

Caracterización geomecánica de suelos y rocas

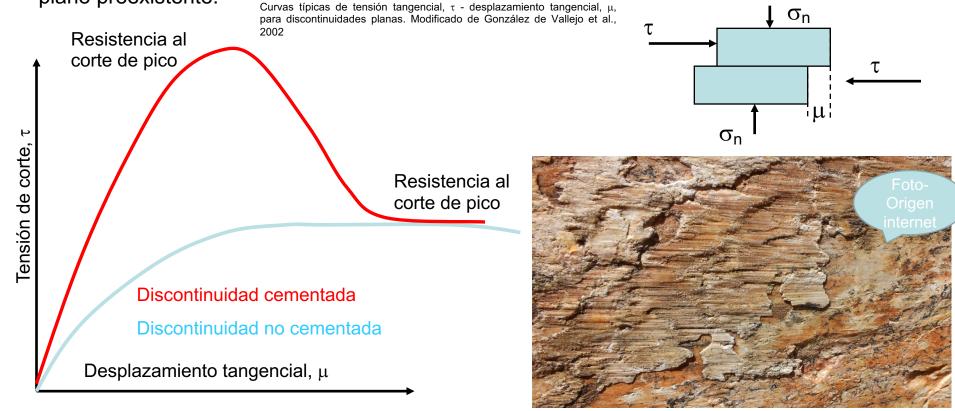
Tema 5.3 Resistencia en discontinuidades

Alberto González Díez Patricio Martínez Cedrún

DPTO. DE CIENCIAS DE LA TIERRA Y FÍSICA DE LA MATERIA CONDENSADA (CITIMAC)

Este tema se publica bajo Licencia:

Creative Commons BY-NC-SA 4.0



Resistencia en discontinuidades

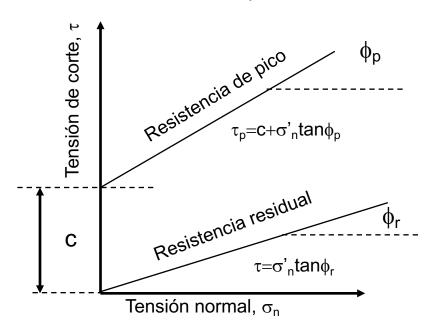
Se basa en estudiar las relaciones entre los esfuerzos de corte aplicados y los desplazamientos tangenciales producidos.

La rigidez de la discontinuidad σ/μ tiene unidades esfuerzo/longitud.

Las curvas representativas del comportamiento de las discontinuidades son muy parecidas a las de la matriz rocosa, con la particularidad de que las roturas se producen a través de un plano preexistente.

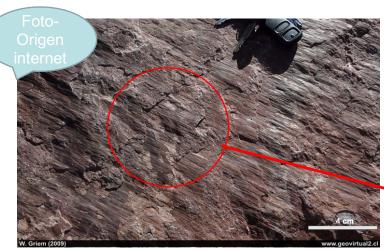
Fundamentos y orígenes

La resistencia de los planos de rotura viene dada principalmente por el criterio de rotura de Mohr-Coulomb. Posteriormente, se han ido introduciendo variaciones al criterio para ajustar ajustarlo a los resultados obtenidos en laboratorio.


La resistencia se determina en ensayos de resistencia al corte en el laboratorio. Los ensayos triaxiales también proporcionan los valores de la resistencia al corte si éstos se realizan en probetas talladas de tal forma que la rotura se produzca a través del plano de debilidad (con ángulos de 25° a 40° entre el plano y la dirección del esfuerzo compresivo vertical). También se puede determinar en ensayos de corte directo in situ.

La resistencia al corte de la discontinuidad depende fundamentalmente de la fricción de los planos, y en menor cuantía de la cohesión.

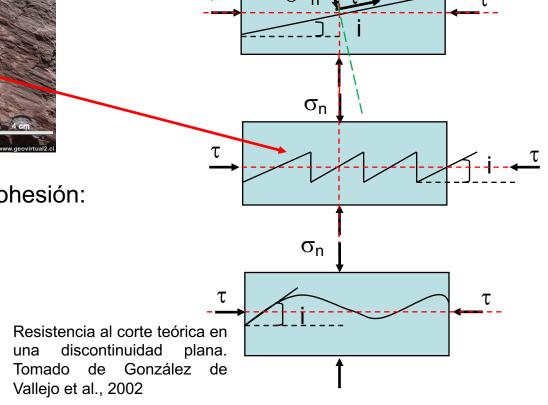
La **rugosidad** o irregularidad de las paredes de las discontinuidades es uno de los factores que más influye en la resistencia friccional, sobre todo en discontinuidades sometidas a bajos esfuerzos normales.


