arithmetic integer decoding procedure
An integer decoding procedure that uses arithmetic entropy decoding

20



3.12.3
Region decoding procedure
A decoding procedure whose output is a bitmap

3.12.4
Generic region decoding procedure
A region decoding procedure that operates by decoding pixels individually or in runs

3.12.5
Generic refinement region decoding procedure
A region decoding procedure that operates by modifying a reference bitmap to produce an output bitmap

3.12.6
Gray-scale decoding procedure
A decoding procedure whose output is a gray-scale image

3.12.7
Pattern dictionary decoding procedure
A decoding procedure whose output is a list of patterns

3.12.8

Halftone region decoding procedure

A region decoding procedure that operates by drawing a set of patterns into a bitmap, placing the patterns accord-
ing to a halftone grid

3.12.9
Huffman table decoding procedure
A decoding procedure whose output is a Huffman table

3.12.10
Text region decoding procedure
A region decoding procedure that operates by drawing a set of symbol instances into a bitmap

3.12.11
Symbol dictionary decoding procedure
A decoding procedure whose output is a list of symbols

3.13
Decoder
An entity capable of decoding a bitstream in conformance with this Recommengtiemational Standard

3.14
Dictionary
A list of bitmaps

3.14.1
Pattern dictionary
A list of patterns

3.14.2
Symbol dictionary
A list of symbols

3.15
Export flag
A bit indicating that a symbol is on the export list of a symbol dictionary

3.16
Export list
A list of the symbols in a symbol dictionary that may be used by referring to that symbol dictionary
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3.17
Gray-scale image
A rectangular array of non-negative integer indices

3.18
Gray-scale pixel
An integer-valued element in a gray-scale image

3.19
Halftone grid
A rectilinear grid of locations specifying where patterns are to be drawn

3.20
Height class
A set of symbols in a symbol dictionary whose heights are all equal

3.21
Height class delta height
The difference in height between two height classes

3.22
Height class delta width
The difference in width between two symbols in a height class

3.23
Huffman table
A collection of table lines specifying how values are encoded

3.24
Lossless coding
A method of encoding data so that the decoded data are identical to the original data

3.25

Lossy coding

A method of encoding data so that the decoded data differ, ideally only in insignificant ways, from the original
data

3.26
Ordinal
A value used as a counter

3.27
Out-of-band value
A non-numeric value that may be produced in place of an integer

3.28
Pattern
A bitmap produced by a pattern dictionary decoding procedure

3.29
Pixel
An element withO or 1 as its value in a bitmap

3.30
Prefix length
The length of the Huffman code prefix in a table line

3.31
Range length
The number of additional code bits in a table line
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3.32
Reference bitmap
The bitmap used as the reference plane during the refinement region decoding procedure

3.33
Referred-to segment
Another segment required in order to decode the current segment

3.34
Region
A bitmap produced by a region decoding procedure

3.35
Segment
A segment header and its segment data

3.36
Strip
A full-width or full-height portion of the coordinate system of a text region

3.36.1
Empty strip
A strip containing the reference corners of no symbol instances

3.36.2
Non-empty strip
A strip containing the reference corner of at least one symbol instance

3.37
Strip size
The extent in pixels of the non-full dimension of a strip

3.38
Symbol
A bitmap produced by a symbol dictionary decoding procedure

3.39
Symbol ID
An integer used to identify a symbol or to index into an array of symbols to retrieve the symbol

3.40
Symbol instance
A symbol drawn, possibly with refinement, at a particular location in a text region

3.41

Symbol instance refinement delta height

The difference in height between a symbol instance’s reference bitmap and the bitmap produced by the generic
refinement region decoding procedure

3.42

Symbol instance refinement delta width

The difference in width between a symbol instance’s reference bitmap and the bitmap produced by the generic
refinement region decoding procedure

3.43

Symbol instance refinement delta X

The difference between the X coordinates of the top left corners of a symbol instance’s reference bitmap and the
bitmap produced by the generic refinement region decoding procedure
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3.44

Symbol instance refinement delta Y

The difference between the Y coordinates of the top left corners of a symbol instance’s reference bitmap and the
bitmap produced by the generic refinement region decoding procedure

3.45

Table line

A specification of the encoding of a single value or a range of values as a Huffman code prefix followed by a fixed
number of additional code bits

3.46
Typical prediction
Typical prediction signals that an entire row of a generic region is identical to the preceding row

3.47
Value
An integer or out-of-band indicator that is decoded
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4 Symbols and Abbreviations

NOTE — Due to ISO nomenclature requirements, within the context of Clause 4, the term “symbol” is
locally used to mean a variable name.

4.1 Abbreviations
The abbreviations used in this Recommendattioiernational Standard are listed below.

AT Adaptive template

EOFB End of Facsimile Block

ID Identifier

LPS Less probable symbol, i.e., less probable binary value
LSB Least significant bit

MMR Modified modified READ

MPS More probable symbol, i.e., more probable binary value
MSB Most significant bit

0o0oB Out-of-band

READ Relative Element Address Designate

TPGD Typical prediction for generic direct bitmap coding
TPGR Typical prediction for generic refinement bitmap coding

NOTE — The term “symbol” in the abbreviations LPS and MPS does not refer to the symbols (bitmaps) in
this Recommendatiorinternational Standard. The LPS and MPS abbreviations are used despite
this because they are the generally-accepted terminology in arithmetic coding.

4.2 Symbol definitions

The following symbols used in this Recommendatjdnternational Standard are listed below. A convention
is used that parameters to any of the decoding procedures that are used in this Recommieimietiaational
Standard are indicated bold face

A
a

ARR

A1, Az, Az, Ay

Bl
Buc
Bupc
Bp
Bs
BM
BP
BPST
C
Chigh
Clow
CONTEXT

CT

Probability interval

A real number

An array

Adaptive template pixels in the generic region decoding procedure
Current byte of arithmetically-coded data

Byte of arithmetically-coded data following the current byte

A height class collective bitmap in a symbol dictionary decoding procedure
A dictionary collective bitmap in a pattern dictionary decoding procedure
A pattern bitmap in a pattern dictionary decoding procedure

A symbol bitmap in a symbol dictionary decoding procedure

A bitmap

Pointer to byte B

Initial value of BP

Value of bit stream in code register

High-order 16 bits of C

Low-order 16 bits of C

The values of the pixels in a template used in the generic or generic refinement decoding
procedure

Renormalisation shift counter
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CURCODE The Huffman code for the current table line in a Huffman table
CUREXFLAG  The current export flag.

CURLEN The current table line prefix length in a Huffman table

CURRANGELOW The lower bound of the range of the current table line in a Huffman table

CURS The current S coordinate in a text region decoding procedure

CURT The current symbol instance’s T coordinate relative to the current strip’s T coordinate in
a text region decoding procedure

CX A label identifying an arithmetic coding context

D Arithmetic coding decision

DFS The difference in S coordinates between the first instances of two strips

DT The number of empty strips between two non-empty strips

DW The difference in width between two symbol bitmaps in a symbol dictionary decoding
procedure

EXFLAGS An array of export flags

EXINDEX An index for the array EXFLAGS

EXRUNLENGTH The length of a run of identical export flag values

FIRSTS The first S coordinate of the current strip

FIRSTCODE The first code assigned to a particular prefix length in a Huffman table

GBATX The X location of adaptive template pixel 1 in a generic region decoding procedure

GBATY ; The Y location of adaptive template pixel 1 in a generic region decoding procedure

GBATX o The X location of adaptive template pixel 2 in a generic region decoding procedure

GBATY , The Y location of adaptive template pixel 2 in a generic region decoding procedure

GBATX 3 The X location of adaptive template pixel 3 in a generic region decoding procedure

GBATY 3 The Y location of adaptive template pixel 3 in a generic region decoding procedure

GBATX 4 The X location of adaptive template pixel 4 in a generic region decoding procedure

GBATY 4 The Y location of adaptive template pixel 4 in a generic region decoding procedure

GB The prefix used for many of the variables associated with a generic (bitmap) region de-
coding procedure

GBH The height of a generic region

GBREG The region produced by a generic region decoding procedure

GBTEMPLATE A parameter indicating the number and arrangement of the pixels in a template used in a
generic region decoding procedure

GBW The width of a generic region

Gl An array of gray-scale values

GR The prefix used for many of the variables associated with a generic refinement region
decoding procedure

GRATX 1 The X location of adaptive template pixel 1 in a generic refinement region decoding pro-
cedure

GRATY The Y location of adaptive template pixel 1 in a generic refinement region decoding pro-
cedure

GRATX o The X location of adaptive template pixel 2 in a generic refinement region decoding pro-
cedure
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GRATY

GRAY
GRAYMAX

GRH

The Y location of adaptive template pixel 2 in a generic refinement region decoding pro-
cedure

The current gray-scale value

The largest gray-scale value for which a pattern is given in a pattern dictionary decoding
procedure

The height of a generic region being coded with refinement coding

GRREFERENCE The reference bitmap in a generic refinement region decoding procedure
GRREFERENCEDX The X offset of the reference bitmap with respect to the bitmap being decoded in a

generic refinement region decoding procedure

GRREFERENCEDY The Y offset of the reference bitmap with respect to the bitmap being decoded in a

GRREG
GRTEMPLATE

GRW
GS

GSBPP

GSH

GSKIP
GSMMR
GSTEMPLATE

GSUSESKIP

GSVALS
GSW
HB

HBH

HBP

HBW
HCHEIGHT
HCDH

HCFIRSTSYM
HCOMBOP
HD

HDEFPIXEL
HDMMR
HDPATS
HDPH
HDPW

generic refinement region decoding procedure
The region produced by a generic refinement region decoding procedure

A parameter indicating the number and arrangement of the pixels in a template used in
decoding a generic region with refinement coding

The width of a generic region being coded with refinement coding

The prefix used for many of the variables associated with a gray-scale image decoding
procedure

The number of bits per gray-scale value in a gray-scale image decoding procedure
The height of the gray-scale image in a gray-scale image decoding procedure

A mask indicating gray-scale values to be skipped

Whether MMR is used in a gray-scale image decoding procedure

A parameter indicating the number and arrangement of the pixels in a template used in a
gray-scale image decoding procedure

Whether some gray-scale values should be skipped in a gray-scale image decoding pro-
cedure

A decoded gray-scale image
The width of the gray-scale image in a gray-scale image decoding procedure

The prefix used for many of the variables associated with a halftone (bitmap) region
decoding procedure

The height of a halftone region

The number of bits per value in an array of gray-scale values

The width of a halftone region

The height of the current height class in a symbol dictionary decoding procedure

The difference in height between two height classes in a symbol dictionary decoding
procedure

The index of the first symbol decoded in a height class
The combination operator used in a halftone region decoding procedure

The prefix used for many of the variables associated with a pattern dictionary region
decoding procedure

The default for pixels in a halftone region

Whether MMR is used in a pattern dictionary decoding procedure
Array of patterns produced by a pattern dictionary decoding procedure
The height of the patterns in a pattern dictionary

The width of the patterns in a pattern dictionary
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HDTEMPLATE
HENABLESKIP
HGH

HGW

HGX

HGY

Hy
HIGHPREFLEN
HMMR
HNUMPATS
HO;

HPATS

HPH

HPW

HRX

HRY

HSKIP

HT

HTEMPLATE

HTHIGH

HTLOW
HTOFFSET
HTOOB
HTPS
HTREG
HTRS
HTVAL

I

I

IAAI

IADH

IADS

IADT

IADW

IAEX

The template identifier used to decode patterns in a pattern dictionary decoding procedure
Whether unneeded gray-scale values are skipped in a halftone region decoding procedure
The height of the gray-scale image in a halftone region decoding procedure

The width of the gray-scale image in a halftone region decoding procedure

The horizontal offset of the grid in a halftone region decoding procedure

The vertical offset of the grid in a halftone region decoding procedure

The height of a symbol instance bitmap

The prefix length of the upper range table line in a Huffman table

Whether MMR coding is used in a halftone region decoding procedure

The number of patterns that may be used in a halftone region decoding procedure

The height of the original bitmap of a symbol instance containing refinement information
Array of patterns used in a halftone region

The height of each pattern in a halftone region

The width of each pattern in a halftone region

The horizontal coordinate of a halftone grid vector

The vertical coordinate of a halftone grid vector

A mask indicating gray-scale values to be skipped

The prefix used for many of the variables associated with a Huffman table decoding pro-
cedure

A parameter indicating the number and arrangement of the pixels in a template used in a
halftone region decoding procedure

One greater than the largest value that is represented by any normal table line in a Huffman
table

The lowest value that is represented by any normal table line in a Huffman table
The range offset of a table line when decoding using a Huffman table

Whether a Huffman table can produce the out-of-band value OOB

The length of the encoded prefix field in a table line in a Huffman table

The region produced by a halftone region decoding procedure

The length of the encoded range field in a table line in a Huffman table
The value decoded using a Huffman table

The array, indexed by CX, of the indices of the adaptive probability estimates
An array index

An arithmetic integer decoding procedure used to decode the number of symbol instances
in an aggregation

An arithmetic integer decoding procedure used to decode the difference in height between
two height classes

An arithmetic integer decoding procedure used to decode the S coordinate of the second
and subsequent symbol instances in a strip

An arithmetic integer decoding procedure used to decode the T coordinate of the second
and subsequent symbol instances in a strip

An arithmetic integer decoding procedure used to decode the difference in width between
two symbols in a height class

An arithmetic integer decoding procedure used to decode export flags
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IAFS

IAID

IARDH

IARDW

IARDX

IARDY

IARI
IAIT

IB;

IBO;

ID;

IDS

J

K

LENCOUNT
LENMAX
LOGSBSTRIPS
LOWPREFLEN
LTP

My

MMR

MPS
NINSTANCES
Ng

NLPS

NMPS

An arithmetic integer decoding procedure used to decode the S coordinate of the first
symbol instance in a strip

An arithmetic integer decoding procedure used to decode the symbol IDs of symbol in-
stances

An arithmetic integer decoding procedure used to decode the delta height of symbol in-
stance refinements

An arithmetic integer decoding procedure used to decode the delta width of symbol in-
stance refinements

An arithmetic integer decoding procedure used to decode the delta X values of symbol
instance refinements

An arithmetic integer decoding procedure used to decode the delta Y values of symbol
instance refinements

An arithmetic integer decoding procedure used to decodéthiit of symbol instances

An arithmetic integer decoding procedure used to decode the T coordinate of the symbol
instances in a strip

The bitmap of a symbol instance
The original bitmap of a symbol instance containing refinement information
The symbol ID of a symbol instance
The delta S value for a symbol instance in a text region decoding procedure
An array index
The ordinal for a referred-to segment
A histogram of the prefix lengths in a Huffman table
The largest prefix length in a Huffman table
The base-2 logarithm of the strip size used to encode a text region
The prefix length of the lower range table line in a Huffman table

Whether the current line is coded explicitly in a generic region decoding procedure or a
generic refinement region decoding procedure

Horizontal index for the current gray-scale value

Whether MMR coding is used in a generic region decoding procedure
The array, indexed by CX, of the current more probable binary values
A symbol instance counter

Vertical index for the current gray-scale value

The next index for an LPS renormalisation

The next index for an MPS renormalisation

NSYMSDECODED The number of symbols decoded so far in a symbol dictionary decoding procedure

NTEMP
ooB

P

PREFLEN
Qe

r

R
RANGELEN

The number of table lines in a Huffman table

An out-of-band value

The page with which a segment is associated

An array of prefix lengths representing the table lines in a Huffman table
An estimate of the LPS probability

A segment retention flag

The number of segments referred to by some segment

An array of the lengths of the ranges of the table lines in a Huffman table
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RANGELOW
RA{, RA,
RDH;

RDW;

RDXy

RDY;
REFAGGNINST
R;
REFCORNER

S
St
SB

SBDSOFFSET
SBCOMBOP
SBDEFPIXEL
SBH

SBHUFF
SBHUFFDS

SBHUFFDT

SBHUFFFS
SBHUFFRDH

SBHUFFRDW

SBHUFFRDX

SBHUFFRDY

SBHUFFRSIZE

An array of the lower bounds of the ranges of the table lines in a Huffman table
Adaptive template pixels in the generic refinement region decoding procedure
The delta height of a symbol instance refinement bitmap

The delta width of a symbol instance refinement bitmap

The X offset of a symbol instance refinement

The Y offset of a symbol instance refinement

The number of symbol instances in an aggregation

A bit indicating whether refinement information is present for a symbol instance

Which corner of a symbol instance bitmap is to be used as a reference in a text region
decoding procedure

One coordinate of the coordinate system used in a text region decoding procedure
The S coordinate of a symbol instance

The prefix used for many of the variables associated with a symbol (bitmap) region de-
coding procedure

An offset for the coded delta S values in a text region

The combination operator used in a text region decoding procedure
The default for pixels in a text region

The height of a text region

Whether Huffman coding is used in a text region decoding procedure

The Huffman table used to decode the S coordinate of subsequent symbol instances in a
strip

The Huffman table used to decode the difference in T coordinates between non-empty
strips

The Huffman table used to decode the S coordinate of the first symbol instance in a strip

The Huffmantable used to decode the difference between a symbol’s height and the height
of a refinement coded symbol instance bitmap

The Huffman table used to decode the difference between a symbol’s width and the width
of a refinement coded symbol instance bitmap

The Huffman table used to decode the difference between a symbol instance’s X coordi-
nate and the X coordinate of a refinement coded bitmap

The Huffman table used to decode the difference between a symbol instance’s Y coordi-
nate and the Y coordinate of a refinement coded symbol instance bitmap

The Huffman table used to decode the size of a symbol instance’s refinement bitmap data

SBNUMINSTANCES The number of symbol instances in a text region

SBNUMSYMS
SBRATX4
SBRATY 4
SBRATX
SBRATY ,
SBREFINE
SBREG
SBRTEMPLATE
SBSTRIPS

The number of symbols that may be used in a text region

The X location of the adaptive template pixel R a text region decoding procedure

The Y location of the adaptive template pixel Ri a text region decoding procedure

The X location of the adaptive template pixel Ri a text region decoding procedure

The Y location of the adaptive template pixel Rix a text region decoding procedure
Whether refinement coding is used in a text region decoding procedure

The region produced by a text region decoding procedure

Template identifier for refinement coding of bitmap in a text region decoding procedure
The height of the symbol instance strips
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SBSYMCODES An array of variable-length codes identifying individual symbols

SBSYMS An array of symbols used in a text region

SBW The width of a text region

SD The prefix used for many of the variables associated with a symbol dictionary region
decoding procedure

SDATX; The X location of the adaptive template pixel & a symbol dictionary decoding proce-
dure

SDATY, The Y location of the adaptive template pixe] & a symbol dictionary decoding proce-
dure

SDATX 4 The X location of the adaptive template pixel & a symbol dictionary decoding proce-
dure

SDATY o The Y location of the adaptive template pixe} & a symbol dictionary decoding proce-
dure

SDATX3 The X location of the adaptive template pixe} & a symbol dictionary decoding proce-
dure

SDATY 3 The Y location of the adaptive template pixe} & a symbol dictionary decoding proce-
dure

SDATX 4 The X location of the adaptive template pixe] & a symbol dictionary decoding proce-
dure

SDATY 4 The Y location of the adaptive template pixe] & a symbol dictionary decoding proce-
dure

SDEXSYMS The symbols exported from a symbol dictionary
SDHUFF Whether Huffman coding is used in a symbol dictionary decoding procedure

SDHUFFAGGINST The Huffman table used to decode the number of symbol instances in an aggregation
in a symbol dictionary decoding procedure

SDHUFFDH The Huffman table used to decode the difference in height between two height classes in
a symbol dictionary decoding procedure

SDHUFFDW The Huffman table used to decode the difference in width between two symbols in a
symbol dictionary decoding procedure

SDHUFFBMSIZE The Huffman table used to decode the size of a height class collective bitmap in a
symbol dictionary decoding procedure

SDINSYMS An array of symbols used as a parameter to a symbol dictionary decoding procedure
SDNEWSYMS  The symbols decoded in a symbol dictionary

SDNEWSYMWIDTHS The widths of the symbols decoded in a symbol dictionary

SDNUMEXSYMS The number of symbols exported from a symbol dictionary

SDNUMINSYMS The number of symbols in the array that is used as a parameter to a symbol dictionary
decoding procedure

SDNUMNEWSYMS The number of symbols generated in a symbol dictionary

SDREFAGG Whether refinement and aggregate coding are used in a symbol dictionary decoding pro-
cedure

SDRATX; The X location of the adaptive template pixel R& a symbol dictionary decoding pro-
cedure

SDRATY The Y location of the adaptive template pixel R& a symbol dictionary decoding pro-
cedure

SDRATX 4 The X location of the adaptive template pixel R a symbol dictionary decoding pro-
cedure
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SDRATY 2

SDRTEMPLATE

SDTEMPLATE

SKIP
SLTP

STRIPT
SWITCH
SYMWIDTH
-

TEMPC

Ty
TOTWIDTH
TPGDON
TPGRON
TPGRPIX
TPGRVAL
TRANSPOSED

USESKIP
V1

V2

Wi

WOy

< < X 8

The Y location of the adaptive template pixel R& a symbol dictionary decoding pro-
cedure

Template identifier for refinement coding of bitmaps in a symbol dictionary decoding
procedure

The template identifier used to decode symbol bitmaps in a symbol dictionary decoding
procedure

A mask of pixels to be skipped during the decoding of a generic region

A binary value indicating whether the current line was typically predicted and the previ-
ous line was not, or vice versa

The numerically smallest T coordinate in the current strip

Whether MPS and LPS are switched on an LPS renormalisation

The current bitmap width in a symbol dictionary decoding procedure.

One coordinate of the coordinate system used in a text region decoding procedure
A temporary register in the MQ coder

The T coordinate of a symbol instance

The total width of the bitmaps in a height class

Whether typical prediction is used in a generic region decoding procedure
Whether typical prediction is used in a generic region refinement decoding procedure
Whether the current pixel is to be decoded implicitly using a TPGR prediction

The value of the TPGR-predicted current pixel

Whether the symbol instance coordinates are transposed in a text region decoding proce-
dure

Whether some pixels should be skipped in the decoding of a generic region

A binary value

A binary value

The width of a symbol instance bitmap

The width of the original bitmap of a symbol instance containing refinement information
The horizontal coordinate of a location on a halftone grid

The horizontal coordinate of a pixel in a bitmap

The vertical coordinate of a location on a halftone grid

The vertical coordinate of a pixel in a bitmap

4.3 Operator definitions
The following operators are defined

OR If V1 and V2 are two binary values, then V1 OR V2 is equa) ibboth V1 and V2 aréd. It
is equal tal if either of V1 or V2 isl. If V1 and V2 are two integer values, then it is the result
of bitwise application of OR.

AND If V1 and V2 are two binary values, then V1 AND V2 is equalQaf either of V1 or V2 is
0. Itis equal tol if both V1 and V2 arel. If V1 and V2 are two integer values, then it is the
result of bitwise application of AND.

XOR If V1 and V2 are two binary values, then V1 XOR V2 is equadtié V1 and V2 are equal. It
is equal tol if V1 and V2 differ. If V1 and V2 are two integer values, then it is the result of
bitwise application of XOR.
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XNOR If V1 and V2 are two binary values, then V1 XNOR V2 is equadtib V1 and V2 differ. It is
equal tol if V1 and V2 are equal.

REPLACE If V1 and V2 are two binary values, then V1 REPLACE V2 is equal to V2.

NOT If V1 is a binary value, then NOT V1 iif V1is 0, and isOif V1 is 1.

min If z andy are numbers, themin(z, y) is the smaller of: andy.

max If z andy are numbers, themax(x, y) is the larger of: andy.

L] If a is a number, thema] is the largest integer less than or equatto

[ If a is a number, thefia] is the smallest integer greater than or equai.to

<< If V1 and V2 are two integers, then V& < V2 is the value obtained by shifting the value of
V1 leftwards by V2 bits, filling the rightmost V2 bits of the new value with

>> If V1 and V2 are two integers, then V3> V2 is the value obtained by shifting the value of
V1 rightward by V2 bits, filling the leftmost V2 bits of the new value with

>>4 If V1 and V2 are two integers, then V> 4 V2 is the value obtained by shifting the value

of V1 rightward by V2 bits, filling the leftmost V2 bits of the new value withif V1 is
non-negative and if V1 is negative.
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5 Conventions

5.1 Typographic conventions

All parameter names are givenliold face

5.2 Binary notation
The two binary values are denotedGandl.

5.3 Hexadecimal notation

The prefixOx indicates that the following value is to be interpreted as a hexadecimal number (radix 16).

EXAMPLE — The valueOx6A is equal to the decimal value 106.

5.4 Integer value syntax
5.4.1 Bit packing

Bits are packed into bytes starting at the most significant bit. If a decoder is reading a sequence of bits out of a
bitstream, it shall first read the most significant bit of the first byte, then the next most significant bit, and so on,
then proceed to the next byte.

EXAMPLE — The sequence of byté3x2F 0x05 OxC1 , if interpreted as a sequence of bits, is the
sequence

001011110000010111000001

5.4.2 Multi-byte values

All multi-byte values shall be interpreted in a most-significant-first manner: the first byte of each value is the most
significant, and the last byte is the least significant.

EXAMPLE — The sequence of byt&&x01 0Ox5C 0x99 OxFA , if interpreted as a four-byte value, rep-
resents the valu@x015C99FA .

5.4.3 Bit numbering

The least significant bit of any value is numbered bit 0. For a one-byte value, the most significant bit is numbered
bit 7; for a two-byte value, the most significant bit is numbered bit 15; for a four-byte value, the most significant
bit is numbered bit 31.

5.4.4 Signedness

Unless otherwise specified, all multi-bit values shall be treated as unsigned values. When a value is to be treated
as a signed number, it shall be interpreted in two's-complement form.

5.5 Array notation and conventions

Arrays are numbered starting from zero.

EXAMPLE — A one-dimensional array ARR containing twelve elements has elements

ARR[0], ARR[1],. .., ARR[11]
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5.6 Image and bitmap conventions

A bitmap is a rectangular array. Every element in this array has the Qalug. An elementin a bitmap is referred
to as a pixel.

NOTE 1 — Throughout this Recommendatiorinternational Standard, pixels in bitmaps are treated as
having the value8 or 1. In most applications of this Recommendatjdmternational Standard,
the application will select some interpretation of these two values. A typical interpretation of
these pixels is thad represents white, or background, ahdepresents black, or foreground.
However, this is not a requirement of this Recommendadtinternational Standard and appli-
cations are free to make other interpretations of these values.

The terms “left”, “right”, “top”, “bottom”, “width” and “height” are often applied to bitmaps. These terms do
not refer to any physical aspect of the bitmap: if a bitmap is printed on paper, it may be printed with its “left” edge
along any edge of the paper. They are used within this Recommendiati@mnational Standard to refer to the
four edges of the bitmap as shown in Figure 2.

(0,0)
Top edge

Left edge Right edge

Bitmap

Bottom edge
Figure 2 — The four edges of a bitmap
A pixel in a bitmap is referred to by a pair of coordinates X and Y, sometimes written as &9a.
The location(0, 0) represents the pixel in the top left corner. The X coordinate increases rightwards and the Y

coordinate increases downwards.
If BM is a bitmap, then the pixel whose coordinates are X and Y is referredBd&, Y].

NOTE 2 — These conventions are intended to make it easier to describe operations involving bitmaps, and
are not intended to imply any physical characteristics of the image represented by the bitmap.
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6 Decoding Procedures

6.1 Introduction to decoding procedures

This Recommendatiopinternational Standard makes use of a number of different decoding procedures for dif-
ferent types of data. Each of these decoding procedures produces a certain kind of data as output. The generic
region decoding procedure, generic refinement region decoding procedure, halftone region decoding procedure,
and text region decoding procedures all produce regions as their output. The symbol dictionary decoding proce-
dure produces an array of symbols as its output. The pattern dictionary decoding procedure similarly produces an
array of halftone cell bitmaps as its output.

The various region decoding procedures operate in different manners:

e The generic region decoding procedure decodes a bitmap, treating it simply as an an array of binary pixels.

e The generic region refinement decoding procedure decodes a bitmap by treating it as an array of binary
pixels, but coding each pixel with respect to some reference bitmap.

e The text region decoding procedure decodes a bitmap by drawing a collection of symbols into it, possibly
applying the generic refinement region decoding procedure to each one.

e The halftone region decoding procedure decodes a bitmap by placing a collection of patterns into it, at
locations specified by a halftone grid.

Each decoding procedure is specified in terms of a number of parameters and a sequence of operations, which
are affected by the values of the parameters. These parameters are supplied to the decoding procedure for each
invocation, and the same decoding procedure may be invoked multiple times during the course of decoding a
bitstream, with different parameters each time.

Some of the decoding procedure parameters are unused in certain circumstances, usually depending on the
values of other parameters. In these circumstances, no value needs to be specified for those unused parameters.

In this clause, subsequent clauses, and normative annexes, restrictions are placed on the bitstream being de-
coded.

EXAMPLE 1 — In 7.3, some segment types are described as “Reserved; must not be used.”

EXAMPLE 2 — In7.4.2.1.1, if theSDHUFF field is 0 then theSDHUFFDH field must contain the value
0.

These restrictions should be interpreted as meaning that the behaviour of a decoder encountering a bitstream that
does not satisfy the restrictions is undefined, and is outside the scope of this Recommenisitiorational
Standard.

NOTE — This means that if a decoder encounters a bitstream that does not satisfy the restrictions, it may
take any action: it may give up and abort decoding; it may ignore the error and attempt to
continue; it may interpret the error and change its behaviour (e.g., use the error to attempt to aid
recovery from further errors); and so on.

6.2 Generic Region Decoding Procedure

6.2.1 General description

This decoding procedure is used to decode a rectangular ar@ayr @fvalues, which are coded one pixel at a time
(i.e., it is used to decode a bitmap using simple, generic, coding). The decoding procedure also modifies an array
of probability information which may be used by other invocations of this generic region decoding procedure.

The generic region decoding procedure may be based on sequential coding of the image pixels using arithmetic
coding as specified in Annex E and a template to determine the coding state. This technique was used in ITU-T
Recommendation T.82SO/IEC 11544 (JBIG). This type of decoding is described in 6.2.5.

Alternatively, for improved speed but reduced compression the generic region decoding procedure may be
based on Huffman coding of runs of pixels. This technique was used in the MMR (Modified Modified READ)
algorithm described in ITU-T Recommendation T.6 (G4). This type of decoding is described in 6.2.6.
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6.2.2 Input parameters
The parameters to this decoding procedure are shown in Table 2.

Table 2 — Parameters for the generic region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)
MMR Integer 1 N Whether MMR coding is used.
GBW Integer 32 N The width of the region.
GBH Integer 32 N The height of the region.
GBTEMPLATE | Integer 2 N The template identifier:
TPGDON Integer 1 N Whether typical prediction is used.
USESKIP Integer 1 N Whether some pixels should be skipped in the decod-
ing. *
SKIP Bitmap A bitmap indicating which pixels should be skipped.
GBW pixels wide,GBH pixels high.***
GBATX Integer 8 Y The X location of the adaptive template pixel &
GBATY , Integer 8 Y The Y location of the adaptive template pixe] A
GBATX 2 Integer 8 Y The X location of the adaptive template pixe] A*
GBATY Integer 8 Y The Y location of the adaptive template pixe] A*
GBATX 3 Integer 8 Y The X location of the adaptive template pixef A*
GBATY 3 Integer 8 Y The Y location of the adaptive template pixe A*
GBATX 4 Integer 8 Y The X location of the adaptive template pixef A*
GBATY 4 Integer 8 Y The Y location of the adaptive template pixef A*

* Unused ifMMR =1
** Unused ifMMR = 1 or GBTEMPLATE # 0
*** Unused ifUSESKIP = 0orMMR =1

6.2.3 Return value
The variable whose value is the result of this decoding procedure is shown in Table 3.

Table 3 — Return value from the generic region decoding procedure.

Name

Type

(bits)

Size

Signed?| Description and restrictions

GBREG

Bitmap

The decoded region bitmap.

6.2.4 Variables used in decoding
The variables used by this decoding procedure are shown in Table 4.

6.2.5 Decoding using a template and arithmetic coding

6.2.5.1 General description

If MMR is O the generic region decoding procedure is based on arithmetic coding with a template to determine
the coding state. The remainder of 6.2.5 describes this form of decoding, and only appliggMReis 0.

6.2.5.2 Coding order and edge conventions

The coding algorithm iterates through the bitmap in raster scan order, that is, by rows from top to bottom, and
within each row from left to right. The processing for a current target pixel will reference some pixels in fixed
spatial relationship to the target pixel.
Near the edges of the bitmap, these neighbour references might not lie in the actual bitmap. The rule to satisfy
out-of-bounds references shall be:
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Table 4 — Variables used in the generic region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)
LTP Integer 1 N Whether the current image line is coded explicitly
SLTP Integer 1 N Whether the current line’s LTP value differs from the
previous line's LTP valué
CONTEXT | Integer 16 N The values of the pixels in the templdte

* Unused ifMMR =1

o All pixels lying outside the bounds of the actual bitmap have the value

6.2.5.3 Fixed templates

Atemplate defines a neighborhood around a pixel to be coded. The values of the pixels in this neighborhood define
a context. Each context has its own adaptive probability estimate used by the arithmetic coder (see Annex E).
Although a template is a geometric pattern of pixels, the pixels in a template are said to take on values when the

template is aligned with a particular part of the image.

Ag |l X X X | Az

Al XTI XXX XA

X X X X 1O

Figure 3 — Template when GBTEMPLATE=0, showing the AT pixels at their nominal locations.

X X | X |1O

Figure 4 — Template when GBTEMPLATE=1, showing the AT pixel at its nominal location.

Figure 3 shows the template which shall be used wBBTEMPLATE is 0. Figure 4 shows the template

which shall be used wheBBTEMPLATE is 1. Figure 5 shows the template which shall be used VB#8#HEM-

PLATE is 2. Figure 6 shows the template which shall be used VBBTEMPLATE is 3. In each of these figures,

the pixel denoted by a circle corresponds to the pixel to be coded and is not part of the template. The pixels de-
noted by ‘X’ correspond to ordinary pixels in the template. The pixels denotedAare special pixels in the
template. They are denoted “adaptive” or AT pixels. These pixels are special in that their locations are not fixed,
but can be placed at different locations. See 6.2.5.4 for a description of AT pixels. The legetfdsiAdicate the

AT pixels 1 to 4. The pixels’ actual locations are specified as parameters to this decoding procedure; Figures 3— 6
show the nominal locations of these AT pixels for each template.

The values of the pixels in the template shall be combined to form a context. Each pixel in the template
(including the adaptive pixels) shall correspond to a specific bit in the context, although the pixels in the template
may be assigned to bits in the context in any order. Because there are up to 16 pixels in the template, contexts can
take on up to 65536 different values. This context shall be used to identify which adaptive probability estimate
shall be used by the arithmetic coder for encoding the pixel to be coded (see Annex E).
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Figure 5 — Template when GBTEMPLATE=2, showing the AT pixel at its nominal location.

X | X X | X | XA

X X X X | O

Figure 6 — Template when GBTEMPLATE=3, showing the AT pixel at its nominal location.

NOTE 1 — A rule of thumb is to use large templates for large bitmaps. Thus a full-size periodic halftone
should be coded with the 16-pixel template and tiny bitmaps such as usual symbol bitmaps
should be coded with one of the 10-pixel templates. In some cases an intermediate template is
desired, for performance or decoder memory requirements; in this case the 13-pixel template
should be used. Itis also possible to generate further templates by placing one or more of the
AT pixels on top of a regular template pixel, thus fixing its value.

NOTE 2 — The 10-pixel templates are those used in ITU-T Recommendation |TI8®/IEC 11544
(JBIG). Software execution speed is somewhat higher with the two-line template than any
of the three-line templates. For most images the 10-pixel, three-line template gives higher
compression than the 10-pixel, two-line template.

6.2.5.4 Adaptive template pixels

In coding the image, the template shall be allowed to change in the restricted way described in this clause.

The pixels that are allowed to change are called AT pixels. Their nominal locations are indicated,by ‘A
‘As’,'A s’ and ‘A’ in Figures 3, 4, 5 and 6. Note that some templates have fewer than four AT pixels. In general,
an AT pixel can be located anywhere in the field shown in Figure 7, not including the current pixel. Hence, there
is the possibility to use an effective template size of 15, 14, 13, 12 or 9 pixels by having the moved location of
the AT pixel overlap a regular template pixel. The actual locations of the AT pixels for any invocation of this
decoding procedure are specified as parameters to the decoding procedure. The location of theipigigken
by (GBATX 1,GBATY ;). If GBTEMPLATE is 0 then

¢ the location of the pixeH; is given by(GBATX 2, GBATY »),
¢ the location of the pixeH; is given by(GBATX 3, GBATY 3),
¢ and the location of the pixel, is given by(GBATX 4, GBATY 4).

NOTE 1 — Some profiles may restrict AT pixel locations to a smaller range than that shown in Figure 7.

NOTE 2 — The indices of the AT pixels in Figure 3 correspond to the expected goodness. If moving only
one AT pixel from its nominal location, it is advisable to move. A'he next pixel to move is
A3 and so on.
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(—128, —128)

(—128,—1)

(—128,0)

(=1,-128) | (0,—128) (1,—128)
(_17_1) (07_1) (17_1)
(~1,0) O

(127, —128)

(127, -1)

Figure 7 — Field to which AT pixel locations are restricted.

NOTE 3 — The nominal locations of the AT pixels are as shown in Table 5. These locations should be

NOTE 4 —

used unless other locations improve compression performance. Some profiles may restrict AT
pixel locations to only these nominal locations.

If an AT pixel's location overlaps any regular template pixel's location, then the AT pixel's
value can be ignored (since it duplicates another value). This can reduce the memory require-
ments of the decoder, since not all CX values can occur. However, when TPGD is enabled
(TPGDON = 1), the context used to code the SLTP pseudo-pixel is used, regardless of
whether AT pixels overlap regular template pixels. This means that contexts where the AT

pixel's value differs from the regular template pixel’s value can still occur, but only for SLTP
when TPGD is enabled.

Table 5 — The nominal values of the AT pixel locations.

NOTE — NA means that the parameter has no nominal value.

GBTEMPLATE | GBATX1 | GBATX. | GBATX 3 | GBATX 4
GBATY ;1 | GBATY > | GBATY 3 | GBATY 4
0 3 -3 2 -2
-1 -1 -2 -2
1 3 NA NA NA
-1 NA NA NA
2 2 NA NA NA
-1 NA NA NA
3 2 NA NA NA
-1 NA NA NA
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6.2.5.5 Typical prediction for generic direct coding (TPGD)

Typical prediction for generic direct coding can be enabled or disabled withRBEDON parameter. If typical
prediction for generic direct coding is enablddPGDON is 1), then before the first pixel of each row is decoded,

a value indicating that a row is typical shall be decoded. If the row is typical then each pixel of this row is identical
to the corresponding pixel in the row immediately above, and so no other pixels of this row need to be decoded.
If the row is not typical, then each pixel of this row needs to be decoded.

6.2.5.6 Skipped pixels

If the parameted SESKIP is 1, then the paramet&KIP contains &E56BW-by-GBH bitmap. Each pixel ir6KIP
corresponds to a pixel in the bitmap being decoded; if the pix8KiP is 1 then the corresponding pixel in the
bitmap being decoded & is not actually decoded.

6.2.5.7 Decoding the bitmap
The decoding of the bitmap proceeds as follows.

1. Set

LTP = O

2. Create a bitmap GBREG of widBBW and heightGBH pixels.
3. Decode each row as follows.

(a) If all GBH rows have been decoded then the decoding is complete; proceed to step 4.

(b) If TPGDON is 1 then decode a bit using the arithmetic entropy coder, where the context used to
decode this bit varies depending on the template in use:
e If GBTEMPLATE is 0, use the context shown in Figure 8.
e If GBTEMPLATE is 1, use the context shown in Figure 9.
e If GBTEMPLATE is 2, use the context shown in Figure 10.
e If GBTEMPLATE is 3, use the context shown in Figure 11.

Let SLTP be the value of this bit. Set
LTP = LTP XOR SLTP

NOTE — In Figures 8 through 11, the template is shown with the AT pixel or pixels in their
nominal locations. The same pixel valu€sof 1) shall be used for the AT pixels no
matter what their actual locations are. That is, moving the AT pixels does not affect
the context that is used to decode SLTP.

(c) If LTP = 1then set every pixel of the current row of GBREG equal to the corresponding pixel of the
row immediately above.

(d) If LTP = 0Othen, from left to right, decode each pixel of the current row of GBREG. The procedure
for each pixel is as follows:
i. If USESKIP is 1 and the pixel in the bitmaBKIP at the location corresponding to the current
pixel is 1, then set the current pixel
ii. Otherwise,
A. Place the template given by paramet@BTEMPLATE , GBATX ; throughGBATX 4 and

GBATY ; throughGBATY 4 so that the current pixel is aligned with the location denoted by a
circle in the figure describing the appearance of the template with ide @GHEEMPLATE .

B. Form an integer CONTEXT by gathering the values of the image pixels overlaid by the
template (including AT pixels) at its current location. The order of this gathering is not
standardised, but shall be consistent and independent of the location of the AT pixels.
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C. Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set
to the value formed by concatenating the label “GB” and the 10-16 pixel values gathered in
CONTEXT. The result of this invocation is the value of the current pixel.

EXAMPLE — If GBTEMPLATE is 2, the image pixels overlaid by the template are
as shown in Figure 10, and the pixels are gathered in reading order (in
rows from top to bottom, and within each row from left to right), then
CXis setto “GBE011100101

4. After all the rows have been decoded, the current contents of the bitmap GBREG are the results that shall
be obtained by every decoder, whether it performs this exact sequence of steps or not.

Figure 9 — Reused context for coding the SLTP pseudo-pixel when GBTEMPLATE is 1.

Figure 10 — Reused context for coding the SLTP pseudo-pixel when GBTEMPLATE is 2.

6.2.6 Decoding using MMR coding

If MMR is 1, the generic region decoding procedure is identical to an MMR (Modified Modified READ) decoder
described in ITU-T Recommendation T.6, with the following exceptions:

e An invocation of the generic region decoding procedure WitiR equal tol shall consume an integral
number of bytes, beginning and ending on a byte boundary. This may involve skipping over some bits in
the last byte read.
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0 1 0 110

Figure 11 — Reused context for coding the SLTP pseudo-pixel when GBTEMPLATE is 3.

e The decoder in ITU-T Recommendation T.6 is specified as producing pixels whose value may be either
“black” or “white”. For the purposes of this Recommendatjdnternational Standard, the result of using
the MMR decoder shall be interpreted as follows:

— Pixels decoded by the MMR decoder having the value “black” shall be treated as having thg. value
— Pixels decoded by the MMR decoder having the value “white” shall be treated as having th8.value

o If the number of bytes contained in the encoded bitmap is known in advance, then it is permissible for the
data stream not to contain an EORE)0000000001000000000QCH the end of the MMR-encoded data.
The cases where the number of bytes is known are when this decoding procedure is invoked

— from within the pattern dictionary decoding procedure,
— from within the symbol dictionary decoding procedure, or
— as part of decoding a generic region whose data length is known.