La resistencia al corte de pico de discontinuidades planas viene dada por la expresión de Mohr-Coulomb $\tau_p = c + \sigma'_n tan \phi_p$. Que no cabe duda es una simplificación de la realidad.

Resistencia al corte teórica en una discontinuidad plana Tomado de González de Vallejo et al., 2002

Resistencia y rugosidades

Patton (1966), propuso un modelo de rotura bilineal basado en la **influencia de las rugosidades** o irregularidades que presentan la discontinuidades. La irregularidad de una superficie de discontinuidad puede ser definida por un ángulo de rugosidad, i que se suma al ángulo básico de fricción ϕ_b para obtener el valor total del ϕ_p de la superficie: $\phi_p = \phi_b + i$



Si la discontinuidad no tiene cohesión: tan $\phi = \tau * /\sigma *_n$

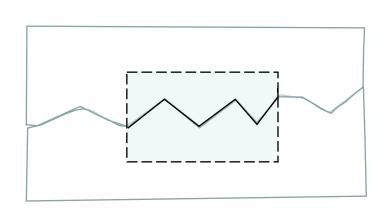
$$\sigma_{n} = \sigma_{n} \cos i + \tau \sin i$$

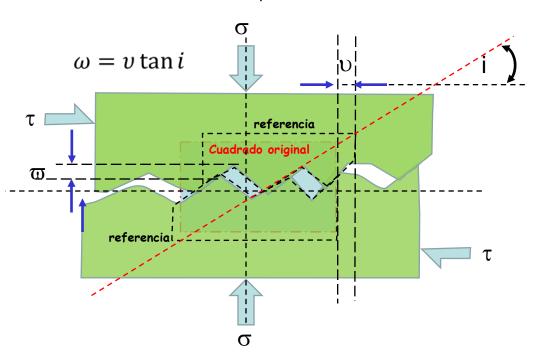
$$\tau = \tau \cos i - \sigma_n \sin i$$

$$\tau/\sigma_n = \tan(\phi + i)$$

La rugosidad y su medida

El ángulo i es el que forma la irregularidad con respecto al plano de la discontinuidad. Este ángulo i tiene una gran influencia el comportamiento geomecánico de las discontinuidades. La descripción y medida de la rugosidad tiene como principal finalidad la estimación de la resistencia al corte del plano mecánico. El valor de ϕ_p suele estar comprendido entre 30° y 70°; el ángulo ϕ_b entre 20° y 40° y el ángulo i entre 10° y 40°.


Imagen de medida de la rugosidad de una diaclasa con un perfilómetro. Tomado de Enrique Montalar https://enriquemontalar.com/el-perfilometro-y-larugosidad-de-la-junta/


Dilatancia

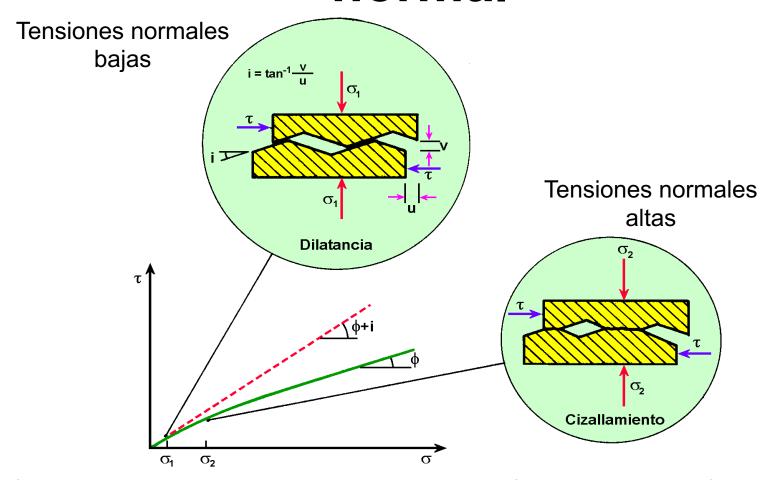
Partiendo de τ/σ_n =tan(ϕ +i)

Si se ejerce un esfuerzo tangencial sobre una discontinuidad sometida a esfuerzos normales reducidos, se produce un desplazamiento a lo largo del plano de fractura, dando lugar a una apertura o **dilatancia** de las paredes de la discontinuidad, al tenerse que superar el ángulo i para que haya desplazamiento; opera entonces la fricción efectiva (ϕ_b+i) , y el valor de τp vendrá dado por: $\tau_p = \sigma'_n$ tan $(\phi+i)$,

Criterio de Patton,

Al progresar el desplazamiento tangencial, se pueden romper los bordes más angulosos, suavizándose las rugosidades, y las dos superficies se ponen en contacto, prevaleciendo entonces el valor de ϕ_b ,

Resistencia cortante en juntas rugosas

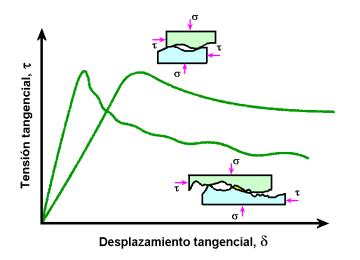

Resistencia (pico o residual)

Tensión normal (efectiva)

ondulosidad $t = (\sigma_n^t) \tan(\phi + i)$

Ángulo de rozamiento (pico o residual)

Resistencia cortante y tensión normal


Efectos de la tensión normal sobre la resistencia de la junta. Modificado de Jordi Delgado. Consideraciones Generales Criterios de Rotura. https://www.google.com/search?sxsrf=ALeKk00--AjalzrGjrBwMLxfJaxVQQ7kuw%3A1601637080812&ei=2Ap3X7mYMZGMlwTc873wBg&q=tema+7.1+delgado+resi stencia+en+juntas&oq=tema+7.1+delgado+resistencia+en+juntas&gs_lcp=CgZwc3ktYWIQAzIFCCEQoAEyBQghE KABOgQIIxAnUKIyWJBTYIhUaABwAHgAgAGPAYgB2xKSAQQyLjIwmAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=psy-ab&ved=0ahUKEwi55IqK45XsAhURxoUKHdx5D24Q4dUDCA0&uact=5

Relaciones entre tensiones de corte

Si <u>se incrementa el valor del esfuerzo normal σ_n sobre el plano de discontinuidad se alcanza un valor para el que se impide la dilatancia, y las irregularidades deben ser rotas para que haya desplazamiento, aproximándose entonces la pendiente de la recta τ - σ_n al valor <u>del ángulo de resistencia residual ϕ_r .</u></u>

Para tensiones normales elevadas $\tau_p = \sigma_n tan \phi_r$

El punto de inflexión en el criterio bilineal de Patton corresponde a un determinado valor de σ_n .

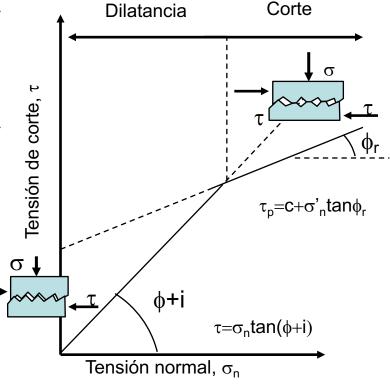


Gráfico bilinear de Patton. Tomado de González de Vallejo et al., 2002 y Jordi Delgado. Consideraciones Generales Criterios de Rotura (ver referencia anterior).

Otros criterios empíricos

Tomando en consideración el <u>criterio de Patton</u>, diversos autores han desarrollado <u>criterios</u> <u>empíricos de rotura a favor de planos de discontinuidad rugosos</u>, en función de los <u>esfuerzos normal y tangencial</u> actuantes sobre el plano de discontinuidad. $\tau = \sigma_n tan(\phi_u + i)$ Donde i es la inclinación de la aspereza $\tau_n = c + \sigma'_n tan(\phi_n + i)$

Landanyi y Archanbault, 1970. Ampliaron la ecuación de Patton considerando juntas de rocas naturales con asperezas irregulares (pero rígidas). Propusieron la siguiente ecuación para la parte deslizante de la envoltura de la falla si el área de corte es uno. $\tau = \sigma_n \tan(\phi_u + \upsilon)$

donde υ es la tasa de dilatación de la fractura. Si las asperezas son rígidas y regulares υ =i por lo que ambas ecuaciones son la misma. El ángulo de fricción por resbalamiento, $\phi_u \approx \phi_r$ o ángulo de fricción interna. Se detalla a continuación.

<u>Jaeger</u>, 1971. Observó que las medidas reales se aproximan mejor con una curva suave en lugar de la bilínea de Patton. Una de las generalizaciones más simples fue sugerida por Jaeger sobre el razonamiento puramente fenomenológico $\tau = c[1-e^{-b\sigma n}] + \sigma_n tan\phi_u$

Donde, b es una constante empírica, c es la cohesión, σ_n es el esfuerzo normal, ϕ_u es el ángulo de fricción básico

Barton y Choubey, 1977. Criterio empírico que se aplica a juntas sin relleno y en contacto aunque tengan juntas meteorizadas o alteradas. Se detalla a continuación.