The number of bytes is not known when this decoding procedure is invoked from within the gray-scale
image decoding procedure, or when it is invoked as part of a generic region whose data length is not known.
In these cases, EOFB must be present.

e The extension codes of T.6, including uncompressed mode, must not be present in the MMR-encoded data.

NOTE — MMR provides less compression than image bitmap compression based on arithmetic coding.
Image bitmap decoding using MMR is faster than image bitmap decoding based on arithmetic
coding.

6.3 Generic Refinement Region Decoding Procedure

6.3.1 General description

This decoding procedure is used to decode a rectangular ar@pot values, which are coded one pixel at

a time. There is a reference bitmap known to the decoding procedure, and this is used as part of the decoding
process. The reference bitmap is intended to resemble the bitmap being decoded, and this similarity is used to
increase compression. Each pixel is decoded using a context comprising pixels drawn from the reference bitmap
as well as previously-decoded pixels from the bitmap being decoded.

6.3.2 Input parameters

The parameters to this decoding procedure are shown in Table 6.

6.3.3 Return value

The variable whose value is the result of this decoding procedure is shown in Table 7.

6.3.4 Variables used in decoding

The variables used by this decoding procedure are shown in Table 8.
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Table 6 — Parameters for the generic refinement region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

GRW Integer 32 N The width of the region.

GRH Integer 32 N The height of the region.

GRTEMPLATE Integer 1 N The template identifier.

GRREFERENCE Bitmap The reference bitmap.

GRREFERENCEDX | Integer 32 Y The X offset of the reference bitmap with respect to
the bitmap being decoded.

GRREFERENCEDY | Integer 32 Y The Y offset of the reference bitmap with respect to
the bitmap being decoded.

TPGRON Integer 1 N Whether typical prediction for generic refinement is
used.

GRATX, Integer 8 Y The X location of the adaptive template pixel RA

GRATY 1 Integer 8 Y The Y location of the adaptive template pixel RA

GRATX 5 Integer 8 Y The X location of the adaptive template pixel RA

GRATY 2 Integer 8 Y The Y location of the adaptive template pixel RA

* Unused ifGRTEMPLATE # 0

Table 7 — Return value from the generic refinement region decoding procedure.

Name

Size
(bits)

Type

Signed?

Description and restrictions

GRREG

Bitmap

The decoded region bitmap.

Table 8 — Variables used in the generic refinement region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

CONTEXT | Integer 13 N The values of the pixels in the template

LTP Integer 1 N Whether the current image line is decoded explicitly

SLTP Integer 1 N Whether the current line’s LTP value is different from
the previous line’s LTP valué

TPGRPIX | Integer 1 N Whether the current pixel is to be decoded implicitly
using a TPGR predictioh

TPGRVAL | Integer 1 N Value of the TPGR-predicted current pixel

* Unused ifTPGRON = 0
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6.3.5 Decoding using a template and arithmetic coding

6.3.5.1 General description

The generic refinement region decoding procedure is based on arithmetic coding with a template to determine the
coding state. The remainder of 6.3.5 describes this form of decoding.

6.3.5.2 Coding order and edge conventions

The coding algorithm iterates through the refine bitmap being decoded, along with a reference bitmap, in raster
scan order. That is, it iterates by rows from top to bottom, and within each row from left to right. The processing
for a current target pixel will reference some pixels in fixed spatial relationship to the target pixel. Some of
these pixels are drawn from the reference version of the bitmap, and some of these pixels are drawn from the
already-coded pixels of the refined bitmap.

Near the edges of the bitmap, these neighbour references might not lie in the actual bitmap. The rule to satisfy
out-of-bounds references shall be:

¢ All pixels lying outside the bounds of the actual bitmap or the reference bitmap have thé@value

6.3.5.3 Fixed templates and adaptive templates

Atemplate defines a neighborhood around a pixel to be coded. The values of the pixels in this neighborhood define
a context. Each context has its own adaptive probability estimate used by the arithmetic coder (see Annex E).
Although a template is a geometric pattern of pixels, the pixels in a template are said to take on values when the
template is aligned with a particular part of the image.

RA, | X | x RA | X | X
X | O X | ®| X
X | x| X

Figure 12 — 13-pixel refinement template showing the AT pixels at their nominal locations.

X | x| X X
X | O X1 ®| X
X | x

Figure 13 — 10-pixel refinement template

Figure 12 shows the template which shall be used WBBAMEMPLATE is 0. Figure 13 shows the template
which shall be used WheBRTEMPLATE is 1. In each of these figures, the left-hand group indicates the pixels
from the already-coded pixels of the refined bitmap that are in the template, and the right-hand group indicates
the pixels from the reference version of the template that are in the template. Each group in each figure includes
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a pixel denoted by a circle; these pixels all correspond to the pixel to be coded. The pixels marked with an ‘X’
correspond to ordinary pixels in the template. The pixels denoted-RA, are special pixels in the template.

They are denoted “adaptive” or AT pixels. These pixels are special in that their locations are allowed to change
during the process of encoding the image. See 6.3.5.4 for a description of AT pixels. The legard®ARA
indicate the nominal locations of AT pixels 1 to 2.

The AT pixel R A, can be located anywhere in the field shown in Figure 7, not including the current pixel. The
AT pixel RA, can be located anywhere in the rarjge 28, —128) to (127, 127) in the reference bitmap.

The pixels in the left hand group of each template shall be aligned with the already-decoded pixels of the
bitmap being decoded, with the pixel denoted by a circle lying on the pixel to be decode@X X be the
location of this pixel. The pixels of the right hand group of each template shall be aligned with the reference
bitmap GRREFERENCE, with the pixel denoted by a circle placed at the logatieBRREFERENCEDX, Y —
GRREFERENCEDY). The values of the pixels in the template shall be combined to form a context. Each pixel
in the template (including the adaptive pixels) shall correspond to a specific bit in the context, although the pixels
in the template may be assigned to bits in the context in any order. Because there are up to 13 pixels in the
template, contexts can take on up to 8192 different values. This context shall be used to identify which adaptive
probability estimate shall be used by the arithmetic coder for encoding the pixel to be coded (see Annex E).

6.3.5.4 Adaptive template pixels

In coding the image, the template shall be allowed to change in the restricted way described in this clause.
The pixels that are allowed to change shall be called AT pixels. Their standard locations are indicated by
‘RA;" and ‘RA’ in Figure 12. Note that only one template has AT pixels.

6.3.5.5 Typical prediction for generic refinement (TPGR)

Typical prediction for generic refinement can be enabled or disabled witiRIBRON parameter. [f typical
prediction for generic refinement is enablddPGRON is 1) then before the first pixel of each row is decoded,

a value indicating whether a row is typical shall be decoded. If the row is not typical, each pixel of the row
needs to be explicitly decoded. If the row is typical, all typically-predictable pixels can be implicitly decoded
using their predicted value, with the remainder of the pixels still being explicitly decoded. For a pixel to be
typically-predictable it must meet the criteria defined in 6.3.5.6, step 3d.

6.3.5.6 Decoding the refinement bitmap

The decoding of the bitmap proceeds as follows.

1. SetLTP=0.
2. Create a bitmap GRREG of widGRW and heightGRH pixels.
3. Decode each row as follows

(a) If all GRH rows have been decoded then the decoding is complete; proceed to step 4

(b) If TPGRON is 1 then decode a bit using the arithmetic entropy coder, where the context used to
decode this bit varies depending on the template in use:

e If GRTEMPLATE is 0O, use the context shown in Figure 14.
e If GRTEMPLATE is 1, use the context shown in Figure 15.
Let SLTP be the value of this decoded bit. Set

LTP = LTP XOR SLTP

(c) If LTP = 0 then, from left to right, explicitly decode all pixels of the current row of GRREG. The
procedure for each pixel is as follows:

i. Place the template given by parameteRTEMPLATE (andGRATX 1, GRATY 1, GRATX 5
andGRATY ; if GRTEMPLATE is 0) so that the current pixel is aligned with the location de-
noted by a circle in the figure describing the appearance of the template with ideBRfTEM-
PLATE.
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ii. Form an integer CONTEXT by gathering the values of the image pixels overlaid by the template
(including AT pixels) at its current location. The order of this gathering is not standardised, but
must be consistent and independent of the location of the AT pixels.

iii. Decode the current pixel by invoking the arithmetic entropy decoding procedure, with CX set
to the value formed by concatenating the label “GR” and the 10-13 pixel values gathered in
CONTEXT. The result of this invocation is the value of the current pixel.

EXAMPLE — If GRTEMPLATE is 1, the image pixels overlaid by the template are as
shown in Figure 15, and the pixels are gathered in reading order (in rows
from top to bottom, and within each row from left to right, with the pixels
in GRREG considered before the pixels in GRREFERENCE), then CX is
set to “GR0000001000Q

(d) IfLTP = 1then, from left to right, implicitly decode certain pixels of the current row of GRREG, and
explictly decode the rest. The procedure for each pixel is as follows:

i. Set TPGRPIX equal ta if
A. TPGRONis1AND
B. a3 x 3 pixel array in the reference bitmap (Figure 16), centered at the location corresponding

to the current pixel, contains pixels all of the same value.

When TPGRPIX is set th, set TPGRVAL equal to the current pixel predicted value, which is the
common value of the nine adjacent pixels in ghe 3 array.

ii. If TRPPIX is 1 then implicitly decode the current pixel by setting it equal to its predicted value
(TPGRVAL).

iii. Otherwise, explictly decode the current pixel using the methodology of steps 3(c)i through 3(c)iii
above.

4. After all the rows have been decoded, the current contents of the bitmap GRREG are the results that shall
be obtained by every decoder, whether it performs this exact sequence of steps or not.

olo]o olo]o
01O oldD] o
olo]o

Figure 14 — Reused context for coding the SLTP pseudo-pixel when GRTEMPLATE is 0.

6.4 Text Region Decoding Procedure
6.4.1 General description

This decoding procedure is used to decode a bitmap by decoding a number of symbol instances. A symbolinstance
contains a location and a symbol ID, and possibly a refinement bitmap. These symbol instances are combined to
form the decoded bitmap.

NOTE — This decoding procedure will normally be used to decode the text part of a page. The symbols
are normally single text characters from some font or alphabet.
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Table 9 — Parameters for the text region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

SBHUFF Integer 1 N Whether Huffman coding is used.

SBREFINE Integer 1 N Whether refinement coding is used.

SBW Integer 32 N The width of the region.

SBH Integer 32 N The height of the region.

SBNUMINSTANCES | Integer 32 N The number of symbol instances in this region.

SBSTRIPS Integer 4 N The size of the symbol instance strips. May take on
the values 1, 2, 4 or 8.

SBNUMSYMS Integer 32 N The number of symbols that may be used in this re-
gion.

SBSYMCODES Array of Huffman codes | An array containing the codes for the symbols used in
this region. ContainSBNUMSYMS codes.*

SBSYMCODELEN Integer | 6] N The length of the symbol codes used in IAID*

SBSYMS Array of symbols An array containing the symbols used in this text re-
gion. ContainSBNUMSYMS symbols.

SBDEFPIXEL Integer | 1] N The default pixel for this bitmap.

SBCOMBOP Operator The combination operator for this text region. May
take on the values OR, AND, XOR and XNOR.

TRANSPOSED Integer | 1] N Whether the strips run vertically.

REFCORNER Corner The reference corner of each symbol instance bitmap.
May take on the values TOPLEFT, TOPRIGHT, BOT-
TOMLEFT and BOTTOMRIGHT.

SBDSOFFSET Integer]| 5] Y An offset for all the delta S values.

SBHUFFFS Huffman table The Huffman table used to decode the S coordinate of
the first symbol instance in each strip.

SBHUFFDS Huffman table The Huffman table used to decode the S coordinate of
subsequent symbol instances in each strip.

SBHUFFDT Huffman table The Huffman table used to decode the difference in T
coordinates between non-empty strips.

SBHUFFRDW Huffman table The Huffman table used to decode the difference be-
tween a symbol’s width and the width of a refinement
coded bitmap**

SBHUFFRDH Huffman table The Huffman table used to decode the difference be-
tween a symbol’s height and the height of a refinement
coded bitmap**

SBHUFFRDX Huffman table The Huffman table used to decode the difference be-
tween a symbol instance’s X coordinate and the X co-
ordinate of a refinement coded bitmap.

SBHUFFRDY Huffman table The Huffman table used to decode the difference be-

tween a symbol instance’s Y coordinate and the Y co-
ordinate of a refinement coded bitmap.

SBHUFFRSIZE

Huffman table

The Huffman table used to decode the size of a symbol
instance’s refinement bitmap data.

SBRTEMPLATE Integer 1 N Template identifier for refinement coding of symbol
instance bitmaps:**

SBRATX, Integer 8 Y The X location of the adaptive template pixel RA**

SBRATY Integer 8 Y The Y location of the adaptive template pixel RA**

SBRATX Integer 8 Y The X location of the adaptive template pixel RA**

SBRATY , Integer 8 Y The Y location of the adaptive template pixel RA**

* Unused ifSBHUFF = 0. ** Unused ifSBHUFF = 0 or SBREFINE = 0.
*** Unused ifSBREFINE = 0. **** Unused ifSBHUFF = 1.
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Figure 15 — Reused context for coding the SLTP pseudo-pixel when GRTEMPLATE is 1.

X | x| X
O X | ® | x
X | x| X

Figure 16 — TPGR template.

6.4.2 Input parameters

The parameters to this decoding procedure are shown in Table 9.

NOTE — The values of some of these parameters in a typical situation, where a bitmap containing text
characters in standard English reading order is being decoded., &nthe foreground pixel
value, are

SBDEFPIXEL is0

SBCOMBOP is OR

TRANSPOSEDIis 0

REFCORNER is BOTTOMLEFT

6.4.3 Return value

The variable whose value is the result of this decoding procedure is shown in Table 10.

Table 10 — Return value from the text region decoding procedure.
Name | Type | Size| Signed?| Description and restrictions
(bits)
SBREG | Bitmap The decoded region bitmap.

6.4.4 Variables used in decoding

The variables used by this decoding procedure are shown in Table 11.
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Table 11 — Variables used in the text region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

STRIPT Integer 32 Y The numerically smallest T coordinate in the current
strip.

FIRSTS Integer 32 Y The first S coordinate of the current strip.

NINSTANCES | Integer 32 N A symbol instance counter.

DT Integer 32 Y The number of empty strips between two non-empty
strips.

DFS Integer 32 Y The difference in S coordinates between the first sym-
bol instances of two strips.

CURS Integer 32 Y The current S coordinate.

CURT Integer 3 N The current symbol instance’s T coordinate relative to
the current strip.

St Integer 32 Y A symbol instance’s S coordinate.

Ty Integer 32 Y A symbol instance’s T coordinate.

ID; Integer 32 N A symbol instance’s symbol ID.

IB; Bitmap A symbol instance’s symbol bitmap.

Wi Integer 32 N The width of a symbol instance’s symbol bitmap.

H; Integer 32 N The height of a symbol instance’s symbol bitmap.

IDS Integer 32 Y The difference in S coordinates between two symbol
instances within a strip.

Ry Integer 1 N Whether a symbol instance’s symbol bitmap is coded
using refinement.

RDW; Integer 32 Y The delta width of a symbol instance’s refinement bit-
map.*

RDH; Integer 32 Y The delta height of a symbol instance’s refinement bit-
map.*

RDX; Integer 32 Y The delta X of a symbol instance’s refinement bitmap.

RDYp Integer 32 Y The delta Y of a symbol instance’s refinement bitmap.

IBO; Bitmap A symbol instance’s original symbol bitmap.

WOy Integer 32 N The width ofTBOy. *

HO; Integer 32 N The height off BO;. *

*Unused ifSBREFINE = 0.
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6.4.5 Decoding the text region

A symbol-coded bitmap is represented by a set of symbol instances. Each symbol instance encodes a location, a
symbol ID, and possibly refinement information. The location of each symbol instance comprises an S coordinate
and a T coordinate. FRANSPOSED:Is 0, then the S coordinate axis corresponds to the X axis of the bitmap, and

the T axis corresponds to the Y axis of the bitmapg RANSPOSEDis 1, then the S coordinate axis corresponds

to the Y axis of the bitmap, and the T axis corresponds to the X axis of the bitmap.

NOTE 1 — Transposing the coordinate axes allows efficient coding of text running vertically. The refer-
ence corner is variable because the most efficient coding is usually obtained when the reference
corner of each symbol instance lies on a text baseline, and the text baselines may run in any
direction.

In order to improve compression, symbol instances are grouped into strips according g tvedires. This
is done according to the value 8BSTRIPS Symbol instances haviriy values between 0 ar@BSTRIPS— 1
are grouped into one strip, symbol instances haffingalues betweeSBSTRIPSand2 x SBSTRIPS— 1 into
the next, and so on. Within each strip, the symbol instances are coded in the order of increasing S coordinate.

NOTE 2 — Normally the strips occur in the order of strictly increasing T coordinates, and the symbol
instances within each strip occur in the order of nondecreasing S coordinates. However, it is
possible for negative delta S or delta T values to occur during the decoding, meaning that the
strips and symbol instances might occur in any order.

The overall structure of the data to be decoded in order to reconstruct the text region is shown in Figure 17.
The format of each strip is as shown in Figure 18. WBBREFINE is 0, the format of each symbol instance is
as shown in Figure 19. Whe3BREFINE is 1, the format of each symbol instance is as shown in Figure 20.

NOTE 3— There may be some symbol instances whose reference corner lies off the top of the region. If
these are to be coded, there must be some way to have a strip that also lies above the top of
the region. The initial value of STRIPT is the coordinate with respect to which the first strip is
located.

Initial STRIPT value
First strip
Second strip

Last strip

Figure 17 — Coded structure of a text region.

DeltaT
First symbol instance
Second symbol instance

Last symbol instance
0O0B

Figure 18 — Structure of a strip.

The result of decoding a text region shall be the bitmap that is produced by the following steps.

1. Fill abitmap SBREG, of the size given BBW andSBH, with the SBDEFPIXEL value.

2. Decode the initial STRIPT value as described in 6.4.6. Negate the decoded value and assign this negated
value to the variable STRIPT. Assign the value 0 to FIRSTS. Assign the value 0 to NINSTANCES.
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Symbol instance S coordinate
Symbol instance T coordinat
Symbol instance symbol ID

[¢)

Figure 19 — Structure of a symbol instance when SBREFINE is 0.

Symbol instance S coordinate

Symbol instance T coordinate
Symbol instance symbol ID

Symbol instance refinement information

Figure 20 — Structure of a symbol instance when SBREFINE is 1.

3. Decode each strip as follows.

(a) If NINSTANCES is equal t&BNUMINSTANCES then there are no more strips to decode, and the
process of decoding the text region is complete; proceed to step 4.

(b) Decode the strip’s delta T value as described in 6.4.6. Let DT be the decoded value. Set

STRIPT = STRIPT+ DT

(c) Decode each symbol instance in the strip as follows.

If the current symbol instance is the first symbol instance in the strip, then decode the first symbol
instance’s S coordinate as described in 6.4.7. Let DFS be the decoded value. Set

FIRSTS = FIRSTS+ DFS
CURS = FIRSTS

Otherwise, if the current symbol instance is not the first symbol instance in the strip, decode the
symbol instance’s S coordinate as described in 6.4.8. If the result of this decoding is OOB then
the last symbol instance of the strip has been decoded; proceed to step 3d. Otherwise, let IDS be
the decoded value. Set

CURS = CURS+ IDS+ SBDSOFFSET

NOTE — The intended use 8BDSOFFSETis to make the most common value decoded
in 6.4.8 zero. The shortest code in all of the default tables used in 6.4.8 is for
the value zero.

iii. Decode the symbolinstance’s T coordinate as described in 6.4.9. Let CURT be the decoded value.

Set

Tr = STRIPT+ CURT

Decode the symbol instance’s symbol ID as described in 6.4.10. Rebe the decoded value.

Determine the symbol instance’s bitmBp; as described in 6.4.11. The width and height of this
bitmap shall be denoted &E; and H respectively.

vi. Update CURS as follows.

e If TRANSPOSEDIs 0, andREFCORNER is TOPRIGHT or BOTTOMRIGHT, set

CURS = CURS+W; -1
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o If TRANSPOSEDIs 1, andREFCORNER is BOTTOMLEFT or BOTTOMRIGHT, set
CURS = CURS+H;-1

e Otherwise, do not change CURS in this step.
vii. Set

Sr = CURS

viii. Determine the location of the symbol instance bitmap with respect to SBREG as follows.
e If TRANSPOSEDIs 0O, then
— If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitni&}
shall be placed at SBRES;, T7].
— If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance bitmap
I By shall be placed at SBRES;, T7].
— If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol instance
bitmapI B, shall be placed at SBRES;, T}].
— If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol instance
bitmapI By shall be placed at SBRES;, T7].
e If TRANSPOSEDis 1, then
— If REFCORNER is TOPLEFT then the top left pixel of the symbol instance bitni&}
shall be placed at SBREG;, S].
— If REFCORNER is TOPRIGHT then the top right pixel of the symbol instance bitmap
I By shall be placed at SBREG;, S;].
— If REFCORNER is BOTTOMLEFT then the bottom left pixel of the symbol instance
bitmapI B, shall be placed at SBREG;, S;].

— If REFCORNER is BOTTOMRIGHT then the bottom right pixel of the symbol instance
bitmapI B, shall be placed at SBREG;, S;].
If any part of I By, when placed at this location, lies outside the bounds of SBREG, then ignore
this part of/ By in step 3(c)ix.
ix. Draw I By into SBREG. Combine each pixel #B; with the current value of the corresponding
pixel in SBREG, using the combination operator specifie&BL OMBOP. Write the results of
each combination into that pixel in SBREG.

X. Update CURS as follows.
e If TRANSPOSEDIs 0, andREFCORNER is TOPLEFT or BOTTOMLEFT, set

CURS = CURS+W; -1
e If TRANSPOSEDIs 1, andREFCORNER is TOPLEFT or TOPRIGHT, set
CURS = CURS+H;-1

e Otherwise, do not change CURS in this step.

NOTE — The CURS update rules are designed to allow the gap between adjacent symbol
instances to be encoded, rather than the distance between their reference cor-
ners; this takes out one source of variation (the symbol instance bitmap width
or height), and allows better compression.

xi. Set
NINSTANCES= NINSTANCES+ 1

(d) When the strip has been completely decoded, decode the next strip.

4. After all the strips have been decoded, the current contents of SBREG are the results that shall be obtained
by every decoder, whether it performs this exact sequence of steps or not.
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6.4.6 StripdeltaT

If SBHUFF is 1, decode a value using the Huffman table specifieBHUFFDT and multiply the resulting
value bySBSTRIPS

If SBHUFF is 0, decode a value using the IADT integer arithmetic decoding procedure (see Annex A) and
multiply the resulting value bBSTRIPS

6.4.7 First symbol instance S coordinate

NOTE — The symbol instance S coordinate value for the first symbol instance of each strip is coded
differently from the subsequent symbol instances in each strip. This takes advantage of the
beginnings of lines being aligned.

If SBHUFF is 1, decode a value using the Huffman table specifie@BHUFFFS.
If SBHUFF is O, decode a value using the IAFS integer arithmetic decoding procedure (see Annex A).

6.4.8 Subsequent symbol instance S coordinate

If SBHUFF is 1, decode a value using the Huffman table specifie@BHUFFDS.
If SBHUFF is 0, decode a value using the IADS integer arithmetic decoding procedure (see Annex A).
In either case it is possible that the result of this decoding is the out-of-band value OOB.

6.4.9 Symbolinstance T coordinate
If SBSTRIPS= 1, then the value decoded is always zero. Otherwise,

¢ If SBHUFFis 1, decode a value by readintpg, SBSTRIPS]| bits directly from the bitstream.

o If SBHUFF is O, decode a value using the IAIT integer arithmetic decoding procedure (see Annex A).

NOTE — If SBSTRIPS = 1, then no bits are consumed, and the IAIT integer arithmetic decoding proce-
dure is never invoked.

6.4.10 Symbol instance symbol ID

If SBHUFF is 1, decode a value by reading one bit at a time until the resulting bit string is equal to one of the
entries INSBSYMCODES. The resulting value, which i8Dy, is the index of the entry iISBSYMCODES that
is read.

If SBHUFF is O, decode a value using the IAID integer arithmetic decoding procedure (see Annex A). Set
ID; to the resulting value.

6.4.11 Symbol instance bitmap

In some cases, the symbol instance bitni&}y is simply the bitmap of the symbol identified By;. In other
cases, however, the symbol instance bitmap is that bitmap modified by additional refinement information. The bit
indicating which of the options is true for a symbol instance is calted

If SBREFINE is 0, then setR; to 0.

If SBREFINE is 1, then decode?; as follows.

e If SBHUFFis 1, then read one bit and sBY to the value of that bit.

o If SBHUFF is O, then decode one bit using the IARI integer arithmetic decoding procedure aRg @t
the value of that bit.

If Ry is Othen set the symbol instance bitmaB; to SBSYMS[I Dy].
If Ry is 1then determine the symbol instance bitmap as follows:

1. Decode the symbol instance refinement delta width as described in 6.4.11.RDI&; be the value
decoded.

2. Decode the symbol instance refinement delta height as described in 6.4.11.RDIEEt be the value
decoded.
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3. Decode the symbol instance refinement X offset as described in 6.4.11BDL¥} be the value decoded.
4. Decode the symbol instance refinement Y offset as described in 6.4.11 ADl¥étbe the value decoded.
5. If SBHUFFis 1, then

(a) Decode the symbol instance refinement bitmap data size as described in 6.4.11.5.
(b) Skip over any bits remaining in the last byte read.

6. LetIBO; be SBSYMSID,]. LetWO; be the width offBO; and HO; be the height of BO;. The
symbol instance bitmapB; is the result of applying the generic refinement region decoding procedure
described in 6.3. Set the parameters to this decoding procedure as shown in Table 12.

Table 12 — Parameters used to decode a symbol instance’s bitmap using refinement.

Name Value

GRW WO; + RDW;
GRH HO; + RDH;
GRTEMPLATE SBRTEMPLATE

GRREFERENCE 1BO;
GRREFERENCEDX | [RDW,/2] + RDX;
GRREFERENCEDY | |[RDH, /2] + RDY;

TPGRON 0

GRATX 1 SBRATX4
GRATY 1 SBRATY 4
GRATX 2 SBRATX
GRATY 2 SBRATY ,

7. If SBHUFFis 1, then skip over any bits remaining in the last byte read. The total number of bytes processed
by the generic refinement bitmap decoding procedure must be equal to the value read in step 5a.
6.4.11.1 Symbol instance refinement delta width

This field, and the following fields, indicate the size, location and contents of the refined symbol bitmap, as the
size might not be the same as the size of the bitmap of the symbol whose ID is given in this symbol instance; also,
the change in the size of the bitmap might extend to the left and top, not just to the right and bottom, so we need
to supply an offset as well as a size. Note that the offsets are given in terms of X and Y, not Sand T.

If SBHUFF is 1, decode a value using the Huffman table specifie@BHUFFRDW.

If SBHUFF is 0, decode a value using the IARDW integer arithmetic decoding procedure (see Annex A).

6.4.11.2 Symbol instance refinement delta height

If SBHUFFis 1, decode a value using the Huffman table specifie@BiHUFFRDH.
If SBHUFF is 0, decode a value using the IARDH integer arithmetic decoding procedure (see Annex A).

6.4.11.3 Symbol instance refinement X offset

If SBHUFF is 1, decode a value using the Huffman table specifie&@BiHUFFRDX.
If SBHUFF is 0, decode a value using the IARDX integer arithmetic decoding procedure (see Annex A).

6.4.11.4 Symbol instance refinement Y offset

If SBHUFF is 1, decode a value using the Huffman table specifie&BIHUFFRDY.
If SBHUFF is 0, decode a value using the IARDY integer arithmetic decoding procedure (see Annex A).

6.4.11.5 Symbol instance refinement bitmap data size
Decode a value using the Huffman table specifie®BHUFFRSIZE.
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6.5 Symbol Dictionary Decoding Procedure

6.5.1 General description

This decoding procedure is used to decode a set of symbols; these symbols can then be used by text region
decoding procedures, or in some cases by other symbol dictionary decoding procedures.

6.5.2 Input parameters

The parameters to this decoding procedure are shown in Table 13.

TheSDREFAGG parameter determines how the symbols in this symbol dictionary are coBOREFAGG
is 0 then each symbol bitmap is coded via direct bitmap codinDOREFAGG is 1 then each symbol bitmap is
coded by refining or aggregating previously-defined symbol bitmaps. These previously-defined symbol bitmaps
may be drawn from other dictionaries and provided as input to this decoding proce &DéNISYMS, or may
be defined in the current dictionary.

6.5.3 Return value
The variable whose value is the result of this decoding procedure is shown in Table 14.

6.5.4 Variables used in decoding
The variables used by this decoding procedure are shown in Table 15.

6.5.5 Decoding the symbol dictionary

The internal structure of a symbol dictionary is shown in Figure 21. The symbols defined in the dictionary are
ordered into height classes: a height class contains a number of symbols whose bitmaps are the same height.

NOTE — In most cases, the height classes occur in the order of strictly increasing height, shortest through
tallest. If SDREFAGG is 1, though, a symbol may be coded as a refinement of a larger symbol
defined in the same dictionary. In this case, the height class for that base symbol must be decoded
(and therefore must occur) before the shorter height class of the symbol that is coded by refining
it. For this reason, height class delta heights (and symbol delta widths) may be zero or negative,
as well as positive.

First height class
Second height class

Last height class
List of exported symbolg

Figure 21 — The structure of a symbol dictionary.

If SDHUFFis 1 andSDREFAGG is 0 then the format of a height class is as shown in Figure 22. Otherwise,
the format of a height class is as shown in Figure 23. The fields mentioned in those figures are described fully
below.

Height class delta height
Delta width for first symbol
Delta width for second symbal

ooB
Height class collective bitmay

Figure 22 — Height class coding when SDHUFF is 1 and SDREFAGG is 0.

The result of decoding a symbol dictionary is an array SDEXSYMS contaBiDi§gUMEXSYMS bitmaps.
This array shall be the array produced by the following steps.
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Table 13 — Parameters for the symbol dictionary decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

SDHUFF Integer 1 N Whether Huffman coding is used.

SDREFAGG Integer 1 N Whether refinement and aggregate coding are used.

SDNUMINSYMS Integer 32 N The number of symbols that are used as input to this
symbol dictionary decoding procedure.

SDINSYMS Array of symbols An array containing the symbols that are used as input
to this symbol dictionary decoding procedure. Con-
tainsSDNUMINSYMS symbols.

SDNUMNEWSYMS | Integer 32 N The number of symbols to be defined in this symbol
dictionary.

SDNUMEXSYMS Integer 32 N The number of symbols to be exported from this sym-
bol dictionary.

SDHUFFDH Huffman table The Huffman table used to decode the difference in
height between two height classés.

SDHUFFDW Huffman table The Huffman table used to decode the difference in
width between two symbols.

SDHUFFBMSIZE Huffman table The Huffman table used to decode the size of a height
class collective bitmap.

SDHUFFAGGINST | Huffman table The Huffman table used to decode the number of sym-
bol instances in an aggregatiori.

SDTEMPLATE Integer 2 N The template identifier used to decode symbol bit-
maps.***

SDATX4 Integer 8 Y The X location of the adaptive template pixef A**

SDATY Integer 8 Y The Y location of the adaptive template pixe] A**

SDATX, Integer 8 Y The X location of the adaptive template pixef A**

SDATY 5 Integer 8 Y The Y location of the adaptive template pixe] A**

SDATX3 Integer 8 Y The X location of the adaptive template pixef A™**

SDATY 3 Integer 8 Y The Y location of the adaptive template pixe} A**

SDATX4 Integer 8 Y The X location of the adaptive template pixe] A**

SDATY 4 Integer 8 Y The Y location of the adaptive template pixe] A**

SDRTEMPLATE Integer 1 N Template identifier for refinement coding of bitmaps.

SDRATX, Integer 8 Y The X location of the adaptive template pixel RA

SDRATY Integer 8 Y The Y location of the adaptive template pixel RA

SDRATX, Integer 8 Y The X location of the adaptive template pixel RA

SDRATY 5 Integer 8 Y The Y location of the adaptive template pixel RA

* Unused ifSDHUFF = 0.

** Unused ifSDHUFF = 0 or SDREFAGG = 0.
*** Unused ifSDHUFF = 1.
**** Unused ifSDREFAGG = 0.
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Table 14 — Return value from the symbol dictionary decoding procedure.

Name Type | Size | Signed?| Description and restrictions
(bits)
SDEXSYMS | Array of symbols The symbols exported by this symbol dictionary. Con-
tainsSDNUMEXSYMS symbols.
Table 15 — Variables used in the symbol dictionary decoding procedure.
Name Type Size | Signed?| Description and restrictions
(bits)

SDNEWSYMS Array of symbols The symbols defined in this symbol dictionary. Con-

tainsSDNUMNEWSYMS symbols.

SDNEWSYMWIDTHS

Array of integers

The widths of the symbols in SDNEWSYMS. Con-
tainsSDNUMNEWSYMS integers. Each integer is a
32-bit unsigned value.

HCHEIGHT Integer 32 N Height of the current height class.

NSYMSDECODED Integer 32 N How many symbols have been decoded so far.

HCDH Integer 32 Y The difference in height between two height classes.

SYMWIDTH Integer 32 N The width of the current symbol.

TOTWIDTH Integer 32 N The width of the current height class.

HCFIRSTSYM Integer 32 N The index of the first symbol in the current height
class.

DW Integer 32 Y The difference in width between two symbols.

Bgs Bitmap The current symbol’s bitmap.

Byc Bitmap The current height class collective bitmap.

I Integer 32 N An array index.

J Integer 32 N An array index.

REFAGGNINST Integer 32 N The number of symbol instances in an aggregation.

EXFLAGS Array of integers The export flags for this dictionary.
ContainsSDNUMINSYMS + SDNUMNEWSYMS
values. Each value is one bit.

EXINDEX Integer 32 N An array index.

CUREXFLAG Integer 1 N The current export flag.

EXRUNLENGTH Integer 32 N The length of a run of identical export flag values.
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Height class delta height
Delta width for first symbol
Bitmap for first symbol
Delta width for second symbal
Bitmap for second symbol

0]0]2]

Figure 23 — Height class coding when SDHUFF is 0 or SDREFAGG is 1.

. Create an array SDNEWSYMS of bitmaps, ha'BigNUMNEWSYMS entries.

. If SDHUFF is 1 and SDREFAGG is O, create an array SDNEWSYMWIDTHS of integers, havBip-
NUMNEWSYMS entries.

. Set

HCHEIGHT
NSYMSDECODED =
. Decode each height class as follows.

(@) If NSYMSDECODED = SDNUMNEWSYMS then all the symbols in the dictionary have been
decoded; proceed to step 5.

(b) Decode the height class delta height as described in 6.5.6. Let HCDH be the decoded value. Set

HCHEIGHT = HCHEIGHT+ HCDH
SYMWIDTH = 0
TOTWIDTH = 0
HCFIRSTSYM = NSYMSDECODED

(c) Decode each symbol within the height class as follows.

i. Decode the delta width for the symbol as described in 6.5.7. If the result of this decoding is OOB
then all the symbols in this height class have been decoded; proceed to step 4d. Otherwise let DW
be the decoded value and set

SYMWIDTH = SYMWIDTH + DW
TOTWIDTH = TOTWIDTH + SYMWIDTH

ii. If SDHUFFis0or SDREFAGG s 1then decode the symbol’s bitmap as described in 6.5.8. Let
Bg be the decoded bitmap (this bitmap has width SYMWIDTH and height HCHEIGHT). Set

SDNEWSYMSNSYMSDECODED = Bgs

iii. If SDHUFF is 1 andSDREFAGG is 0 then set

SDNEWSYMWIDTHINSYMSDECODED = SYMWIDTH

iv. Set

NSYMSDECODED = NSYMSDECODED+ 1
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(d) If SDHUFF is 1 and SDREFAGG is 0 then decode the height class collective bitmap as described
in 6.5.9. LetBy ¢ be the decoded bitmap. This bitmap has width TOTWIDTH and height HCHEIGHT.
Break up the bitma@B ¢ as follows to obtain the symbols SDNEWSYECFIRSTSYM through
SDNEWSYMSNSYMSDECODED- 1].

By contains the NSYMSDECODED HCFIRSTSYM symbols concatenated left-to-right, with no
intervening gaps. For eadhbetween HCFIRSTSYM and NSYMSDECODEDP1,
e the width of SDNEWSYM$] is the value of SDNEWSYMWIDTHR],
¢ the height of SDNEWSYMRJ] is HCHEIGHT, and
¢ the bitmap SDNEWSYMR] can be obtained by extracting the columng3gf~ from
I—-1
Z SDNEWSYMWIDTHYJ]
J=HCFIRSTSYM

through

I
( > SDNEWSYMWIDTHS{J]) -1
J=HCFIRSTSYM

EXAMPLE — Columns 0 through SDNEWSYMWIDTHSICFIRSTSYM — 1 of Buc
contain the bitmap for SODNEWSYMBCFIRSTSYM, the first symbol in
the height class.

5. Determine which symbol bitmaps are exported from this symbol dictionary, as described in 6.5.10. These
bitmaps can be drawn from the symbols that are used as input to the symbol dictionary decoding procedure
as well as the new symbols produced by the decoding procedure.

NOTE — Not all the new symbols need to be exported; this allows the dictionary to define some a
symbol, use it via refinement/aggregate coding to build other symbols, and not actually
export the original symbol. Also, since input symbols can be exported, this dictionary can
in effect copy symbols from other dictionaries.

6.5.6 Height class delta height

If SDHUFF is 1, decode a value using the Huffman table specifie@ByHUFFDH.
If SDHUFFis 0, decode a value using the IADH integer arithmetic decoding procedure (see Annex A).

6.5.7 Delta width

If SDHUFF is 1, decode a value using the Huffman table specifie@BHUFFDW.
If SDHUFF is 0, decode a value using the IADW integer arithmetic decoding procedure (see Annex A).
In either case it is possible that the result of this decoding is the out-of-band value OOB.

6.5.8 Symbol bitmap

This field is only present iISDHUFF = 0 or SDREFAGG = 1. This field takes one of two form§DREFAGG
determines which form is used.

6.5.8.1 Direct-coded symbol bitmap

If SDREFAGG is 0 then decode the symbol’'s bitmap using a generic region decoding procedure as described
in 6.2. Set the parameters to this decoding procedure as shown in Table 16.

6.5.8.2 Refinement/aggregate-coded symbol bitmap

If SDREFAGG s 1 then the symbol’s bitmap is coded by refinement and aggregation of other, previously-defined,
symbols. Decode the bitmap as follows.

1. Decode the number of symbol instances contained in the aggregation, as specified in 6.5.8.2.1. Let REFAG-
GNINST be the value decoded.
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2.

3.

Table 16 — Parameters used to decode a symbol’s bitmap using generic bitmap decoding.

Name Value

MMR 0

GBW SYMWIDTH
GBH HCHEIGHT
GBTEMPLATE | SDTEMPLATE
TPGDON 0

USESKIP 0

GBATX ¢ SDATX
GBATY , SDATY ¢
GBATX o SDATX»
GBATY SDATY »
GBATX 3 SDATX3
GBATY 3 SDATY 3
GBATX 4 SDATX4
GBATY 4 SDATY 4

If REFAGGNINST is greater than one, then decode the bitmap itself using a using a text region decoding
procedure as described in 6.4. Set the parameters to this decoding procedure as shown in Table 17.

If REFAGGNINST is equal to one, then decode the bitmap as described in 6.5.8.2.2.

6.5.8.2.1 Number of symbol instances in aggregation

If SDHUFFis 1, decode a value using the Huffman table specifie@BDHUFFAGGINST.
If SDHUFFis 0, decode a value using the IAAl integer arithmetic decoding procedure (see Annex A).

6.5.8.2.2 Decoding a bitmap when REFAGGNINSTE 1

If a symbol’s bitmap is coded by refinement/aggregate coding, and there is only one symbol in the aggregation,
then the bitmap is decoded as follows. This is essentially the procedure followed by the symbol region decoding
procedure, except that when a value is known, it is not decoded.

1.
2.

SetSBHUFF = SDHUFF.

Decode a symbol ID as described in 6.4.10, using the values of SBSYMCODES and SBSYMCODELEN
described in 6.5.8.2.3. LétD; be the value decoded.

Decode the instance refinement X offset as described in 6.4.11SDHUFF is 1, use Table B.15 for
SBHUFFRDX. Let RD X be the value decoded.

Decode the instance refinement Y offset as described in 6.4.11SDHUFF is 1, use Table B.15 for
SBHUFFRDX. Let RDY7 be the value decoded.

If SDHUFF is 1 then

(a) Decode the symbol instance refinement bitmap data size as described in 6.4.11.5, using Table B.1 for
SBHUFFRSIZE.

(b) Skip over any bits remaining in the last byte read.
Let/BOr beSBSYMS|[I D], where SBSYMS is as shown in 6.5.8.2.4. The symbol’s bitmap is the result

of applying the generic refinement region decoding procedure described in 6.3. Set the parameters to this
decoding procedure as shown in Table 18.

. If SBHUFFis 1, then skip over any bits remaining in the last byte read. The total number of bytes processed

by the generic refinement region decoding procedure must be equal to the value read in step 5a.
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Table 17 — Parameters used to decode a symbol’'s bitmap using refinement/aggregate decoding.

Name Value

SBHUFF SDHUFF
SBREFINE 1

SBW SYMWIDTH
SBH HCHEIGHT
SBNUMINSTANCES | REFAGGNINST
SBSTRIPS 1
SBNUMSYMS SDNUMINSYMS + NSYMSDECODED
SBSYMCODES See 6.5.8.2.3;
SBSYMCODELEN See 6.5.8.2.3*
SBSYMS See 6.5.8.2.4.
SBDEFPIXEL 0

SBCOMBOP OR
TRANSPOSED 0
REFCORNER TOPLEFT
SBDSOFFSET 0

SBHUFFFS Table B.6*
SBHUFFDS Table B.8*
SBHUFFDT Table B.11*
SBHUFFRDW Table B.15*
SBHUFFRDH Table B.15*
SBHUFFRDX Table B.15*
SBHUFFRDY Table B.15*
SBHUFFRSIZE Table B.1*
SBRTEMPLATE SDRTEMPLATE
SBRATX4 SDRATX;
SBRATY ¢ SDRATY
SBRATX SDRATX,
SBRATY » SDRATY 5

* If SDHUFF = 0then this parameter has no value.
** If SDHUFF = 1 then this parameter has no value.

Table 18 — Parameters used to decode a symbol’'s bitmap when REFAGGNINSE 1

Name Value

GRW SYMWIDTH
GRH HCHEIGHT
GRTEMPLATE SDRTEMPLATE
GRREFERENCE IBO;
GRREFERENCEDX | RDX;
GRREFERENCEDY | RDY;
TPGRON 0

GRATX ¢ SDRATX;
GRATY ; SDRATY;
GRATX » SDRATX 2
GRATY o SDRATY 5
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6.5.8.2.3 Setting SBSYMCODES and SBSYMCODELEN
WhenSDHUFF = 1, setSBSYMCODESto an array oSBNUMSYMS codes, where the length of each code is

max ([log, (SDNUMINSYMS + SDNUMNEWSYMS)], 1)

and the codSBSYMCODESY] is I (for I between 0 an@BNUMSYMS — 1).

NOTE — This sets the codes as equal-length codes, assigned starting from zero. The code lengths are
computed from the maximum number of symbols available in this symbol dictionary: all the
imported symbols and all the symbols defined here. There is some wastage in choosing this
code length and assigning these codes. However, doing it this way means that neither the code
lengths nor the actual codes assigned to each symbol changes during the process of decoding
this symbol dictionary.

Similarly, whenSDHUFF is 0, SBSYMCODELEN should be set to
[log, (SDNUMINSYMS + SDNUMNEWSYMS)]

so that the length of the bit srings decoded using IAID will not change during the decoding of this symbol dictio-
nary.

6.5.8.2.4 Setting SBSYMS

SetSBSYMS to an array ofSDNUMINSYMS + NSYMSDECODED symbols, formed by concatenating the
arraySDINSYMS and the first NSYMSDECODED entries of the array SDNEWSYMS.

6.5.9 Height class collective bitmap

This field is only present iSEDHUFF = 1 andSDREFAGG = 0.

This field contains the bitmaps of all the symbols in the height class, concatenated left to right, and MMR
encoded. It is preceded by a count of its size in bytes.

This field is decoded as follows.

1. Read the size in bytes using tBBHUFFBMSIZE Huffman table. Let BMSIZE be the value decoded.
2. Skip over any bits remaining in the last byte read.

3. If BMSIZE is zero, then the bitmap is stored uncompressed, and the actual size in bytes is

HCHEIGHT x [ww

Decode the bitmap by reading this many bytes and treating it as HCHEIGHT rows of TOTWIDTH pixels,
each row padded out to a byte boundary with 0-bits.

4. Otherwise, decode the bitmap using a generic bitmap decoding procedure as described in 6.2. Set the
parameters to this decoding procedure as shown in Table 19.

Table 19 — Parameters used to decode a height class collective bitmap.
Name | Value
MMR | 1
GBW | TOTWIDTH
GBH HCHEIGHT

5. Skip over any bits remaining in the last byte read.
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6.5.10 Exported symbols

The symbols that may be exported from a given dictionary include any of the symbols that are input to the
dictionary, plus any of the symbols defined in the dictionary.

The array of symbols exported from the dictionary is produced by decoding an a bit for each of those sym-
bols. These bits form an array EXFLAGS8DNUMINSYMS + SDNUMNEWSYMS binary values, each one
corresponding to an input symbol or a newly-defined symboll Bit for a symbol indicates that the symbol
is exported. ExactysDNUMEXSYMS symbols must be exported from the dictionary. The order of exported
symbols is the order produced by concatenating the SEANSYMS and the array SDNEWSYMS.

The following procedure produces this array of exported symbols.

1. Set

EXINDEX
CUREXFLAG =

2. Decode a value using Table B.1SDHUFF is 1, or the IAEX integer arithmetic decoding procedure if
SDHUFFis 0. Let EXRUNLENGTH be the decoded value.

3. Set EXFLAG$EXINDEX] through EXFLAGSEXINDEX + EXRUNLENGTH — 1] to CUREXFLAG. If
EXRUNLENGTH = 0, then this step does not change any values.

4. Set

EXINDEX EXINDEX + EXRUNLENGTH
CUREXFLAG = NOT(CUREXFLAG)

5. Repeat steps 2 through 4 until EXINDEXSDNUMINSYMS + SDNUMNEWSYMS.

6. The array EXFLAGS now contairisfor each symbol that is exported from the dictionary, &rfdr each
symbol that is not exported.

7. Set

8. For each value of from 0 to SDNUMINSYMS+ SDNUMNEWSYMS— 1, if EXFLAGS[I] = 1 then
perform the following steps.

(a) If I < SDNUMINSYMS then set

SDEXSYMSJ] = SDINSYMS]J]
J = J+1

(b) If I > SDNUMINSYMS then set

SDEXSYMYJ] = SDNEWSYMSI — SDNUMINSYMS]
J = J+1
NOTE — Most dictionaries will export exactly the new symbols that they define; they will not export any

of the symbols irSDINSYMS. In this case, the fir@DNUMINSYMS values in EXFLAGS are
0, and the remainingDNUMNEWSYMS values ardl.
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6.6 Halftone Region Decoding Procedure

6.6.1 General description
This decoding procedure is used to decode a bitmap by decoding an array of values, which are used to draw
patterns into a halftone grid. These patterns are combined to form the decoded bitmap.

NOTE — This form of coding is suitable to efficiently transmitting a bitmap contaiegodic halftone
image data, such as clustered-dot ordered dithered data. Other forms of halftone image data,
such as error-diffused data, may be converted into this form via descreening, or may be coded in
a form more closely resembling the original using generic bitmap coding.

6.6.2 Input parameters
The parameters to this decoding procedure are shown in Table 20.

Table 20 — Parameters for the halftone region decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)

HBW Integer 32 N The width of the region.

HBH Integer 32 N The height of the region.

HMMR Integer 1 N Whether MMR coding is used.

HTEMPLATE Integer 2 N The template identifier:

HNUMPATS Integer 32 N The number of patterns that may be used in this region.

HPATS Array of patterns An array containing the patterns used in this region.
ContainsHNUMPATS patterns.

HDEFPIXEL Integer | 1] N The default pixel for this bitmap.

HCOMBOP Operator The combination operator used in this halftone region.
May take on the values OR, AND, XOR, XNOR and
REPLACE.

HENABLESKIP | Integer 1 N Whether unneeded gray-scale values are skipped.

HGW Integer 32 N The width of the gray-scale image.

HGH Integer 32 N The height of the gray-scale image.

HGX Integer 32 Y 256 times the horizontal offset of the grid origin.

HGY Integer 32 Y 256 times the vertical offset of the grid origin.

HRX Integer 16 N 256 times the horizontal coordinate of the grid vector.

HRY Integer 16 N 256 times the vertical coordinate of the grid vector.

HPW Integer 8 N The width of each pattern.

HPH Integer 8 N The height of each pattern.

* Unused iftHMMR = 1.

6.6.3 Return value
The variable whose value is the result of this decoding procedure is shown in Table 21.

Table 21 — Return value from the halftone region decoding procedure.
Name | Type| Size | Signed?| Description and restrictions
(bits)
HTREG | Bitmap The decoded region bitmap.

6.6.4 Variables used in decoding
The variables used by this decoding procedure are shown in Table 22.
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Table 22 — Variables used in the halftone region decoding procedure.

Name | Type Size | Signed?| Description and restrictions
(bits)

Ng Integer 32 N Horizontal index for the current gray-scale value.

my Integer 32 N Vertical index for the current gray-scale value.

x Integer 32 Y The horizontal coordinate for the pattern correspond-
ing to the current gray-scale value.

y Integer 32 Y The vertical coordinate for the pattern corresponding
to the current gray-scale value.

HSKIP | Bitmap Skip mask. HSKIP i$+HGW by HGH pixels. *

HBPP | Integer 32 N The number of bits per value in the array of gray-scale
values.

Gl Array Array of gray-scale values. Gl isl dGW by HGH
array, each entry of which is a HBPP bits unsigned
integer.

*Unused ifHENABLESKIP = 0.

6.6.5 Decoding the halftone region

A halftone-coded bitmap is represented by a set of pattern instances. Each instance encodes a pattern. The location
of each pattern is not coded explicitly but given by a grid global to the entire halftone bitmap. The halftone grid
origin is specified by parameterscX andHGY . The grid period is defined by parametéfRX andHRY (see

Fig. 24).HGX, HGY, HRX andHRY are scaled by 256, which means that the grid origin and grid period have

a fractional part of 8 bits.

NOTE 1 — Note that HRX and HRY are unsigned values; that is, their values are always greater than or

equal to zero. This means that the grid vector is restricted to lie in a single quadrant. Despite
this restriction, any halftone grid can be encoded by a suitable adjustmd@XfandHGY :

HGX andHGY must be set so that the grid’s origin is the leftmost corner. This is the top left
corner in the case where the grid is axis-aligned, or is a slight counter-clockwise rotation of an
axis-aligned grid (as shown in Figure 24, and is the bottom left corner in the case where the
grid is a slight clockwise rotation of an axis aligned grid.

The possible patterns are given in a dictionary. The identity of a pattern is specified by an index which will
usually represent the gray-scale value of the pattern.

NOTE 2 — We use the term gray-scale value for the index to illustrate the compression idea. There is no

requirement in this specification that the index does indeed correspond to the gray-scale value.

The result of decoding a halftone bitmap is the bitmap that is produced by the following steps.

1.

2
3.
4

Fill a bitmap HTREG, of the size given tyBW andHBH, with theHDEFPIXEL value.

. If HENABLESKIP equalsl, compute a bitmap HSKIP as shown in 6.6.5.1.

Set HBPP tdlog, (HNUMPATS)].

. Decode an image Gl of sit¢GW by HGH with HBPP bits per pixel using the gray-scale image decoding

procedure as described in Annex C. Set the parameters to this decoding procedure as shown in Table 23.
Let Gl be the results of invoking this decoding procedure.

Place sequentially the patterns corresponding to the values in Gl into HTREG by the procedure described
in 6.6.5.2. The rendering procedure is illustrated in Figure 24. The outline of two patterns are marked by
dotted boxes.
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Figure 24 — Specification of coordinate systems and grid parameters.
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Table 23 — Parameters used to decode a halftone region’s gray-scale value array.

Name Value

GSMMR HMMR

GSW HGW

GSH HGH

GSBPP HBPP
GSUSESKIP HENABLESKIP
GSSKIP HSKIP *
GSTEMPLATE | HTEMPLATE **

* If HENABLESKIP = 0 then this parameter has no value.
** If HMMR = 1then this parameter has no value.

6. After all the patterns have been placed on the bitmap, the current contents of the halftone-coded bitmap are
the results that shall be obtained by every decoder, whether it performs this exact sequence of steps or not.

NOTE 3 — If HGX is 0,HGY is 0,HRX is equal toHPW x 256 andHRY is 0, then the grid is simple:
it is axis-aligned, the primary direction is horizontal, and the grid step is equal to the size of
the patterns. In this case, it is possible to optimise the drawing process, as none of the patterns
can overlap.

6.6.5.1 Computing HSKIP

The bitmap HSKIP contain% at a pixel if drawing a pattern at the corresponding location on the halftone grid
does not affect any pixels of HTREG. It is computed as follows.

1. For each value ofi, between 0 aniGH — 1, beginning from 0, perform the following steps.

(a) For each value of, between 0 antHGW — 1, beginning from 0, perform the following steps.
i. Set

r = (HGX +my x HRY +ny x HRX) >>4 8
= (HGY +my x HRX —ny x HRY) >>4 8

ii. If ((z+HPW < 0) OR (z > HBW) OR (y + HPH < 0) OR (y > HBH)) then set
HSKIP[n,, m,] = 1
Otherwise, set
HSKIP[n,, m,] =0

6.6.5.2 Rendering the patterns

Draw the patterns into HTREG using the following procedure.

1. For each value aofi, between 0 aniGH — 1, beginning from 0, perform the following steps.

(a) For each value of, between 0 antHGW — 1, beginning from 0, perform the following steps.
i. Set

r = (HGX +my x HRY +ny x HRX) >>4 8
= (HGY +my x HRX —ny x HRY) >>4 8
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ii. Draw the patterrHPATS[GI[n,, m,]] into HTREG such that its upper left pixel is at location
(z,y) in HTREG.
A pattern is drawn into HTREG as follows. Each pixel of the pattern shall be combined with
the current value of the corresponding pixel in the halftone-coded bitmap, using the combination
operator specified b HCOMBOP. The results of each combination shall be written into that
pixel in the halftone-coded bitmap.
If any part of a decoded pattern, when placed at locatign) lies outside the actual halftone-
coded bitmap, then this part of the pattern shall be ignored in the process of combining the pattern
with the bitmap.

NOTE — The gray-scale image can be used by the decoder to get a good rendition of the halftone on a
multi-level output device of limited spatial resolution such as a computer screen. The use of the
gray-scale image for such purposes is outside the scope of this specification.

The gray-scale image is coded by bit-plane coding so the decoder will receive the gray-scale im-
age progressively. Consequently, the decoder may render a halftoned image using the quantised
gray-scale values as indices. Such intermediate halftoned images shall not influence the final
halftone-coded bitmap.

6.7 Pattern Dictionary Decoding Procedure

6.7.1 General description

This decoding procedure is used to decode a set of fixed-size patterns; these patterns can then be used by halftone
region decoding procedures.

6.7.2 Input parameters
The parameters to this decoding procedure are shown in Table 24.

Table 24 — Parameters for the pattern dictionary decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)
HDMMR Integer 1 N Whether MMR is used.
HDPW Integer 32 N The width of each pattern.
HDPH Integer 32 N The height of each pattern.
GRAYMAX Integer 32 N The largest gray-scale value for which a pattern is
given.
HDTEMPLATE | Integer 2 N The template used to code the patterns.

*Unused ifHDMMR = 1.

6.7.3 Return value
The variable whose value is the result of this decoding procedure is shown in Table 25.

Table 25 — Return value from the pattern dictionary decoding procedure.

Name Type | Size| Signed?| Description and restrictions
(bits)
HDPATS | Array of patterns The patterns exported by this pattern dictionary. Con-
tainsGRAYMAX + 1 patterns.

6.7.4 Variables used in decoding
The variables used by this decoding procedure are shown in Table 26.
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Table 26 — Variables used in the pattern dictionary decoding procedure.

Name | Type Size | Signed?| Description and restrictions
(bits)
GRAY | Integer 32 N Gray-scale index.
Bypc | Bitmap The dictionary collective bitmap.
Bp Bitmap A bitmap of sizeHDPW by HDPH.

6.7.5 Decoding the pattern dictionary

The result of decoding a pattern dictionary is a set of patterns: HDPATS{HDPATS[GRAYMAX]. These
patterns shall be the patterns produced by the following steps.

1. Create a bitma@y pc. The height of this bitmap iBIDPH. The width of the bitmap iSGRAYMAX +
1) x HDPW. This bitmap contains all the patterns concatenated left to right.

2. Decode the collective bitmap using a generic region decoding procedure as described in 6.2. Set the param-
eters to this decoding procedure as shown in Table 27.

Table 27 — Parameters used to decode a pattern dictionary’s collective bitmap.

Name Value

MMR HDMMR

GBW (GRAYMAX + 1) x HDPW
GBH HDPH
GBTEMPLATE HDTEMPLATE *
TPGDON o*

USESKIP 0

GBATX, -HDPW *
GBATY ; o*

GBATX o -3 **

GBATY » -1 **

GBATX 3 2%

GBATY 3 -2 **

GBATX 4 -2 **

GBATY 4 -2 **

*If HDMMR = 1then this parameter has no value.
**If HDMMR = 10orHDTEMPLATE # 0 then this parameter has no value.

3. Set

4. While GRAY < GRAYMAX ,

GRAY = 0

(a) Letthe subimage @8y pc consisting oHPH rows and columnsiDPW x GRAY throughHDPW x
(GRAY + 1) — 1 be denoted3p. Set

(b) Set

HDPATSGRAY] = Bp

GRAY = GRAY +1
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7 Control Decoding Procedure

7.1 General description

This decoding procedure controls the invocation of all the other decoding procedure. The encoded bitstream
consists of a collection of segments, each containing a part of the data necessary for decoding. There are several
different types of segments.

A segment has two parts: a segment header part and a segment data part. All types of segments use a common
format for the segment header, but different formats for segment data.

Some segments give information about the structure of the document: start of page, end of page, and so
on. Some segments code regions, used in turn to produce the decoded image of a certain page. Some segments
(“dictionary segments”) do neither, but instead define resources that can be used by segments that code regions.

A segment can be associated with some page, or not associated with any page. A segment can refer to other,
preceding, segments. A segment also includes retention bits for the segment that it refers to, and for itself; these
indicate when the decoder may discard the data created by decoding a segment.

EXAMPLE — A text region segment may make use of symbols defined in preceding symbol dictionary
segments. This is indicated by the text region’s segment header referring to those symbol
dictionary segments.

The format of segment headers is described in 7.2. The types of segments are defined in 7.3. The syntax of
each type of segment is defined in 7.4.

In the following, some references are made to “preceding” and “following” segments (and other indications
implying an order of segments). These terms are defined with reference to the order imposed on the segments
by their segment numbers: a segment precedes all segments whose segment numbers are larger than its segment
number.

NOTE — ltis possible for there to be gaps in the segment numbering. A JBIG2 file might contain segments
numbered 2, 3, 4, 8, and 10. This can occur due to editing: the segment numbers might originally
have been contiguous, but at some point in the life of the file some pages were deleted and the
remaining segments not renumbered.

A segment’s header part always begins and ends on a byte boundary.

A segment’s data part always begins and ends on a byte boundary. Any unused bits in the final byte of a
segment must contald) and shall not be examined by the decoder.

The segment header part and the segment data part of a segment need not occur contiguously in the bitstream
being decoded. See Annex D for an organisation where the segment header part of a segment may be stored at
some distance from the segment data part of that segment.

This clause contains figures that describe various parts of the encoded data, such as Figures 25 and 31. These
conventions used in these figures are

e The first byte encountered in the bitstream is at the left end.
o Fields whose sizes are fixed, and that are always present, are outlined with narrow lines.

o Fields whose sizes are not fixed, or that are not present in all cases, or whose structures are fully described
elsewhere, are outlined with heavy lines.

e Some figures (such as Figure 25) are divided into fields, each of which is an integral number of bytes long.
In these figures, hash marks extending down from the top of the figure denote byte boundaries, and fields
are separated by lines running the full height of the figure.

e The remaining figures are divided into fields, each of which is an integral number of bits long, making up
an integral number of bytes. In these figures, short hash marks extending up from the bottom of the figure
show bit boundaries. Fields are separated by longer hash marks extending up from the bottom of the figure.
Each bit's number is shown below the figure.
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7.2 Segment header syntax

7.2.1 Segment header fields

A segment header contains the fields shown in Figure 25 and described below.

| | |
Segment number

Segment

header
flags

Referred-to segme

count and
retention flags

E?eferred-to segmefit Segment page

numbers

. Segment data length
association

Segment number See 7.2.2.

Figure 25 — Segment header structure

Segment header flagsSee 7.2.3.

Referred-to segment count and retention flagsSee 7.2.4.

Referred-to segment number fieldsSee 7.2.5.

Segment page associatiorsee 7.2.6.

Segment data lengthSee 7.2.7.

7.2.2 Segment number

This four-byte field contains the segment’'s segment number.

7.2.3 Segment header flags

This is a 1-byte field. The bits that are defined are shown in Figure 26 and are described below.

Deferred Page
non-  association Segment type
retain | size |
| | | | |
7 6 5 4 3 2 1 0

Figure 26 — Segment header flags

Bits 0-5 Segment type. See 7.3.

Bit 6 Page association field size. See 7.2.6.

Bit 7 Deferred non-retain. If this bit i4, this segment is flagged as retained only by itself and its attached
extension segments, and is flagged as non-retained by the last attached extension segments. An extension
segmentis an attached extension segment when it refers to only one segment, and the only segments (if any)
between it and that referred-to segment are other extension segments also referring only to that referred-to

segment.

NOTE — The intention of this bit is to indicate to the decoder that the segment is only referred to
by a small number of extension segments. The decoder may take some expensive actions
when segments are flagged as retained, but if this retention is only for the benefit of the
segment’s attached extension segments, these actions may not be necessary. Knowing this
in advance is helpful.
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7.2.4 Referred-to segment count and retention flags

This field contains one or more bytes indicating how many other segments are referred to by this segment, and
which segments contain data that is needed after this segment.

NOTE — The decoder’s memory requirements can be reduced by letting it know when it is allowed to
forget about the data represented by some previous segment.

The number of bytes in this field depends on the number of segments referred to by this segment. If this
segment refers to four or fewer segments, then this field is one byte long. If this segment refers to more than four
segments, then this field4s+ [(R + 1) /8] bytes long where R is the number of segments that this segment refers
to.

EXAMPLE — If this segment refers to between five and seven other segments, then the field is five bytes
long; if it refers to between eight and fifteen other segments, then the field is six bytes long.

The three most significant bits of the first byte in this field determine the length of the field. If the value of this
three-bit subfield is between 0 and 4, then the field is one byte long. If the value of this three-bit subfield is 7, then
the field is at least five bytes long. This three-bit subfield must not contain values of 5 and 6.

In the case where the field is one byte long, that byte is formatted as shown in Figure 27 and as described
below.

Retain bitRetain bitRetain bitRetain bitRetain bi

forah  forg™d for2nd for 15t forthis
| segmenq segmen1 segmenq segmenﬁ segmen

Count of referred-to
segments

| |
7 6 5 4 3 2 1 0

Figure 27 — Referred-to segment count and retention flags — short form

Bit 0 Retain bit for this segment.

Bit 1 Retain bit for the first referred-to segment. If this segment refers to no other segments, this field must
containO.

Bit 2 Retain bit for the second referred-to segment. If this segment refers to fewer than two other segments, this
field must contaird.

Bit 3 Retain bit for the third referred-to segment. If this segment refers to fewer than three other segments, this
field must contaird.

Bit 4 Retain bit for the fourth referred-to segment. If this segment refers to fewer than four other segments, this
field must contaird.

Bits 5—7 Count of referred-to segments. This field may take on values between zero and four. This specifies the
number of segments that this segment refers to.

In the case where the field is in the long format (at least five bytes long), it is composed of an initial four-byte
field, followed by a succession of one-byte fields. The initial four-byte field is formatted as follows.

Bits 0—28 Count of referred-to segments. This specifies the number of segments that this segment refers to.
Bits 29-31 Indication of long-form format. This field must contain the value 7.

The first one-byte field following the initial four-byte field is formatted as follows.

Bit 0 Retain bit for this segment.

Bit 1 Retain bit for the first referred-to segment.
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Bit 2 Retain bit for the second referred-to segment.
Bit 3 Retain bit for the third referred-to segment.
Bit 4 Retain bit for the fourth referred-to segment.

Bit 5 Retain bit for the fifth referred-to segment. If this segment refers to fewer than five other segments, this
field must contaird.

Bit 6 Retain bit for the sixth referred-to segment. If this segment refers to fewer than six other segments, this
field must contaird.

Bit 7 Retain bit for the seventh referred-to segment. If this segment refers to fewer than seven other segments,
this field must contaif.

The second one-byte field, if present, contains retain bits for the eighth through fifteenth referred-to segments;
the bits corresponding to any segments beyond the count of segments actually referred toOnGstdoeeding
one-byte fields are formatted similarly.

If the retain bit for this segment value@sthen no segment may refer to this segment.

If the retain bit for the first referred-to segment valu@,ithen no segment after this one may refer to the first
segment that this segment refers to (i.e., this segment is the last segment that refers to that other segment). Further
retain bit values have similar meanings: if the retain bit for the Kth referred-to segment v@Jtlegs no segment
after this one may refer to the Kth segment that this segment refers to.

7.2.5 Referred-to segment numbers

This field contains the segment numbers of the segments that this segment refers to, if any. The number of values
in this field is determined by the referred-to segment count and retention flags field. Each value is the segment
number of a segment that this segment refers to. A segment may refer to only segments with lower segment
numbers. When the current segment’s number is 256 or less, then each referred-to segment number is one byte
long. Otherwise, when the current segment’s number is 65536 or less, each referred-to segment number is two
bytes long. Otherwise, each referred-to segment number is four bytes long.

7.2.6 Segment page association

This field encodes the number of the page to which this segment belongs. The first page must be numbered “1”".
This field may contain a value of zero; this value indicates that this segment is not associated with any page.

A segment that has a non-zero segment page association may only be referred to by segments having the same
segment page association value as it.

This field is one byte long if this segment’s page association field size flag®Gitisd is four bytes long if
this segment’s page association field size flag it is

NOTE — Most documents have fewer than 256 pages, so this field has a short form that can hold values
from 0 to 255 in a single byte. The page association field for unassociated segments can also be
only a single byte long.

7.2.7 Segment data length

This 4-byte field contains the length of the segment’s segment data part, in bytes.

If the segment’s type is “Immediate generic region”, then the length field may contain théx&EEFFFFF.
This value is intended to mean that the length of the segment’s data part is unknown at the time that the segment
header is written (for example in a streaming application such as facsimile). In this case, the true length of the
segment’s data part shall be determined through examination of the data: if the segment uses template-based
arithmetic coding, then the segment’s data part ends with the two-byte sedxériceOXAC followed by a four-
byte row count. If the segment uses MMR coding, then the segment’s data part ends with the two-byte sequence
0x00 0x00 followed by a four-byte row count. The form of encoding used by the segment may be determined
by examining the eighteenth byte of its segment data part, and the end sequences can occur anywhere after that
eighteenth byte.
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NOTE — Given a list of segment headers in the random-access organisation (see Figure D.2), a decoder
can build a map of the rest of the file by knowing the length of the data associated with each
segment. This allows it to perform random access.

7.2.8 Segment header example
EXAMPLE 1 — A segment header consisting of the sequence of bytes

0x00 0x00 0x00 0x20 0x86 0x6B 0x02 Ox1E 0x05 0x04
is parsed as follows

0x00 Ox00 0x00 0x20  This segment’'s number Bx00000020 , or 32 decimal.

0x86 This segment’s type is 6. Its page association field is one byte long. It is retained
by only its attached extension segments.

0x6B This segment refers to three other segments. It is referred to by some other seg-
ment. This is the last reference to the second of the three segments that it refers
to.

0x02 Ox1E 0x05 The three segments that it refers to are numbers 2, 30, and 5.
0x04 This segment is associated with page number 4.

EXAMPLE 2 — A segment header consisting of the sequence of bytes, in hexadecimal

00 00 02 34 40 EO 00 00 09 02 FD 01 00 00 02 00
1E 00 05 02 00 02 01 02 02 02 03 02 04 00 00 04
01

is parsed as follows

00 00 02 34 This segment’s number 8x00000234 , or 564 decimal.
40 This segment’s type is 0. Its page association field is four bytes long.

EO 00 00 09 This segment's referred-to segment count field is in the long format.
This segment refers to nine other segments.

02 FD This segment is referred to by some other segment. This is the last reference to
the first and eighth of the nine segments that it refers to.

01 00 ... 02 04 The nine segments that it refers to are each identified by two bytes,
since this segment’'s number is between 256 and 65535. The segments that it refers
to are, in decimal, numbers 256, 2, 30, 5, 512, 513, 514, 515, and 516.

00 00 04 01 Thissegment is associated with page number 1025.

7.3 Segment types

Each segment has a certain type. This type specifies the type of the data associated with the segment. This type
restricts which other segments it may refer to, and which other segments may refer to it. These restrictions are
detailed in 7.3.1.

The segment type is a number between 0 and 63, inclusive. Not all values are allowed. The allowed list of
segment types, their full names, and where their formats are defined, are:

0 Symbol dictionary — see 7.4.2.
4 Intermediate text region — see 7.4.3.

6 Immediate text region — see 7.4.3.
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7 Immediate lossless text region — see 7.4.3.

16 Pattern dictionary — see 7.4.4.

20 Intermediate halftone region — see 7.4.5.

22 Immediate halftone region — see 7.4.5.

23 Immediate lossless halftone region — see 7.4.5.

36 Intermediate generic region — see 7.4.6.

38 Immediate generic region — see 7.4.6.

39 Immediate lossless generic region — see 7.4.6.

40 Intermediate generic refinement region — see 7.4.7.
42 Immediate generic refinement region — see 7.4.7.
43 Immediate lossless generic refinement region — see 7.4.7.
48 Page information — see 7.4.8.

49 End of page — see 7.4.9.

50 End of stripe — see 7.4.10.

51 End of file — see 7.4.11.

52 Profiles — see 7.4.12.

53 Tables — see 7.4.13.

62 Extension — see 7.4.14.

All other segment types are reserved and must not be used.

NOTE — These segment numbers are allocated according to the following rules. The two high-order bits
(bits 4-5) of this number specify the primary type of the segment, and the four low-order (bits
0-3) bits specify the secondary type of the segment.

The primary types are:

0 Symbol bitmap data

1 Halftone bitmap data
2 Generic bitmap data
3 Metadata

Primary types 0-2 are collectively referred to as region types.
For the region types, the interpretation of the four low-order bits is

Bit O If this bit is 1, it indicates that the segment makes some region of the page lossless.

Bit 1 Ifthis bitis 1, it indicates that the segment can be drawn immediately into the page bitmap.
If this bit is O, it indicates that the segment is an intermediate segment. See 8.2.

Bits 2—3 These two bits define a subtype of the primary type:

0 Dictionary
1 Direct Region
2 Refinement Region
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For metadata, the interpretations of the four low-order bits are:

0 Page information
1 End of page

2 End of stripe

3 End of file

4 Profiles

5 Tables

6—13 Reserved

14 Extension

15 Reserved

The segments of types “intermediate text region”, “immediate text region”, “immediate lossless text region”,

“intermediate halftone region”, “immediate halftone region”, “immediate lossless halftone region”, “intermediate

generic region”, “immediate generic region”, “immediate lossless generic region”, “intermediate generic refine-
ment region”, “immediate generic refinement region”, and “immediate lossless generic refinement region” are
collectively referred to as “region segments”.

The segments of types “intermediate text region”, “immediate text region”, “immediate lossless text region”,
“intermediate halftone region”, “immediate halftone region”, “immediate lossless halftone region”, “intermediate
generic region”, “immediate generic region”, and “immediate lossless generic region”, are collectively referred to
as “direct region segments”.

The segments of types “intermediate text region”, “intermediate halftone region”, “intermediate generic re-
gion”, and “intermediate generic refinement region” are collectively referred to as “intermediate region segments”.

The segments of types “immediate text region”, “immediate lossless text region”, “immediate halftone region”,
“immediate lossless halftone region”, “immediate generic region”, “immediate lossless generic region”, “imme-
diate generic refinement region”, and “immediate lossless generic refinement region” are collectively referred to
as “immediate region segments”.

The segments of types “intermediate generic refinement region”, “immediate generic refinement region” and

“immediate lossless generic refinement region” are collectively referred to as “refinement region segments”.
7.3.1 Rules for segment references
The rules for segment references are as follows.

¢ An intermediate region segment may only be referred to by one other non-extension segment; it may be
referred to by any number of extension segments.

e A segment of type “symbol dictionary” (type 0) may refer to any number of segments of type “symbol
dictionary” and to up to four segments of type “tables”.

¢ A segment of type “intermediate text region”, “immediate text region” or “immediate lossless text region”
(type 4, 6 or 7) may refer to any number of segments of type “symbol dictionary” and to up to eight segments
of type “tables”.

e A segment of type “pattern dictionary” (type 16) must not refer to any other segment.

e A segment of type “intermediate halftone region”, “immediate halftone region” or “immediate lossless
halftone region” (type 20, 22 or 23) must refer to exactly one segment, and this segment must be of type
“pattern dictionary”.

e Asegment of type “intermediate generic region”, “immediate generic region” or “immediate lossless generic
region” (type 36, 38 or 37) must not refer to any other segment.

¢ A segment of type “intermediate generic refinement region” (type 40) must refer to exactly one other seg-
ment. This other segment must be an intermediate region segment.
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e Asegment of type “immediate generic refinement region” or “immediate lossless generic refinement region”
(type 42 or 43) may refer to either zero other segments or exactly one other segment. If it refers to one other
segment then that segment must be an intermediate region segment.

e A segment of type “page information” (type 48) must not refer to any other segments.
e A segment of type “end of page” (type 49) must not refer to any other segments.

e A segment of type “end of stripe” (type 50) must not refer to any other segments.

e A segment of type “end of file (type 51) must not refer to any other segments.

e A segment of type “profiles” (type 52) must not refer to any other segments.

e A segment of type “tables” (type 53) must not refer to any other segments.

e A segment of type “extension” (type 62) may refer to any number of segments of any type, unless the
extension segment’s type imposes some restriction.

7.3.2 Rules for page associations
Every region segment must be associated with some page (i.e., have a non-zero page association field). “Page

information”, “end of page” and “end of stripe” segments must be associated with some page. “End of file”
segments must not be associated with any page. Segments of other types may be associated with a page or not.

If a segment is not associated with any page, then it must not refer to any segment that is associated with any
page.

If a segment is associated with a page, then it may refer to segments that are not associated with any page,
and to segments that are associated with the same page. It must not refer to any segment that is associated with a

different page.

7.4 Segment syntaxes

This section describes in detail the syntax of the segment data part of each type of segment, and how it is to be
decoded.

7.4.1 Region segment information field

Every region segment’s data part begins with a region segment information field; its format is specified here. A
region segment information field contains the following subfields, as shown in Figure 28 and as described below.

_ ] . . Region
Region segment Region segment Region segment Region segment | .\ ont
bitmap width bitmap height bitmap X location bitmap Y location fﬁs\gs

Figure 28 — Region segment data header structure

Region segment bitmap width See 7.4.1.1.
Region segment bitmap heightSee 7.4.1.2.
Region segment bitmap X locationSee 7.4.1.3.
Region segment bitmap Y locationSee 7.4.1.4.
Region segment flagsSee 7.4.1.5

7.4.1.1 Region segment bitmap width
This four-byte field gives the width in pixels of the bitmap encoded in this segment.
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7.4.1.2 Region segment bitmap height
This four-byte field gives the height in pixels of the bitmap encoded in this segment.
7.4.1.3 Region segment bitmap X location

This four-byte field gives the horizontal offset in pixels of the bitmap encoded in this segment relative to the page
bitmap.

7.4.1.4 Region segment bitmap Y location

This four-byte field gives the vertical offset in pixels of the bitmap encoded in this segment relative to the page
bitmap.

7.4.1.5 Region segment flags
This one-byte field is formatted as shown in Figure 29 and as described below.

Reserved External combination
Must be0 operator

| | | | | | |
7 6 5 4 3 2 1 0

Figure 29 — Region segment flags field structure

Bits 0—2 External combination operator. This three-bit field can take on the following values, representing one of
five possible combination operators:

0 OR

1 AND

2 XOR

3 XNOR

4 REPLACE

NOTE 1 — These operators describe how the segment’s bitmap is to be combined with the page
bitmap. REPLACE is intended to be used by refinement regions, where the refined
region replaces the region it's refining. Operators such as AND can be used for masking,
where a portion of the page bitmap that already contains data is to be cleared so that
another bitmap can be written there — think of writing a bitmap through a mask.

NOTE 2 — Intermediate region segments are never combined directly with the page, and so their
location and external combination operators are not used. However, these values can still
be useful: if a decoder wishes to draw a version of the page before all segments have been
decoded (for progressive build-up), then it might want to render intermediate segments;
setting the location and external combination according to how the final refinement of
that intermediate segment will be combined with the page can help the decoder produce
a useful sequence of progressive refinements of the page.

Bits 3—7 Reserved; must b@&

In other words, this region segment information field describes the size and location of the bitmap encoded in
this segment.

EXAMPLE — Ifthe size and location values are (in order) 100, 200, 50 and 75, then this segment describes
a bitmap 100 pixels wide, 200 pixels high, whose top left corner is 50 pixels to the right of,
and 75 pixels below, the page’s top left corner.
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7.4.2 Symbol dictionary segment syntax

7.4.2.1 Symbol dictionary segmentdata header

A symbol dictionary segment’s data part begins with a symbol dictionary segment data header, containing the
fields shown in Figure 30 and described below.

I T T T | i
diSC)t/irr:;)rl Symbol dictionary| Symbol dictionary [\ os oy ie CONUMNEWSYIS
flags Y AT flags refinement AT flagg

Figure 30 — Symbol dictionary segment data header structure

Symbol dictionary flags See 7.4.2.1.1.

Symbol dictionary AT flags See 7.4.2.1.2.

Symbol dictionary refinement AT flags See 7.4.2.1.3.
SDNUMEXSYMS See 7.4.2.1.4.
SDNUMNEWSYMS See 7.4.2.1.5.

7.4.2.1.1 Symbol dictionary flags
This two-byte field is formatted as shown in Figure 31 and as described below.

Bitmap Bitmap |

Reserved SDRTEMP- SDTEMP-  coding coding rorner amene SPHUFFDW  SDHUFFDH SDREF- ., .

Must be0 LATE LATE context CONteXt  selection | selection | SEIECtiON selection = AGG
| | | | | | retained] used | | | | | | | |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 31 — Symbol dictionary flags field structure

Bit 0 SDHUFF

If this bit is 1, then the segment uses the Huffman encoding variant. If this @itien the segment uses the
arithmetic encoding variant. The setting of this flag determines how the data in this segment are encoded,
and may also modify the order in which some of the data are encoded.

Bit 1 SDREFAGG

If this bit is O, then no refinement or aggregate coding is used in this segment. If thislbitnien every
symbol bitmap is refinement/aggregate coded.

Bits 2-3 SDHUFFDH selection. This two-bit field can take on one of three values, indicating which table is to
be used foSDHUFFDH.

0 Table B.4
1 Table B.5
3 User-supplied table

The value 2 is not permitted.
If SDHUFF is 0 then this field must contain the value 0.

Bits 4-5 SDHUFFDW selection. This two-bit field can take on one of three values, indicating which table is to
be used foSDHUFFDW.
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0 Table B.2
1 Table B.3
3 User-supplied table

The value 2 is not permitted.
If SDHUFF is 0 then this field must contain the value 0.

Bit 6 SDHUFFBMSIZE selection.

If this field is 0 then Table B.1 is used f@8DHUFFBMSIZE . If this field is 1 then a user-supplied table is
used forSDHUFFBMSIZE.

If SDHUFF is 0 then this field must contain the valGe

Bit 7 SDHUFFAGGINST selection.

If this field is 0 then Table B.1 is used f@DHUFFAGGINST. If this field is 1 then a user-supplied table
is used forSDHUFFAGGINST.

If SDHUFF is 0 or SDREFAGG is 0 then this field must contain the valOe

Bit 8 Bitmap coding context used.
If SDHUFFis 1 andSDREFAGG is 0 then this field must contain the valGe

Bit 9 Bitmap coding context retained.
If SDHUFFis 1 andSDREFAGG is 0 then this field must contain the valOe

Bits 10-11 SDTEMPLATE

This field controls the template used to decode symbol bitmegi3iUFF is 0. If SDHUFF is 1, this field
must contain the value O.

Bit 12 SDRTEMPLATE

This field controls the template used to decode symbol bitmapPREFAGG is 1. If SDREFAGG is O,
this field must contain the valu®

Bits 13—15 Reserved; must b&

7.4.2.1.2 Symbol dictionary AT flags

This field is only present iSBDHUFF is 0. If SDTEMPLATE is 0, it is an eight-byte field, formatted as shown in
Figure 32 and as described below.

SDATX; | SDATY 1 | SDATX2 | SDATY 2 [ SDATX3 | SDATY 3 | SDATX4 [ SDATY 4

Figure 32 — Symbol dictionary AT flags field structure when SDTEMPLATE is O

Byte 0 SDATX;
Byte 1 SDATY;
Byte 2 SDATX,
Byte 3 SDATY,
Byte 4 SDATX3
Byte 5 SDATY3
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Byte 6 SDATX,
Byte 7 SDATY,

If SDTEMPLATE is 1, 2 or 3, it is a two-byte field formatted as shown in Figure 33 and as described below.

SDATX; | SDATY 1

Figure 33 — Symbol dictionary AT flags field structure when SDTEMPLATE is not 0

Byte 0 SDATX;
Byte 1 SDATY;

If SDTEMPLATE is 1, 2 or 3 then the values 8DATX, throughSDATX 4 andSDATY 5 throughSDATY 4
are all zero.

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according to
Figure 7.

7.4.2.1.3 Symbol dictionary refinement AT flags

This field is only present iSDREFAGG is 1 and SDRTEMPLATE is 0. It is a four-byte field, formatted as
shown in Figure 34 and as described below.

SDRATX1 |SDRATY 1 |SDRATX2 |SDRATY 2

Figure 34 — Symbol dictionary refinement AT flags field structure

Byte 0 SDRATX;
Byte 1 SDRATY;
Byte 2 SDRATX:
Byte 3 SDRATY:

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according
t0 6.3.5.3.

7.4.2.1.4 Number of exported symbols (SDNUMEXSYMS)

This four-byte field contains the number of symbols exported from this dictionary.
It is very useful for the decoder be able to find out easily how many symbols are present — for example, it
might want to allocate an array of structures before beginning to decode the dictionary.

7.4.2.1.5 Number of new symbols (SDNUMNEWSYMS)
This four-byte field contains the number of symbols defined in this dictionary.

NOTE — SDNUMEXSYMS and SDNUMNEWSYMS are often, but not always, the same value. For
example, if a dictionary re-exports some of the symbols that it imported from dictionaries that
it refers to, then the dictionary effectively copies those symbols. Those symbols are reflected
in SDNUMEXSYMS but not inSDNUMNEWSYMS. Another possible source of difference
comes from the possibility that a dictionary defines some symbols that it does not export.
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7.4.

2.1.6 Symbol dictionary segment Huffman table selection

Set the values of the paramet&®HUFFDH, SDHUFFDW, SDHUFFBMSIZE andSDHUFFAGGINST ac-

cord

ing to the selection fields shown in 7.4.2.1.1, and the tables segments referred to by this segment. More

precisely, of these four Huffman tables, some may be specified to use some standard table, and some may be
specified to use a user-supplied table. The number specified to use a user-supplied table must be equal to the

num

ber of tables segments referred to by this segment. These tables segments are matched up with the Huffman

tables using user-supplied tables according to the order in which the tables segments are referred to, and the order

1. SDHUFFDH

2
3
4

. SDHUFFDW
. SDHUFFBMSIZE

. SDHUFFAGGINST

If a user-specified table is used DHUFFDW, then this table must be capable of coding the out-of-band
value OOB. If a user-specified table is used $S@HUFFDH, SDHUFFBMSIZE or SDHUFFAGGINST, then
this table must not be capable of coding the out-of-band value OOB.

EXAMPLE — If SDHUFFDH and SDHUFFAGGINST are specified to use user-supplied tables, and

7.4.

SDHUFFDW and SDHUFFBMSIZE are specified to use standard tables (Table B.2 and
Table B.1 respectively), then this segment must refer to exactly two tables segments; the
tables segment that is referred to first is usedDHUFFDH and the tables segment that

is referred to second is used 8DHUFFAGGINST.

2.2 Decoding a symbol dictionary segment

A symbol dictionary segment is decoded according to the following steps.