$$\tau_p = \sigma'_n \tan (JRC \log_{10} (\sigma_c/\sigma'_n) + \phi_r)$$

Criterio de landanyi

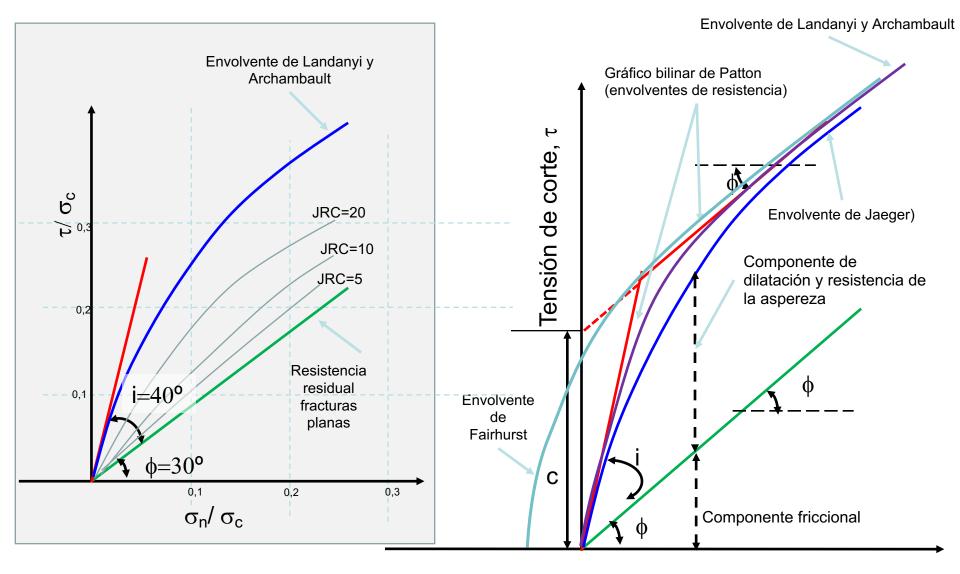
$$\tau = \frac{\sigma(1 - a_s)(\dot{v} + tan\phi) + a_s\tau_i}{1 - (1 - a_s) + \dot{v}tan\phi}$$

$$a_s = 1 - \left(1 - \frac{\sigma}{\sigma_c}\right)^l \tan i$$

$$\dot{v} = \left(1 - \frac{\sigma}{\sigma_c}\right)^k \tan i$$

τ - resistencia de pico

σ - tensión normal

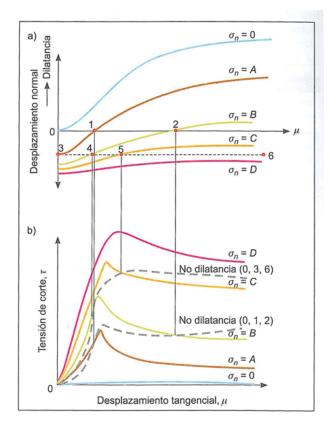

 a_s - área de cizalla

ὑ- velocidad de dilatancia

 τ_i - resistencia al corte de la roca sana

K=4

l=1.5

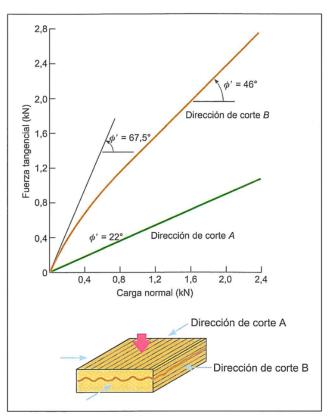

Tensión normal, σ_n

Distribución de JRC en función de las tensiones normalizadas. Modificado de Balárs y Ván, 2006 y Landanyi Archanbault, 1970

Comparativa de criterios de rotura en juntas. Modificado de Balárs y Ván, 2006 y Landanyi Archanbault, 1970

Disposición de las discontinuidades

Los resultados de los análisis de los <u>ensayos de corte en discontinuidades rugosas para distintos valores de σ_n , crecientes desde cero hasta D. Para la curva superior del gráfico a), con σ_n =0 <u>se dará dilatancia y la resistencia al corte será prácticamente nula al no existir fricción efectiva</u> b). Si <u>aumenta el valor de σ_n las curvas correspondientes muestran una disminución de la dilatancia o apertura, y un aumento de la resistencia al corte</u>.</u>



Tomado de González de Vallejo et al., 2002

Esto también es válido cuando la dirección del desplazamiento por corte es perpendicular a las irregularidades de las paredes de la junta.

Si es paralela a la rugosidad no tendrá efecto sobre la resistencia al plano

Brown et al., 1977, en González de Vallejo et al., 2002

Criterio de Barton y Choubey (1977)

Se trata de un criterio **empírico**, **deducido a partir del comportamiento de discontinuidades en ensayos de laboratorio**, que permiten estimar <u>resistencia al corte en discontinuidades rugosas</u>.

$$\tau_p = \sigma'_n \tan (JRC \log_{10} (\sigma_c / \sigma'_n) + \phi_r)$$

Donde:

 $(JRC \log_{10} (JCS/\sigma'_n) + \phi_r)$ representa el ángulo de fricción de pico de la discontinuidad, ϕ_n

 τ_p =resistencia al corte de pico en discontinuidades rugosas sin cohesión

 σ'_n = esfuerzo normal efectivo sobre el plano de la discontinuidad

JRC= coeficiente de rugosidad de la discontinuidad (Joint Roughness Coefficient).