1

2.
3.

. Interpretits header, as described in 7.4.2.1.
Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments.

If the “bitmap coding context used” bit in the header Wathen, as described in E.3.8, set the arithmetic
coding statistics for the generic region and generic refinement region decoding procedures to the values
that they contained at the end of decoding the last-referred-to symbol dictionary segment. That symbol
dictionary segment’s symbol dictionary segment data header must have had the “bitmap coding context
retained” bit equal td. The values 0SDHUFF, SDREFAGG, SDTEMPLATE , SDRTEMPLATE, and

all of the AT locations (both direct and refinement) for this symbol dictionary must match the corresponding
values from the symbol dictionary whose context values are being used.

. If the “bitmap coding context used” bit in the header Wathen, as described in E.3.7, reset all the arith-
metic coding statistics for the generic region and generic refinement region decoding procedures to zero.

. Reset the arithmetic coding statistics for all the contexts of all the arithmetic integer coders to zero.

. Invoke the symbol dictionary decoding procedure described in 6.5, with the parameters to the symbol dic-
tionary decoding procedure set as shown in Table 28.

. If the “bitmap coding context retained” bit in the header Washen, as described in E.3.8, preserve the
current contents of the arithmetic coding statistics for the generic region and generic refinement region
decoding procedures.

NOTE — Step 3 is intended to reduce the coding costs of symbol dictionaries. A side-effect of de-
coding a symbol dictionary is that the arithmetic coding statistics used for coding bitmaps
“learn” the approximate statistics of the symbols in that symbol dictionary. These two
steps allow some limited re-use of these statistics: the statistics learned when decoding
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Table 28 — Parameters used to decode a symbol dictionary segment.

Name Value

SDHUFF As shownin 7.4.2.1.1.

SDREFAGG As shownin 7.4.2.1.1.

SDNUMINSYMS The total number of exported symbols from all the
symbol dictionary segments referred to by this seg-
ment.

SDINSYMS Concatenate the exported symbol arrays from all the
symbol dictionary segments referred to by this seg-
ment, in the order in which they are referred to.

SDNUMNEWSYMS | As shownin 7.4.2.1.5.

SDNUMEXSYMS As shownin 7.4.2.1.4.

SDHUFFDH See 7.4.2.1.6

SDHUFFDW See 7.4.2.1.6

SDHUFFBMSIZE See 7.4.2.1.6

SDHUFFAGGINST | See 7.4.2.1.6

SDTEMPLATE See7.4.2.1.1

SDATX4 See 7.4.2.1.2

SDATY See 7.4.2.1.2

SDATX, See 7.4.2.1.2

SDATY 5 See 7.4.2.1.2

SDATX3 See 7.4.2.1.2

SDATY 3 See 7.4.2.1.2

SDATX 4 See 7.4.2.1.2

SDATY 4 See 7.4.2.1.2

SDRTEMPLATE See7.4.2.1.1

SDRATX See7.4.2.1.3

SDRATY, See 7.4.2.1.3

SDRATX See7.4.2.1.3

SDRATY 5 See7.4.2.1.3
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the symbol dictionary that is the last symbol dictionary referred to are used as a starting
point for decoding this symbol dictionary.

Step 7 is explicitly present because not every symbol dictionary’s arithmetic coding statis-
tics will be used by another dictionary. Knowing that they will not be used allows the
decoder to discard them, reducing memory usage.

7.4.3 Textregion segment syntax

The data parts of all three of the text region segment types (“intermediate text region”, “immediate text region”
and “immediate lossless text region”) are coded identically, but are acted upon differently; see 8.2. The syntax of
these segment types’ data parts is specified here.

7.4.3.1 Textregion segment data header

The data part of a text region segment begins with a text region segment data header. This header contains the
fields shown in Figure 35 and described below.

Region segment | Text Ire ion Text region Text region | l l Text region
. fg ) gf_ | Segmen?ﬂags segment Huffman| segmentrefine- | SBNUMINSTANCES segment symbol ID
information field flags ment AT flags Huffman decoding table

Figure 35 — Text region segment data header structure

Region segment information field See 7.4.1.

Text region segment flagsSee 7.4.3.1.1.

Text region segment Huffman flagsSee 7.4.3.1.2.

Text region segment refinement AT flagsSee 7.4.3.1.3.
SBNUMINSTANCES See 7.4.3.1.4.

Text region segment symbol ID Huffman decoding tableSee 7.4.3.1.5.

7.4.3.1.1 Textregion segment flags
This two-byte field is formatted as shown in Figure 36 and as described below.

SBDEF- TRANS- BREF-
oPEF SBCOMBOP et REFCORNER LOGSBSTRIPS (" SBHUFF

SBR-
TEMP-
LATE |

SBDSOFFSET
| | |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 36 — Text region flags field structure

Bit 0 SBHUFF.

If this bit is 1, then the segment uses the Huffman encoding variant. If this @itien the segment uses the
arithmetic encoding variant. The setting of this flag determines how the data in this segment are encoded.

Bit 1 SBREFINE.

If this bit is 0, then the segment contains no symbol instance refinements. If thislbithisn the segment
may contain symbol instance refinements.

Bits 2-3 LOGSBSTRIPS.

This two-bit field codes the base-2 logarithm of the strip size used to encode the segment. Thus, strip sizes
of 1, 2, 4, and 8 can be encoded.
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Bits 4-5 REFCORNER The four values that this two-bit field can take on are

0 BOTTOMLEFT.

1 TOPLEFT.

2 BOTTOMRIGHT.

3 TOPRIGHT.

NOTE — The best compression is usually achieved when the reference point of each symbol is on

the text baseline. Given that text can run in any of eight directions, there needs to be some
flexibility in which corner of a given symbol is used as the reference point.

Bit6 TRANSPOSED.

If this bit is 1, then the primary direction of coding is top-to-bottom. If this bitOisthen the primary
direction of coding is left-to-right. This allows for text running up and down the page.

Bits 7-8 SBCOMBOP. This field has four possible values, representing one of four possible combination oper-
ators:
0 OR
1 AND
2 XOR
3 XNOR

Bit 9 SBDEFPIXEL.
This bit contains the initial value for every pixel in the text region, before any symbols are drawn.

Bits 10-14 SBDSOFFSET
This signed five-bit field contains the value®BDSOFFSET— see 6.4.8.

Bit 15 SBRTEMPLATE

This field controls the template used to decode symbol instance refinem8BREFINE is 1. If SBRE-
FINE is 0, this field must contain the valui®

7.4.3.1.2 Textregion segment Huffman flags

This field is only present iIEBHUFF is 1.
This two-byte field is formatted as shown in Figure 37 and as described below.

Reservedssnurs- SBHUFFRDY SBHUFFRDX SBHUFFRDH SBHUFFRDW SBHUFFDT ~ SBHUFFDS — SBHUFFFS
0 | selection| selection selection selection selection selection selection selection
| | | | |

| |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 37 — Text region Huffman flags field structure

Bits 0-1 SBHUFFFSselection. This two-bit field can take on one of three values, indicating which table is to be
used forSBHUFFFS.

0 Table B.6
1 Table B.7
3 User-supplied table

The value 2 is not permitted.
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Bits 2-3 SBHUFFDSselection. This two-bit field can take on one of four values, indicating which table is to be
used forSBHUFFDS.

0 Table B.8

1 Table B.9

2 Table B.10

3 User-supplied table

Bits 4-5 SBHUFFDT selection. This two-bit field can take on one of four values, indicating which table is to be
used forSBHUFFDT.

0 Table B.11
1 Table B.12
2 Table B.13
3 User-supplied table

Bits 6—7 SBHUFFRDWSselection. This two-bit field can take on one of three values, indicating which table is to
be used foSBHUFFRDW.

0 Table B.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits 8—9 SBHUFFRDHselection. This two-bit field can take on one of three values, indicating which table is to
be used foSBHUFFRDH.

0 Table B.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits 10-11 SBHUFFRDXselection. This two-bit field can take on one of three values, indicating which table is
to be used fo6BHUFFRDX.

0 Table B.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bits 12—-13 SBHUFFRDYselection. This two-bit field can take on one of three values, indicating which table is
to be used fo6BHUFFRDY.

0 Table B.14
1 Table B.15
3 User-supplied table

The value 2 is not permitted.

Bit 14 SBHUFFRSIZE selection. If this field i® then Table B.1 is used f@BHUFFRSIZE. If this field is 1
then a user-supplied table is used EBHUFFRSIZE.

Bit 15 Reserved.
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SBRATX1 |[SBRATY 1 |SBRATX2 |SBRATY 2

Figure 38 — Text region refinement AT flags field structure

7.4.3.1.3 Textregion refinement AT flags

This field is only present iSBREFINE is 1 andSBRTEMPLATE is 0. It is a four-byte field, formatted as shown
in Figure 38 and as described below.

Byte 0 SBRATX;
Byte 1 SBRATY;
Byte 2 SBRATX
Byte 3 SBRATY;

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according
t0 6.3.5.3.

7.4.3.1.4 Number of symbol instances (SBNUMINSTANCES)
This four-byte field contains the number of symbol instances coded in this segment.

7.4.3.1.5 Textregion segment symbol ID Huffman decoding table

This field contains a coded version of the Huffman codes used to decode symbol instance IDs in the text region
decoding procedure. It is decoded as specified in 7.4.3.1.7. It is only preSBHIFF is 1.

7.4.3.1.6 Textregion segment Huffman table selection

Set the values of the paramet&BHUFFFS SBHUFFDS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH, SB-
HUFFRDX, SBHUFFRDY and SBHUFFRSIZE according to the selection fields shown in 7.4.3.1.2, and the
tables segments referred to by this segment. More precisely, of these eight Huffman tables, some may be specified
to use some standard table, and some may be specified to use a user-supplied table. The number specified to use
a user-supplied table must be equal to the number of tables segments referred to by this segment. These tables
segments are matched up with the Huffman tables using user-supplied tables according to the order in which the
tables segments are referred to, and the order

1. SBHUFFFS
2. SBHUFFDS
3. SBHUFFDT
4. SBHUFFRDW
5. SBHUFFRDH
6. SBHUFFRDX
7. SBHUFFRDY
8. SBHUFFRSIZE

If a user-specified table is used SBBHUFFDS, then this table must be capable of coding the out-of-band
value OOB. If a user-specified table is used 88HUFFFS, SBHUFFDT, SBHUFFRDW, SBHUFFRDH,
SBHUFFRDX, SBHUFFRDY or SBHUFFRSIZE then this table must not be capable of coding the out-of-band
value OOB.
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7.4.3.1.7 Symbol ID Huffman table decoding
This table is encoded &BNUMSYMS symbol ID code lengths; the actual codesSBSYMCODES are as-

sign

ed from these symbol ID code lengths using the algorithm in B.3.

The symbol ID code lengths themselves are run-length coded and the runs Huffman coded. This is very similar
to the “zlib” coded format documented in RFC1951, though not identical. The encoding is based on the codes
shown in Table 29.

Decoding a symbol ID Huffman table proceeds as follows.

1
2

. Read the code lengths for RUNCODEO through RUNCODE34; each is stored as a four-bit value.

. Given the lengths, assign Huffman codes for RUNCODEO through RUNCODE34 using the algorithm
in B.3.

Read a Huffman code using this assignment. This decodes into one of RUNCODEQ through RUNCODE34.
If it is RUNCODES32, read two additional bits. If it is RUNCODES33, read three additional bits. If it is
RUNCODE34, read seven additional bits.

Interpret the RUNCODE code and the additional bits (if any) according to Table 29. This gives the symbol
ID code lengths for one or more symbols.

Repeat steps 3 and 4 until the symbol ID code lengths f&ENUMSYMS symbols have been determined.

Skip over the remaining bits in the last byte read, so that the actual text region decoding procedure begins
on a byte boundary.

Assign a Huffman code to each symbol by applying the algorithm in B.3 to the symbol ID code lengths just
decoded. The result is the symbol ID Huffman taBBSYMCODES.

EXAMPLE 1 — Suppose thaBBNUMSYMS is 32 and the symbol ID code lengths for these 32 symbols

are, in order,

0(0|/0|9|6|6|6|6|3(4|4(4/4(4]/4|0
719/8|7|5|5|5|5|5|5|3|6|7|4|7|7

These symbol ID code lengths might be transmitted as the sequence of bytes, in hexadec-
imal

0x50 0x03 0x35 0x32 0x53 0x00 0x00 0x00 0x00
0x00 0x00 Ox00 0x00 0x00 0Ox00 Ox00 0x35 OxOF
0x8B 0x30 Ox9E 0xB8 Ox5F 0x1D 0xD2 0x83 0x00

Interpretation of this sequence of bytes can be separated into the following three steps.

1. The first17 bytes plus the first four bits of the 18th byte assign code lengths to the
35 run codes as follows

RUNCODEO | 5 || RUNCODE1 | O || RUNCODE2 | 0
RUNCODES3 | 3 || RUNCODE4 | 3 | RUNCODES | 5
RUNCODEG6 | 3 || RUNCODE?7 | 2 || RUNCODES | 5
RUNCODE9 | 3 || RUNCODE10| 0 | RUNCODE11| O
RUNCODE12| 0 || RUNCODE13| 0 | RUNCODE14| 0
RUNCODE15| 0 || RUNCODE16| 0 | RUNCODE17| O
RUNCODE18| 0 || RUNCODE19| 0 | RUNCODE20| 0
RUNCODEZ21| 0 || RUNCODE22| 0 || RUNCODE23| 0
RUNCODE24| 0 || RUNCODE25| 0 || RUNCODE26| 0
RUNCODE27| 0 || RUNCODE28| 0 | RUNCODE29| 0
RUNCODE30| 0 || RUNCODE31| 0 || RUNCODE32| 3
RUNCODES33| 5 || RUNCODE34| 0
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Table 29 — Meaning of the run codes

RUNCODEO

Symbol ID code length is 0

RUNCODE1

Symbol ID code lengthis 1

RUNCODE?2

Symbol ID code length is 2

RUNCODE3

Symbol ID code length is 3

RUNCODE4

Symbol ID code length is 4

RUNCODES

Symbol ID code length is 5

RUNCODE®6

Symbol ID code length is 6

RUNCODE?

Symbol ID code length is 7

RUNCODES

Symbol ID code length is 8

RUNCODE9

Symbol ID code length is 9

RUNCODE10

Symbol ID code length is 10

RUNCODE11

Symbol ID code length is 11

RUNCODE12

Symbol ID code length is 12

RUNCODE13

Symbol ID code length is 13

RUNCODE14

Symbol ID code length is 14

RUNCODE15

Symbol ID code length is 15

RUNCODE16

Symbol ID code length is 16

RUNCODE17

Symbol ID code length is 17

RUNCODE18

Symbol ID code length is 18

RUNCODE19

Symbol ID code length is 19

RUNCODEZ20

Symbol ID code length is 20

RUNCODE21

Symbol ID code length is 21

RUNCODE22

Symbol ID code length is 22

RUNCODEZ23

Symbol ID code length is 23

RUNCODE24

Symbol ID code length is 24

RUNCODEZ25

Symbol ID code length is 25

RUNCODEZ26

Symbol ID code length is 26

RUNCODE27

Symbol ID code length is 27

RUNCODEZ28

Symbol ID code length is 28

RUNCODE29

Symbol ID code length is 29

RUNCODE30

Symbol ID code length is 30

RUNCODE31

Symbol ID code length is 31

RUNCODE32

Copy the previous symbol ID code length 3—6 tim
The next two bits, plus 3, indicate this repeat length.

RUNCODE33

Repeat a symbol ID code length of O for 3-10 tim
The next three bits, plus 3, indicate this repeat leng

eSS,
th.

RUNCODE34

Repeat a symbol ID code length of O for 11-138 tim
The next seven bits, plus 11, indicate this repeat len|

gth.
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Recall that codes that are not used are assigned a symbol ID code length of zero.

2. The algorithm of B.3 assigns the following Huffman codes to the run codes (run
codes that are not assigned Huffman codes are omitted).

RUNCODEO | 11100 || RUNCODE3| 010 || RUNCODE4 | 011
RUNCODES | 11101 | RUNCODE®6 | 100 || RUNCODE7 00
RUNCODES8 | 11110 RUNCODE9 | 101 || RUNCODE32| 110
RUNCODE33| 11111

3. The remaining part of the byte sequence is
OxF 0x8B 0x30 Ox9E 0xB8 Ox5F 0x1D 0xD2 0x83 0x00

where half of the first byte has already been consumed. Decoding this sequence
using these Huffman codes provides the following results.

11111 O0OORUNCODE33(0) — that is, RUNCODE33 followed by three bits containing
the value 0, indicating a run of three zero lengths
101 RUNCODE9
100 RUNCODES6

110 00 RUNCODE32(0) — that is, RUNCODE32 followed by two bits containing the
value 0)

010 RUNCODE3
011 RUNCODE4
110 10 RUNCODE32(2)

11100 RUNCODEOQ
00 RUNCODE?
101 RUNCODE9
11110 RUNCODES
00 RUNCODE?
11101 RUNCODES5
110 10 RUNCODE32(2)
010 RUNCODE3
100 RUNCODES6
00 RUNCODE?
011 RUNCODE4
00 RUNCODE?
00 RUNCODE?
0000 Four bits of padding to fill the last byte.

4. After interpreting the run codes according to Table 29, the desired sequence of sym-
bol ID code lengths is decoded.

EXAMPLE 2 — This example describes how an encoder might generate an encoded symbol ID Huffman
table. The symbol ID table is identical to that in the previous example.

Suppose that a text region refers to a dictionary containing 32 symbols, and that each
symbol is used as follows:

0001, 8| 8| 8|8 |64(32|32(3232|32|32|0
4|11|2|4|16|16|16|16|16|16| 64| 8 | 4 | 32| 4 |4
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Table 30 — Example of symbol ID Huffman table encoding

Symbol Use | Symbol ID Runs RUNCODEs
count | code length

Symbol #1 0 0 Length 3 run of 0] RUNCODE33(0)
Symbol #2 0 0

Symbol #3 0 0

Symbol #4 1 9 Length 1 run of 9| RUNCODE9
Symbol #5 8 6 Length 4 run of 6] RUNCODES6
Symbol #6 8 6 RUNCODE32(0)
Symbol #7 8 6

Symbol #8 8 6

Symbol #9 64 3 Length 1 run of 3] RUNCODES
Symbol #10| 32 4 Length 6 run of 4) RUNCODE4
Symbol #11| 32 4 RUNCODE32(2)
Symbol #12| 32 4

Symbol #13| 32 4

Symbol #14| 32 4

Symbol #15| 32 4

Symbol #16| 0 0 Length 1 run of 0] RUNCODEO
Symbol #17| 4 7 Length 1 run of 7| RUNCODE?Y
Symbol #18| 1 9 Length 1 run of 9| RUNCODE9
Symbol #19| 2 8 Length 1 run of 8| RUNCODES
Symbol #20| 4 7 Length 1 run of 7| RUNCODE7
Symbol #21| 16 5 Length 6 run of 5| RUNCODE5
Symbol #22| 16 5 RUNCODE32(2)
Symbol #23| 16 5

Symbol #24| 16 5

Symbol #25| 16 5

Symbol #26| 16 5

Symbol #27| 64 3 Length 1 run of 3] RUNCODES
Symbol #28| 8 6 Length 1 run of 6] RUNCODES6
Symbol #29| 4 7 Length 1 run of 7| RUNCODE?Y
Symbol #30| 32 4 Length 1 run of 4| RUNCODE4
Symbol #31| 4 7 Length 2 run of 7| RUNCODE?Y
Symbol #32| 4 7 RUNCODE?Y
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For example, the first, second and third symbols in the symbol dictionary are not used at
all, the fourth symbol is used once, the fifth symbol is used eight times, and so on.

Table 30 then shows, from right to left, the progression of the encoding.

Using a standard Huffman tree algorithm, the code lengths shown in the “Symbol ID code
length” column are assigned to the symbols (where a symbol ID code length of O repre-
sents “unused”). Next, those code lengths are grouped into runs, as shown in the “Runs”
column. Following that, each run is expressed as one or more RUNCODES, each one po-
tentially with some extra bits. For example, RUNCODE32(2) represents RUNCODE32,
followed by two bits encoding the value “2”, meaning “Copy the previous symbol ID
code length 5 times”.

Once that has been done, the number of times each RUNCODE is used is counted. These
counts are as follows (unused RUNCODESs are not shown):

RUNCODEO | 1 || RUNCODE3| 2 || RUNCODE4 | 2

RUNCODES | 1 || RUNCODE6| 2 | RUNCODE?7 | 5

RUNCODES8 | 1 || RUNCODE9| 2 || RUNCODE32| 3

RUNCODES33]| 1
These counts are then converted into code lengths using a standard Huffman tree algo-
rithm:

RUNCODEO | 5 || RUNCODE3| 3 || RUNCODE4 | 3

RUNCODES5 | 5 || RUNCODEG6| 3 || RUNCODE7 | 2

RUNCODES8 | 5 || RUNCODE9| 3 || RUNCODE32| 3

RUNCODES33| 5

The algorithm of B.3 assigns the following Huffman codes to the run codes:

RUNCODEO | 11100|| RUNCODES3| 010 || RUNCODE4 | 011
RUNCODES | 11101|| RUNCODEG6 | 100 || RUNCODE? 00
RUNCODES8 | 11110|| RUNCODE9 | 101 || RUNCODE32| 110
RUNCODES33| 11111

and these Huffman codes are then used to encode the “RUNCODES" column of Table 30:

11111 000RUNCODE33(0)
101 RUNCODE9
100 RUNCODE6

110 00 RUNCODE32(0)
010 RUNCODE3
011 RUNCODE4

110 10 RUNCODE32(2)

11100 RUNCODEO

00 RUNCODE?
101 RUNCODE9
11110 RUNCODES
00 RUNCODE?
11101 RUNCODES5
110 10 RUNCODE32(2)
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010 RUNCODE3
100 RUNCODEG6
00 RUNCODE7?
011 RUNCODE4
00 RUNCODE7?
00 RUNCODE7?

The encoder now emits the encoded RUNCODE code lengths, followed by the sequence
of RUNCODES, plus four bits of padding to fill the last byte, yielding the sequence of
bytes

0x50 0x03 0x35 0x32 0x53 0x00 0x00 0x00 0x00
0x00 0x00 Ox00 0x00 0x00 0Ox00 Ox00 0x35 OxOF
0x8B 0x30 Ox9E 0xB8 Ox5F 0x1D 0xD2 0x83 0x00

7.4.3.2 Decoding a text region segment

A text region segment is decoded according to the following steps.
1. Interpretits header, as described in 7.4.3.1.
2. Decode (or retrieve the results of decoding) any referred-to symbol dictionary and tables segments.
3. As described in E.3.7, reset all the arithmetic coding statistics to zero.

4. Invoke the text region decoding procedure described in 6.4, with the parameters to the text region decoding
procedure set as shown in Table 31.

7.4.4 Pattern dictionary segment syntax

7.4.4.1 Pattern dictionary segment data header

A pattern dictionary segment’s data part begins with a pattern dictionary segment data header, formatted as shown
in Figure 39 and as described below.

Halftone ! ! !

dictionaryy HDPW | HDPH GRAYMAX
flags

Figure 39 — Pattern dictionary header structure

Pattern dictionary flags See 7.4.4.1.1.
HDPW See 7.4.4.1.2.

HDPH See 7.4.4.1.3.

GRAYMAX See7.4.4.1.4.

7.4.4.1.1 Pattern dictionary flags

This one-byte field is formatted as shown in Figure 40 and as described below.

Bit0 HDMMR

If this bit is 1, then the segment uses the MMR encoding variant. If this [fit iken the segment uses the
arithmetic encoding variant.

Bits 1-2 HDTEMPLATE

This field controls the template used to decode patterA®¥IMR is 0. If HDMMR is 1, this field must
contain the value 0.

Bits 3—7 Reserved; must b@&
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Table 31 — Parameters used to decode a text region segment.

Name Value

SBHUFF As shown in 7.4.3.1.1.

SBREFINE As shownin 7.4.3.1.1.

SBDEFPIXEL As shown in 7.4.3.1.1.

SBCOMBOP As shown in 7.4.3.1.1.

TRANSPOSED As shown in 7.4.3.1.1.

REFCORNER As shownin 7.4.3.1.1.

SBDSOFFSET As shown in 7.4.3.1.1.

SBW As specified by the region segment bitmap width in

this segment’s region segment data header.

SBH As specified by the region segment bitmap height in

this segment’s region segment data header.

SBNUMINSTANCES

As shown in 7.4.3.1.4.

SBSTRIPS 9oLOGSBSTRIPS

SBNUMSYMS The total number of exported symbols in all the sym-
bol dictionary segments referred to by this segment.

SBSYMCODES As specified in 7.4.3.1.7.

SBSYMCODELEN [log, SBNUMSYMS]

SBSYMS Concatenate the exported symbol arrays from all the
symbol dictionary segments referred to by this seg-
ment, in the order in which they are referred to.

SBHUFFFS See 7.4.3.1.6

SBHUFFDS See7.43.1.6

SBHUFFDT See 7.4.3.1.6

SBHUFFRDW See7.43.1.6

SBHUFFRDH See 7.4.3.1.6

SBHUFFRDX See 7.4.3.1.6

SBHUFFRDY See7.43.1.6

SBHUFFRSIZE See 7.4.3.1.6

SBRTEMPLATE As shownin 7.4.3.1.1

SBRATX; See 7.4.3.1.3

SBRATY 4 See7.43.1.3

SBRATX See 7.4.3.1.3

SBRATY , See7.43.1.3

ﬁﬁgf{)\é%d | HDTEMPLATE |HDMMR
7 l 6 l l 4 l 3 2 l 1 0

Figure 40 — Pattern dictionary flags field structure
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7.4.4.1.2 Width of the patterns in the pattern dictionary (HDPW)

This one-byte field contains the width of the patterns defined in this pattern dictionary. Its value must be greater
than zero.

7.4.4.1.3 Height of the patterns in the pattern dictionary (HDPH)

This one-byte field contains the height of the patterns defined in this pattern dictionary. Its value must be greater
than zero.

7.4.4.1.4 Largest gray-scale value (GRAYMAX)
This four-byte field contains one less than the number of patterns defined in this pattern dictionary.

7.4.4.2 Decoding a pattern dictionary segment
A pattern dictionary segment is decoded according to the following steps.

1. Interpretits header, as described in 7.4.4.1.
2. As described in E.3.7, reset all the arithmetic coding statistics to zero.

3. Invoke the pattern dictionary decoding procedure described in 6.7, with the parameters to the pattern dic-
tionary decoding procedure set as shown in Table 32.

Table 32 — Parameters used to decode a pattern dictionary segment.

Name Value

HDMMR As shownin 7.4.4.1.1.
HDTEMPLATE | Asshownin7.4.4.1.1.
HDPW As shownin 7.4.4.1.2.
HDPH As shownin 7.4.4.1.3.
GRAYMAX As shownin 7.4.4.1.4.

7.4.5 Halftone region segment syntax

The data parts of all three of the halftone region segment types (“intermediate halftone region”, “immediate
halftone region” and “immediate lossless halftone region”) are coded identically, but are acted upon differently;
see 8.2. The syntax of these segment types’ data parts is specified here.

7.4.5.1 Halftone region segment data header

The data part of a halftone region segment begins with a halftone region segment data header. This header contains
the fields shown in Figure 41 and described below.

Halftone i
Region segment | region Halféc;;l;gnd Halftone grid
information field | Segment POSIC step sizes
flags and size

Figure 41 — Halftone region segment data header structure

Region segment information field See 7.4.1.
Halftone region segment flagsSee 7.4.5.1.1.
Halftone grid position and size See 7.4.5.1.2.

Halftone grid vector See 7.4.5.1.3.
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HDEF- HENABLE-
PIXEL HCOMBOP skip HTEMPLATE  HMMR

R RN R S B
7 6 5 4 3 2 1 0

Figure 42 — Halftone region segment flags field structure

7.4.5.1.1 Halftone region segment flags
This one-byte field is formatted as shown in Figure 42 and as described below.

Bit0 HMMR
If this bit is 1, then the segment uses the MMR encoding variant. If this lfif ieen the segment uses the
arithmetic encoding variant.

Bits 1-2 HTEMPLATE
This field controls the template used to decode halftone gray-scale value bitplafkiviR is 0. If
HMMR is 1, this field must contain the value 0.

Bit 3 HENABLESKIP
This field controls whether gray-scale values that do not contribute to the region contents are skipped during
decoding. IIHMMR is 1, this field must contain the value

Bits 4-6 HCOMBOP
This field has five possible values, representing one of five possible combination operators:

0 OR

1 AND

2 XOR

3 XNOR

4 REPLACE

Bit 7 HDEFPIXEL
This bit contains the initial value for every pixel in the halftone region, before any patterns are drawn.

7.4.5.1.2 Halftone grid position and size

This field describes the location and size of the grid of gray-scale values. See Figure 24 for an illustration of these
values. Itis formatted as shown in Figure 43 and as described below.

T T T T T T T T T T T
HGW HGH HGX HGY

Figure 43 — Halftone grid position and size field structure

HGW See 7.45.1.2.1.
HGH See 7.4.5.1.2.2.
HGX See 7.4.5.1.2.3.
HGY See7.4.5.1.2.4.
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7.4.5.1.2.1 Width of the gray-scale image (HGW)

This four-byte field contains the width of the array of gray-scale values.

7.4.5.1.2.2 Height of the gray-scale image (HGH)

This four-byte field contains the height of the array of gray-scale values.

7.4.5.1.2.3 Horizontal offset of the grid (HGX)

This signed four-byte field contains 256 times the horizontal offset of the origin of the halftone grid.
7.4.5.1.2.4 \Vertical offset of the grid (HGY)

This signed four-byte field contains 256 times the vertical offset of the origin of the halftone grid.

7.4.5.1.3 Halftone grid vector

This field describes the vector used to draw the grid of gray-scale values. See Figure 24 for an illustration of these
values. Itis formatted as shown in Figure 44 and as described below.

T T
HRX HRY

Figure 44 — Halftone grid vector field structure

HRX See 7.4.5.1.3.1.

HRY See 7.4.5.1.3.2.

7.4.5.1.3.1 Horizontal coordinate of the halftone grid vector (HRX)

This unsigned two-byte field contains 256 times the horizontal coordinate of the halftone grid vector.
7.4.5.1.3.2 \Vertical coordinate of the halftone grid vector (HRY)

This unsigned two-byte field contains 256 times the vertical coordinate of the halftone grid vector.

7.4.5.2 Decoding a halftone region segment

A halftone region segment is decoded according to the following steps.
1. Interpretits header, as described in 7.4.5.1.
2. Decode (or retrieve the results of decoding) the referred-to pattern dictionary segment.
3. As described in E.3.7, reset all the arithmetic coding statistics to zero.
4. Invoke the halftone region decoding procedure described in 6.6, with the parameters to the halftone region

decoding procedure set as shown in Table 33.

7.4.6 Generic region segment syntax

The data parts of all three of the generic region segment types (“intermediate generic region”, “immediate generic
region” and “immediate lossless generic region”) are coded identically, but are acted upon differently; see 8.2.
The syntax of these segment types’ data parts is specified here.
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Table 33 — Parameters used to decode a halftone region segment.

Name Value

HBW As specified by the region segment bitmap width in
this segment’s region segment data header.

HBH As specified by the region segment bitmap height in
this segment’s region segment data header.

HMMR As shownin 7.4.5.1.1.

HTEMPLATE As shownin 7.4.5.1.1.

HENABLESKIP | Asshownin7.4.5.1.1.

HCOMBOP As shownin 7.4.5.1.1.

HDEFPIXEL As shownin 7.4.5.1.1.

HGW As shownin 7.4.5.1.2.1.

HGH As shownin 7.4.5.1.2.2.

HGX As shownin 7.4.5.1.2.3.

HGY As shownin 7.4.5.1.2.4.

HRX As shownin 7.4.5.1.3.1.

HRY As shownin 7.4.5.1.3.2.

HNUMPATS The number of patterns in the pattern dictionary seg-
ment referred to by this segment.

HPATS The patterns in the pattern dictionary segment referred
to by this segment.

HPW The width, in pixels, of each of the patterns contained
in HPATS.

HPH The height, in pixels, of each of the patterns contained

in HPATS.

red . Greerlguc Generic region
. feglon Seg?’]elg se:ment segment
information fie flags AT flags

Figure 45 — Generic region segment data header structure
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7.4.6.1 Generic region segment data header

The data part of a generic region segment begins with a generic region segment data header. This header contains
the fields shown in Figure 45 and described below.

Region segment information field See 7.4.1.
Generic region segment flagsSee 7.4.6.2.

Generic region segment AT flagsSee 7.4.6.3.

7.4.6.2 Generic region segment flags
This one-byte field is formatted as shown in Figure 46 and as described below.

Reserved
Must be0 TPGDONGBTEMPLATE MMR

III||I|
7 6 5 4 3 2 1 0

Figure 46 — Generic region segment flags field structure

Bit0 MMR

Bits 1-2 GBTEMPLATE

This field specifies the template used for template-based arithmetic codiMMR is 1 then this field
must contain the value zero.

Bit3 TPGDON
This field specifies whether typical prediction for generic direct coding is used.

Bits 4—7 Reserved; must be zero.

7.4.6.3 Generic region segment AT flags

This field is only present iIMMR is 0. If GBTEMPLATE is 0, it is an eight-byte field, formatted as shown in
Figure 47 and as described below.

GBATX 1 |GBATY 1 |GBATX 2 |GBATY 2 | GBATX 3 | GBATY 3 |GBATX 4 |GBATY 4

Figure 47 — Generic region AT flags field structure when GBTEMPLATE is 0

Byte 0 GBATX;
Byte 1 GBATY;
Byte 2 GBATX-
Byte 3 GBATY,
Byte 4 GBATX3
Byte 5 GBATY3
Byte 6 GBATX,4
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GBATX 1 |GBATY 1

Figure 48 — Generic region AT flags field structure when GBTEMPLATE is not 0

Byte 7 GBATY 4

If GBTEMPLATE is 1, 2 or 3, itis a two-byte field formatted as shown in Figure 48 and as described below.
If GBTEMPLATE is 1, 2 or 3 then the values &BATX 5 throughGBATX 4 andGBATY 5 throughGBATY 4

are all zero.

Byte 0 GBATX;
Byte 1 GBATY;

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according to

Figure 7.

7.4.6.4 Decoding a generic region segment
A generic region segment is decoded according to the following steps.

1. Interpretits header, as described in 7.4.6.1

2. As described in E.3.7, reset all the arithmetic coding statistics to zero.

3. Invoke the generic region decoding procedure described in 6.2, with the parameters to the generic region
decoding procedure set as shown in Table 34.

Table 34 — Parameters used to decode a generic region segment.

Name Value

MMR As shown in 7.4.6.2.

GBTEMPLATE | Asshownin 7.4.6.2.

TPGDON As shown in 7.4.6.2.

USESKIP 0

GBW As specified by the region segment bitmap width in
this segment’s region segment data header.

GBH As specified by the region segment bitmap height in
this segment’s region segment data header.

GBATX ¢ See 7.4.6.3

GBATY 1 See 7.4.6.3

GBATX o See 7.4.6.3

GBATY o See 7.4.6.3

GBATX 3 See7.4.6.3

GBATY 3 See 7.4.6.3

GBATX 4 See 7.4.6.3

GBATY 4 See 7.4.6.3

As a special case, as noted in 7.2.7, an immediate generic region segment may have an unknown length. In
this case, it is also possible that the segment may contain fewer rows of bitmap data than are indicated in the
segment’s region segment information field.

In order for the decoder to correctly decode the segment, it needs to read the four-byte row count field, which
is stored in the last four bytes of the segment’s data part. These four bytes can be detected without knowing the
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length of the data part in advance:MIMR is 1, they are preceded by the two-byte sequebx@0 0x00 ; if

MMR is O, they are preceded by the two-byte sequebxieF OxAC. The row count field contains the actual
number of rows contained in this segment; it must be no greater than the region segment bitmap height value in
the segment’s region segment information field.

NOTE — The sequenc@x00 0x00 cannotoccurwithin MMR-encoded data; the sequéxtd= OxAC
can occur only at the end of arithmetically-coded data. Thus, those sequences cannot occur by
chance in the data that is decoded to generate the contents of the generic region.

7.4.7 Generic refinement region syntax

The data parts of all three of the generic refinement region segment types (“intermediate generic refinement region,
“immediate generic refinement region” and “immediate lossless generic refinement region”) are coded identically,
but are acted upon differently; see 8.2. The syntax of these segment types’ data parts is specified here.

7.4.7.1 Generic refinement region segment data header

The data part of a generic refinement region segment begins with a generic refinement region segment data header.
This header contains the fields shown in Figure 49 and described below.

Generic

H refinement
Region segment region region segment

information field Seffl';:m AT flags

Generic refinement

Figure 49 — Generic refinement region segment data header structure

Region segment information field See 7.4.1.
Generic refinement region segment flagSee 7.4.7.2.
Generic refinement region segment AT flagsSee 7.4.7.3.

7.4.7.2 Generic refinement region segment flags

This one-byte field is formatted as shown in Figure 50 and as described below.

Reserved RTEMP
Must beO TPGRO’T LATE
l l l l l
7 6 5 4 3 2 1

Figure 50 — Generic refinement region segment flags field structure

Bit 0 GRTEMPLATE

This field specifies the template used for template-based arithmetic coding.

Bit1 TPGRON

This field specifies whether typical prediction for generic refinement is used.

Bits 2—7 Reserved; must be zero.
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GRATX 1 |GRATY 1 |GRATX 2 |GRATY 2

Figure 51 — Generic refinement region AT flags field structure

7.4.7.3 Generic refinement region segment AT flags

This field is only present IGRTEMPLATE is 0. It is a four-byte field, formatted as shown in Figure 51 and as
described below.

Byte 0 GRATX;
Byte 1 GRATY;
Byte 2 GRATX,
Byte 3 GRATY,

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according
t0 6.3.5.3.

7.4.7.4 Reference bitmap selection

If this segment refers to another region segment, then set the reference GiRREFERENCE to be the current
contents of the auxiliary buffer associated with the region segment that this segment refers to.

If this segment does not refer to another region segmenGREREFERENCE to be a bitmap containing
the current contents of the page buffer (see Clause 8), restricted to the area of the page buffer specified by this
segment’s region segment information field.

7.4.7.5 Decoding a generic refinement region segment

A generic refinement region segment is decoded according to the following steps.

1. Interpretits header as described in 7.4.7.1. If this segment does not refer to another region segment then its
external combination operator must be REPLACE. If it does refer to another region segment, then this seg-
ment’s region bitmap size, location, and external combination operator must be equal to that other segment’s
region bitmap size, location, and external combination operator.

NOTE — The requirement that the locations and external combination operators match is present
to assist decoders that want to produce images of a page that is only partially decoded:
it ensures that the final location and external combination operator is known for all in-
termediate segments. These partially-decoded page images are outside the scope of this
Recommendatiohinternational Standard.

2. As described in E.3.7, reset all the arithmetic coding statistics to zero.
3. Determine the buffer associated with the region segment that this segment refers to.

4. Invoke the generic refinement region decoding procedure described in 6.3, with the parameters to the generic
refinement region decoding procedure set as shown in Table 35

7.4.8 Page information segment syntax
A page information segment describes a page. It contains the fields shown in Figure 52 and described below.

Page bitmap width See 7.4.8.1.
Page bitmap height See 7.4.8.2.

Page X resolution See 7.4.8.3.
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Table 35 — Parameters used to decode a generic refinement region segment.

Name Value

GRTEMPLATE As shownin 7.4.6.2.

TPGRON As shownin 7.4.6.2.

GRW As specified by the region segment bitmap width in
this segment’s region segment data header.

GRH As specified by the region segment bitmap height in

this segment’s region segment data header.
GRREFERENCE See 7.4.7.4.

GRREFERENCEDX | O

GRREFERENCEDY | 0

GRATX See 7.4.7.3

GRATX 2 See 7.4.7.3

GRATY ; See 7.4.7.3

GRATY 5 See 7.4.7.3

| | | | | | | | | | | | |
Page |page stripin
Page bitmap width Page bitmap height Page X resolution Page Y resolution segment | 29 ping

flags | information

Figure 52 — Page information segment structure

Page Y resolution See 7.4.8.4.
Page segment flagsSee 7.4.8.5.
Page striping information See 7.4.8.6.

The first segment that is associated with any page must be a page information segment.

7.4.8.1 Page bitmap width
This is a four-byte value containing the width in pixels of the page’s bitmap.

7.4.8.2 Page bitmap height

This is a four-byte value containing height in pixels of the page’s bitmap. In some cases, this value may not be
known at the time that the page information segment is written. In this case, this field must Gorak-FFFF,
and the actual page height may be communicated later, once it is known.

7.4.8.3 Page X resolution

This is a four-byte value containing the resolution of the original page medium, measured in pixels/metre in the
horizontal direction. If this value is unknown then this field must confa®0000000 .

7.4.8.4 Page Y resolution

This is a four-byte value containing the resolution of the original page medium, measured in pixels/metre in the
vertical direction. If this value is unknown then this field must con@@0000000 .

7.4.8.5 Page segment flags

This is a one-byte field. It is formatted as shown in Figure 53 and as described below.

Bit 0 Page is eventually lossless. If this bitdsthen the file does not contain a lossless representation of the
original (pre-coding) page. If this bit i%, then the file contains enough information to reconstruct the
original page.
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Figure 53 — Page segment flags field structure

Bit 1 Page might contain refinements. If this bifisthen no refinement region segment may be associated with
the page. If this bit i4, then such segments may be associated with the page.

Bit 2 Page default pixel value. This bit contains the initial value for every pixel in the page, before any region
segments are decoded or drawn.

Bits 3—4 Page default combination operator. This field has four possible values, representing one of four possible
combination operators:

0 OR

1 AND
2 XOR
3 XNOR

This operator is used to merge overlapping region segments, and also to combine region segments with the
page default pixel value.

Bit 5 Page requires auxiliary buffers. If this bit@sthen no region segment requiring an auxiliary buffer may be
associated with the page. If this bitisthen such segments may be associated with the page.

Bit 6 Page combination operator overridden. If this bib,ishen every direct region segment associated with this
page must use the page’s combination operator. If this Rittisen direct region segments associated with
this page may use combination operators that are different from the page’s combination operator.

NOTE 1 — All region segments, except for refinement region segments, are direct region segments.
Because of the requirements in 7.4.7.5 restricting the external combination operators of
refinement region segments, if this bitdsthen refinement region segments associated
with this page that refer to no region segments must have an external combination op-
erator of REPLACE, and all other region segments associated with this page must have
the external combination operator specified by this page’s “Page default combination
operator”.

NOTE 2 — If all the direct region segments associated with a page use the same combination opera-
tor, then it is possible to reorder them to some extent (it is not possible switch the relative
order of any refinement segment). If some of them use different combination operators,
then the decoder is unable do any such reordering. Furthermore, the decoder cannot tell
from the segment headers whether any such non-default combination operators are used
in the page, so this bit indicates that reordering may be possible, if the decoder wishes
to performit.

Bit 7 Reserved; must b@

7.4.8.6 Page striping information
This is a two-byte field. It is formatted as shown in Figure 54 and as described below.

Bits 0—14 Maximum stripe size

Bit 15 Page is striped
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|
Page is

; Maximum stripe size
striped P

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 54 — Page striping information field structure

If the “page is striped” bit id, then the page may have end of stripe segments associated with it. In this case,
the maximum size of each stripe (the distance between an end of stripe segment’s end row and the end row of the
previous end of stripe segment, or 0 in the case of the first end of strip segment) must be no more than the page’s
maximum stripe size.

If the page’s bitmap height is unknown (indicated by a page bitmap heightkfFFFFFFF) then the “page
is striped” bit must bd..

7.4.9 End of page segment syntax

An end of page segment has no associated data. Its segment data length field must be zero.

The last segment that is associated with any page must be an end of page segment.

If a page’s height was originally unknown, then there must be at least one end of stripe segment associated
with the page. In this case, the end row of that last stripe is the last row of the page bitmap and no region segment
may occur between the last end of stripe segment and the end of page segment.

7.4.10 End of stripe segment syntax

An end of stripe segment states that the encoder has finished coding a portion of the current page, and will not
revisit it. It specifies the Y coordinate of a row of the page; no segment following the end of stripe may modify
any portion of the page bitmap that lines on or above that row; furthermore, no segment preceding the end of stripe
may modify any portion of the page bitmap that lies below that row. This row is called the “end row” of the stripe.

NOTE 1 — In some cases, the decoder may only have a limited amount of buffer memory for the page
bitmap, smaller than the size of the page. The decoder needs to be told when it is able to
output the current buffer contents and clear the buffer for the next stripe of the page.

The end row specified by an end of stripe segment must lie below any previous end row for that page.
A page whose height was originally unknown must contain at least one end of stripe segment.

NOTE 2 — An end of stripe segment is used to communicate the size of the page in this case.

The segment data of an end of stripe segment consists of one four-byte value, specifying the Y coordinate of
the end row.

7.4.11 End of file segment syntax

If a file contains an end of file segment, it must be the last segment.
An end of file segment has no associated data. Its segment data length field must be zero.

7.4.12 Profiles segment syntax

A profiles segment contains a list of the profiles that a given JBIG2 data stream is in compliance with. If any
profiles segments are present, then the first segment of the data stream must be a profiles segment, and must not
be associated with any page. Profiles of this Recommendgdimernational Standard are listed in Annex G.

A profiles segment begins with a four-byte field containing the number of profiles listed. This field is followed
by that many four-byte fields. Each of those fields contains a profile identification number. The data stream must
be in compliance with each of the profiles listed.

More than one profiles segment may be present. If more than one is present, then each one, other than the first
one, must be associated with a page. No page may have more than one profiles segment associated with it. Also,
each profiles segment past the first one must be more restrictive than the first one; that is, it must list all of the
profile identification numbers listed in the first segment, and possibly more. The segments making up each page
must, collectively, be in compliance with each of the profiles listed in any profiles segment associated with that

page.
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NOTE — The global profiles segment allows a decoder to find out quickly that it cannot decode a given
data stream. Allowing each page to contain a possibly different (though more restrictive) profiles
segment eases moving pages from one file to another.

7.4.13 Code table segment syntax
A code table segment’s syntax is described in Annex B.

7.4.14 Extension segment syntax
An extension segment’s data begins with a extension header:

Extension type This is a four-byte field which contains an identification of the type of data that are present in the
extension segment.

The three most significant bits of this field have special meaning:

Bit 29 Reserved. Future revisions of this Recommenddtioternational Standard may define extension
types; extension types may also be registered by other parties. Other parties may register only exten-
sion types with this bit equal t0; all extension types having bit 29 equalt@re reserved for future
revisions of this Recommendatipinternational Standard.

Bit 30 Dependent. If this bit i4, then the coding of the data in the extension segment is dependent on the
exact encoding of the data in the segments that the extension segment refers to. Any file manipula-
tion program that modifies those referred-to segments needs to modify this extension segment’s data
correspondingly; if it does not understand the extension segment (due to not recognising its extension
type), and if it is not a necessary extension segment, then the segment should be deleted.

EXAMPLE — An extension segment containing a CRC of the segment that it refers to should
be flagged as dependent.

Bit 31 Necessary. If this bit i4, then any decoder that does not know how to parse extensions of this
extension segment’s type will not be able to correctly decode the file to produce the intended decoded
page images.

NOTE — This is intended to facilitate future extensions to JBIG2, such as coding improve-
ments. If this bit isl, then a decoder that does not understand the extension knows
that it has encountered data necessary to the correct decoding of the page that it can-
not handle. For example, an extension segment containing a region that is coded with
some new method would be flagged as “necessary”, as without that region the page
image is not complete. Another example might be an extension segment containing
a set of colours that should be applied to the symbols on the page as they are drawn.

If the “necessary” bit id, then the “reserved” bit must also ke

The remainder of the extension segment’s data immediately follows the extension type field, and is formatted
in some way particular to the type of extension.

7.4.15 Defined extension types
The following extension types are currently defined.

0x20000000 ASCIl comment. See 7.4.15.1.
0x20000002 Unicode comment. See 7.4.15.2.

7.4.15.1 Comment

An ASCII comment extension segment holds textual information about some other segment, page, or the bitstream
as awhole. If it refers to no other segments, and is associated with no page, then it contains some set of comments
applying to the entire bitstream. If it refers to no other segments, but is associated with some page, then it contains
some set of comments applying to that page. If it refers to some segments, then it contains some set of comments
applying to those segments.
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An ASCIl comment segment contains a number of (name, value) pairs. Each element of each pair is a string
of characters, and is terminated by an ASCII NUL (0x00) character. The last pair is followed by an additional
NUL character.

EXAMPLE — The comment containing the following pairs

Title An lllustrated History of False Teeth
Author The Big Cheese

is stored as the following sequence of bytes. The bytes are shown as hexadecimal numbers
together with their ASCII equivalents, with " indicating an unprintable byte. Note the
four-byte extension type at the start of the segment data:

20 00 00 00 54 69 74 6C 65 00 41 6E 20 49 6C 6C ...Title.An Il
75 73 74 72 61 74 65 64 20 48 69 73 74 6F 72 79 ustrated History
20 6F 66 20 46 61 6C 73 65 20 54 65 65 74 68 00 of False Teeth.
41 75 74 68 6F 72 00 54 68 65 20 42 69 67 20 43 Author.The Big C
68 65 65 73 65 00 00 heese..

7.4.15.2 Unicode comment

A Unicode comment extension segmentis formatted in the same manner as an ASCIl comment extension segment,
except that the individual characters each occupy two bytes, in the UCS-16 encoding (ISO/IEC 10646-1:1993).
Each element of each pair in the commentis terminatedb800 and the final pair is followed by an additional
0x0000 .

108



8 Page Make-up

8.1 Decoder model

This section describes the result that a decoder conforming to this Recommerjdatiemational Standard

shall produce when decoding a page. It does this by specifying a set of steps that produce the correct result; a
conforming decoder need not perform these exact steps, but shall produce the same result as if the steps had been
followed.

Here we describe only the steps taken to decode a single page. A conforming decoder may operate on multiple
pages at once, as long as it produces the correct final result for each page.

In the following description, we will assume for simplicity that the decoder has a single page buffer, auxiliary
buffers to be used while decoding that page, and additional dictionary memory. Decoders with other components
are allowed, as long as they produce the same page buffer as this abstract decoder does.

At the end of the decoding process, the page buffer contains the result of decoding the page.

Each auxiliary buffer has a location associated with it; this location is the location of the buffer’s top left pixel,
relative to the top left pixel of the page buffer. Some region segments require the use of auxiliary buffers; others
can be decoded directly into the page buffer. See 8.2 for details on how combinations of image segments are to be
interpreted.

The dictionary memory contains the information obtained by decoding dictionary segments.

8.2 Page image composition

The final bitmap for each page is coded by zero or more region segments associated with that page. Each region
segment describes some of the contents of a rectangular region of the page. Since these regions of the page may
overlap, and since some parts of the page might be described at multiple levels of refinement, it is important to
define what the rules for region segment composition are. Also, since a decoder might want to display intermediate
representations of a page, based on partial information, it is useful to suggest the interpretation of partial pages.

As described in 7.4.8, each page has a default pixel v@loeX) and one of four combination operators (OR,
AND, XOR, XNOR); these are specified in its page information segment. Each region segment also specifies a
combination operator of its own. The “page combination operator overridden” flag bit in the page information
segment specifies whether any of the page’s direct region segments overrides the page combination operator. If
the bit isO, then no direct region segment associated with this page overrides the page combination operator. The
decoder may use this information to optimise its decoding.

The result of decoding a region segment is a bitmap. The size of this bitmap and its location with respect to
the page buffer are given in the region segment information field.

The final contents of the page buffer that the decoder shall produce as the final result of decoding a page are
those that would be generated by the following steps:

1. Decode the page information segment.

2. Create the page buffer, of the size given in the page information segment.

If the page height is unknown, then this is not possible. However, in this case the page must be striped, and
the maximum stripe height specified, and the initial page buffer can be created with height intially equal
to this maximum stripe height. As each end of stripe segment is encountered, the page buffer's height can
be increased, so that the last row in the new buffer is the maximum stripe height plus the end row of the
previous stripe. The end of page segment (together with the last end of stripe segment) allow determination
of the page’s actual height.

Alternately, when the page height is unknown, the decoder may use a fixed-size buffer whose heightis equal
to the page’s maximum stripe height. As each end of stripe segment is encountered, the decoder can print,
or copy to some other location, all the rows in this buffer up to and including the stripe’s end row, then
clear the buffer in preparation for the next stripe. The decoder may follow this strategy whenever the page
is striped, even if the page height is known beforehand.

NOTE — The steps below can be followed regardless of which striping strategy is followed. The
restrictions imposed by striping ensure that once an end of stripe segment is seen, no part
of the page above or on that stripe’s end row can be modified, and so the presentation
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below is phrased in terms of a page buffer that is the full size of the page, even when the
page’s height is not known initially.

3. Fill the page buffer with the page’s default pixel value.
4. Fetch the next region segment associated with that page.
5. The following cases exist:

(a) The region segment is an immediate direct region segment. In this case, decode the region segment.
The result of decoding the region segment is a bitmap; combine this bitmap with the current contents
of the page buffer, using the region segment’s combination operator.

(b) The region segment is an intermediate direct region segment. In this case, allocate a new auxiliary
buffer, using the size and location specified in the segment’s region segment information field. This
buffer is initially associated with the region segment. Decode the region segment, placing the resulting
bitmap into the auxiliary buffer.

(c) The region segment is an immediate refinement region segment that refers to no other segments.
In this case, the region segment is acting as a refinement of part of the page buffer. Perform the
refinement according to the region segment on the part of the page buffer specified in the region
segment, according to the data contained in the refinement region segment. This replaces a part of the
page buffer with a refined version.

(d) The region segment is an immediate refinement region segment that refers to another region segment.
This other region segment must be a previously occurring intermediate region segment that has not
yet had a refinement region segment refer to it; the other region segment thus has an auxiliary buffer
associated with it. Perform the refinement operation on that auxiliary buffer, according to the data
contained in the current region segment, and combine the resulting buffer with the page buffer using
the current region segment’s combination operator, at the location associated with the auxiliary buffer.
Discard the auxiliary buffer.

(e) The region segment is an intermediate refinement region segment. This region segment must refer
to one other region segment, which must be a previously occurring intermediate region segment that
has not yet had a refinement region segment refer to it; the other region segment thus has an auxiliary
buffer associated with it. Perform the refinement operation on that auxiliary buffer, according to the
data contained in the current region segment. Replace the previous contents of the auxiliary buffer
with the bitmap resulting from the refinement. Change the association of the auxiliary buffer, so that
it is now associated with the current region segment, and is no longer associated with the other region
segment.

6. Repeat steps 4 and 5 until there are no more region segments associated with the page. At this point, all
auxiliary buffers that have been allocated should have been refined, drawn into the page, and discarded, as
described in step 5d; no auxiliary buffers should remain.

7. The result of decompressing that page is given by the final contents of the page buffer.

The rules described in step 5 are quite simple in principle. Immediate region segments are to be drawn into
the page buffer, either by simply drawing them (direct segments, step 5a), by refining a part of the page buffer
(refinement segments referring to no other segments, step 5c¢), or by refining and then drawing an auxiliary buffer
(refinement segments referring to some other segment, step 5d). Intermediate region segments involve creating
an auxiliary buffer containing the region bitmap (direct segments, step 5b), or replacing the current contents of an
auxiliary buffer (refinement segments, step 5e).

Some examples of these rules in operation:

EXAMPLE 1 — |If the page contains no region segments, then the page buffer is filled entirely with the
page’s default pixel value.
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EXAMPLE 2 —

EXAMPLE 3 —

The page information segment for page 1 specifies that the page default combination
operator is OR and the page default pixel valu@ iThe region segments associated with
page 1 are, in order,

e Segment 3, an immediate lossless text region segment whose external combination
operator is OR

e Segment 4, an immediate lossless generic region segment whose external combina-
tion operator is OR

e Segment 6, an immediate lossless halftone region segment whose external combina-
tion operator is OR

The resulting page bitmap can be obtained by decoding segments 3, 4 and 6, and drawing
each one at its specified region location, using OR, into a bitmap initially contabhing
everywhere. Note that the order in which these three segments are decoded and drawn
does not affect the resulting page bitmap. Also, if segment 3 has an internal combination
operator of OR and a default pixel value @fthen it may be drawn by simply drawing

the symbol instances directly into the page buffer; it is not necessary to decode it into a
temporary bitmap then draw that bitmap into the page buffer. A similar observation holds
for segment 6.

The page information segment for page 2 specifies that the page default combination
operator is OR and the page default pixel valu@ i$he region segments associated with
page 2 are, in order,

e Segment 7, an intermediate text region segment

e Segment 8, an intermediate generic bitmap region segment

e Segment 13, an immediate generic bitmap refinement region segment whose exter-
nal combination operator is OR that refers to segment 8

e Segment 14, an immediate generic bitmap refinement region segment whose exter-
nal combination operator is OR that refers to segment 7

e Segment 19, animmediate text region segment whose external combination operator
is OR
e Segment 22, an immediate generic bitmap region segment whose external combina-
tion operator is OR
The resulting page buffer is the buffer that would be obtained by following the steps

1. Fill the page buffer with the valu@
. Decode segment 7 into an auxiliary buffer
. Decode segment 8 into an auxiliary buffer

. Refine segment 8’s auxiliary buffer, according to the refinement information in seg-
ment 13, and draw the refined buffer into the page buffer using OR, discarding the
auxiliary buffer after this is done

5. Refine segment 7’s auxiliary buffer, according to the refinement information in seg-
ment 14, and draw the refined buffer into the page buffer using OR, discarding the
auxiliary buffer after this is done

6. Decode segment 19 and draw the resulting bitmap into the page buffer using OR
7. Decode segment 22 and draw the resulting bitmap into the page buffer using OR

A WDN

The correct result is also obtainead matter what ordesteps 4 through 7 are performed

in; thus a conforming decoder is free to choose any order to decode these steps. In fact,
any order of steps 2 through 7 produces the correct result, as long as step 2 is performed
before step 5 and step 3 is performed before step 4.
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EXAMPLE 4 — If a page contains several immediate direct-coded region segments that do not override
the page’s combination operator, and an immediate refinement region segment that does
not refer to any other segments, then the resulting page buffer is the buffer that would be
obtained by

e filling the page buffer with the page’s default pixel value

e drawing all the direct-coded region segments that precede the refinement region
segment

¢ refining the portion of the region covered by the refinement region segment

e drawing all the direct-coded region segments that follow the refinement region seg-
ment

In this case, the order of drawing does matter: all the immediate segments that precede
the refinement segment shall be drawn before the refinement segment is drawn, and the
refinement segment shall be drawn before any of the immediate segments that follow it.

NOTE 2 — In some cases, the decoder may want to display some intermediate form of the page. For
example, it may want to provide the user with a progressive display of the page contents as the
page segments are received over some transmission medium. Any intermediate page bitmaps
that it displays are entirely up to the decoder, and are not specified by this Recommehdation
International Standard.

One potential strategy a decoder could use is to take the current contents of the page buffer
and any currently active auxiliary buffers, and combine all of these buffers using the page’s
default combination operator, and display that to the user. If the page combination operator is
XOR or XNOR, then this combination can be done reversibly, and so might be done into the
actual page buffer, then undone after it has been displayed to the user. If the page combination
operator is OR or AND, then this combination is not reversible and an extra buffer is required
to hold the results of the combination.

The step-by-step description above is intended to specify only the results of the decompression. A conforming
decoder may take any steps it desires, as long as the final page buffer is the same as would have been obtained by
following the steps.

EXAMPLE 5 — A decoder might notice that an intermediate region segment refers to a region of the page
that is not overlapped by any other region segment, and so might not actually allocate an
auxiliary buffer for that region segment, but might use the page buffer immediately. It can
do this only if it is sure that this will not change the final results of decoding the page’s
region segments.
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Annex A
(normative)
Arithmetic Integer Decoding Procedure

A.1 General description

This Recommendatiornternational Standard uses a number of arithmetic decoding procedures to decode integer
values. These are

IAAI Used to decode the number of symbol instances in an aggregation

IADH Used to decode the difference in height between two height classes

IADS Used to decode the S coordinate of the second and subsequent symbol instances in a strip
IADT Used to decode the T coordinate of the second and subsequent symbol instances in a strip
IADW Used to decode the difference in width between two symbols in a height class

IAEX Used to decode export flags

IAFS Used to decode the S coordinate of the first symbol instance in a strip

IAID Used to decode the symbol IDs of symbol instances

IAIT Used to decode the T coordinate of the symbol instances in a strip

IARDH Used to decode the delta height of symbol instance refinements

IARDW Used to decode the delta width of symbol instance refinements

IARDX Used to decode the delta X position of symbol instance refinements

IARDY Used to decode the delta Y position of symbol instance refinements

IARI Used to decode th&; bit of symbol instances

Each of these is used to decode integer values (which may include the out-of-band value OOB). The coding
for an integer is based on a decision tree.

An invocation of an arithmetic integer decoding procedure involves decoding a sequence of bits, where each
bit is decoded using a context formed by the bits decoded previously in this invocation. Each context for each
arithmetic integer decoding procedure has its own adaptive probability estimate used by the underlying arithmetic
coder, described in Annex E. The sequence of bits decoded is interpreted to form a value.

Table A.1is used by all the arithmetic integer decoding procedures except for IAID.

A.2 Procedure for decoding values (except IAID)

The flowchart in Figure A.1 is used as part of the decoding procedure. It produces two Vaarets. The result
of the integer arithmetic decoding procedure is equal to

e VifS=0
o —VifS=1landV >0
e OOBifS=1andV =0

Thus,V represents the absolute value of the integer value being decodesirapresents the sign; the otherwise-
redundant value-0 is interpreted to mean “OOB”".

In Figure A.1, each bit is decoded in a context formed from the particular integer arithmetic decoding proce-
dure being invoked, and the previous bits decoded in this invocation of that decoding procedure. This context is
formed as follows.

1. Set
PREV=1

2. Follow the flowchart in Figure A.1. Decode each bit with CX equal to “IAx + PREV” where “IAX” repre-
sents the identifier of the current arithmetic integer decoding procedure, “+" represents concatenation, and
the rightmost 9 bits of PREV are used.
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Figure A.1 — Flowchart for the integer arithmetic decoding procedures (except IAID)
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Table A.1 — Arithmetic integer decoding procedure table

Uy

VAL Encoding

0...3 00+ VAL encoded as 2 bits

-1 1001

-3...-2 101+ (—VAL — 2) encoded as 1 bit
4...19 010+ (VAL — 4) encoded as 4 bits
-19...-4 110+ (—VAL —4) encoded as 4 bits
20...83 0110+ (VAL — 20) encoded as 6 bits
-83...-20 1110+ (—VAL — 20) encoded as 6 bits

84 ...339 01110+ (VAL — 84) encoded as 8 hits
-339...-84 | 11110+ (—VAL — 84) encoded as 8 bits
340...4435 | 011110+ (VAL — 340) encoded as 12 hits
-4435...-340 | 111110+ (—VAL — 340) encoded as 12 bits
4436 .. 00 011111+ (VAL — 4436) encoded as 32 bits
—00...4436 | 111111+ (—VAL — 4436) encoded as 32 bit
ooB 1000

3. After each bit is decoded: If PREY 256 set

Otherwise set

PREV =

PREV= (PREV<< 1) ORD

(((PREV<< 1) OR D) AND 511) OR 256

where D represents the value of the just-decoded bit.

Thus, PREV always contains the values of the eight most-recently-decoded bits, plus a ldztlimdnich
is used to indicate the number of bits decoded so far.

4. The sequence of bits decoded, interpreted according to Table A.1, gives the value that is the result of this
invocation of the integer arithmetic decoding procedure.

Note that each type of data, and each integer arithmetic decoding procedure, uses a separate set of contexts:
the contexts used for IAFS are separate from the contexts used for IADW, for example.

EXAMPLE — An invocation of IADW might go as follows.

Set CX to “IADWO0000000QL This identifies a particular adaptive probability esti-
mate identified. Decode a bit. Suppose the value decoded (D) is

Using CX= IADW000000010decode a bit; suppose the value decoddd is
Using CX= IADW000000101decode a bit; suppose the value decodéd is
Using CX= IADW000001010decode a bit; suppose the value decoddd is
Using CX= IADW000010101decode a bit; suppose the value decodéd is
Using CX= IADW000101010decode a bit; suppose the value decodéd is
Using CX= IADW001010100decode a bit; suppose the value decodéd is

The sequence of bits decoded so fafi$1000 According to Table A.1 and Fig-
ure A.1, this corresponds to the value 2€ 0, V' = 12), which is the result of this
invocation of IADW.

A context is identified by an arithmetic integer decoding procedure name and a sequence of nine bits. Thus,
each arithmetic integer decoding procedure requires 512 bytes of storage for its context memory.
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A.3 The IAID decoding procedure

This decoding procedure is different from all the other integer arithmetic decoding procedure. It uses fixed-length
representations of the values being decoded, and does not limit the number of previously-decoded bits used as part
of the context. The length is equal EBBSYMCODELEN. This decoding procedure is only invoked from within
the text region decoding procedure, so at the time of invoc&®RYMCODELEN is known.

The procedure for decoding an integer using the IAID decoding procedure is as follows.

1. Set
PREV = 1

2. DecodeSBSYMCODELEN bits as follows
(a) Decode a bit with CX equal to “IAID + PREV” where “+” represents concatenation, and the rightmost
SBSYMCODELEN + 1 bits of PREV are used.

(b) After each bitis decoded, set
PREV= (PREV<< 1) ORD

where D represents the value of the just-decoded bit.

Thus, PREV always contains the values of all the bits decoded so far, plus a l&duingvhich is
used to indicate the number of bits decoded so far.

3. After SBSYMCODELEN bits have been decoded, set
PREV = PREV — 2SBSYMCODELEN

This step has the effect of clearing the topmost (lead)rgjt of PREV before returning it.
4. The contents of PREV are the result of this invocation of the IAID decoding procedure.

The number of contexts required2§BSYMCODELEN , Which is less than twice the maximum symbol ID.
Thus, the amount of memory needed for contexts can be calculated from the number of symbols, and is typically
no more than two bytes per symbol.

EXAMPLE — Suppose thaBBSYMCODELEN = 3. An invocation of IAID might go as follows.
¢ Using the adaptive probability estimate identified setting CX equal to “DRIOLT,
decode a bit. Suppose the value decodéd is
e Using CX = IAID 001Q decode a bit; suppose the value decoddd is
e Using CX= IAID 0101 decode a bit; suppose the value decodéd is

e At this point, PREV= 101Q Apply Step 3; PREV is nov@10 Thus, the result of
this invocation of the IAID decoding procedure is the vadd€ or (in decimal) 2.

The context identfication used here depends on the val@88yMCODELEN. In all cases the arithmetic
coder contexts will be reset in between changeSBEYMCODELEN: SBSYMCODELEN never changes
during the decoding of a single segment (but may change between segments).
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Annex B
(normative)
Huffman Table Decoding Procedure

B.1 General description

Code tables may be used for encoding any type of numerical data in the Huffman variant coders. In many locations
where a table is used, the encoder has the option of using one of the standard tables, or sending its own table. A
code table segment provides the means to send such a custom table. The code table is a list of code table lines,
each describing how to encode a single value, or a value from a specified range. A table may optionally be able to
code for an OOB, which is an out-of-band signal to the decoding procedure using the table.

B.2 Code table structure

Figure B.1 shows the internal structure of an encoded Huffman table. It consists of a set of table lines, each of
which describes the encoding for a range of numerical values. There are also, potentially, two special additional
table lines that encode “open-ended” ranges. The smallest value that can be encoded in a table described according
to this specification is-2147483648 (—23!) and the largest value &147483647 (23! — 1), so these ranges are

not really open-ended. There is also, potentially, an additional special table line that encodes an out-of-band value
OOB.

Code table flags
Code table lowest value
Code table highest valu

First table line

Second table line

4%

Last table line
Lower range table line
Upper range table line
Out-of-band table line

Figure B.1 — Coded structure of a Huffman table.

Each table line specifies the length of the prefix that is associated with it and the number of bits that follow
that prefix to encode a value.
A decoder decoding an encoded Huffman table shall decode the table that is produced by the following steps.

1. Decode the code table flags field as described in B.2.1. This sets the values HTOOB, HTPS and HTRS.
2. Decode the code table lowest value field as described in B.2.2. Let HTLOW be the value decoded.

3. Decode the code table highest value field as described in B.2.3. Let HTHIGH be the value decoded.

4. Set

CURRANGELOW HTLOW
NTEMP = 0

5. Decode each table line as follows.

(a) Read HTPS bits. Set PREFLENNTEMP] to the value decoded.
(b) Read HTRS bits. Let RANGELE[NTEMP, be the value decoded.
(c) Set

RANGELOWNTEMP] = CURRANGELOW

CURRANGELOW = CURRANGELOW-+ 2RANGELENNTEMP
NTEMP — NTEMP+ 1
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(d) If CURRANGELOW > HTHIGH then proceed to step 6.

6. Read HTPS bits. Let LOWPREFLEN be the value read.

7. Set
PREFLENNTEMP] = LOWPREFLEN
RANGELEN[NTEMP] = 32
RANGELOVV[NTEMP] = HTLOW -1

NTEMP = NTEMP+1

This is the lower range table line for this table.

8. Read HTPS bits. Let HHGHPREFLEN be the value read.

9. Set
PREFLENNTEMP] = HIGHPREFLEN
RANGELENNTEMP] = 32
RANGELOWNTEMP] = HTHIGH
NTEMP = NTEMP+1

This is the upper range table line for this table.
10. IfHTOOB is1, then

(@) Read HTPS bits. Let OOBPREFLEN be the value read.
(b) Set

PREFLENNTEMP] = OOBPREFLEN
NTEMP = NTEMP+1

This is the out-of-band table line for this table. Note that there is no range associated with this value.

11. Create the prefix codes using the algorithm described in B.3.

B.2.1 Code table flags
This one-byte field has the following bits defined:

Bit 0 HTOOB. If this bit is1, the table can code for an out-of-band value.

Bits 1-3 Number of bits used in code table line prefix size fields. The value of HTPS is the value of this field plus
one.

Bits 4—-6 Number of bits used in code table line range size fields. The value of HTRS is the value of this field plus
one.

Bit 7 Reserved; must be zero.

B.2.2 Code table lowest value
This signed four-byte field is the lower bound of the first table line in the encoded table.

B.2.3 Code table highest value
This signed four-byte field is one larger than the upper bound of the last normal table line in the encoded table.
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B.3 Assigning the prefix codes

Given the table of prefix code lengths, PREFLEN, and the number of codes to be assigned, NTEMP, this algorithm
assigns a unique prefix code to each table line, of the length given by PREFLEN for that table line.
Note that the PREFLEN value 0 indicates that the table line is never used.

1. Build a histogram in the array LENCOUNT counting the number of times each prefix length value occurs
in PREFLEN: LENCOUNTI] is the number of times that the valli®@ccurs in the array PREFLEN.

2. Let LENMAX be the largest value for which LENCOUNIENMAX] > 0. Set

CURLEN =
FIRSTCODHO] = 0
LENCOUNT[0] =
3. While CURLEN< LENMAX, perform the following operations.
(a) Set

FIRSTCODECURLEN] = (FIRSTCODECURLEN — 1] + LENCOUNT[CURLEN — 1]) x 2
CURCODE = FIRSTCODECURLEN]
CURTEMP = 0

(b) While CURTEMP< NTEMP, perform the following operations.
i. If PREFLENCURTEMP = CURLEN, then set

CODEYCURTEMA = CURCODE
CURCODE = CURCODE+ 1

ii. Set CURTEMP= CURTEMP+ 1.
(c) Set
CURLEN = CURLEN+1

After this algorithm has executed, then table line numbkas been assigned a PREFLENbit long code,
whose value is stored in the PREFLHENIow-order bits of CODES], unless PREFLEN] was equal to zero, in
which case that table line has not been assigned any code.

B.4 Using a Huffman table
To decode a value using a Huffman table, perform the following steps.

1. Read one bit at a time until the bit string read matches the code assigned to one of the table lines. Since no
code forms a prefix of any other code, this is possible.ILle¢ the index of the table line whose code was
decoded.

2. Read RANGELE] bits. Let HTOFFSET be the value read.
3. IfHTOOB is 1 for this table, and table liné is the out-of-band table line for this table, then set

HTVAL = OOB

4. Otherwise, if table lind is the lower range table line for this table, then set

HTVAL = RANGELOWI] — HTOFFSET

5. Otherwise, set
HTVAL = RANGELOWI] + HTOFFSET
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The value of HTVAL is the value decoded using this table. Note that this may be a humerical value or the special
value OOB.

EXAMPLE — The encoding for Table B.1 might be the sequence of bytes, in hexadecimal

0x42 0x00 Ox00 0x00 O0x00 0x00 Ox01
0x01 0Ox10 Ox49 0x23 0x81 0x80

Decoding this according to the algorithm of B.2 proceeds as follows.

e The codetable flags fiel@x42 . This field itself breaks down into the fields, in binary,
0 100 001 Qwhich decode to produce the assignments

HTOOB = 0
HTPS = 2
HTRS = 5

e The code table lowest value field, and the value of HTLOY)0000000 .

e The code table highest value field, and the value of HTHIG®0010110 (which,
in decimal, is 65808).

e Three table lines, the lower range table line and the upper range table line. These are
encoded as the sequence of byir49 0x23 0x81 0x80 ,orinbinary,01001001
00100011 10000001 10000Q0This bitstring is further broken down into the table
lines as follows.

01 00100The first two (HTPS) bits of this table line indicate a prefix length of 1, and the
last five (HTRS) bits of this table line indicate a range length of 4.
10 01000This table line has a prefix length of 2 and a range length of 8.
11 10000This table line has a prefix length of 3 and a range length of 16.
00 The lower range table line has a prefix length of 0, indicating that this table line
is not used.
11 The upper range table line has a prefix length of 3.
0000000 Seven bits of padding, to fill out the last byte.

After decoding these table lines, the value of NTEMP is 5. The arrays PREFLEN, RANGE-
LEN and RANGELOW are

PREFLEN 1 2 3 0 3
RANGELEN 4 8 16 32 32
RANGELOW 0 16 272 -1 65808

Applying the algorithm of B.3 to this yields the array of codes, in binary,
CODES 0 10 110 X 111

where the X indicates that the lower range table line has not been assigned a code. Thus,
the prefix codeéd precedes a 4-bit field encoding a value from 0 to 15; the prefix ¢6de
precedes an 8-bit field encoding a value from 16 to 271, and so on, as shown in Table B.1.

B.5 Standard Huffman tables

This section presents some standard Huffman tables than may be used in the appropriate contexts without having
been previously transmitted.

Each Huffman table is presented in a form that is similar to the table transmission described above. The table
parameter HTOOB is given (HTPS, HTRS, HTLOW and HTHIGH can be derived from the values in the table),
followed by a list of table lines, giving the range to which that table line applies, the table line prefix length, table
line range length, and the actual encoding (prefix and base value) for that table line; these table lines are followed
by a lower and upper range table line, and optionally (depending on HTOOB) an out-of-band table line. In some
cases the lower or upper range table lines are omitted from the tables as shown, indicating that these table lines
are not used in the table (and would be assigned a PREFLEN value of zero).
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Table B.1 — Standard Huffman table A

| HTOOB | 0 |
VAL PREFLEN | RANGELEN | Encoding
0...15 1 4 | 0+ VAL encoded as 4 bits
16...271 2 8 | 10+ (VAL — 16) encoded as 8 bits
272...65807 3 16 | 110+ (VAL — 272) encoded as 16 bits
65808 .. .00 3 32 | 111+ (VAL — 65808) encoded as 32 bits
Table B.2 — Standard Huffman table B
[HTOOB | 1
VAL PREFLEN | RANGELEN | Encoding
0 1 0(0
1 2 0|10
2 3 0| 110
3...10 4 3 | 1110+ (VAL — 3) encoded as 3 bits
11...74 5 6 | 11110+ (VAL — 11) encoded as 6 bits
75...00 6 32 | 111110+ (VAL — 75) encoded as 32 bits
0]0]=] 6 111111
Table B.3 — Standard Huffman table C
| HTOOB [ 1
VAL PREFLEN| RANGELEN [ Encoding
—256...—1 8 8 | 11111110+ (VAL + 256) encoded as 8 bits
0 1 0|0
1 2 0| 10
2 3 0| 110
3...10 4 3 | 1110+ (VAL — 3) encoded as 3 bits
11...74 5 6 | 11110+ (VAL — 11) encoded as 6 bits
—00...— 257 8 32 | 11111111+ (—257 — VAL ) encoded as 32 bit
75...00 7 32 | 1111110+ (VAL — 75) encoded as 32 bits
(0]6]=] 6 111110

Table B.4 — Standard Huffman table D

[HTOOB [ 0




Table B.5 — Standard Huffman table E

[HTOOB [0 |

VAL PREFLEN | RANGELEN | Encoding

—255...0 7 8 | 1111110+ (VAL + 255) encoded as 8 bits

1 1 0|0

2 2 0] 10

3 3 0| 110

4...11 4 3 | 1110+ (VAL — 4) encoded as 3 bits

12...75 5 6 | 11110+ (VAL — 12) encoded as 6 bits

—00...— 256 7 32| 11111114 (—256 — VAL ) encoded as 32 bits

76...00 6 32 | 111110+ (VAL — 76) encoded as 32 bits

Table B.6 — Standard Huffman table F

HTOOB [0
VAL PREFLEN | RANGELEN | Encoding
—2048...—1025 5 10 | 11100+ (VAL + 2048) encoded as 10 bits
—1024...—-513 4 9 | 1000+ (VAL + 1024) encoded as 9 bits
—512... — 257 4 8 | 1001+ (VAL + 512) encoded as 8 bits
—256...—129 4 7 | 1010+ (VAL + 256) encoded as 7 bits
—128...-65 5 6 | 11101+ (VAL + 128) encoded as 6 bits
—64...—-33 5 5] 11110+ (VAL + 64) encoded as 5 bits
-32...—1 4 5| 1011+ (VAL + 32) encoded as 5 bits
0...127 2 7 | 00+ VAL encoded as 7 bits
128...255 3 7 | 010+ (VAL — 128) encoded as 7 bits
256...511 3 8 | 011+ (VAL — 256) encoded as 8 bits
512...1023 4 9 | 1100+ (VAL — 512) encoded as 9 bits
1024...2047 4 10 | 1101+ (VAL — 1024) encoded as 10 bits
—o00...— 2049 6 32 | 111110+ (—2049 — VAL ) encoded as 32 bit
2048. .. 6 32| 111111+ (VAL — 2048) encoded as 32 bits
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Table B.7 — Standard Huffman table G

T

D

Uy

[[HTOOB [0 |
VAL PREFLEN | RANGELEN | Encoding
—1024...—-513 4 9 | 1000+ (VAL + 1024) encoded as 9 bits
—512...—257 3 8 | 000+ (VAL + 512) encoded as 8 bits
—256...— 129 4 7 | 1001+ (VAL + 256) encoded as 7 bits
—128...-65 5 6 | 11010+ (VAL + 128) encoded as 6 bits
—64...—32 5 5| 11011+ (VAL + 64) encoded as 5 bits
-32...—1 4 5 | 1010+ (VAL + 32) encoded as 5 bits
0...31 4 5| 1011+ VAL encoded as 5 bits
32...63 5 5| 11100+ (VAL — 32) encoded as 5 bits
64...127 5 6 | 11101+ (VAL — 64) encoded as 6 bits
128...255 4 7 | 1100+ (VAL — 128) encoded as 7 bits
256...511 3 8 | 001+ (VAL — 256) encoded as 8 bits
512...1023 3 9 | 010+ (VAL — 512) encoded as 9 bits
1024...2047 3 10 | 011+ (VAL — 1024) encoded as 10 bits
—00...— 1025 5 32| 11110+ (—1025 — VAL ) encoded as 32 hit
2048. .. 5 32| 11111+ (VAL — 2048) encoded as 32 bits

Table B.8 — Standard Huffman table H

[HTOOB |1 |
VAL PREFLEN | RANGELEN | Encoding
—15...—8 8 3| 11111100+ (VAL + 15) encoded as 3 bits
—7...—6 9 1] 1111111006+ (VAL + 7) encoded as 1 bits
—5...—4 8 1| 11111101+ (VAL + 5) encoded as 1 bits
-3 9 0] 111111101
-2 7 0| 1111100
-1 4 0 | 1010
0...1 2 1 | 00+ VAL encoded as 1 bits
2 5 0 | 11010
3 6 0 | 111010
4...19 3 4 | 100+ (VAL — 4) encoded as 4 bits
20...21 6 1 | 111011+ (VAL — 20) encoded as 1 bits
22...37 4 4 | 1011+ (VAL — 22) encoded as 4 bits
38...69 4 5 | 1100+ (VAL — 38) encoded as 5 bits
70...133 5 6 | 11011+ (VAL — 70) encoded as 6 bits
134...261 5 7 | 11100+ (VAL — 134) encoded as 7 bits
262...389 6 7 | 111100+ (VAL — 262) encoded as 7 bits
390...645 7 8 | 1111102+ (VAL — 390) encoded as 8 bits
646 . ..1669 6 10 | 111101+ (VAL — 646) encoded as 10 bits
—00...— 16 9 32| 111111116+ (—16 — VAL ) encoded as 32 bitg
1670...00 9 32| 111111114 (VAL — 1670) encoded as 32 bit
0o0oB 2 01
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Table B.9 — Standard Huffman table |

12

[HTOOB |1 |
VAL PREFLEN | RANGELEN | Encoding
-31...—-16 8 4 | 11111100+ (VAL + 31) encoded as 4 bits
—15...—12 9 2 | 111111106+ (VAL + 15) encoded as 2 bits
—11...-8 8 2 | 1111110 (VAL + 11) encoded as 2 bits
—-7...—6 9 1| 111111104 (VAL + 7) encoded as 1 bits
-5...—4 7 1| 1111100+ (VAL + 5) encoded as 1 bits
-3...—-2 4 1 | 1010+ (VAL + 3) encoded as 1 bits
-1...0 3 1 | 010+ (VAL + 1) encoded as 1 bits
1...2 3 1| 011+ (VAL — 1) encoded as 1 bits
3...4 5 1 | 11010+ (VAL — 3) encoded as 1 hits
5...6 6 1 | 111010+ (VAL — 5) encoded as 1 bits
7...38 3 5 | 100+ (VAL —7) encoded as 5 bits
39...42 6 2 | 111011+ (VAL — 39) encoded as 2 bits
43...74 4 5| 1011+ (VAL — 43) encoded as 5 bits
75...138 4 6 | 1100+ (VAL — 75) encoded as 6 bits
139...266 5 7 | 11011+ (VAL — 139) encoded as 7 bits
267...522 5 8 | 11100+ (VAL — 267) encoded as 8 bits
523...778 6 8 | 111100+ (VAL — 523) encoded as 8 bits
779...1290 7 9 | 1111101+ (VAL — 779) encoded as 9 bits
1291...3338 6 11 | 111101+ (VAL — 1291) encoded as 11 bits
—00...—32 9 32| 111111116+ (—32 — VAL ) encoded as 32 bits
3339...00 9 32| 11111111H (VAL — 3339) encoded as 32 it
0O0B 2 00
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Table B.10 — Standard Huffman table J

D

[HTOOB |1 |
VAL PREFLEN | RANGELEN | Encoding
—21...—6 7 4 | 1111010+ (VAL + 21) encoded as 4 bits
) 8 0| 11111100
—4 7 0| 1111011
-3 5 0 | 11000
-2...1 2 2 | 00+ (VAL + 2) encoded as 2 bits
2 5 0 | 11001
3 6 0| 110110
4 7 0| 1111100
) 8 0| 11111101
6...69 2 6 | 01+ (VAL — 6) encoded as 6 bits
70...101 5 5 | 11010+ (VAL — 70) encoded as 5 bits
102...133 6 5] 110111+ (VAL — 102) encoded as 5 bits
134...197 6 6 | 111000+ (VAL — 134) encoded as 6 bits
198...325 6 7 | 111001+ (VAL — 198) encoded as 7 bits
326...581 6 8 | 111010+ (VAL — 326) encoded as 8 bits
582...1093 6 9 | 111011+ (VAL — 582) encoded as 9 bits
1094 ...2117 6 10 | 111100+ (VAL — 1094) encoded as 10 bits
2118...4165 7 11 | 1111103+ (VAL — 2118) encoded as 11 bits
—00...— 22 8 32| 11111110+ (—22 — VAL ) encoded as 32 bitg
4166...00 8 32| 11111114 (VAL — 4166) encoded as 32 bit
0]0]=] 2 10
Table B.11 — Standard Huffman table K
HTOOB [0
VAL PREFLEN|[ RANGELEN [ Encoding
1 1 0|0
2...3 2 1| 10+ (VAL — 2) encoded as 1 bits
4 4 0 | 1100
5...6 4 1 | 1101+ (VAL - 5) encoded as 1 bits
7...8 5 1 | 11100+ (VAL — 7) encoded as 1 hits
9...12 5 2 | 11101+ (VAL —9) encoded as 2 bits
13...16 6 2 | 111100+ (VAL — 13) encoded as 2 bits
17...20 7 2 | 1111010+ (VAL — 17) encoded as 2 bits
21...28 7 3| 1111011+ (VAL — 21) encoded as 3 bits
29...44 7 4| 1111100+ (VAL — 29) encoded as 4 bits
45...76 7 5] 1111101+ (VAL — 45) encoded as 5 bits
77...140 7 6 | 1111110+ (VAL — 77) encoded as 6 bits
141...00 7 32| 1111111+ (VAL — 141) encoded as 32 bits
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Table B.12 — Standard Huffman table L

Uy

| HTOOB | 0
VAL PREFLEN | RANGELEN | Encoding
1 1 0|0
2 2 0| 10
3...4 3 1| 110+ (VAL — 3) encoded as 1 bits
) 5 0 | 11100
6...7 5 1| 11101+ (VAL — 6) encoded as 1 bits
8...9 6 1| 111100+ (VAL — 8) encoded as 1 bits
10 7 0 | 1111010
11...12 7 1| 1111011+ (VAL — 11) encoded as 1 bits
13...16 7 2| 1111100+ (VAL — 13) encoded as 2 bits
17...24 7 3| 1111101+ (VAL — 17) encoded as 3 bits
25...40 7 4 | 1111110+ (VAL — 25) encoded as 4 bits
41...72 8 51 11111110+ (VAL — 41) encoded as 5 bits
73...00 8 32| 11111114 (VAL — 73) encoded as 32 bits

Table B.13 — Standard Huffman table M

HTOOB |0
VAL PREFLEN | RANGELEN | Encoding
1 1 0|0
2 3 0| 100
3 4 0| 1100
4 5 0| 11100
5...6 4 1 | 1101+ (VAL - 5) encoded as 1 bits
7...14 3 3| 101+ (VAL — 7) encoded as 3 bits
15...16 6 1| 111010+ (VAL — 15) encoded as 1 bits
17...20 6 2 | 111011+ (VAL — 17) encoded as 2 bits
21...28 6 3 | 111100+ (VAL — 21) encoded as 3 bits
29...44 6 4| 111101+ (VAL — 29) encoded as 4 bits
45...76 6 5| 111110+ (VAL — 45) encoded as 5 bits
77...140 7 6 | 1111110+ (VAL — 77) encoded as 6 bits
141...00 7 32| 1111111+ (VAL — 141) encoded as 32 bit

Table B.14 — Standard Huffman table N

[HTOOB | 0 |
VAL PREFLEN | RANGELEN | Encoding
-2 3 0| 100
-1 3 0] 101
0 1 0|0
1 3 0| 110
2 3 0] 111
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Table B.15 — Standard Huffman table O

Uy

[HTOOB [0 |
VAL PREFLEN | RANGELEN | Encoding
—-24...-9 7 4 | 1111100+ (VAL + 24) encoded as 4 bits
—-8...-5 6 2 | 111100+ (VAL + 8) encoded as 2 bits
—4...-3 5 1 | 11100+ (VAL + 4) encoded as 1 bits
-2 4 0 | 1100
-1 3 0 | 100
0 1 0|0
1 3 0] 101
2 4 0| 1101
3...4 5 1| 11101+ (VAL — 3) encoded as 1 hits
5...8 6 2 | 111101+ (VAL — 5) encoded as 2 bits
9...24 7 4 | 1111101+ (VAL —9) encoded as 4 bits
—00...—25 7 32| 1111110+ (—25 — VAL ) encoded as 32 bit
25...00 7 32 | 1111111+ (VAL — 25) encoded as 32 bits
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Annex C
(normative)
Gray-scale Image Decoding Procedure

C.1 General description

This decoding procedure is used by the halftone region decoding procedure to produce an array of gray-scale
values, which are then used as indexes into a dictionary of patterns.