 σ_c = resistencia a la compresión simple de las paredes de la discontinuidad

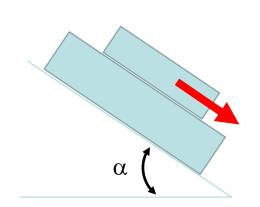
 ϕ_b = ángulo de fricción básico

 ϕ_r = ángulo de fricción residual

$$\frac{\tau}{\sigma_n} = tan(2v + \phi_r)$$

$$v = tan \left[10 \log_{10} \left(\frac{\sigma_c}{\sigma_n} \right) + \phi_r \right]$$

$$\frac{\tau}{\sigma_n} = tan \left[20 \log_{10} \left(\frac{\sigma_c}{\sigma_n} \right) + \phi_r \right]$$


$$\frac{\tau}{\sigma_n} = tan \left[JRClog \left(\frac{\sigma_c}{\sigma_n} \right) + \phi_r \right]$$

 ϕ_r = ángulo de rozamiento residual de la discontinuidad que puede ser estimado a partir de la expresión: ϕ_r =(ϕ_b -20°)+20°(r/R)

Componente i

La resistencia de la discontinuidad depende de tres componentes:

- una componente friccional φ_r,
- una componente geométrica dada por el parámetro JRC,
- y una componente de "asperidad" controlada por la relación σ_c/σ'_n .

La componente geométrica y la "asperidad representan la componente i.

La componente i tiene un valor nulo en esfuerzos normales altos, cuando σ_c/σ'_n =1. Los valores más representativos suelen estar entre 3 y 100. La resistencia friccional total ϕ_p (ϕ_r +i) por lo general no es superior a 50°. A mayor valor de σ_n menor valor de la resistencia friccional.

Con la relación de Barton y Choubey se obtienen ángulos de rozamiento muy altos para tensionen de compresión muy bajas sobre la discontinuidad. **Por ello, no debe usarse para tensiones** σ_n **tales que** $\sigma_c I \sigma'_n > 50$, <u>debiendo tomarse en estos casos un ángulo de rozamiento constante e independiente de la carga con un valor ϕ_p igual a $\phi_p = \phi_r + 1.7JRC$ </u>

Barton y Bandis (1990) determinan el JRC sobre la base del ensayo de basculamiento. α = ϕ _b cuando se utilizan testigos de sondeos (que suelen tener juntas planas y lisas sin meteorizar)

$$JRC = \frac{\alpha - \phi_b}{\log_{10} \left(\frac{\sigma_c}{\sigma_n}\right)}$$

Resistencia de discontinuidades

Estimación del ángulo de resistencia residual

En general la pared de la junta está alterada y por lo tanto el ángulo de rozamiento residual será inferior a ángulo de rozamiento de la roca sana ϕ_p .

 ϕ_r = ángulo de rozamiento residual de la discontinuidad que puede ser estimado a partir de la expresión: ϕ_r =(ϕ_b -20°)+20°(r/R)

R es el valor del rebote del martillo de Schmidt sobre la matriz rocosa sana y seca.

r es el valor del rebote del martillo de Schmidt sobre la pared de la discontinuidad en estado natural, húmedo o seco.

φ_b es el ángulo de fricción básico del material se obtienen de tablas bibliográficas.

Los valores de R, r y σ_c se estiman en campo.

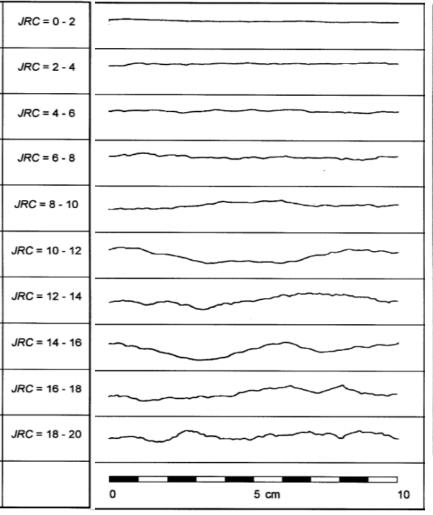
Si las paredes de la discontinuidad están sanas, $\phi_r = \phi_p$. Los valores típicos de ϕ_b en discontinuidades planas sin meteorizar son del orden de 25° a 37° para rocas sedimentarias, de 29° a 38° para rocas ígneas y de 21° a 30° para rocas metamórficas.

Si las paredes de la junta no están alteradas o meteorizadas se toma el valor de la resistencia a compresión simple de la matriz rocosa, σ c. Si la pared está alterada, como ocurre habitualmente, el valor de σ_c puede obtenerse a partir de los resultados del esclerómetro sobre la pared de la junta, mediante la expresión: $Log_{10}\sigma_c$ =0,00088 γ_{roca} r+0,1 (σ_c en MN/m²; γ_{roca} en KN/m³).

Tablas de ángulos de fricción

Angulo de fricción básico

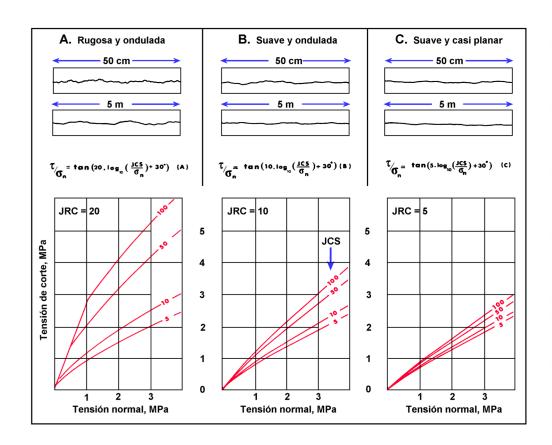
Roca	Ángulo de fricción básico φ _b (grados)			
Andesita	45			
Arenisca	30 - 50			
Basalto	48 – 55			
Caliza	35 – 50			
Caliza Margosa	30			
Cuarcita	40 – 55			
Diabasa	40 – 50			
Diorita	50 – 55			
Dolomía	25 – 35			
Esquisto	25 – 30			
Gabro	35			
Gneis	30 – 40			
Granito	45 – 58			
Mármol	35 – 45			
Lutita	40 – 60			
Pizarra	40 – 55			
Yeso	30			

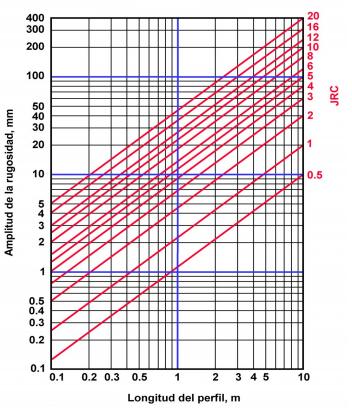

Tomado de González de Vallejo et al., 2002

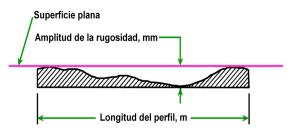
Parámetros resistentes de discontinuidades con rellenos

The second of th		Resistenc	Resistencia de pico		Resistencia residual	
Roca	Descripción	Cohesión (kg/cm²)	Ángulo de fricción (°)	Cohesión (kg/cm²)	Ángulo de fricción (°)	
Basalto	Brecha arcillosa con fragmentos rocosos.	2,4	42	D. Helicania		
Caliza	Relleno arcilloso de 6 mm.		Cald Maril 80	0	13	
	Id. de 1 a 2 cm.	1	13-14	ne roca one		
	Id. < 1 mm.	0,5-2	17-21			
	Marga de 2 cm.	0	25	0	15-24	
Diorita	Relleno de arcilla.	0	26,5			
Dolomía	Relleno arcilloso de ≈ 15 cm de espesor.	0,41	14,5	0,22	17	
Esquistos y	amacana at Substitution					
cuarcitas	Relleno arcilloso 10-15 cm de espesor.	0,3-0,8	32			
	Relleno arcilloso fino en planos de					
	estratificación.	6,1-7,4	41	st omelmaseks		
	Relleno arcilloso espeso en planos de					
	estratificación.	3,8	31			
Granito	Fallas con relleno arcilloso.	0-1,0	24-25	nacia de la esc	in the state of	
	Fallas con relleno arenoso.	0,5	40	1901 to to all	SI)	
	Zona de cizalla, granito roto, roca desintegrada	Los param		in separate		
	y rellenos arcillosos.	2,42	42	resemble on its		
Grauvaca	Relleno arcilloso de 1-2 mm en planos de		1		WHEN EST AS	
malalan	estratificación.		A STATE OF THE STA	0	21	
Lutita	Relleno de arcilla.	0,6	32			
D: .	Arcilla en planos de estratificación.	0.5		0	19,5	
Pizarra	Alteradas y laminadas	0,5	33	SERVER DE		

Datos de varios autores y de ensayos realizados bajo condiciones diferentes (Hoek y Bray, 1981).