C.2 Input parameters

The parameters to this decoding procedure are shown in Table C.1.

Table C.1 — Parameters for the gray-scale image decoding procedure.

Name Type Size | Signed?| Description and restrictions
(bits)
GSMMR Integer 1 N Specifies whether MMR is used.
GSUSESKIP Integer 1 N Specifies whether skipping of gray-scale values may

occur.

GSBPP Integer 6 N The number of bits per gray-scale value.

GSW Integer 32 N The width of the gray-scale image.

GSH Integer 32 N The height of the gray-scale image.

GSTEMPLATE | Integer 2 N The template used to code the gray-scale bitplattfes.

GSKIP Bitmap A mask indicating which values should be skipped.
GSW pixels wide,GSH pixels high.*

* Unused ifGSUSESKIP = 0.
** Unused ifGSMMR = 1.

C.3 Return value

The variable whose value is the result of this decoding procedure is shown in Table C.2.

Table C.2 — Return value from the gray-scale image decoding procedure.
Name Type | Size| Signed?| Description and restrictions
(bits)
GSVALS | Array The decoded gray-scale image. The arrafzBW
wide, GSH high.

C.4 Variables used in decoding

The variables used by this decoding procedure are shown in Table C.3.

Table C.3 — Variables used in the gray-scale image decoding procedure.

Name Type ‘ Size | Signed?| Description and restrictions
(bits)

GSPLANES| Array of bitmaps Bitplanes of the gray-scale image. There @8BPP
bitplanes in GSPLANES. Each bitplaneg3§W pixels
wide, GSH pixels high.

J Integer| 32] Y Bitplane counter
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C.5 Decoding the gray-scale image
The gray-scale image is obtained by decodB@BPP bitplanes. These bitplanes are denoted (from least sig-

nificant to most significant) GSPLANES, GSPLANES$1], ..., GSPLANESGSBPP — 1]. The bitplanes are
Gray-coded, so that each bitplane’s true value is equal to its coded value XORed with the next-more-significant
bitplane.

The gray-scale image is obtained by the following procedure:

1. Decode GSPLANE®&SBPP — 1] using the generic region decoding procedure. The parameters to the
generic region decoding procedure are as shown in Table C.4.

Table C.4 — Parameters used to decode a bitplane of the gray-scale image.

Name Value

MMR GSMMR
GBW GSW

GBH GSH
GBTEMPLATE | GSTEMPLATE
TPGDON 0

USESKIP GSUSESKIP
SKIP GSKIP
GBATX 3if GSTEMPLATE < 1; 2 if GSTEMPLATE > 2.
GBATY ; -1

GBATX -3

GBATY 5 -1

GBATX 5 2

GBATY ; 2

GBATX 4 -2

GBATY 4 -2

2. SetJ = GSBPP- 2.
3. While J > 0, perform the following steps.

(a) Decode GSPLANHS] using the generic region decoding procedure. The parameters to the generic
region decoding procedure are as shown in Table C.4.

(b) For each pixe(z, y) in GSPLANES.J], set
GSPLANES/J]|[z,y] = GSPLANESJ + 1], y] XOR GSPLANES$/J][z, y]
(c) SetJ =J —1.
4. For eacHz,y), set
GSBPP-1

GSVALS[z,y] = Y GSPLANESJ][z,y] x 2
J=0
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Annex D
(normative)
File Formats

There are two standalone file organisations possible for a JBIG2 bitstream. There is also a third organisation, not
intended for standalone usage, but instead to allow JBIG2-encoded data to be embedded in another file format.

NOTE — It is recommended thatjbig2 " is used as the extension for JBIG2 files. In environments
where only three characters are allowegh2 " is recommended. It is also recommended that
JBIG2 decoders recognise both extensions.

D.1 Sequential organisation

This is a standalone file organisation. This organisation is intended for streaming applications, where the decoder
is guaranteed to begin at the start of the bitstream and decode everything up to the end of the bitstream.
In this organisation, the file structure looks like Figure D.1. A file header is followed by a sequence of
segments. The two parts of each segment are stored together: first the segment header then the segment data.
The segments must appear in increasing order of their segment numbers: no segment may precede a segment
having a lower number than it.

File header
Segment 1 segment header
Segment 1 data
Segment 2 segment headger
Segment 2 data

Segment N segment header
Segment N data

Figure D.1 — Sequential organisation

D.2 Random-access organisation

This is a standalone file organisation. This organisation is intended for random-access applications, where the
decoder might want to process parts of the file in an arbitrary order, such as decoding all the odd-numbered pages
before any even-numbered page, or decode pages individually in response to some user input. The ability to
perform random access is therefore important.

In this organisation, the file structure looks like Figure D.2. A file header is followed by a sequence of segments
headers; the last segment header is followed by the data for the first segment, then the data for the second segment,
and so on. The last segment must be an end of file segment; otherwise, it is impossible for the decoder to determine
when it has read the last segment header.

The segments must appear in increasing order of their segment numbers: no segment may precede a segment
having a lower number than it.

D.3 Embedded organisation

This is not a standalone file organisation, but relies on some other file format to carry the JBIG2 segments. Each
segment is stored by concatenating its segment header and segment data parts, but there is no defined storage order
for these segments. The embedding file format is allowed to store those segments in any order, and may separate
them by arbitrary data.

Applications may wish to precede and follow JBIG2 data with a unique two-byte combination (marker) so
that the JBIG2 data can be detected within other data streams. It is suggeste@xBkisexAA for the starting
marker anddxFF OxAB for the ending marker. These markers are not considered to be part of the JBIG2 data.
It should be noted that the first byte of a segment header is unlikely to take on theOx&lbe Note that the
two-byte sequenceéxFF OxAA andOxFF OxAB may occur by chance within JBIG2 segments.
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File header
Segment 1 segment header
Segment 2 segment header

Segment N segment header
Segment 1 data
Segment 2 data

Segment N data

Figure D.2 — Random-access organisation

NOTE — The intent of the embedded organisation is that many current systems can benefit from incor-
porating improved bi-level image compression. However, the best way to do this is not always
to incorporate an entire JBIG2 bitstream as a monolithic entity, as this can conflict with other
constraints. For example, the system might have its own ideas of how pages must be divided up,
which might not agree with JBIG2'’s ideas. Thus, JBIG2 is flexible in allowing the embedding
system to store JBIG2 data in whatever way is most convenient.

D.4 File header syntax

A file header contains the following fields, in order.

ID string See D.4.1.

File header flags See D.4.2.

Number of pages See D.4.3.

D.4.1 D string

This is an 8-byte sequence containdy®7 Ox4A 0x42 0x32 0xOD O0xOA Ox1A Ox0A

NOTE — This is similar to the PNG ID string. The first character is nonprintable, so that the file cannot
be mistaken for ASCII. The first character’s high bit is set, to detect passing through a 7-bit
channel. The next three bytes d®2, and are intended to allow a human looking at the header
to guess the file type. The following bytes &&&® LF CONTROL-Z LFany corruption by
CRI/LF translation and DOS file truncation can be detected immediately.

D.4.2 File header flags

This is a 1-byte field. The bits that are defined are

Bit 0 File organisation type. If this bit i§, the file uses the random-access organisation. If this Hittise file
uses the sequential organisation.

NOTE — Note that there is no way to indicate the embedded organisation, as that organisation does
not include a JBIG2 file header.

Bit 1 Unknown number of pages. If this bit @ then the number of pages contained in the file is known. If this
bit is 1, then the number of pages contained in the file was not known at the time that the file header was
coded.

Bits 2—7 Reserved; must b&

D.4.3 Number of pages

This is a 4-byte field, and is not present if the “unknown number of pages” bitwiégresent, it must equal the
number of pages contained in the file.
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Annex E
(normative)
Arithmetic Coding

An adaptive binary arithmetic coder may be used as the entropy coder when allowed by the models. The models
used with adaptive binary arithmetic coding are defined in 6.2, 6.3 and Annex A. In this Annex the basic arithmetic
coding procedures are defined.

In this Annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are
defining an output that alternative implementations shall duplicate. In H.2 a simple test example is given which
should be helpful in determining if a given implementation is correct.

E.1 Binary encoding

Figure E.1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context
(CX) pairs are processed together to produce compressed data (CD) output. Both D and CX are provided by the
model unit (not shown). CX selects the probability estimate to use during the coding of D. In this Recommendation

| International Standard, CX is a label for a context, formed by some character string followed by a string of bits.

EXAMPLE — Two possible values of CX are “IAD\001010100and “GB1110110010000000

D —»
ENCODER  ——CD

CX —»

Figure E.1 — Arithmetic encoder inputs and outputs.

E.1.1 Recursive interval subdivision

The recursive probability interval subdivision of Elias coding is the basis for the binary arithmetic coding process.
With each binary decision the current probability interval is subdivided into two sub-intervals, and the code string
is modified (if necessary) so that it points to the base (the lower bound) of the probability sub-interval assigned to
the symbol which occurred.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol
(MPS) is ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded,
the LPS sub-interval is added to the code string. This coding convention requires that symbols be recognised as
either MPS or LPS, rather than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for
each decision must be known in order to code that decision.

Since the code string always points to the base of the current interval, the decoding process is a matter of
determining, for each decision, which sub-interval is pointed to by the code string. This is also done recursively,
using the same interval sub-division process as in the encoder. Each time a decision is decoded, the decoder
subtracts any interval the encoder added to the code string. Therefore, the code string in the decoder is a pointer
into the current interval relative to the base of the current interval. Since the coding process involves addition of
binary fractions rather than concatenation of integer code words, the more probable binary decisions can often be
coded at a cost of much less than one bit per decision.

E.1.2 Coding conventions and approximations

The coding operations are done using fixed precision integer arithmetic and using an integer representation of
fractional values in whicldx8000 is equivalent to decimdl.75. The interval A is kept in the rande75 < A <
1.5 by doubling it whenever the integer value falls belox8000 .

The code register C is also doubled each time A is doubled. Periodically - to keep C from overflowing - a
byte of data is removed from the high order bits of the C-register and placed in an external compressed data string
buffer. Carry-over into the external buffer is resolved by a bit stuffing procedure.
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Keeping A in the rang8.75 < A < 1.5 allows a simple arithmetic approximation to be used in the interval
subdivision. If the interval is A and the current estimate of the LPS probability is Qe, a precise calculation of the
sub-intervals would require:

A —(Qex A) = sub-interval for the MPS
Qex A = sub-interval for the LPS

Because the value of A is of order unity, these are approximated by

A — Qe = sub-interval for the MPS
Qe = sub-interval for the LPS

Whenever the MPS is coded, the value of Qe is added to the code register and the interval is reduc@d to A
Whenever the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision
range required for A is then restored, if necessary, by renormalisation of both A and C.

With the process illustrated above, the approximations in the interval subdivision process can sometimes
make the LPS sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0.5 and A is at the
minimum allowed value of 0.75, the approximate scaling giv&sof the interval to the MPS ary/3 to the LPS.

To avoid this size inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than
the MPS interval. This MPS/LPS conditional exchange can only occur when a renormalisation is needed.

Whenever a renormalisation occurs, a probability estimation process is invoked which determines a new prob-
ability estimate for the context currently being coded. No explicit symbol counts are needed for the estimation.
The relative probabilities of renormalisation after coding an LPS and MPS provide an approximate symbol count-
ing mechanism which is used to directly estimate the probabilities.

E.2 Description of the arithmetic encoder

The ENCODER (Figure E.2) initialises the encoder through the INITENC procedure. CX and D pairs are read
and passed on to ENCODE until all pairs have been read. The probability estimation procedures which provide
adaptive estimates of the probability for each context are embedded in ENCODE. Bytes of compressed data are
output when no longer modifiable. When all of the CX and D pairs have been read (Finished?), FLUSH sets the
contents of the C-register to as many 1-bits as possible and then outputs the final bytes. FLUSH also terminates
the encoding operations and generates the required terminating marker.

E.2.1 Encoder code register conventions
The flow charts given in this subclause assume the following register structures for the encoder:

MSB LSB
C-register  0000cbbb bbbbbsss  XXXXXXXX  XXXXXXXX
A-register 00000000 00000000 @aaaaaaaa aaaaaaaa

The "a” bits are the fractional bits in the A-register (the current interval value) and the "x” bits are the fractional
bits in the code register. The "s” bits are spacer bits which provide useful constraints on carry-over, and the "b”
bits indicate the bit positions from which the completed bytes of the data are removed from the C-register. The
"c” bit is a carry bit.

The detailed description of bit stuffing and the handling of carry-over will be given in a later part of this Annex.

E.2.2 Encoding a decision (ENCODE)

The ENCODE procedure determines whether the decision D is a 0 or not. Then a CODEO or a CODE1 procedure
is called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODEO or
CODEL1 procedures directly to code a 0-decision or a 1-decision.

E.2.3 Encoding a1l or 0 (CODE1 and CODEOQ)

When a given binary decision is coded, one of two possibilities occurs - the symbol is either the more probable
symbol or it is the less probable symbol. CODE1 and CODEDO are illustrated in Figures E.4 and E.5. In these
figures, CX is the context. For each context, the index of the probability estimate which is to be used in the coding
operations and the MPS value are stored. MPS(CX) is the s@mse) of the MPS for context CX.
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( ENCODER )

Y

INITENC

Y

A 4

Read CX, D

A 4

ENCODE

No Finished?
Yes

FLUSH

Y
( Done )

Figure E.2 — Encoder for the MQ-coder.

ENCODE

Y
( Done )

Figure E.3 — ENCODE procedure.
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CODE1

COD

Y

( Done )

Figure E.4 — CODEL1 procedure.

CODEO

COD

Y

( Done )

Figure E.5 — CODEO procedure.
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E.2.4 Encoding an MPS or LPS (CODEMPS and CODELPS)

The CODELPS (Figure E.6) procedure usually consists of a scaling of the interva(f@0®¢), the probability
estimate of the LPS determined from the index | stored for context CX. The upper interval is first calculated
so it can be compared to the lower interval to confirm that Qe has the smaller size. It is always followed by a
renormalisation (RENORME). In the event that the interval sizes are inverted, however, the conditional MPS/LPS
exchange occurs and the upper interval is coded. In either case, the probability estimate is updated. If the SWITCH
flag for the index I(CX) is set, then the MPS(CX) is inverted. A new index | is saved at CX as determined from
the next LPS index (NLPS) column in Table E.1.

( CODELPS )

Y

A = A — Qe(I(CX))

A < Qe(I(CX))?

Y

A = Qe(I(CX)) C = C+ Qe(I(CX))

SWITCH(I(CX))
=1?

Y

MPS(CX)= 1 — MPS(CX)

Y

Y

I(CX) = NLPS(I(CX))

( Done )

Figure E.6 — CODELPS procedure with conditional MPS/LPS exchange.

The CODEMPS (Figure E.7) procedure usually reduces the size of the interval to the MPS sub-interval and
adjusts the code register so that it points to the base of the MPS sub-interval. However, if the interval sizes are
inverted, the LPS sub-interval is coded instead. Note that the size inversion cannot occur unless a renormalisation
(RENORME) is required after the coding of the symbol. The probability estimate update changes the index I1(CX)
according to the next MPS index (NMPS) column in Table E.1.
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( CODEMPS )

Y

A = A — Qe(I(CX))

AND 0x8000 =0

Y NO A < Qe(I(CX))? D-YES

C = C+ Qe(I(CX))

Y Y

C = C + Qe(I(CX)) A = Qe(I(CX))

<
¢
Y

I(CX) = NMPS(I(CX))

RENORME

>
>

Y

( Done )

Figure E.7 — CODEMPS procedure with conditional MPS/LPS exchange.
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E.2.5 Probability estimation

Table E.1 shows the Qe value associated with each Qe index. The Qe values are expressed as hexadecimal
integers, as binary integers, and as decimal fractions. To convert the 15 bit integer representation of Qe to the
decimal probability, the Qe values are divided(#y3) x (0x8000 ).

The estimator can be defined as a finite-state machine — a table of Qe indexes and associated next states
for each type of renormalisation (i.e., new table positions) - as shown in Table E.1. The change in state occurs
only when the arithmetic coder interval register is renormalised. This is always done after coding the LPS, and
whenever the interval register is less t8000 (0.75 in decimal notation) after coding the MPS.

After an LPS renormalisation, NLPS gives the new index for the LPS probability estimate. After an MPS
renormalisation, NMPS gives the new index for the LPS probability estimate. If Switch is 1, the MPS symbol
sense is reversed.

The index to the current estimate is part of the information stored for context CX. This index is used as the
index to the table of values in NMPS, which gives the next index for an MPS renormalisation. This index is saved
in the context storage at CX. MPS(CX) does not change.

The procedure for estimating the probability on the LPS renormalisation path is similar to that of an MPS
renormalisation, except that when Switch(I(CX)) is 1, the sense of MPS(CX) is inverted.

The final index state 46 can be used to establish a fixed 0.5 probability estimate.

E.2.6 Renormalisation in the encoder (RENORME)

Renormalisation is very similar in both encoder and decoder, except that in the encoder it generates compressed
bits and in the decoder it consumes compressed bits.

The RENORME procedure for the encoder renormalisation is illustrated in Figure E.8. Both the interval
register A and the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT,
and when CT is counted down to zero, a byte of compressed data is removed from C by the procedure BY TEOUT.
Renormalisation continues until A is no longer less than 0x8000.

E.2.7 Compressed data output (BYTEOUT)

The BYTEOUT routine called from RENORME is illustrated in Figure E.9. This routine contains the bit-stuffing
procedures which are needed to limit carry propagation into the completed bytes of compressed data. The con-
ventions used make it impossible for a carry to propagate through more than the byte most recently written to the
compressed data buffer.

The procedure in the block in the lower right section does bit stuffing afl@F& byte; the similar procedure
on the left is for the case where bit stuffing is not needed.

B is the byte pointed to by the compressed data buffer pointer BP. If B is BgEBR byte, the carry bit is
checked. If the carry bitis set, it is added to B and B is again checked to see if a bit needs to be stuffed in the next
byte. After the need for bit stuffing has been determined, the appropriate path is chosen, BP is incremented and
the new value of B is removed from the code register "b” bits.

E.2.8 Initialisation of the encoder (INITENC)

The INITENC procedure is used to start the arithmetic coder. The basic steps are shown in Figure E.10.

The interval register and code register are set to their initial values, and the bit counter is set. Setin@ CT
reflects the fact that there are three spacer bits in the register which need to be filled before the field from which
the bytes are removed is reached. Note that BP always points to the byte preceding the position BPST where the
first byte is placed. Therefore, if the preceding byte @x&F byte, a spurious bit stuff will occur, but can be
compensated for by increasing CT. Note that the default initialisation of the statistics bins is=NIR&d | = 0
(i.e Qe=0x5601 or decimal 0.503937).

E.2.9 Termination of encoding (FLUSH)

The FLUSH procedure shown in Figure E.11 is used to terminate the encoding operations and generate the re-
quired terminating marker. The procedure guarantees th&xRE prefix to the marker code overlaps the final
bits of the compressed data. This guarantees that any marker code at the end of the compressed data will be
recognized and interpreted before decoding is complete.

The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible as shown in Fig-
ure E.12. The exclusive upper bound for the C-register is the sum of the C-register and the interval register. The
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Table E.1 — Qe values and probability estimation process

Qe Value
Index (hexadecimal) (binary) (decimal) NMPS NLPS SWITCH
0 0x5601 0101011000000001 0.503937 1 1 1
1 0x3401 0011010000000001 0.304715 2 6 0
2 0x1801 0001100000000001 0.140650 3 9 0
3 0x0AC1 0000101011000001 0.063012 4 12 0
4 0x0521 0000010100100001 0.030053 5 29 0
5 0x0221 0000001000100001 0.012474 38 33 0
6 0x5601 0101011000000001 0.503937 7 6 1
7 0x5401 0101010000000001 0.492218 8 14 0
8 0x4801 0100100000000001 0.421904 9 14 0
9 0x3801 0011100000000001 0.328153 10 14 0
10 0x3001 0011000000000001 0.281277 11 17 0
11 0x2401 0010010000000001 0.210964 12 18 0
12 0x1Co01 0001110000000001 0.164088 13 20 0
13 0x1601 0001011000000001 0.128931 29 21 0
14 0x5601 0101011000000001 0.503937 15 14 1
15 0x5401 0101010000000001 0.492218 16 14 0
16 0x5101 0101000100000001 0.474640 17 15 0
17 0x4801 0100100000000001 0.421904 18 16 0
18 0x3801 0011100000000001 0.328153 19 17 0
19 0x3401 0011010000000001 0.304715 20 18 0
20 0x3001 0011000000000001 0.281277 21 19 0
21 0x2801 0010100000000001 0.234401 22 19 0
22 0x2401 0010010000000001 0.210964 23 20 0
23 0x2201 0010001000000001 0.199245 24 21 0
24 0x1Co01 0001110000000001 0.164088 25 22 0
25 0x1801 0001100000000001 0.140650 26 23 0
26 0x1601 0001011000000001 0.128931 27 24 0
27 0x1401 0001010000000001 0.117212 28 25 0
28 0x1201 0001001000000001 0.105493 29 26 0
29 0x1101 0001000100000001 0.099634 30 27 0
30 O0x0AC1 0000101011000001 0.063012 31 28 0
31 0x09C1 0000100111000001 0.057153 32 29 0
32 0x08A1 0000100010100001 0.050561 33 30 0
33 0x0521 0000010100100001 0.030053 34 31 0
34 0x0441 0000010001000001 0.024926 35 32 0
35 0x02A1 0000001010100001 0.015404 36 33 0
36 0x0221 0000001000100001 0.012474 37 34 0
37 0x0141 0000000101000001 0.007347 38 35 0
38 0x0111 0000000100010001 0.006249 39 36 0
39 0x0085 0000000010000101 0.003044 40 37 0
40 0x0049 0000000001001001 0.001671 41 38 0
41 0x0025 0000000000100101 0.000847 42 39 0
42 0x0015 0000000000010101 0.000481 43 40 0
43 0x0009 0000000000001001 0.000206 44 41 0
44 0x0005 0000000000000101 0.000114 45 42 0
45 0x0001 0000000000000001 0.000023 45 43 0
46 0x5601 0101011000000001 0.503937 46 46 0
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( RENORME )
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BYTEOUT

A AND 0x8000 =0

Figure E.8 — Encoder renormalisation procedure.
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A

BYTEOUT

C < 0x8000000 ?

B=B+1

No

Yes

C = C AND Ox7FFFFFF

BP =

B=C>>19
C = C AND Ox7FFFF
CT=28

>
>

Y

y
BP + 1

BP =
B=C

4
BP + 1
>> 20

C = C AND OxFFFFF

CT

=7

Y
( Done )

Figure E.9 — BYTEOUT procedure for encoder.

141




( INITENC )

Y
A = 0x8000
C=0
BP=BPST-1
CT=12

No

Yes

CT=13

>
>

Y
( Done )

Figure E.10 — Initialisation of the encoder.

low order 16 bits of C are forced to 1, and the result is compared to the upper bound. If C is too big, the leading
1-bit is removed, reducing C to a value which is within the interval.

The byte in the C-register is then completed by shifting C, and two bytes are then removed. If the second byte
is notOXFF, another byte is added to the compressed data which is guaranteetxBbe

E.2.10 Minimisation of the compressed data

If desired, the compressed data can be truncated after the FLUSH procedure is complete. If a sequence of 1-bits

is generated by the arithmetic coder, bit stuffing will produce pai@xéf, 0x7F bytes. These byte pairs can

be trimmed from the compressed data, provided that the ead}€&$t byte in the sequence is not removed. This

remainingOxFF byte then becomes the prefix to the marker code which terminates the compressed data.
Decoding is not affected by this trimming process because the convention is used in the decoder that when a

marker code is encountered, 1-bits (without bit stuffing) are supplied to the decoder until the coding interval is

complete.

E.3 Arithmetic decoding procedure

Figure E.13 shows a simple block diagram of a binary adaptive arithmetic decoder. The compressed data CD and
a context CX from the decoder’s model unit (not shown) are input to the arithmetic decoder. The decoder’s output
is the decision D. The encoder and decoder model units need to supply exactly the same context CX for each given
decision.

The DECODER (Figure E.14) initialises the decoder through INITDEC. Contexts, CX, and bytes of com-
pressed data (as needed) are read and passed on to DECODE until all contexts have been read. The DECODE
routine decodes the binary decision D and returns a value of either 0 or 1. The probability estimation proce-
dures which provide adaptive estimates of the probability for each context are embedded in DECODE. When all
contexts have been read (Finished?), the compressed data has been decompressed.

E.3.1 Decoder code register conventions

The flow charts given in this subclause assume the following register structures for the decoder:
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BYTEOUT

No

BP=BP+1
B = OxFF

A

Y

Optionally remove trailing
Ox7FFF pairs following

the leadingDxFF

Y

BP=BP+1
B = OXAC
BP=BP+1

Y

( Done )

Figure E.11 — FLUSH procedure.
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( SETBITS )

Y

TEMPC=C+A
C = C OROxFFFF

No

Yes

C = C — 0x8000

>
>

Y
( Done )

Figure E.12 — Setting the final bits in the C register.

CD——
DECODER — D
CX—

Figure E.13 — Arithmetic decoder inputs and outputs.
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( DECODER )

Y

INITDEC

D = DECODE

No Finished?

Return D

Figure E.14 — Decoder for the MQ-coder.
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15 0
Chigh register — XXXXXXXX  XXXXXXXX
Clow register bbbbbbbb 00000000
A-register aaaaaaaa aaaaaaaa

Chigh and Clow can be thought of as one 32 bit C-register in that renormalisation of C shifts a bit of new data
from bit 15 of Clow to bit O of Chigh. However, the decoding comparisons use Chigh alone. New data is inserted
into the "b” bits of Clow one byte at a time.

The detailed description of the handling of data with stuff-bits will be given later in this subclause.

Note that the comparisons shown in the various procedures in this section assume precisions greater than 16
bits. Logical comparisons can be used with 16 bit precision.

E.3.2 Decoding a decision (DECODE)

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount
from the code string that the encoder added. The amount left in the code string is the offset from the base of the
current interval to the sub-interval allocated to all binary decisions not yet decoded. In the first test in the Decode
procedure illustrated in Figure E.15 the Chigh register is compared to the size of the LPS sub-interval. Unless
a conditional exchange is needed, this test determines whether a MPS or LPS is decoded. If Chigh is logically
greater than or equal to the LPS probability estimate Qe for the current index | stored at CX, then Chigh is
decremented by that amount. If A is not less tl88000 , then the MPS sense stored at CX is used to set the
decoded decision D.

When a renormalisation is needed, the MPS/LPS conditional exchange may have occurred. For the MPS path
the conditional exchange procedure is shown in Figure E.16. As long as the MPS sub-interval size A calculated as
the first step in Figure E.16 is not logically less than the LPS probability estimdté@e ), an MPS did occur
and the decision can be set from MPS(CX). Then the index I(CX) is updated from the next MPS index (NMPS)
column in Table E.1. If, however, the LPS sub-interval is larger, the conditional exchange occurred and an LPS
occurred. The probability update switches the MPS sense if the SWITCH column has a "1” and updates the index
I(CX) from the next LPS index (NLPS) column in Table E.1. Note that the probability estimation in the decoder
needs to be identical to the probability estimation in the encoder.

For the LPS path of the decoder the conditional exchange procedure is given tHEXGFANGE proce-
dure shown in Figure E.17. The same logical comparison between the MPS sub-interval A and the LPS sub-
interval Qe(l(CX)) determines if a conditional exchange occurred. On both paths the new sub-interval A is set to
Qe(I(CX)). On the left path the conditional exchange occurred so the decision and update are for the MPS case.
On the right path, the LPS decision and update are followed.

E.3.3 Renormalisation in the decoder (RENORMD)

The RENORMD procedure for the decoder renormalisation is illustrated in Figure E.18. A counter keeps track of
the number of compressed bits in the Clow section of the C-register. When CT is zero, a new byte is inserted into
Clow in the BYTEIN procedure.

Both the interval register A and the code register C are shifted, one bit at a time, until A is no longer less than
0x8000 .

E.3.4 Compressed data input (BYTEIN)

The BYTEIN procedure called from RENORMD is illustrated in Figure E.19. This procedure reads in one byte
of data, compensating for any stuff bits following teFF byte in the process. It also detects the marker codes
which must occur at the end of a scan or resynchronisation interval. The C-register in this procedure is the
concatenation of the Chigh and Clow registers.

B is the byte pointed to by the compressed data buffer pointer BP. If B isOxfR& byte, BP is incremented
and the new value of B is inserted into the high order 8 bits of Clow.

If B is a OXFF byte, then B1 (the byte pointed to by BP+1) is tested. If B1 exc€a8§& , then B1 must be
one of the marker codes. The marker code is interpreted as required, and the buffer pointer remains pointed to
the OXFF prefix of the marker code which terminates the arithmetically compressed data. 1-bits are then fed to
the decoder until the decoding is complete. This is shown by adiiR§00 to the C-register and setting the bit
counter CT to 8.
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( DECODE )

Y

A = A — Qe(I(CX))

A 4

NO Ehigh < Qe(I(CX))2>1ES

Chigh= Chigh— Qe(I(CX))

No

AND 0x8000 =0

Y

Y

D = MPS_EXCHANGE

D = MPS(CX)

D = LPS_EEXCHANGE

RENORMD

Y

( Return D )

Figure E.15 — Decoding an MPS or an LPS.
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Y

(M PS-EXCHANGE)

A < Qe(I(CX))?

Y

D = MPS(CX)

I(CX) = NMPS(I(CX))

D =1 — MPS(CX)

Y

Y

MPS(CX)= 1 — MPS(CX)

Y

I(CX) = NLPS(I(CX))

Y

( Return D )

Figure E.16 — Decoder MPS path conditional exchange procedure.
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(LPS_EXCHANGE )

A < Qe(I(CX))?

A 4 Y

A = Qe(I(CX)) A = Qe(I(CX))
D = MPS(CX) D = 1 — MPS(CX)

I(CX) = NMPS(I(CX))

Y

MPS(CX) = 1 — MPS(CX)

Y

Y

I(CX) = NLPS(I(CX))

Y

( Return D )

Figure E.17 — Decoder LPS path conditional exchange procedure.
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( RENORMD )

<
y

A

No " cT=02

BYTEIN

<

<

O
i
Il
o>
g/\/\
IRAWAY
[

A AND 0x8000 =0

Figure E.18 — Decoder renormalisation procedure.
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BYTEIN

Y
BP=BP+1
C=C+(B<<38)
CT=28

B1 > Ox8F ?

Y Y

BP=BP+ 1
C=C+(B<<9) CZ%}“EXgFFOO
CT=7 -

Y
( Done )

Figure E.19 — BYTEIN procedure for decoder

If B1 is not a marker code, then BP is incremented to point to the next byte which contains a stuffed bit. The
B is added to the C-register with an alignment such that the stuff bit (which contains any carry) is added to the
low order bit of Chigh.

E.3.5 Initialisation of the decoder (INITDEC)

The INITDEC procedure is used to start the arithmetic decoder. The basic steps are shown in Figure E.20.

BP, the pointer to the compressed data, is initialised to BPST (pointing to the first compressed byte). The
first byte of the compressed data is shifted into the low order byte of Chigh, and a new byte is then read in. The
C-register is then shifted by 7 bits and CT is decremented by 7, bringing the C-register into alignment with the
starting value of A. The interval register A is set to match the starting value in the encoder.

E.3.6 Resynchronisation of the decoder

Usually, when the end of the arithmetically compressed data is reached, the compressed data buffer pointer BP
points to theOXFF byte of the terminating marker code. If for any reason the compressed data buffer pointer is
not at theOxFF byte of the marker, a resynchronisation procedure needs to scan the compressed data until it finds
the terminating marker code prefix. If a search of this type is needed, it is indicative of an error condition. This
error recovery procedure is not standardised.

E.3.7 Resetting arithmetic coding statistics
At certain points during the decoding, some or all of the arithmetic coding statistics are reset. This process involves
setting I1(CX) and MPS(CX) equal to zero for some or all values of CX.

EXAMPLE — At the start of decoding a text region segment, all the arithmetic coding statistics are reset.

E.3.8 Saving arithmetic coding statistics

In some cases, the decoder needs to save or restore some values of I(CX) and MPS(CX). This is done as part of
decoding a symbol dictionary segment. In this case, the values that are saved and/or restored are all the values
indexed by CX values whose initial label is “GB” or “GR” (i.e., all those CX values used by the generic region
decoding procedure or the generic refinement region decoding procedure).
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( INITDEC )

Y

BP = BPST
C=B<<16

C=C«<«7
CT=CT-7
A = 0x8000

Y

( Done )

Figure E.20 — Initialisation of the decoder.
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Annex F
(informative)
Arithmetic Decoding Procedure (Software Conventions)

This annex provides some alternative flowcharts for a version of the adaptive entropy decoder. This alternative
version may be more efficient when implemented in software, as it has fewer operations along the fast path.
The alternative version is obtained by making the following substitutions.

¢ Replace the flowchart in Figure E.20 with the flowchart in Figure F.1.
e Replace the flowchart in Figure E.15 with the flowchart in Figure F.2.

¢ Replace the flowchart in Figure E.19 with the flowchart in Figure F.3.

(  INITDEC )

Y

BP = BPST
C = (BXOROxFF) << 16

C=C«<«7
CT=CT-7
A = 0x8000

Y

( Done )

Figure F.1 — Initialisation of the software-conventions decoder.
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( DECODE )
A = A — Qe(I(CX))

l

Yes~" chigh< A? N0

Chigh= Chigh— A

AND 0x8000 = 0pN2

Y Y

D = MPS_EXCHANGE D = MPS(CX) D = LPS_EXCHANGE

RENORMD RENORMD

Y
( Return D )

Figure F.2 — Decoding an MPS or an LPS in the software-conventions decoder.

BYTEIN

A

BP=BP+1
C=C+O0xFF00 — (B << 8)

Bl > Ox8F ? CT=38

A 4

BP=BP+1
C=C+ O0xFEOO — (B << 9) CT=8
CT="7

( Done )

Figure F.3 — Inserting a new byte into the C register in the software-conventions decoder.
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Annex G
(informative)
Profiles

It is recommended that a JBIG2 decoder either implement the entire specification, or one of the profiles described
in Tables G.1 through G.5. Note that profig00000001 (Table G.1) includes all the capabilities of the entire
specification, and is the profile assumed when none is explicitly specified.

See 7.4.12 for information on how the profile identification numbers are used.

Profile identification numbe@x00000000 throughOxOOFFFFFF are reserved for future revisions of this
Specification. Entities wishing to use an unassigned profile identification number should choose one in the range
0x01000000 throughOxFFFFFFFF that is not likely to conflict with any other entity’s choice. It is recom-
mended that the first three bytes of the profile identification number be chosen to match the first three letters of
the name of the entity, or be a suitable abbreviation of that name.

Table G.1 — Profile description for profile 0x00000001

Profile identification 0x00000001
Requirements All JBIG2 capabilities
Generic region coding No restriction
Refinement region coding|| No restriction
Halftone region coding No restriction
Numerical data No restriction
Resources required Desktop computer
Application examples

Table G.2 — Profile description for profile 0x00000002

Profile identification 0x00000002

Requirements Maximum compression

Generic region coding Arithmetic only; any template used
Refinement region coding|| No restriction

Halftone region coding No restriction

Numerical data Arithmetic only

Resources required Desktop computer

Application examples Archiving; High-end fax; Wireless WWW

Table G.3 — Profile description for profile 0x00000003

Profile identification 0x00000003

Requirements Medium complexity and medium compression
Generic region coding Arithmetic only; only 10-pixel and 13-pixel templategs
Refinement region coding|| 10-pixel template only

Halftone region coding No skip mask used

Numerical data Arithmetic only

Resources required Laptop computer

Application examples WWWwW
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Table G.4 — Profile description for profile 0x00000004

Profile identification 0x00000004
Requirements Low complexity with progressive lossless capability
Generic region coding MMR only

Refinement region coding

10-pixel template only

Halftone region coding

No skip mask used

Numerical data

Huffman only

Resources required

Laptop computer

Application examples

WWW

Table G.5 — Profile description for profile 0x00000005

Profile identification 0x00000005
Requirements Low complexity
Generic region coding MMR only
Refinement region coding|| Not available

Halftone region coding

No skip mask used

Numerical data

Huffman only

Resources required

Standalone

Application examples

Low-end fax; high-speed printing
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Annex H
(informative)
Datastream Example and Test Sequence

H.1 Datastream example

This subclause gives a small datastream that exercises a large number of the features of JBIG2.

The raw data here is shown in the following format:

0023: 01 23 45 67 89 AB CD EF

where the first field (before the colon) is the byte offset into the datastream of the data being displayed, and
the remainder of the line is a sequence of bytes starting at that offset. All these values are in hexadecimal.

In general, the decoding of the first occurrence of any type of data is explained in detail; further occurrences
of the same type of data are not explained in as much detail.

This datastream encodes one symbol dictionary that is not associated with any page and three pages. The first
two pages each contain a page information segment, a symbol dictionary segment, a text region segment, a generic
region segment, a pattern dictionary segment, a halftone region segment, and an end of page segment. The bitmaps
encoded by these two pages are identical, and are shown in Figure H.1. The data encoded by the corresponding
segments in the two pages are also identical (e.qg., the text region segment for page 1 contains the same data, in
the same order, as the text region segment for page 2). However, the segments are encoded differently in the two
pages: in page 1, all the segments use some form of Huffman or MMR coding; in page 2, all the segments use
some form of arithmetic coding. Thus, implementors can cross-check against their own implementations to ensure
that they are decoding correctly.

The third page contains two symbol dictionaries, one of which defines symbols by refinement and aggregation
from the other one, and one text region, which uses the symbols from the dictionary including refining one of
them.

Throughout this subclause, pixels having the vdlaee shown as black pixels, while pixels having the value
0 are shown as white pixels. This is a typical interpretatiof ahd1, as might be made by an application using
this Recommendatigninternational Standard.