JRC




Descripción	Perfil	Jr	JRC 200mm	JRC 1 m
Rugosa Lisa		4	20	11
Pulida		-3	14	9
3-2	Escalonada	2	11	8
Rugosa Lisa Pulida		3	14	9
	Literary is easily and easily All	2	11	8
	Ondulada	1.5	7	6
Rugosa — Lisa — Pulida —	N. In the way to a supposed the factor of the factor of the factor of the superficience (JRC)	1.5	2.5	2.3
	real and a second participation of the second participatio	1.0	1.5	0.9
	Plana	0.5	0.5	0.4

Perfiles de rugosidad normalizados para JRC empleados por Barton y Choubey, 1977. Modificado de Ramirez Oyanguren y Monge, 2004

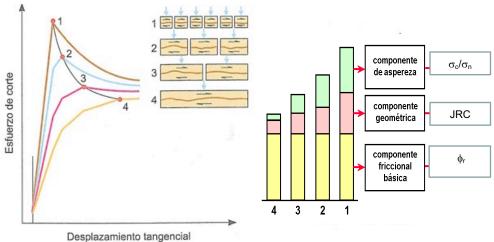
Determinación del JRC

Determinación de JRC modificado de Jordi Delgado (Consideraciones Generales Criterios de Rotura) sobre la base de Barton y Choubey 1977.

Efecto escala

Para la estimación de la resistencia friccional de una discontinuidad puede realizarse un sencillo ensayo de campo, denominado Tilt test (o ensayo de basculamiento), que permite la comparación de los valores obtenidos con los calculados por el método empírico anterior.

Para ello se pueden emplear fragmentos de roca o testigos de sondeos. Se termina el ángulo α a partir del cual se inicia el movimiento de uno de los fragmentos de roca con respecto a los otros y se aplica la expresión


JRC=
$$(\alpha - \phi_r)/(\log(\sigma_c/\sigma_n)_{ensayo})$$

Efecto de la escala

Los valores de σ_c y JCS dependen de la escala que se considere.

El parámetro JRC es función de la magnitud y amplitud de las ondulaciones o irregularidades. Al aumentar la escala el valor de i es menor (al influir las ondulaciones del plano además de las rugosidades a pequeña escala), y si se permite la dilatancia de la discontinuidad (para bajos esfuerzos normales), el valor de ϕ_r decrece; si no tiene lugar dilatancia, efecto de la escala es menos importante.

Efecto de la escala sobre las tres componentes del ángulo de rozamiento, en discontinuidades rugosas sin relleno. Modificado Barton y Bandis 1990 por varios autores

Efecto escala II

Efecto de la escala

Para analizar el comportamiento de juntas de mayor longitud es necesario corregir los valores de otras escalas.

El valor de la resistencia a la compresión simple σ_c y por tanto de la componente σ_c/σ'_n , disminuye al aumentar la escala.

Para contrarrestar estos efectos **Bandis et al., (1981)** han establecido las siguientes relaciones para obtener los parámetros de juntas de longitud real Ln $(L_0=10 \text{ cm})$

$$\sigma_{cn} = \sigma_{c0} (L_n/L_0)^{-0.03JCS}$$

$$JRC_n = JRC_0 (L_n/L_0)^{-0.02JRC_0}$$

La resistencia de las juntas a escala real puede ser entonces estimada por la expresión de **Barton (1990)** donde i es el ángulo de ondulación a gran escala de discontinuidades.

$$\tau_p = \sigma'_n \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}{\sqrt{1 - \sigma'_n}} \right) + \frac{1}{\sqrt{1 - \sigma'_n}} \tan \left(\frac{1}$$

$$\tau_p = \sigma'_n \tan \left[JRC_n \log_{10} \left(\sigma_{cn} / \sigma'_n \right) + \phi_r + i \right]$$

Rellenos de discontinuidades

En el caso de discontinuidades rellenas de material, generalmente proveniente de la alteración de la paredes y que se ha depositado por la circulación del agua a su través, cabe decir que la resistencia al corte de los planos estará condicionada por su tipo y espesor. Si el espesor es importante, la rotura por corte se producirá a través de éste. Si el espesor es duro y consolidado, la rotura puede producirse a favor del contacto roca-relleno. Tiene mucha importancia la cohesión del relleno.

Las propiedades de los rellenos como la resistencia al corte, deformabilidad y permeabilidad pueden ser muy variables controlando su comportamiento.

Suelen ser:

- -arcillosos
- -brechas o fragmentos angulosos con mayor o menor proporción de matriz arcillosa
- -materiales cristalizados (calcita, yeso, cuarzo, etc.).

Efecto de la permeabilidad en la resistencia de discontinuidades

La permeabilidad de una discontinuidad depende del tipo de relleno y de su apertura.

La apertura está condicionada por el estado de los esfuerzos del macizo

El valor de la permeabilidad, k

 $k=a^2g/12\eta$

0

 $k=a^2\gamma_w/12\mu$

donde:

g=aceleración de la gravedad

a=abertura de la discontinuidad

γ_w=pesos específico del agua

η=coeficiente de viscosidad cinemática del agua (0,0101 cm²s⁻¹ a 20°)

μ=coeficiente de viscosidad dinámica del agua (0,01005 gs⁻¹cm⁻¹ a 20°)

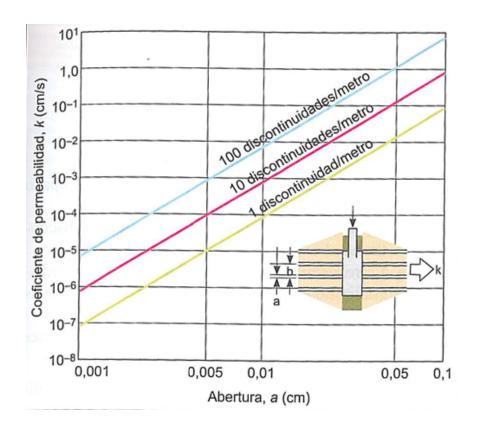
Efecto de la permeabilidad en la resistencia de discontinuidades II

Si la discontinuidad es rugosa, la abertura hidráulica, a_h será menor que la real o mecánica a.

Ambas aberturas se relacionan según diversos autores (Lee et al., 1966 en Singhal y Gupta, 1999):

 $a_h = a^2/JRC^{2,5}$

donde:


JRC= coeficiente de rugosidad de la junta

Si se considera una familia de discontinuidades, la permeabilidad dependerá también del espaciado entre los planos. El coeficiente de permeabilidad o conductividad hidráulica de un sistema de discontinuidades planas y limpias, con espaciado b, puede estimarse a partir de las siguientes ecuaciones empíricas:

$$k=a^3g/12ηb$$
 o $k=a^3γ_w/12μb$

Efecto de la permeabilidad en la resistencia de discontinuidades III

 $k=a^3g/12\eta b$ o $k=a^3\gamma_w/12\mu b$

Influencia de la abertura de las discontinuidades y del espaciado en el coeficiente de permeabilidad para una familia de discontinuidades planas y paralelas. Hoek y Bray 1981. En González de Vallejo et al., 2002

Efecto de la permeabilidad en la resistencia de discontinuidades IV

La presencia de agua en la discontinuidad disminuye su resistencia al corte; la presión ejercida por el agua se opone directamente a la componente normal del esfuerzo sobre la junta, disminuyendo el esfuerzo efectivo

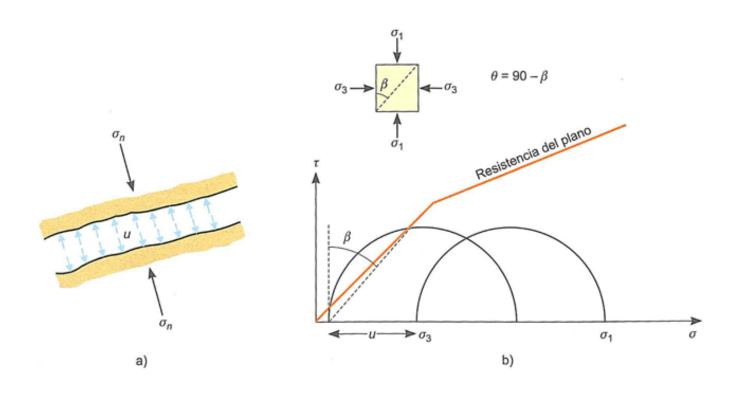
Usando el criterio de Mohr-Coulomb, el valor de la presión de agua, u, necesaria para producir el desplazamiento tangencial de una discontinuidad es:

 $u=\sigma_n+(c-\tau/tan\phi)$

O en función de los esfuerzos principales:

 $u=\sigma_3+(\sigma_1-\sigma_3)(co^2\theta-(sin\theta cos\theta)/tan\phi)+c/tan\phi$

Donde:


θ es el ángulo que forma la normal al plano de discontinuidad con el esfuerzo principal mayor

φ es el ángulo de fricción de la discontinuidad.

El valor de u será el mínimo de los valores calculados con la ecuación para: a) c=0 y $\phi=\phi_b+i$ o b) $c\neq0$ y $\phi=\phi_r$

Influencia de la abertura de las discontinuidades y del espaciado en el coeficiente de permeabilidad para una familia de discontinuidades planas y paralelas. Hoek y Bray 1981. En González de Vallejo et al., 2002

Efecto de la permeabilidad en la resistencia de discontinuidades V

a) Presión de agua actuando sobre las paredes de la discontinuidad; b) Representación de las tensiones efectivas según el círculo de Mohr. En González de Vallejo et al., 2002