The datastream is

0000: 97 4A 42 32 0D OA 1A OA 01 00 OO 00 03 00 OO 00

0010: 00 00 01 00 OO 00 00 18 00 01 00 00 0O 01 00 00

0020: 00 01 E9 CB F4 00 26 AF 04 BF FO 78 2F EO 00 40

0030: 00 00 00 01 30 00 01 OO0 OO 00O 13 00 0O 00 40 00

0040: 00 00 38 00 00O 00 00 OO0 OO OO 00 01 OO OO 00 00

0050: 00 02 00 01 01 00 00 00 1C 00 01 00 OO 00 02 00

0060: 00 00 02 E5 CD F8 00 79 EO 84 10 81 FO 82 10 86

0070: 10 79 FO 00 80 00 00 OO 03 07 42 00 02 01 00 0O

0080: 00 31 00 00 OO0 25 00 00 OO 08 00 00 OO 04 00 00

0090: 00 01 00 OC 09 00 10 OO OO 00 05 01 10 00 00 00

00AO: 00 00 00 00 00 OO OO 00 00 OO OO 00 OC 40 07 08

00BO: 70 41 DO 00 00 00 04 27 00 01 00 00 00 2C 00 00

00CO: 00 36 00 00 00 2C 00 00 00 04 00 00 00 OB 00 01

00D0O: 26 A0 71 CE A7 FF FF FF FF FF FF FF FF FF FF FF

OOEO: FF FF FF FF FF FF FF FF F8 FO 00 00 00 05 10 01

OOF0: 01 00 00 00 2D 01 04 04 00 00 00 OF 20 D1 84 61

0100: 18 45 F2 F9 7C 8F 11 C3 9E 45 F2 F9 7D 42 85 0A

0110: AA 84 62 2F EE EC 44 62 22 35 2A 0A 83 B9 DC EE

0120: 77 80 00 00 OO0 06 17 20 05 01 00 00 00 57 00 00

0130: 00 20 00 00 OO0 24 00 00 00O 10 00 00 00 OF 00 01

0140: 00 00 00 08 00O 00 00 09 OO OO 00 OO0 OO OO 00 00

0150: 04 00 00 00 AA AA AA AA 80 08 00 80 36 D5 55 6B

0160: 5A D4 00 40 04 2E E9 52 D2 D2 D2 8A A5 4A 00 20

0170: 02 23 EO 95 24 B4 92 8A 4A 92 54 92 D2 4A 29 2A

0180: 49 40 04 00 40 00 00 00 07 31 00 01 00O 00O 00 00
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0190:
01A0:
01BO:
01cCo:
01DO0:
01EO0:
01FO0:
0200:
0210:
0220:
0230:
0240:
0250:
0260:
0270:
0280:
0290:
02A0:
02B0:
02Co:
02D0:
02EO0:
02FO0:
0300:
0310:
0320:
0330:
0340:
0350:

00
00
00
02
B2
1F
01
00
00
FF
00
90
6E
3E
OF
00
4A
00
03
00
00
E7
03
03
14
25
00
28
00

00 00 08 30 00 02 00 OO 00 13 0O 00 00 40 00
00 38 00 00 00 00 OO OO OO OO 01 OO0 00 00 OO
09 00 01 02 00 00 OO 1B 08 00 02 FF OO0 00 00
00 00 00 02 4F E7 8C 20 OE 1D C7 CF 01 11 C4
6F FF AC 00 00 00 OA 07 40 00 09 02 00 0O 00
00 00 00 25 00 00 OO 08 00 OO OO 04 00 00 00
00 OC 08 00 00 00 05 8D G6E 5A 12 40 85 FF AC
00 00 OB 27 00 02 00 OO 00 23 00 00 OO 36 00
00 2C 00 00 00 04 00 00 00 OB 00 08 03 FF FD
02 FE FE FE 04 EE ED 87 FB CB 2B FF AC 00 00
0C 10 01 02 00 00O OO 1C 06 04 04 00 00 OO OF
71 6B 6D 99 A7 AA 49 7D F2 E5 48 1F DC 68 BC
40 BB FF AC 00 00 00 OD 17 20 OC 02 00 00 00
00 00 00 20 00 00 00 24 00 00 00 10 OO 00 00
00 02 00 00O 00O 08 00 OO OO 09 00 OO OO 00 00
00 00 04 00 00 00 87 CB 82 1E 66 A4 14 EB 3C
15 FA CC D6 F3 B1 6F 4C ED BF A7 BF FF AC 00
00 OE 31 00 02 00 OO OO OO 00 OO0 OO OF 30 00
00 00 00 13 00 00 00 25 0O OO0 00 08 00 00 00
00 00 00 00 01 00 OO OO OO 00 10 OO 01 00 0O
00 16 08 00 02 FF 00 OO 00 01 00O OO OO 01 4F
8D 68 1B 14 2F 3F FF AC 00 00 00 11 00 21 10
00 00 00 20 08 02 02 FF FF FF FF FF 00 00 00
00 00 00 02 4F E9 D7 D5 90 C3 B5 26 A7 FB 6D
98 3F FF AC 00 00 00 12 07 20 11 03 00 OO 00
00 00 00 25 00 00 OO 08 00 00O 00 OO 0O 00 00
00 8C 12 00 00 00 04 A9 5C 8B F4 C3 7D 96 6A
E5 76 8F FF AC 00 00 00 13 31 00 03 00 00 00
00 00 00 14 33 00 00 00 00 0O OO

The datastream is decoded as follows.

1. The file header

0000:

97 4A 42 32 0D OA 1A OA 01 00 00 00 02

(@) The eight-byte ID string

0000: 97 4A 42 32 0D OA 1A 0A

(b) The one-byte file header flags field

0008: 01

This field indicates that the file uses the sequential organisation, and that the number of pages is known.
(c) The four-byte number of pages field

0009: 00 00 00 03

This field indicates that the file has three pages.

2. The first segment header
000D: 00 00 00 00 00 01 OO0 00 00 00 18

(a) The four-byte segment number field

000D: 00 00 00 00

This field indicates that the segment is segment number 0.
(b) The one-byte segment header flags field

0011: 00

This field indicates that the segment has type “Symbol dictionary” (type 0), has a short page associa-
tion field, and does not have the deferred non-retain bit set.
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Test datastream page bitmap

Figure H.1 —
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(c) The one-byte referred-to segment count and retention flags field

0012: 01

This field indicates that the segment refers to no other segment, and that it should be retained.
(d) The one-byte (short-form) segment page association field

0013: 00

This field indicates that this segment is not associated with any page.
(e) The four-byte segment data length field

0014: 00 00 00 18

This field indicates that the segment’s data part is 24 bytes long.

3. The first segment data part

0o018:
0028:

00 01 00 OO 00 01 00 OO OO 01 E9 CB F4 00 26 AF
04 BF FO 78 2F EO 00 40

(a) The two-byte symbol dictionary flags field

0018: 00 01

This field indicates that the segment is encoded using the Huffman coding variant, does not use refine-

ment/aggregate coding, uses Table B.4SBDHUFFDH, and uses Table B.2 f@DHUFFDW.
(b) The four-byteSDNUMEXSYMS field.

001A: 00 00 00 01

This field indicates thaBDNUMEXSYMS is 1: one symbol is exported by this symbol dictionary.
(c) The four-byteSDNUMNEWSYMS field.

001E: 00 00 00 01

This field indicates thasDNUMNEWSYMS is 1: one symbol is defined by this symbol dictionary.
(d) The encoded symbol dictionary data

0022: E9 CB F4 00 26 AF 04 BF FO 78 2F EO 00 40

This is decoded as follows.

Using Table B.4, decode a height class delta height value. This consumes tié 1Ht400
indicating a height class delta height of 8. The first height class thus has a height of 8 pixels.

i. Using Table B.2, decode a delta width value. This consumes th& bt 01Qindicating a delta

width of 5. The first symbol thus has a width of 5 pixels.

Using Table B.2, decode a delta width value. This consumes the bit$11 indicating a delta

width of OOB. This ends the height class; the height class contains one symbol whose width is 5
pixels and whose height is 8 pixels.

Using Table B.1, decode the size in bytes of the height class collective bitmap. This consumes
the bits0100Q indicating a size of eight bytes.

. Skip the remaining bits in the last byte read. This consumes the@M3000
Vi.

Decode the next eight bytes

0026: 26 AF 04 BF FO 78 2F EO

using MMR. This produces the height class collective bitmap, which is also the bitmap for the
single symbol in the height class, shown in Figure H.2.

Figure H.2 — The first symbol in the first symbol dictionary
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vii. SinceSDNUMNEWSYMS is 1, the last symbol has now been decoded.

viii. Using Table B.1, decode an export run length. This consumes th@®M3Q indicating that the
first 0 symbols are not exported.

ix. Using Table B.1, decode an export run length. This consumes th@dfifs], indicating that the
next 1 symbols are exported. Thus, this symbol dictionary defines one symbol, which is exported.

x. Skip the remaining bits in the last byte. This consumes theDBi@900

4. The second segment header
0030: 00 00 00 01 30 00 01 OO OO 00 13

This segment has a segment number of 1, a type of “Page information” (type 48), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It
is associated with page 1, and has a data length of 19 bytes.

5. The second segment data part
003B: 00 00 00 40 00 00 00 38 00O OO 00 00O OO OO 00 00
004B: 01 00 00

(&) The page bitmap width field

003B: 00 00 00 40

This indicates that the page is 64 pixels wide.
(b) The page bitmap height field

003F: 00 00 00 38

This indicates that the page is 56 pixels high.
(c) The page X resolution field

0043: 00 00 00 00

This indicates that the page’s X resolution is unknown.
(d) The page Y resolution field

0047: 00 00 00 00

This indicates that the page’s Y resolution is unknown.
(e) The page segment flags field

004B: 01

This indicates that the page is eventually lossless, the page does not contain any refinements, the page
default pixel value i9, the page default combination operator is OR, the page does not require any
auxiliary buffers, and the page default combination operator is used by every region segment on the

page.
(f) The page striping information field
004C: 00 00
This indicates that the page is not striped.

6. The third segment header
004E: 00 00 00 02 00 01 01 00 00O 00 1C
This segment has a segment number of 2, a type of “Symbol dictionary” (type 0), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is retained. It is
associated with page 1, and has a data length of 28 bytes.

7. The third segment data part
0059: 00 01 00 00 OO0 02 00 00O OO 02 E5 CD F8 00 79 EO
0069: 84 10 81 FO 82 10 86 10 79 FO 00 80
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(a) The two-byte symbol dictionary flags field

0059: 00 01

This field indicates that the segment is encoded using the Huffman coding variant, does not use refine-

ment/aggregate coding, uses Table B.4SDHUFFDH, and uses Table B.2 f{@DHUFFDW.
(b) The four-byteSDNUMEXSYMS field.

005B: 00 00 00 02

This field indicates thadaDNUMEXSYMS is 2: two symbols are exported by this symbol dictionary.
(c) The four-byteSDNUMNEWSYMS field.

005F: 00 00 00 02

This field indicates theBDNUMNEWSYMS is 2: two symbols are defined by this symbol dictionary.
(d) The encoded symbol dictionary data

0063: E5 CD F8 00 79 EO 84 10 81 FO 82 10 86 10 79 FO

0073: 00 80

This is decoded as follows.

Using Table B.4, decode a height class delta height value. This consumes tié 1it910
indicating a height class delta height of 6. The first height class thus has a height of 6 pixels.
Using Table B.2, decode a delta width value. This consumes th&bit8 011 indicating a delta
width of 6. The first symbol thus has a width of 6 pixels.

iii. Using Table B.2, decode a delta width value. This consumes thébitslicating a delta width

iv.

Vi.
Vii.

of 0. The second symbol thus has a width of 6 pixels.

Using Table B.2, decode a delta width value. This consumes thd bit$11 indicating a delta

width of OOB. This ends the height class; the height class contains two symbols, which both are
6 pixels wide and 6 pixels high.

. Using Table B.1, decode the size in bytes of the height class collective bitmap. This consumes the

bits 0000Q indicating a size of zero bytes. This indicates that the height class collective bitmap
is stored uncompressed. Since the total width of the symbols in the height class is 12, each row
of the height class is padded to be 16 bits (2 bytes) wide.
Skip the remaining bits in the last byte read. This consumes thé®X800
Read the next 12 bytes (6 rows of 2 bytes each), and use the leftmost 12 bits of each row as the
height class collective bitmap. These 12 bytes are
0067: 79 EO 84 10 81 FO 82 10 86 10 79 FO
or, in binary

01111001 11100000

10000100 00010000

10000001 11110000

10000010 00010000

10000110 00010000

01111001 11110000
The height class collective bitmap is therefore as shown in Figure H.3, and the two symbols are
as shown in Figure H.4(a) and (b).

Figure H.3 — The height class collective bitmap in the second symbol dictionary

viii. Since SDNUMNEWSYMS is 2, the last symbol has now been decoded.

iX.

Using Table B.1, decode an export run length. This consumes th@dfit) indicating that the
first 0 symbols are not exported.

162



(@) (b)

Figure H.4 — The symbols in the second symbol dictionary

x. Using Table B.1, decode an export run length. This consumes th@Qfifs) indicating that the
next 2 symbols are exported. Thus, this symbol dictionary defines two symbols, which are both
exported.

xi. Skip the remaining bits in the last byte. This consumes theDBg®H00

8. The fourth segment header
0075: 00 00 00 03 07 42 00 02 01 00 00 00 31
This segment has a segment number of 3, a type of “Immediate lossless text region” (type 7), a short page
association field, and does not have the deferred non-retain bit set. It refers to two other segments, segments

number 0 and 2; segment 0 should be retained, but segment 2 and this segment should not be retained. It is
associated with page 1, and has a data length of 49 bytes.

9. The fourth segment data part
0082: 00 00 00 25 00 OO0 00 08 00 00 OO 04 00 00 00 01
0092: 00 OC 09 00 10 00 00 00 05 01 10 OO0 00 OO 0O 00
00A2: 00 00 00 00 00 OO0 00 OO0 00 00 OC 40 07 08 70 41
00B2: DO

(&) The region segment bitmap width field
0082: 00 00 00 25
This field indicates that the region bitmap is 37 pixels wide.
(b) The region segment bitmap height field
0086: 00 00 00 08
This field indicates that the region bitmap is 8 pixels high.
(c) The region segment bitmap X location field
008A: 00 00 00 04
This field indicates that the region bitmap’s left edge is 4 pixels right of the page’s left edge.
(d) The region segment bitmap Y location field
008E: 00 00 00 01
This field indicates that the region bitmap’s top edge is 1 pixel down from the page’s top edge.
(e) The region segment flags field
0092: 00
This field indicates that the region should be drawn into the page using the combination operator OR.
(f) The two-byte text region segment flags field
0093: 0C 09
This field indicates that the segment is encoded using the Huffman coding variant, does not contain any
refinements, has@BSTRIPSvalue of 4, has a reference corner of BOTTOMLEFT, is not transposed,
combines its symbols using OR, has a default pixel valug ahd has &BDSOFFSETvalue of 3.
(g) The two-byte text region segment Huffman flags field
0095: 00 10

This field indicates that the segment uses Table B.&®IHUFFFS, Table B.8 forSBHUFFDS, and
Table B.12 forSBHUFFDT.
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(h) The four-byteSBNUMINSTANCES field
0097: 00 00 00 05
This field indicates thaBBNUMINSTANCES is 5: five symbol instances are encoded in this text
region.
() The text region segment symbol ID Huffman decoding table.
009B: 01 10 00 00O OO 00 00 OO OO OO 00 00 OO OO 00 00
00AB: 00 OC

The two symbol dictionaries referred to by this segment have a total of 3 symbols in them. Decoding
the RUNCODE Huffman table, consuming all of the data but the last four bits, gives the following
assignment of code lengths to the RUNCODEs:

| RUNCODE1] 1 [| RUNCODE2]| 1 |
and therefore the following Huffman table for the RUNCODEs:
| RUNCODE1] 0 [| RUNCODE2]| 1 |

Decoding using this table produces the sequence RUNCODE2, RUNCODEZ2, RUNCODEL1 (consum-
ing the bits110. Thus, the first symbol (the “p” from the first symbol dictionary) has a Huffman
code length of 2; the second symbol (the “c” from the second symbol dictionary) has a Huffman code
length of 2, and the third symbol (the “a” from the second symbol dictionary) has a code length of 1.
Applying the Huffman code assignment algorithm gives the table

p| 10
c| 11
al|o

At this point, there is one bi) remaining in the last of data; this is now skipped.

() The encoded text region data
00AD: 40 07 08 70 41 DO
This is decoded as follows.
i. Using Table B.12, decode a delta T value. This consumes th8,bitdicating a delta T value of
4 (the table’s decoded value of 1, multiplied BBSTRIPS. The initial STRIPT value is -4.

ii. Using Table B.12, decode a delta T value. This consumes thd @iiadicating a delta T value
of 8 (2 timesSBSTRIPY. STRIPT is therefore now 4.

iii. Using Table B.6, decode a first S value. This consumes thedBif3000000indicating a first S
value of 0.

iv. Reading two bits (sincBEBSTRIPS consumes the bi&l. The first symbol instance T coordinate
is therefore 5 (STRIPT plus the decoded value of 1).

v. Using the symbol ID Huffman table, decode a symbol ID value. This consumes th&lbits
indicating the symbol “c”. Thus, the symbol “c” should be drawn with its lower left corner at (0,
5).

vi. At this point, CURS is 8 (0 pluSBDSOFFSETplus the previous symbol’s width of 6 minus 1).

vii. Using Table B.8, decode a delta S value. This consumes th@bilsindicating a delta S value
of 0.

viii. Reading two bits consumes the bi. The second symbol instance T coordinate is therefore 5.

ix. Using the symbol ID Huffman table, decode a symbol ID value. This consumes tHg bits
dicating the symbol “a”. Thus, the symbol “a” should be drawn with its lower left corner at (8,
5).

X. At this point, CURS is 16 (8 pluSBDSOFFSETplus the previous symbol’s width of 6 minus
1).

xi. Using Table B.8, decode a delta S value. This consumes th8Misindicating a delta S value
of 0.

164



Figure H.5 — The text region bitmap

xii. Reading two bits consumes the bit. The third symbol instance T coordinate is therefore 7.

xiii. Using the symbol ID Huffman table, decode a symbol ID value. This consumes tha®its
indicating the symbol “p”. Thus, the symbol “p” should be drawn with its lower left corner at
(16, 7).

Xiv. At this point, CURS is 23 (16 pluSBDSOFFSETplus the previous symbol’s width of 5 minus
1).

xv. Using Table B.8, decode a delta S value. This consumes théMf@isindicating a delta S value
of 0.

xvi. Reading two bits consumes the bits The fourth symbol instance T coordinate is therefore 5.

xvii. Using the symbol ID Huffman table, decode a symbol ID value. This consumes th@, lits
dicating the symbol “a”. Thus, the symbol “a” should be drawn with its lower left corner at (8,
5).

xviii. At this point, CURS is 31 (23 pluSBDSOFFSETplus the previous symbol’s width of 6 minus
1).

xix. Using Table B.8, decode a delta S value. This consumes th@Msindicating a delta S value
of 0.

xx. Reading two bits consumes the Witk The fifth symbol instance T coordinate is therefore 5.

xxi. Using the symbol ID Huffman table, decode a symbol ID value. This consumes thglpits
indicating the symbol “c”. Thus, the symbol “c” should be drawn with its lower left corner at (31,
5).

xxii. Using Table B.8, decode a delta S value. This consumes th@Jiirdicating a delta S value of
OOB, indicating the end of this strip. SINEBNUMINSTANCES is 5, and five symbol instances
have been decoded, there are no more strips.

xxiii. Skip the remaining bits in the last byte read. This consumes th®bd8

(k) Decoding the data produced the following list of symbol instances and locations (the locations are

where the symbol’s lower left corner should be placed):

Symbol | Location
c (0, 5)
a (8,5)
p (16, 7)
a (23,5)
c (31,5)

Drawing these symbol instances produces the 37-by-8 pixel region bitmap shown in Figure H.5.

10. The fifth segment header
00B3: 00 00 00 04 27 00 01 00 00 00 2C

This segment has a segment number of 4, a type of “Immediate lossless generic region” (type 39), a short
page association field, and does not have the deferred non-retain bit set. It refers to no other segments, and
is not retained. It is associated with page 1, and has a data length of 44 bytes.

11. The fifth segment data part

OOBE: 00 00 00 36 00 00 00 2C 00 00 00O 04 00 00 00 OB
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Figure H.6 — The generic region bitmap

OOCE: 00 01 26 A0 71 CE A7 FF FF FF FF FF FF FF FF FF
OODE: FF FF FF FF FF FF FF FF FF FF F8 FO

(a) The region segment information field
OOBE: 00 00 00 36 00 00 00 2C 0O 00 00 04 OO 00 00 OB
00CE: 00
This indicates that the region bitmap encoded by this segment is 54 pixels wide, 44 pixels high, and
its top left corner is 4 pixels right of the page’s left edge and 11 pixels down from the page’s top edge.
It should be drawn into the page using OR.
(b) The region data
O0OCF: 01 26 A0 71 CE A7 FF FF FF FF FF FF FF FF FF FF
00DF: FF FF FF FF FF FF FF FF FF F8 FO
The first byte Q1) is the generic region segment flags byte, and indicates that the region is encoded

using MMR. The remaining bytes are the MMR-encoded data for the region bitmap. These bytes
MMR-decompress to the 54-by-44 region bitmap shown in Figure H.6.
12. The sixth segment header
OOEA: 00 00 00 05 10 01 01 00 00 00 2D

This segment has a segment number of 5, a type of “Pattern dictionary” (type 16), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is retained. It is
associated with page 1, and has a data length of 45 bytes.

13. The sixth segment data part
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Figure H.7 — The pattern dictionary collective bitmap
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Figure H.8 — The patterns defined in the pattern dictionary

OOF5: 01 04 04 00 00 00 OF 20 D1 84 61 18 45 F2 F9 7C
0105: 8F 11 C3 9E 45 F2 F9 7D 42 85 OA AA 84 62 2F EE
0115: EC 44 62 22 35 2A OA 83 B9 DC EE 77 80

(a) The one-byte pattern dictionary flags field

00F5: 01

This field indicates that the segment is encoded using the MMR coding variant.
(b) The one-byt&iDPW field

00F6: 04

This field indicates thatDPW, the width of the patterns defined in this dictionary, is 4.
(c) The one-byté¢iDPH field

00F7: 04

This field indicates thatiDPH, the height of the patterns defined in this dictionary, is 4.
(d) The four-byteGRAYMAX field

OOF8: 00 00 00 OF

This field indicates thaGRAYMAX is 15, and thus there are 16 patterns in this pattern dictionary

(numbered 0 through 15).
(e) The remaining 38 bytes in the segment

OOFC: 20 D1 84 61 18 45 F2 F9 7C 8F 11 C3 9E 45 F2 F9

010C: 7D 42 85 OA AA 84 62 2F EE EC 44 62 22 35 2A 0OA

011C: 83 B9 DC EE 77 80

These bytes MMR-decompress to the pattern dictionary’s collective bitmap. The width of the bitmap
is (GRAYMAX +1) x HDPW, and the height isiIDPH pixels. The 64-by-4 bitmap that is the result
of this MMR decompression is shown in Figure H.7.

The 16 individual patterns are obtained from the collective bitmap by breaking it into 4-pixel-wide
pieces. They are shown in Figure H.8, where pattern number 0 is the top left pattern, pattern number
listoitsright, and so on.

14. The seventh segment header
0122: 00 00 00 06 17 20 05 01 OO0 00 00 57
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This segment has a segment number of 6, a type of “Immediate lossless halftone region” (type 23), a short
page association field, and does not have the deferred non-retain bit set. It refers to one other segment,
segment number 5; neither segment 5 nor this segment should be retained. It is associated with page 1, and
has a data length of 87 bytes.

. The seventh segment data part

012E: 00 00 00 20 00 00 00 24 00 00 00 10 OO0 00 00 OF
013E: 00 01 00 00 00 08 00 00 00 09 00 00 00 00 00 00
014E: 00 00 04 00 00 00 AA AA AA AA 80 08 00 80 36 D5
015E: 55 6B 5A D4 00 40 04 2E E9 52 D2 D2 D2 8A A5 4A
016E: 00 20 02 23 EO 95 24 B4 92 8A 4A 92 54 92 D2 4A
017E: 29 2A 49 40 04 00 40

(a) The region segment information field
012E: 00 00 00 20 00 00 00 24 00 00 00 10 OO OO 00 OF
013E: 00

This indicates that the region bitmap encoded by this segment is 32 pixels wide, 36 pixels high, and its
top left corner is 16 pixels right of the page’s left edge and 15 pixels down from the page’s top edge.
It should be drawn into the page using OR.

(b) The halftone region segment flags field
013F: 01

This field indicates that the halftone region is encoded using the MMR coding variant. The patterns
should be combined using OR. The default pixel valu@ is

(c) TheHGW field

0140: 00 00 00 08

This field indicates that the array of gray-scale values is 8 wide.
(d) TheHGH field

0144: 00 00 00 09

This field indicates that the array of gray-scale values is 9 high.
(e) TheHGX field

0148: 00 00 00 00

This field indicates that the horizontal offset of the halftone grid is 0 pixels.
() TheHGY field

014C: 00 00 00 00

This field indicates that the vertical offset of the halftone grid is 0 pixels.
(g) TheHRX field

0150: 04 00

This field indicates that thelRX is 1024, and thus the horizontal coordinate of the grid vector is

1024/256 pixels, or 4 pixels.
(h) TheHRY field

0152: 00 00

This field indicates that the vertical coordinate of the grid vector is O pixels.
() The first bitplane

0154: AA AA AA AA 80 08 00 80

Decompressing this with MMR yields the bitmap shown in Figure H.9(a). Note that the last 7 bits in
the last byte are skipped over after all the MMR-encoded data has been decoded (i.e., decoding the
bitplane is forced to consume an integral number of bytes).
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(@) (b) (©) (d)

Figure H.9 — The raw bitplanes for the halftone region

l l E E
(©) (d)

(@) (b)

Figure H.10 — The bitplanes for the halftone region

() The second bitplane
015C: 36 D5 55 6B 5A D4 00 40 04
Decompressing this with MMR yields the bitmap shown in Figure H.9(b).

(k) The third bitplane
0165: 2E E9 52 D2 D2 D2 8A A5 4A 00 20 02
Decompressing this with MMR yields the bitmap shown in Figure H.9(c).

() The fourth bitplane
0171: 23 EO 95 24 B4 92 8A 4A 92 54 92 D2 4A 29 2A 49
0181: 40 04 00 40
Decompressing this with MMR yields the bitmap shown in Figure H.9(d).

(m) These bitplanes are then Gray-decoded as described in C.5, by XORing the first into the second, then
the resulting bitplane into the third, and so on. The resulting bitplanes are shown in Figure H.10.

(n) Stacking up these bitplanes, with the first being the most significant, results in the array of values

0|{1, 2|3 |4|5]|6]|7
1123 |4 |5|6|7]|8
2|34 |5|6|7|8]09
3|14, 56| 7|8 9]10
4|56 | 7|89 10 11
5|67 (8] 9|10|11] 12
6|7 8|9 |(10|11| 12| 13
7189 (10|11|12| 13| 14
819/10(11|12| 13| 14| 15

(o) The halftone grid vector and offset produces the following array of locations. Combining this with the
array of values results in a list of drawing operations, indicating that the pattern whose index in the
pattern dictionary in segment number 5 is that value should be drawn with its upper left pixel at the
given location.
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16.

17.

18.

0,0) | (4,0) | (8,0) | (12,0) | (16,0) | (20,0) | (24,0) | (28,0)
0,4) | (4,4) | (84) | (12,4) | (16,4) | (20,4) | (24,4) | (28,4)
0,8) | (4,8) | (8,8) | (12,8) | (16,8) | (20,8) | (24,8) | (28,8)
(0,12) | (4,12) | (8,12) | (12,12) | (16,12) | (20,12) | (24,12) | (28,12)
(0,16) | (4,16) | (8,16) | (12,16) | (16,16) | (20,16) | (24,16) | (28, 16)
(0,20) | (4,20) | (8,20) | (12,20) | (16,20) | (20,20) | (24,20) | (28,20)
(0,24) | (4,24) | (8,24) | (12,24) | (16,24) | (20,24) | (24,24) | (28,24)
(0,28) | (4,28) | (8,28) | (12,28) | (16,28) | (20,28) | (24,28) | (28,28)
(0,32) | (4,32) | (8,32) | (12,32) | (16,32) | (20,32) | (24,32) | (28,32)

(p) Performing those drawing operations produces the 32-by-36 region bitmap shown in Figure H.11

The eighth segment header
0185: 00 00 00 07 31 00 01 00 00 00 00

This segment has a segment number of 7, a type of “End of page” (type 49), a short page association field,
and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It is
associated with page 1, and has a data length of zero bytes.

The region segment bitmaps are combined as follows, taking into account the page default pixel value and
each region segment’s combination operator. First, the page bitmap (64 pixels wide and 56 pixels high) is
filled with O, the page default pixel value. Next, the bitmap shown in Figure H.5 is drawn using OR into the
page bitmap with its top left pixel at locatidd, 1). Next, the bitmap shown in Figure H.6 is drawn using

OR into the page bitmap with its top left pixel at locatigh 11). Finally, the bitmap shown in Figure H.11

is drawn using OR into the page bitmap with its top left pixel at locafith) 15). After all this has been

done, the resulting bitmap is the one shown in Figure H.1.

The ninth segment header
0190: 00 00 00 08 30 00 02 00 00 00 13
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19.

20.

21.

22.

23.

This segment has a segment number of 8, a type of “Page information” (type 48), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It
is associated with page 2, and has a data length of 19 bytes.

The ninth segment data part

019B: 00 00 00 40 00 00 00 38 00 00 OO 00 OO OO0 00 00
01AB: 01 00 00

This contains the same information as does segment number 1.

The tenth segment header
O1AE: 00 00 00 09 00 01 02 00 OO 00 1B

This segment has a segment number of 9, a type of “Symbol dictionary” (type 0), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is retained. It is
associated with page 2, and has a data length of 27 bytes.

The tenth segment data part
01B9: 08 00 02 FF 00 00 00 02 00 OO 00 02 4F E7 8C 20
01C9: OE 1D C7 CF 01 11 C4 B2 6F FF AC

(a) The two-byte symbol dictionary flags field
01B9: 08 00
This field indicates that the segment is encoded using the arithmetic coding variant and does not use
refinement/aggregate codifgDTEMPLATE has the value 2. The “bitmap coding context used” and
“bitmap coding context retained” bits are bdth
(b) The symbol dictionary AT flags field
01BB: 02 FF
This field indicates thaBDATX; is 2 andSDATY ; is -1; thus, AT pixelA; is at location(2, —1),
which is the nominal value for template 2.
(c) The four-byteSDNUMEXSYMS field.
01BD: 00 00 00 02
This field indicates thadaDNUMEXSYMS is 2: two symbols are exported by this symbol dictionary.
(d) The four-byteSDNUMNEWSYMS field.
01C1: 00 00 00 02
This field indicates tha8DNUMNEWSYMS is 2: two symbols are defined by this symbol dictionary.
(e) The encoded symbol dictionary data
01C5: 4F E7 8C 20 OE 1D C7 CF 01 11 C4 B2 6F FF AC
Decoding this gives the same two symbols shown in Figure H.4(a) and (b).

The eleventh segment header

01D4: 00 00 00 OA 07 40 00 09 02 00 00 00 1F

This segment has a segment number of 10, a type of “Immediate lossless text region” (type 7), a short page
association field, and does not have the deferred non-retain bit set. It refers to two other segments, segments
number 0 and 9; segment 0, segment 9, and this segment should not be retained. It is associated with page
2, and has a data length of 31 bytes.

The eleventh segment data part

OlE1: 00 00 00 25 00 00 00 08 00 OO 00 04 00 00O 00 01

O1F1: 00 OC 08 00 00 OO 05 8D 6E 5A 12 40 85 FF AC

171



(a)

(b)

(©)

(d)

The region segment information field

OlE1: 00 00 00 25 00 OO 00O 08 00 OO 00 04 00 00 00 01

01F1: 00

This indicates that the region bitmap encoded by this segment is 37 pixels wide, 8 pixels high, and its
top left corner is 4 pixels right of the page’s left edge and 1 pixel down from the page’s top edge. It
should be drawn into the page using OR.

The two-byte text region segment flags field

01F2: 0C 08

This field indicates that the segment is encoded using the arithmetic coding variant, does not contain
any refinements, hasEBSTRIPSvalue of 4, has a reference corner of BOTTOMLEFT, is not trans-
posed, combines its symbols using OR, has a default pixel valdyeeoid has &SBDSOFFSETvalue

of 3.

The four-byteSBNUMINSTANCES field

01F4: 00 00 00 05

This field indicates thaBBNUMINSTANCES is 5: five symbol instances are encoded in this text
region.

The encoded text region data

01F8: 8D 6E 5A 12 40 85 FF AC

Decoding this follows the exact same sequence that was seen in decoding segment number 3 (page 1's
text region segment), and results in the region bitmap shown in Figure H.5.

24. The twelfth segment header
0200: 00 00 00 OB 27 00 02 00 00 00 23

This segment has a segment number of 11, a type of “Immediate lossless generic region” (type 39), a short
page association field, and does not have the deferred non-retain bit set. It refers to no other segments, and
is not retained. It is associated with page 2, and has a data length of 35 bytes.

25.

The twelfth segment data part

020B: 00 00 00 36 00 00 00 2C 00 00 00 04 00 0O 00 OB
021B: 00 08 03 FF FD FF 02 FE FE FE 04 EE ED 87 FB CB
022B: 2B FF AC

(@)

(b)

(©)

The region segment information field

020B: 00 00 00 36 00 00 00 2C 00 00 00 04 00 00 00 OB

021B: 00

This indicates that the region bitmap encoded by this segment is 54 pixels wide, 44 pixels high, and
its top left corner is 4 pixels right of the page’s left edge and 11 pixels down from the page’s top edge.
It should be drawn into the page using OR.

The one-byte generic region flags field

021C: 08

This indicates that the region is encoded using arithmetic coding GBIREMPLATE is 0, and
TPGDON is 1.

The generic region segment AT flags field

021D: 03 FF FD FF 02 FE FE FE

This field is eight bytes long becauSBTEMPLATE is 0, and there are thus four AT pixels whose
positions must be determined. The AT pixels are located Withat (3, —1); A, at(—3,—1); Az at
(2,—2); andA4 at(—2, —2). These are the nominal positions of those pixels for this template.
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26.

27.

28.

29.

(d) The region data
0225: 04 EE ED 87 FB CB 2B FF AC
Decoding this using the decoded valuesSBTEMPLATE , TPGDON, and the AT pixel locations
produces the 54-by-44 region bitmap shown in Figure H.6.

The thirteenth segment header
022E: 00 00 00 OC 10 01 02 00 00 00 1C

This segment has a segment number of 12, a type of “Pattern dictionary” (type 16), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is retained. It is
associated with page 2, and has a data length of 28 bytes.

The thirteenth segment data part
0239: 06 04 04 00 00 00 OF 90 71 6B 6D 99 A7 AA 49 7D
0249: F2 E5 48 1F DC 68 BC 6E 40 BB FF AC

(a) The one-byte pattern dictionary flags field
0239: 06
This field indicates that the segment is encoded using the arithmetic coding variant, aio Tl -
PLATE is 3.
(b) The one-byteiDPW field
023A: 04
This field indicates thattDPW is 4.
(c) The one-bytéiDPH field
023B: 04
This field indicates thatiDPH is 4.
(d) The four-byteGRAYMAX field
023C: 00 00 00 OF
This field indicates thaBRAYMAX is 15, and thus there are 16 patterns in this pattern dictionary.

(e) The remaining 21 bytes in the segment
0240: 90 71 6B 6D 99 A7 AA 49 7D F2 E5 48 1F DC 68 BC

0250: 6E 40 BB FF AC

These bytes decompress, using the pattern dictionary decoding procedure, to the collective bitmap
shown in Figure H.7, and thus the 16 patterns defined by this pattern dictionary are as shown in
Figure H.8.

The fourteenth segment header

0255: 00 00 00 OD 17 20 OC 02 00 00 00 3E

This segment has a segment number of 13, a type of “Immediate lossless halftone region” (type 23), a short
page association field, and does not have the deferred non-retain bit set. It refers to one other segment,
segment number 12; neither segment 12 nor this segment should be retained. It is associated with page 2,
and has a data length of 62 bytes.

The fourteenth segment data part

0261: 00 00 00 20 00 OO 00 24 00 00 00 10 OO 00 00 OF

0271: 00 02 00 00 OO 08 00 OO 00 09 00 OO 00 00 0O 00

0281: 00 00 04 00 00 00 87 CB 82 1E 66 A4 14 EB 3C 4A

0291: 15 FA CC D6 F3 Bl 6F 4C ED BF A7 BF FF AC
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30.

31.

32.

33.

34.

(a) The region segment information field
0261: 00 00 00 20 00 00 00 24 00 00 00 10 OO OO 00 OF
0271: 00
This indicates that the region bitmap encoded by this segment is 32 pixels wide, 36 pixels high, and its
top left corner is 16 pixels right of the page’s left edge and 15 pixels down from the page’s top edge.
It should be drawn into the page using OR.
(b) The halftone region segment flags field
0272: 02
This field indicates that the halftone region is encoded using the arithmetic coding variant, and that
HTEMPLATE is 1. The patterns should be combined using OR. The default pixel value is
(c) The other parameters
0273: 00 00 00 08 00 OO 00O 09 00 OO OO 00 00 OO OO 0O
0283: 04 00 00 00
The following fields indicate thatGW is 8, HGH is 9, HGX is 0, HGY is 0, HRX is 1024, and
HRY is 0.
(d) The four bitplanes
0287: 87 CB 82 1E 66 A4 14 EB 3C 4A 15 FA CC D6 F3 B1
0297: 6F 4C ED BF A7 BF FF AC

Decoding four 8-by-9 bitplanes from this data results in the four bitplanes shown in Figure H.9. As in
segment number 6, Gray-decoding these bitplanes, combining them into an array of values, and draw-
ing the patterns from the pattern dictionary according to that array and the halftone grid parameters
results in the region bitmap shown in Figure H.11.

The fifteenth segment header

029F: 00 00 00 OE 31 00 02 00 00 00 00

This segment has a segment number of 14, a type of “End of page” (type 49), a short page association field,
and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It is
associated with page 2, and has a data length of zero bytes.

The page bitmap is made by combining the three region bitmaps in the identical way that they were com-
bined in page 1, resulting in the same page bitmap.

The sixteenth segment header

02AA: 00 00 00 OF 30 00 03 00 0O 00 13

This segment has a segment number of 15, a type of “Page information” (type 48), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It
is associated with page 3, and has a data length of 19 bytes.

The sixteenth segment data part
02B5: 00 00 00 25 00 00 00 08 00 OO0 00 00 OO 00 00 00
02C5: 01 00 00

This indicates that the page is 37 pixels wide, is 8 pixels high, has unknown X and Y resolution, is eventually
lossless, does not contain any refinements, has a default pixel vadua default combination operator of

OR, does not require any auxiliary buffers, and uses the page default combination operator in every region
on the page.

The seventeenth segment header
02C8: 00 00 00 10 00 01 00 00 OO 00 16

This segment has a segment number of 16, a type of “Symbol dictionary” (type 0), a short page association
field, and does not have the deferred non-retain bit set. It refers to no other segments, and is retained. It is
associated with no page, and has a data length of 22 bytes.
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35. The seventeenth segment data part
02D3: 08 00 02 FF 00 00 00 01 OO OO 00 01 4F E7 8D 68
02E3: 1B 14 2F 3F FF AC

(a) The two-byte symbol dictionary flags field
02D3: 08 00
This field indicates that the segment is encoded using the arithmetic coding variant and does not use
refinement/aggregate codingDTEMPLATE has the value 2. The “bitmap coding context used” and
“bitmap coding context retained” bits are bdth

(b) The symbol dictionary AT flags field
02D5: 02 FF
This field indicates thaBDATX, is 2 andSDATY ; is -1; thus, AT pixelA; is at location(2, —1),
which is the nominal value for template 2.

(c) The four-byteSDNUMEXSYMS field.
02D7: 00 00 00 01
This field indicates thadBDNUMEXSYMS is 1: one symbol is exported by this symbol dictionary.

(d) The four-byteSDNUMNEWSYMS field.
02DB: 00 00 00 01
This field indicates thasDNUMNEWSYMS is 1: one symbol is defined by this symbol dictionary.

(e) The encoded symbol dictionary data
02DF: 4F E7 8D 68 1B 14 2F 3F FF AC
This is decoded as follows.

i. Reset all the arithmetic coding statistics to zero.

ii. Using the IADH arithmetic integer decoding procedure, decode a height class delta height value.
The value decoded is 6, indicating that the first height class is 6 pixels high.

iii. Using the IADW arithmetic integer decoding procedure, decode a delta width value. The value
decoded is 6. The first symbol thus has a width of 6 pixels.

iv. Using the generic region decoding procedure, VBGBTEMPLATE and the AT pixel4; set as
described in the symbol dictionary data header, decdie & bitmap. This produces the bitmap
shown in Figure H.12(a).

v. Using the IADW arithmetic integer decoding procedure, decode a delta width value. The value
decoded is OOB, indicating the end of the height class.

vi. SinceSDNUMNEWSYMS is 1, the last symbol has now been decoded.

vii. Using the IAEX arithmetic integer decoding procedure, decode an export run length. The value
decoded is 0, indicating that the first 0 symbols are not exported.

viii. Using the IAEX arithmetic integer decoding procedure, decode an export run length. The value
decoded is 1, indicating that the next 1 symbols are exported. Thus, this symbol dictionary defines
one symbol, which is exported.

(a) (b) (c)

Figure H.12 — The symbols in the symbol dictionaries on the third page
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36. The eighteenth segment header
02E9: 00 00 00 11 00 21 10 03 00 0O OO 20

This segment has a segment number of 17, a type of “Symbol dictionary” (type 0), a short page association
field, and does not have the deferred non-retain bit set. It refers to one other segment, segment 16. Segment
16 is not retained, but this segment is retained. It is associated with page 3, and has a data length of 32
bytes.

37. The eighteenth segment data part
02F5: 08 02 02 FF FF FF FF FF 00 00 00 03 00 00 00 02
0305: 4F E9 D7 D5 90 C3 B5 26 A7 FB 6D 14 98 3F FF AC

(a) The two-byte symbol dictionary flags field

02F5: 08 02

This field indicates that the segment is encoded using the arithmetic coding variant and uses refine-

ment/aggregate codingSDTEMPLATE has the value 2SDRTEMPLATE has the value 0. The

“bitmap coding context used” and “bitmap coding context retained” bits are(oth

(b) The symbol dictionary AT flags field

02F7: 02 FF

This field indicates thaBDATX, is 2 andSDATY ; is -1; thus, AT pixelA; is at location(2, —1),

which is the nominal value for template 2.

(c) The symbol dictionary refinement AT flags

02F9: FF FF FF FF

This field indicates thaBDRATX is -1, SDRATY is -1, SDRATX3 is -1, andSDRATY , is -1.

Thus, AT pixelRA; is at location(—1, —1) and AT pixelRA, is at location(—1, —1), which are the

nominal locations for refinement template 0.

(d) The four-byteSDNUMEXSYMS field.
02FD: 00 00 00 03
This field indicates the8BDNUMEXSYMS is 3: three symbols are exported by this symbol dictionary.
(e) The four-byteSDNUMNEWSYMS field.
0301: 00 00 00 02
This field indicates tha&8DNUMNEWSYMS is 2: two symbols are defined by this symbol dictionary.
(f) The encoded symbol dictionary data
0305: 4F E9 D7 D5 90 C3 B5 26 A7 FB 6D 14 98 3F FF AC
This is decoded as follows.
i. Reset all the arithmetic coding statistics to zero.
ii. Using the IADH arithmetic integer decoding procedure, decode a height class delta height value.
The value decoded is 6, indicating that the first height class is 6 pixels high.

iii. Using the IADW arithmetic integer decoding procedure, decode a delta width value. The value
decoded is 6. The first symbol thus has a width of 6 pixels.

iv. Using the IAAI arithmetic integer decoding procedure, decode a count of symbol instances in the
aggregation that forms the first symbol. The value decoded is 1.

v. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value decoded is
0. The first symbol is thus the one identified by symbol ID 0, which is the first (and only) symbol
in the dictionary (segment 16) referenced by this segment.

vi. Using the IARDX arithmetic integer decoding procedure, decode a symbol instance refinement
delta X value. The value decoded is 0.

vii. Using the IARDY arithmetic integer decoding procedure, decode a symbol instance refinement
delta Y value. The value decoded is 0. The refinement is thus done with the refined symbol
aligned with the reference symbol (i.6RREFERENCEDX and GRREFERENCEDY are
both 0).
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viil.

XI.

Xii.

Using the generic refinement region decoding procedure, decode the refined symbol instance
bitmap. The reference bitmap is the bitmap shown in Figure H.12(a) and the refined bitmap,
which is the bitmap of the first symbol defined in this symbol dictionary, is the bitmap shown in
Figure H.12(b).

ix. Using the IADW arithmetic integer decoding procedure, decode a delta width value. The value

decoded is 8. The second symbol thus has a width of 14 pixels.
Using the IAAI arithmetic integer decoding procedure, decode a count of symbol instances in the
aggregation that forms the second symbol. The value decoded is 2.

Using the text region decoding procedure, with parameters set as described in 6.5.8.2, decode a

14 x 6 pixel text region.

A. Usingthe IADT arithmetic integer decoding procedure, decode the initial STRIPT value. The
value decoded is 0.

B. Using the IADT arithmetic integer decoding procedure, decode a delta T value. The value
decoded is 0.

C. Using the IAFS arithmetic integer decoding procedure, decode a first S value. The value
decoded is 0. The reference corner (top left corner in this case) of the first symbol instance
in the aggregation is thus &3, 0).

D. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value de-
coded is 0. The first symbol is thus the one identified by symbol ID 0, which is the first (and
only) symbol in the dictionary (segment 16) referenced by this segment.

E. Using the IARI arithmetic integer decoding procedure, decode a refinement flag. The value
decoded i9), indicating that the first symbol instance is not refined.

F. At this point CURS is 5. Using the IADS arithmetic integer decoding procedure, decode a
delta S value. The value decoded is 3. The reference corner of the second symbol instance in
the aggregation is thus &, 0).

G. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value de-
coded is 1. The second symbol is thus the one identified by symbol ID 1, which is the first
(and, thus far only) symbol defined in this symbol dictionary.

H. Using the IARI arithmetic integer decoding procedure, decode a refinement flag. The value
decoded i9), indicating that the first symbol instance is not refined.

I. Using the IADS arithmetic integer decoding procedure, decode a delta S value. The value
decoded is OOB, indicating the end of the strip.

J. Decoding of the text region is now complete. The text region bitmap, which is the bitmap
of the second symbol defined in the symbol dictionary, is shown in Figure H.12(c). This is
obtained by drawing Figure H.12(a) @, 0) and Figure H.12(b) &8, 0).

Using the IADW arithmetic integer decoding procedure, decode a delta width value. The value
decoded is OOB, indicating the end of the height class.

xiii. Since SDNUMNEWSYMS is 2, the last symbol has now been decoded.

XIV.

XV.

Using the IAEX arithmetic integer decoding procedure, decode an export run length. The value
decoded is 0, indicating that the first 0 symbols are not exported.

Using the IAEX arithmetic integer decoding procedure, decode an export run length. The value
decoded is 3, indicating that the next 3 symbols are exported. Thus, this symbol dictionary
imports one symbol and defines two symbols, and all three are exported.

Note that the symbol from segment 16 is re-exported by this dictionary. The three symbols ex-
ported by this dictionary are therefore the three symbols shown in Figure H.12. Thus, atext region
may use the symbol shown in Figure H.12(a) (originally defined in segment 16) by referring to
segment 17, even though segment 16 is not retained past the end of segment 17.

38. The nineteenth segment header

0315:

00 00 00 12 07 20 11 03 00 00 00 25

This segment has a segment number of 18, a type of “Immediate lossless text region” (type 7), a short page
association field, and does not have the deferred non-retain bit set. It refers to one other segment, segment
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39.

17. Segment 17 and this segment should not be retained. It is associated with page 3, and has a data length
of 37 bytes.

The nineteenth segment data part

0321: 00 00 00 25 00 00 00 08 00 OO 00 OO 00 00 OO 00
0331: 00 8C 12 00 00 00 04 A9 5C 8B F4 C3 7D 96 6A 28
0341. E5 76 8F FF AC

(a)
(b)

(©)

(d)

(e)

The region segment information field

0321: 00 00 00 25 00 OO 00 08 OO OO OO 00 OO OO 00 00

0331: 00

This indicates that the region bitmap encoded by this segment is 37 pixels wide, 8 pixels high, and its
top left corner is O pixels right of the page’s left edge and 0 pixel down from the page’s top edge. It
should be drawn into the page using OR.

The two-byte text region segment flags field

0332: 8C 12

This field indicates that the segment is encoded using the arithmetic coding variant, contains refine-
ments, has 8BSTRIPSvalue of 1, has a reference corner of TOPLEFT, is not transposed, combines
its symbols using OR, has a default pixel valueOpthas aSBDSOFFSETvalue of 3, and has a
SBRTEMPLATE value of 1.

The four-byteSBNUMINSTANCES field

0334: 00 00 00 04

This field indicates thaSBBNUMINSTANCES is 4: four symbol instances are encoded in this text
region.

The encoded text region data

0338: A9 5C 8B F4 C3 7D 96 6A 28 E5 76 8F FF AC

This is decoded as follows.

i. Reset all the arithmetic coding statistics to zero.

ii. Using the IADT arithmetic integer decoding procedure, decode the initial STRIPT value. The
value decoded is 0.

iii. Using the IADT arithmetic integer decoding procedure, decode a delta T value. The value de-
coded is 0.

iv. Using the IAFS arithmetic integer decoding procedure, decode a first S value. The value decoded
is 0. The reference corner (top left corner in this case) of the first symbol instance in the text
region is thus a0, 0).

v. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value decoded
is 1. The first symbol instance thus uses the symbol shown in Figure H.12(b).

vi. Using the IARI arithmetic integer decoding procedure, decode a refinement flag. The value de-
coded is0, indicating that the first symbol instance is not refined.

vii. At this point CURS is 5. Using the IADS arithmetic integer decoding procedure, decode a delta
S value. The value decoded is 0. After addingSBDSOFFSET, the reference corner of the
second symbol instance in the aggregation is thii8,&x).

viii. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value decoded
is 0. The second symbol instance thus uses the symbol shown in Figure H.12(a).

ix. Using the IARI arithmetic integer decoding procedure, decode a refinement flag. The value de-
coded i90, indicating that the first symbol instance is not refined.

X. At this point CURS is 13. Using the IADS arithmetic integer decoding procedure, decode a delta
S value. The value decoded is 0. After addingSBDSOFFSET, the reference corner of the
third symbol instance in the aggregation is thuélét 0).
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xi. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value decoded
is 1. The third symbol instance thus uses the symbol shown in Figure H.12(b).

xii. Using the IARI arithmetic integer decoding procedure, decode a refinement flag. The value de-
coded isl, indicating that the third symbol instance is refined.

xiii. Using the IARDW arithmetic integer decoding procedure, decode a symbol instance refinement
delta width value. The value decoded is -1.

xiv. Using the IARDH arithmetic integer decoding procedure, decode a symbol instance refinement
delta height value. The value decoded is 2. Since the reference synibobipixels, the refined
symbol instance is therefofex 8 pixels.

xv. Using the IARDX arithmetic integer decoding procedure, decode a symbol instance refinement
delta X value. The value decoded is 1.

xvi. Using the IARDY arithmetic integer decoding procedure, decode a symbol instance refinement

delta Y value. The value decoded is -@RREFERENCEDX and GRREFERENCEDY are
therefore set as

GRREFERENCEDX = [-1/2] +1=—-1+4+1=0
GRREFERENCEDY = [2/2] —-2=1-2=—1

so the refinement is done with the refined symbol placed so that the top left pixel of the refined
symbol is aligned with pixel (0, 1) of the reference symbol.

xvii. Using the generic refinement region decoding procedure, decode the refined symbol instance
bitmap. The reference bitmap is the bitmap shown in Figure H.12(b) and the refined bitmap,
which is the bitmap for the third symbol instance, is the bitmap shown in Figure H.2.

xviii. At this point CURS is 18. Using the IADS arithmetic integer decoding procedure, decode a delta
S value. The value decoded is 0. After addindgSBDSOFFSET, the reference corner of the
third symbol instance in the aggregation is thugat 0).

xix. Using the IAID arithmetic integer decoding procedure, decode a symbol ID. The value decoded
is 2. The fourth symbol instance thus uses the symbol shown in Figure H.12(c).

xX. Using the IADS arithmetic integer decoding procedure, decode a delta S value. The value decoded
is OOB, indicating the end of the strip.

xxi. Decoding of the text region is now complete. The text region bitmap is the bitmap shown in Fig-
ure H.5. Itis obtained by drawing Figure H.12(b) with its top left corndba), Figure H.12(a)
with its top left corner af8, 0), Figure H.2 with its top left corner &6, 0), and Figure H.12(c)
with its top left corner af23, 0).

40. The twentieth segment header
0346: 00 00 00 13 31 00 03 00 00 OO 00

This segment has a segment number of 19, a type of “End of page” (type 49), a short page association field,
and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It is
associated with page 3, and has a data length of zero bytes.

41. The page bitmap is formed from the page’s only region segment, segment number 18, and is equal to that
region segment’s bitmap (Figure H.5.

42. The twenty-first segment header
0351: 00 00 00 14 33 00 00 00 00 00 OO

This segment has a segment number of 20, a type of “End of file” (type 51), a short page association field,
and does not have the deferred non-retain bit set. It refers to no other segments, and is not retained. It is
associated with no page, and has a data length of zero bytes.
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H.2 Test sequence for arithmetic coder

In this subclause a small data set is provided for testing the arithmetic encoder and decoder. The test is structured
to test many of the encoder and decoder paths, but it is impossible in a short test sequence to check all of them so
agreement with the results of this test unfortunately does not guarantee a completely correct implementation.

The decisions to be encoded, packed into 32 bytes and shown in hexadecimal, are

00 02 00 51 00 00 00 CO 03 52 87 2A AA AA AA AA
82 CO 20 00 FC D7 9E F6 BF 7F ED 90 4F 46 A3 BF

The encoded data that should be obtained by encoding that sequence, shown as 30 hexadecimal bytes, are

84 C7 3B FC E1 Al 43 04 02 20 00 00 41 OD BB 86
F4 31 7F FF 88 FF 37 47 1A DB 6A DF FF AC

Decoding those 30 bytes should produce the 32 original bytes.

Table H.1 provides a bit-by-bit list of the arithmetic encoder and decoder operation. The first line in this table
corresponds to the INITENC and INITDEC operations. The value of the byte before the first byte in the output
buffer is assumed to b@x00 , making the initial value of B)x00 . The last line in the table corresponds to the
FLUSH operation.

For this entire test, a single value of CX is used. I(CX) is initially 0 and MPS(CX) is initllly

The first column is the event counter EC. The second column is the decision D to be encoded. The third
and fourth columns give the values of I(CX) and MPS(CX). The fifth column shows an “X” indicates that the
conditional exchange will occur when encoding (decoding) the current decision. The sixth column shows the
current Qe value corresponding to I(CX) (see Table E.1). The seventh column shows the value of the register A
before the decision is encoded (decoded). Note that the A register is always greater than or equal to 0x8000.

The variables up to this point were common for the encoder and decoder. The next four columns (C, CT,
B, OUT) are only for the encoder. The next four columns (C, CT, B, IN) are only for the decoder. The final
column (C) shows the C register for the software-conventions decoder, as it is the only value that differs for the
software-conventions decoder. All the values shown for the C registers are given before the current decision is
encoded (decoded).

For the encoder, CT is a counter indicating when a byte is ready for output from register C. The column under
B shows the byte in variable B waiting to be sent out. This byte can sometimes change from a carry-over. Finally,
for the encoder the compressed bytes are listed under column OUT. A byte is considered to be “output” when the
compressed data pointer BP is advanced to point beyond it.

The decoder’s counter CT indicates when to input the next byte from the compressed data. The column under
B shows the value of the B register, which is used to determine when a bit-stuffing has occurred. The column
under IN shows the bytes that are consumed. A byte is considered to be “consumed” when the compressed data
pointer BP is advanced to point at it. Note that the filwadC byte is never consumed, according to this definition,
though it is read as part of BYTEIN.
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Table H.1 — Encoder and decoder trace data

Software-
Common Encoder Decoder Conventions
Decoder
EC D | MPS CE Qe A C CT B ouT C CT B IN C
hex hex hex hex hex hex hex hex hex
0 00 00000000 84 C7 00000000
1 0 o0 0 X 5601 8000 | 00000000 12 00 42638000 1 C7 3D9C0000
2 0 1 0 3401 ACO02 | 00000000 11 00 84C70000 0 C7 3B 273A0000
3 0 2 0 1801 F002 | 00006802 10 00 A18C7600 7 3B 4E758800
4 0 2 0 1801 D801 | 00008003 10 00 898B7600 7 3B 4E758800
5 0 2 0 1801 CO00 | 00009804 10 00 718A7600 7 3B 4E758800
6 0 2 0 1801 A7FF | 0000BO0O5 10 00 59897600 7 3B 4E758800
7 0 2 0 1801 S8FFE | 0000C806 10 00 41887600 7 3B 4E758800
8 0 3 0 0AC1 EFFA | 0001COOE 9 00 530EECO0 6 3B 9CEB1000
9 0 3 0 0AC1 E539 | 0001CACF 9 00 484DECO0 6 3B 9CEB1000
0 0 3 0 0AC1 DA78 | 0001D590 9 00 3D8CEC00 6 3B 9CEB1000
1 0 3 0 0OAC1 CFB7 | 0001E051 9 00 32CBECO0 6 3B 9CEB1000
2 0 3 0 OAC1 C4F6 | 0001EB12 9 00 280AECO0 6 3B 9CEB1000
3 0 3 0 0AC1 BA35 | 0001F5D3 9 00 1D49ECO0 6 3B 9CEB1000
14 0 3 0 0AC1 AF74 | 00020094 9 00 1288ECO0 6 3B 9CEB1000
5 1 3 0 0OAC1 A4B3 | 00020B55 9 00 07C7TEC00 6 3B 9CEB1000
6 0 12 0 1C01  ACI10 | 0020B550 5 00 7C7EC000 2 3B 2F910000
17 0 12 0 1C01  900F | 0020D151 5 00 607DCO00 2 3B 2F910000
18 0 13 0 1601 E8IC | 0041DAA4 4 00 88F98000 1 3B 5F220000
19 0 13 0 1601 D21B | 0041FOA5 4 00 72F88000 1 3B 5F220000
20 0 13 0 1601 BC1A | 004206A6 4 00 5CF78000 1 3B 5F220000
21 0 13 0 1601 A619 | 00421CA7 4 00 46F68000 1 3B 5F220000
22 0 13 0 1601 9018 | 004232A8 4 00 30F58000 1 3B 5F220000
23 0 29 0 1101 F42E | 00849152 3 00 35E90000 O 3B BE440000
24 0 29 0 1101 E32D | 0084A253 3 00 24E80000 0 3B BE440000
25 0 29 0 1101 D22C | 0084B354 3 00 13E70000 0 3B BE440000
26 1 29 0 1101 C12B | 0084C455 3 84 02E60000 0 3B FC BE440000
27 0 27 0 1401 8808 | 000622A8 8 84 1737E000 5 FC 70D01800
28 1 28 0 1201 ESOE | 000C6D52 7 84 066DCO00 4 FC E1A03000
29 0 26 0 1601 9008 | 00636A90 4 84 336E0000 1 FC 5C998000
30 0 27 0 1401 F40E | 00C70122 3 84 3ADA0C000 0 FC B9330000
31 0 27 0 1401 [EOOD | 00C71523 3 84 26D90000 0 FC B9330000
32 1 27 0 1401 CCOC | 00C72924 3 C7 84 12D80000 0 FC E1 B9330000
33 0 25 0 1801 AO0O8 | 00014920 8 C7 96C70800 5 E1 0940F000
3 0 25 0 1801 8807 | 00016121 8 C7 7EC60800 5 E1 0940F000
35 0 26 0 1601 EOOC | 0002F244 7 C7 CD8A1000 4 E1 1281E000
3 0 26 0 1601 CAOB | 00030845 7 C7 B7891000 4 E1 1281E000
37 0 26 0 1601 B40A | 00031E46 7 C7 A1881000 4 E1 1281E000
38 0 26 0 1601 9E09 | 00033447 7 C7 88871000 4 E1 1281E000
39 0 26 0 1601 8808 | 00034A48 7 C7 75861000 4 E1 1281E000
40 0 27 0 1401 E40E | 0006C092 6 C7 BFOA2000 3 E1 2503C000
41 0 27 0 1401 DOOD | 0006D493 6 C7 AB092000 3 E1 2503C000
2 0 27 0 1401 BCOC | 0006E894 6 C7 97082000 3 E1 2503C000
43 0 27 0 1401 ASOB | 0006FC95 6 C7 83072000 3 E1 2503C000
4 0 27 0 1401 940A | 00071096 6 C7 6F062000 3 E1 2503C000
45 0 27 0 1401 8009 | 00072497 6 C7 58052000 3 E1 2503C000
46 0 28 0 1201 D810 | O00E7130 5 C7 8E084000 2 E1 4A078000
47 0 28 0 1201 C60F | O00E8331 5 C7 7C074000 2 E1 4A078000
48 0 28 0 1201 B40E | 000E9532 5 C7 6A064000 2 E1 4A078000
49 0 28 0 1201 A20D | OOOEA733 5 C7 58054000 2 E1 4A078000
50 0 28 0 1201 900C | OOOEB934 5 C7 46044000 2 E1 4A078000
51 0 29 0 1101 FC16 | 001D966A 4 C7 68068000 1 E1 940F0000
52 0 29 0 1101 EB15 | 001DA76B 4 C7 57058000 1 E1 940F0000
53 0 29 0 1101 DAl14 | 001DB86C 4 C7 46048000 1 E1 940F0000
54 0 29 0 1101 €913 | 001DC96D 4 C7 35038000 1 E1 940F0000
55 0 29 0 1101 B812 | O0IDDAGE 4 C7 24028000 1 E1 940F0000
56 0 29 0 1101 A711 001DEBG6F 4 C7 13018000 1 El 940F0000
57 1 29 0 1101 9610 | 00IDFC70 4 C7 02008000 1 E1 Al 940F0000
58 1 27 0 1401 8808 | OOEFE380 1 3B C7 10068400 6 Al 78017800
50 0 25 0 1801 AO00O8 | O01F1CO0 6 3B 80342000 3 Al 1FD3C000
60 0 25 0 1801 8807 | 001F3401 6 3B 68332000 3 Al 1FD3C000
61 0 26 0 1601 EOOC | 003E9804 5 3B A0644000 2 Al 3FA78000
62 0 26 0 1601 CAOB | O03EAEO5 5 3B 8A634000 2 Al 3FA78000
63 0 26 0 1601 B40A | 003EC406 5 3B 74624000 2 Al 3FA78000
64 0 26 0 1601 9E09 | 003EDAO7 5 3B 5E614000 2 Al 3FA78000
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Table H.1 (continued)

Software-
Common Encoder Decoder Conventions
Decoder
EC D | MPS CE Qe A C CT B ouT C CT B IN C
hex hex hex hex hex hex hex hex hex
65 0 26 0 1601 8808 | O03EF008 5 3B 48604000 2 Al 3FA78000
66 0 27 0 1401 [E40E | 007EOC12 4 3B 64BES000 1 Al 7F4F0000
67 0 27 0 1401 DOOD | 007E2013 4 3B 50BDS000 1 Al 7F4F0000
68 0 27 0 1401 BCOC | 007E3414 4 3B 3CBC8O00 1 Al 7F4F0000
69 0 27 0 1401 A80B 007E4815 4 3B 28BB8000 1 Al 7F4F0000
70 0 27 0 1401 940A 007E5C16 4 3B 14BA8000 1 Al 7F4F0000
711 27 0 1401 8009 | 007E7017 4 3B 00B98000 1 Al 43 7F4F0000
72 1 25 0 1801 AO0O8 | O3F380B8 1 FC 3B 05CDOCO0 6 43 9A3AF000
73 0 23 0 2201 CO08 | 001CO5C0 6 FC 2E686000 3 43 919F8000
74 1 23 0 2201 9EO07 | 001C27C1 6 FC 0C676000 3 43 919F8000
75 0 21 0 2801 8804 | 00709F04 4 FC 319D8000 1 43 56660000
7% 1 22 0 2401 CO06 | OOE18EOA 3 FC 13390000 0 43 04 ACCC0000
77 0 20 0 3001 9004 | 03863828 1 E1 FC 4CE41000 6 04 431FEC00
7 0 21 0 2801 CO06 | 0004D052 8 E1 39C62000 5 04 863FD800
79 1 21 0 2801 9805 | 0004F853 8 E1 11C52000 5 04 863FD800
80 0 19 0 3401 A004 | 0013E14C 6 E1 47148000 3 04 58EF6000
81 1 20 0 3001 D806 | 00282A9A 5 E1 26270000 2 04 B1DEC000
82 0 19 0 3401 CO004 | O0AOAAB8 3 E1 989C0000 0 04 27670000
83 0 19 0 3401 8C03 | OOAODE69 3 E1 649B0000 0 04 02 27670000
84 0 20 0 3001 B004 014224D4 2 E1 61340400 7 02 4ECFFAQ00
85 0 20 0 3001 8003 | 014254D5 2 E1 31330400 7 02 4ECFFA00
86 1 21 0 2801 A004 | 028509AC 1 Al El 02640800 6 02 9D9FF400
87 1 19 0 3401 A004 | 000426B0 7 Al 09902000 4 02 9673D000
88 1 18 0 3801 D004 | 00109ACO 5 Al 26408000 2 02 A9C34000
89 0 17 0 4801 EO004 | 00426B00 3 Al 99020000 0 02 47010000
90 o0 17 0 4801 9803 | 0042B301 3 Al 51010000 0 02 20 47010000
91 1 18 0 3801 A004 | 0085F604 2 42 Al 12004000 7 20 8E03BE0O
92 0 17 0 4801 E004 | 0007D810 8 42 48010000 5 20 9802F800
93 1 17 0 4801 9803 | 00082011 8 42 00000000 5 20 9802F800
94 0 16 0 X 5101 9002 | 00104022 7 42 00000000 4 20 9001F000
95 1 17 0 4801 A202 | 00208044 6 42 00000000 3 20 A201E000
9% 0 16 0 X 5101 9002 | 00410088 5 42 00000000 2 20 9001C000
97 1 17 0 4801 A202 | 00820110 4 42 00000000 1 20 A2018000
98 0 16 0 X 5101 9002 | 01040220 3 42 00000000 0 20 00 90010000
99 1 17 0 4801 A202 | 02080440 2 42 00000000 7 00 A201FE00
100 0 16 0 X 5101 9002 | 04100880 1 04 43 00000000 6 00 9001FC00
101 1 17 0 4801 A202 | 00001100 8 04 00000000 5 00 A201F800
102 0 16 0 X 5101 9002 | 00002200 7 04 00000000 4 00 9001F000
103 1 17 0 4801 A202 | 00004400 6 04 00000000 3 00 A201E000
104 0 16 0 X 5101 9002 | 00008800 5 04 00000000 2 00 9001C000
105 1 17 0 4801 A202 | 00011000 4 04 00000000 1 00 A2018000
106 0 16 0 X 5101 9002 | 00022000 3 04 00000000 0 00 90010000
107 1 17 0 4801 A202 | 00044000 2 04 00000000 7 00 A201FE00
108 0 16 0 X 5101 9002 | 00088000 1 02 04 00000000 6 00 9001FC00
109 1 17 0 4801 A202 | 00010000 8 02 00000000 5 00 A201F800
110 0 16 0 X 5101 9002 | 00020000 7 02 00000000 4 00 9001F000
111 1 17 0 4801 A202 | 00040000 6 02 00000000 3 00 A201E000
112 0 16 0 X 5101 9002 | 00080000 5 02 00000000 2 00 9001C000
113 1 17 0 4801 A202 | 00100000 4 02 00000000 1 00 A2018000
114 0 16 0 X 5101 9002 | 00200000 3 02 00000000 0 00 41 90010000
115 1 17 0 4801 A202 | 00400000 2 02 00008200 7 41 A2017C00
116 0 16 0 X 5101 9002 | 00800000 1 20 02 00010400 6 41 9000F800
117 1 17 0 4801 A202 | 00000000 8 20 00020800 5 41 ALFFF000
118 0 16 0 X 5101 9002 | 00000000 7 20 00041000 4 41 8FFDE000
119 1 17 0 4801 A202 | 00000000 6 20 00082000 3 41 ALF9C000
120 0 16 0 X 5101 9002 | 00000000 5 20 00104000 2 41 8FF18000
121 1 17 0 4801 A202 | 00000000 4 20 00208000 1 41 A1E10000
122 0 16 0 X 5101 9002 | 00000000 3 20 00410000 0 41 0D 8FC00000
123 1 17 0 4801 A202 | 00000000 2 20 00821A00 7 0D A17FE400
124 0 16 0 X 5101 9002 | 00000000 1 00 20 01043400 6 OD 8EFDC800
125 1 17 0 4801 A202 | 00000000 8 00 02086800 5 OD 9FF99000
126 0 16 0 X 5101 9002 | 00000000 7 00 0410D000 4 0D 8BF12000
127 1 17 0 4801 A202 | 00000000 6 00 0821A000 3 0D 99E04000
128 0 16 0 X 5101 9002 | 00000000 5 00 10434000 2 0D 7FBES000
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Table H.1 (continued)

Software-
Common Encoder Decoder Conventions
Decoder
EC D | MPS CE Qe A C CT B ouT C CT B IN C
hex hex hex hex hex hex hex hex hex
129 1 17 0 4801 A202 | 00000000 4 00 20868000 1 0D 81780000
130 0 16 0 X 5101 9002 | 00000000 3 00 410D0000 0 OD BB 4EF40000
131 0 17 0 4801 A202 | 00000000 2 00 821B7600 7 BB 1FE68800
132 0 18 0 3801 B402 | 00009002 1 00 00 7434ECO0 6 BB 3FCD1000
133 0 19 0 3401 F802 | 00019006 8 00 7867D800 5 BB 7F9A2000
134 0 19 0 3401 C401 | 0001C407 8 00 4466DS00 5 BB 7F9A2000
135 1 19 0 3401 9000 | O0O1F808 8 00 1065D800 5 BB 7F9A2000
136 0 18 0 3801 D004 | 0007E020 6 00 41976000 3 BB 8E6C8000
137 1 18 0 3801 9803 | 00081821 6 00 09966000 3 BB 8E6C8000
138 1 17 0 4801 E004 | 00206084 4 00 26598000 1 BB B9AA0000
139 0 16 0 X 5101 9002 | 0040C108 3 00 4CB300000 0 BB 86 434E0000
140 0 17 0 4801 A202 | 00818210 2 00 99670C00 7 86 089AF200
141 0 18 0 3801 B402 | 01039422 1 40 00 A2CC1800 6 86 1135E400
142 0 19 0 3401 F802 | 00079846 8 40 D5963000 5 86 226BC800
143 0 19 0 3401 C401 | 0007CC47 8 40 A1953000 5 86 226BC800
144 0 19 0 3401 9000 | 00080048 8 40 6D943000 5 86 226BC800
145 0 20 0 3001 B7FE | 00106892 7 40 73266000 4 86 44D79000
146 0 20 0 3001 87FD | 00109893 7 40 43256000 4 86 44D79000
147 1 21 0 2801 AFF8 00219128 6 40 2648C000 3 86 89AF2000
148 0 19 0 3401 A004 | 008644A0 4 40 99230000 1 86 06E08000
149 0 20 0 3001 D806 | 010CF142 3 40 CA440000 0 86 0DC10000
150 0 20 0 3001 AS805 | 010D2143 3 40 9A430000 O 86 F4 0DC10000
151 0 21 0 2801 F008 021AA288 2 40 D485E800 7 F4 1B821600
152 0 21 0 2801 Cc807 021ACA89 2 40 ACB84E800 7 F4 1B821600
153 0 21 0 2801 A006 021AF28A 2 40 8483E800 7 F4 1B821600
154 0 22 0 2401 FOOA | 04363516 1 40 B905D000 6 F4 37042C00
155 0 22 0 2401 CCO9 | 04365917 1 40 9504D000 6 F4 37042C00
156 0 22 0 2401 A808 | 04367D18 1 40 7103D000 6 F4 37042C00
157 0 22 0 2401 8407 0436A119 1 oD 41 4D02D000 6 F4 37042C00
158 0 23 0 2201 COOC | 00058A34 8 0D 5203A000 5 F4 6E085800
159 0 23 0 2201 9EOB | 0005AC35 8 0D 30024000 5 F4 6E085800
160 0 24 0 1C01  F814 | 000B9C6C 7 OD 1C034000 4 F4 DC10B000
161 1 24 0 1C01 DC13 000BB86D 7 oD 00024000 4 F4 DC10B000
162 1 22 0 2401 E008 | 005DC368 4 0D 00120000 1 F4 31 DFF58000
163 1 20 0 3001 9004 | 01770DA0 2 BB OD 00486200 7 31 8FBBICO0
164 1 19 0 3401 CO04 | 00043680 8 BB 01218800 5 31 BEE27000
165 1 18 0 3801 D004 | 0010DAO0 6 BB 04862000 3 31 CB7DC000
166 1 17 0 4801 EO004 | 00436800 4 BB 12188000 1 31 CDEB0000
167 0 16 0 X 5101 9002 | 0086D000 3 BB 24310000 0 31 7F 6BD00000
168 0 17 0 4801 A202 | 010DAOO0 2 BB 4862FE00 7 TF 599F0000
169 1 18 0 3801 B402 | 021BD002 1 86 BB 00C3FCO0 6 7F B33E0000
170 1 17 0 4801 E004 | OOOF4008 7 86 030FFO00 4 7F DCF40000
171 0 16 0 X 5101 9002 | O01E8010 6 86 061FE000 3 7F 89E20000
172 1 17 0 4801 A202 | 003D0020 5 86 0C3FC000 2 7F 95C20000
173 0 16 0 X 5101 9002 | 007A0040 4 86 187F8000 1 7F 77820000
174 1 17 0 4801 A202 | OOF40080 3 86 30FFO000 0 7F FF 71020000
175 1 16 0 X 5101 9002 01E80100 2 F4 86 61FFFEOO 7 FF 2E020000
176 1 15 0 5401 FCO4 | 00014804 8 F4 43FBF800 5 FF B8080000
177 1 14 0 X 5601 A802 00029008 7 F4 87F7F000 4 FF 200A0000
178 0 14 1 X 5601 A402 | 0005CC12 6 F4 63EDEO00 3 FF 40140000
179 0 14 0 X 5601 9C02 | 000C4426 5 F4 1BD9C0O00 2 FF 80280000
180 1 15 0 5401 ACO02 | 0018884C 4 F4 37B38000 1 FF 744E0000
181 1 14 0 X 5601 A802 | 00311098 3 F4 6F670000 O FF 88 389A0000
182 1 14 1 X 5601 A402 0062CD32 2 F4 32CE2000 6 88 7133DCO00
183 1 15 1 5401 ACO02 | 00C59A64 1 31 F4 659C4000 5 88 4665B800
184 0 16 1 5101 B002 | 0003DCCA 8 31 23368000 4 88 8CCB7000
185 1 15 1 X 5401 A202 | 0007B994 7 31 466D0000 3 88 5B94E000
186 1 16 1 5101 A802 | O0OF7328 6 31 8CDAOD00 2 88 1B27C000
187 1 17 1 4801 AE02 | 001F8852 5 31 77B20000 1 88 364F8000
188 1 18 1 3801 CCO2 | 003FAOA6 4 31 5F620000 0 88 6C9F0000
189 0 18 1 3801 9401 | O03FDSA7 4 31 27610000 O 88 FF 6C9F0000
190 1 17 1 4801 E004 00FF629C 2 31 9D87FC00 6 FF 427C0000
191 1 17 1 4801 9803 | OOFFAASD 2 31 5586FC00 6 FF 427C0000
192 0 18 1 3801 A004 01FFE53C 1 7F 31 1BOBF800 5 FF 84F80000
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Table H.1 (concluded)

Software-
Common Encoder Decoder Conventions

Decoder

EC D | MPS CE Qe A C CT B ouT C CT B IN C
hex hex hex hex hex hex hex hex hex

193 1 17 1 4801 E004 | O00F94F0 7 7F 6C2FE000 3 FF 73D40000
194 0 17 1 4801 9803 000FDCF1 7 7F 242EE000 3 FF 73D40000
195 1 16 1 X 5101 9002 001FB9E2 6 7F 485DC000 2 FF 47A40000
196 1 17 1 4801 A202 003F73C4 5 7F 90BB8000 1 FF 11460000
197 1 18 1 3801 B402 | O07F778A 4 7F 91750000 0 FF 37 228C0000
198 1 19 1 3401 F802 | OOFF5F16 3 7F B2ESDCO00 6 37 45192000
199 1 19 1 3401 C401 00FF9317 3 7F 7EE7DCO0 6 37 45192000
200 1 19 1 3401 9000 | OOFFC718 3 7F 4AE6DCO0 6 37 45192000
201 0 20 1 3001 B7FE 01FFF632 2 FF 7F 2DCBB800 5 37 8A324000
202 1 19 1 3401 C004 | 0007D8C8 8 FF B72EE000 3 37 08D50000
203 1 19 1 3401 8CO03 | 00080CCH 8 FF 832DE000 3 37 08D50000
204 1 20 1 3001 BO04 | 00108194 7 FF 9E59C000 2 37 11AA0000
205 1 20 1 3001 8003 | 0010B195 7 FF 6E58C000 2 37 11AA0000
206 1 21 1 2801 A004 | 0021C32C 6 FF 7CAF8000 1 37 23540000
207 1 22 1 2401 FO06 | 0043D65A 5 FF A95D0000 0 37 46A80000
208 1 22 1 2401 CCO5 | 0043FASB 5 FF 855C0000 0 37 46A80000
209 1 22 1 2401 A804 00441E5C 5 FF 615B0000 0 37 46A80000
210 1 22 1 2401 8403 0044425D 5 FF 3D5A0000 0 37 47 46A80000
211 1 23 1 2201 C004 | 0088CCBC 4 FF 32B28E00 7 47 8D517000
212 0 23 1 2201 OE03 | OOSS8EEBD 4 FF 10B18EO0 7 47 8D517000
213 1 21 1 2801 8804 | 0223BAF4 2 FF 42C63800 5 47 453DC000
214 1 22 1 2401 C006 0447C5EA 1 FF 358A7000 4 47 8A7B8000
215 0 22 1 2401 9CO05 0447E9EB 1 88 FF 11897000 4 47 8A7B8000
216 1 20 1 3001 9004 | OO1FA7AC 6 88 4625C000 2 47 49DE0000
217 1 21 1 2801 CO006 | OO3FAF5A 5 88 2C498000 1 47 93BC0000
218 0 21 1 2801 9805 | 003FD75B 5 88 04488000 1 47 1A 93BC0000
219 0 19 1 3401  A004 | OOFF5D6C 3 88 11223400 7 1A S8EE1CA00
220 1 18 1 3801 D004 03FD75B0 1 88 4488D000 5 1A 8B7B2800
221 0 18 1 3801 9803 | O3FDADB1 1 FF 88 0C87D000 5 1A 8B7B2800
222 0 17 1 4801 [EO004 | 0006B6C4 7 FF 321F4000 3 1A ADE4A000
223 0 16 1 X 5101 9002 | 000D6D8S 6 FF 643E8000 2 1A 2BC34000
224 0 15 1 5401 FC04 0036FA24 4 FF 4CF60000 0 1A DB AF0ODO0000
225 0 14 1 X 5601 A802 006DF448 3 FF 99EDB600 7 DB 0E144800
226 1 14 0 X 5601 A402 | 00DC9492 2 FF 87D96C00 6 DB 1C289000
227 0 14 1 X 5601 9C02 | 01B9D526 1 37 FF 63B0DS00 5 DB 38512000
228 0 14 0 X 5601 8C02 | 0004564E 7 37 1B5FBO00 4 DB 70A24000
229 1 15 0 5401 ACO02 | 0008ACOC 6 37 36BF6000 3 DB 75428000
230 1 14 0 X 5601 AS02 | 00115938 5 37 6D7EC000 2 DB 3A830000
231 1 14 1 X 5601 A402 | 00235E72 4 37 2EFB8000 1 DB 75060000
232 1 15 1 5401 ACO02 | 0046BCE4 3 37 5DF70000 O DB 6A 4E0A0000
233 0 16 1 5101 B002 | OOBE2ICA 2 37 13ECD400 7 6A 9C152A00
234 1 15 1 X 5401 A202 011C4394 1 47 37 27D9A800 6 6A 7A285400
235 0 16 1 5101 A802 | 00008728 8 47 4FB35000 5 6A 584EA800
236 0 15 1 X 5401 A202 | 0O0010E50 7 47 9F66A000 4 6A 029B5000
237 0 14 1 X 5601 9C02 | 0002C4A2 6 47 96CB4000 3 6A 0536A000
238 1 14 0 X 5601 8C02 | 00063546 5 47 81948000 2 6A 0A6D4000
239 1 14 1 5601 D804 001A2D1C 3 47 AE4E0000 0 6A 29B50000
240 0 14 1 X 5601 8203 | 001A831D 3 47 584D0000 O 6A DF 29B50000
241 1 14 0 5601 BO08 | 006B6478 1 1A 47 09337C00 6 DF ABD48000
242 0 14 1 5601 ACO02 | 0006C8FO 8 1A 1266F800 5 DF 999B0000
243 1 14 0 5601 AC02 000D91EO 7 1A 24CDF000 4 DF 87340000
244 0 14 1 5601 ACO02 | 001B23CO 6 1A 499BEO00 3 DF 62660000
245 0 14 0 5601 ACO02 | 00364780 5 1A 9337C000 2 DF 18CA0000
246 0 15 0 5401 ACO02 | 006D3B02 4 1A 7A6D8000 1 DF 31940000
247 1 16 0 5101 B002 | OODBIEO6 3 1A 4CD90000 0 DF FF 63280000
248 1 15 0 X 5401 A202 01B63CO0C 2 1A 99B3FEOO 7 FF 084E0000
249 1 14 0 X 5601 9C02 | 036D201A 1 DB 1A 8B65FCO0 6 FF 109C0000
250 0 14 1 X 5601 8C02 | 0002EC36 8 DB 6ACOF800 5 FF 21380000
251 1 14 0 5601 D804 | 000DO8SDC 6 DB 5323E000 3 FF 84E00000
252 1 14 1 5601 AC02 001A11B8 5 DB A647C000 2 FF 05BA0000
253 1 15 1 5401 AC02 0034CF72 4 DB A08D8000 1 FF 0B740000
254 1 16 1 5101 BO002 | O06A46E6 3 DB 99190000 0 FF 16E80000
255 1 17 1 4801 BEO02 00D52FCE 2 DB 9031FEO0 7 FF 2DD00000
256 1 18 1 3801 [EC02 | O1AAEF9E 1 DB 9061FCO0 6 FF 5BA00000
257 DB 6A DF FF AC
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Annex |
(informative)
List of Patents

The user’s attention is called to the possibility that compliance with this Specification may require use of an
invention covered by patent rights.

By publication of this Specification, no position is taken with respect to the validity of the claim or of any
patent rights in connection therewith.

The criteria for including patents in this annex are:

1. The patent has been identified by someone who is familiar with the technical fields relevant to this Speci-
fication, and who believes use of the invention covered by the patent is required for implementation of one
or more of the coding processes specified.

2. The patent holder has filed a letter stating willingness to grant a license to an unlimited number of appli-
cants throughout the world under reasonable terms and conditions that are demonstrably free of any unfair
discrimination.

During maintenance of this Specification, the list of patents shall be updated, if necessary, upon any revisions
to the Recommendatidrinternational Standard.

Only patents in the home countries of the patent-holding corporations are listed. In many cases foreign filings
have been made.

.1 List of patents

The holders of the following patents have filed a statement of willingness to grant a license under these rights on
reasonable and non-discriminatory terms and conditions to applications desiring to obtain such a license.

1. Korean Patent, 10-97-068093, 1997 (pending), Kwang Woon University, Hyung Hwa Ko et al.: LOSSY/LOSS-
LESS CODING METHOD FOR BINARY IMAGE BY EFFICIENT UTILIZATION OF PATTERN COR-
RELATION

2. US Patent, 4 749 983, IBM, Compression of multilevel signals, June 7, 1988

It is the understanding of ISO/IEC JTC1 SC29/WGL1 that the holders of the following patents have agreed
to allow payment free licensing of those patents for use in connection with this Recommendaténational
Standard, subjectto certain conditions which are available on request from the sources listed. Prospective licensees
are advised to contact the respective organisations for details.

1. Japanese Patent, 2128115, Feb. 1990, Mitsubishi Electric Corp., Ono (F.) et al.: CODING SYSTEM

2. Japanese Patent, 2128110, Jan. 1989, Mitsubishi Electric Corp., Ono (F.) et al.: CODING METHOD OF
IMAGE INFORMATION

3. US Patent, 4 286 256, IBM, Method and means for arithmetic coding using a reduced number of operations,
August 25, 1981.

4. US Patent, 4 295 125, IBM, A method and means for pipeline decoding of the high to low order pairwise
combined digits of a decodable set of relatively shifted finite number of strings, Oct. 13, 1981.

5. US Patent, 4 463 342, IBM, A method and means for carry-over control in a high order to low order
combining of digits of a decodable set of relatively shifted finite number strings, July 31, 1984.

6. US Patent, 4 467 317, IBM, High-speed arithmetic compression using concurrent value updating, August
21,1984,

7. US Patent, 4 652 856, IBM, A multiplication-free multi-alphabet arithmetic code, Feb. 4, 1986.

8. US Patent, 4 633 490, IBM, Symmetrical adaptive data compression/decompression system, Dec. 30, 1986.
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. US Patent, 4 891 643, IBM, Arithmetic coding data compression/de compression by selectively employed,
diverse arithmetic encoders and decoders, January 2, 1990.

. US Patent, 4 905 297, IBM, Arithmetic coding encoder and decoder system, February 27, 1990.
. US Patent, 4 935 882, IBM, Probability adaptation for arithmetic coders, June 19, 1990.
. US Patent, 5 099 440, IBM, Probability adaptation for arithmetic coders, March 24, 1992.

Contact addresses for patent information

Mitsubishi Electric Corp.

Intellectual Property Licensing Dept.

2-2-3 Marunouchi, Choyoda-ku, Tokyo 100-8310, Japan
Tel: +81 3 3218 3465

Fax: +81 3 3218 2474

447-1 Weol-Gye Dong, No-Won Gu,
Seoul, 137-050, Korea

Kwang Woon University

Tel: +82 29405131

Fax: +82 2 942 0107

Program Manager, Licensing

Intellectual Property and Licensing Services
IBM Corporation

208 Harbor Drive

P.O. Box 10501

Stamford, Connecticut 08904-2501

Tel: +1 (203) 973 7935

Fax: +1 (203) 973 7981 or +1 (203) 973 7982
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