Aspectos generales de las prácticas de laboratorio:

- Abrir un navegador (recomendado Firefox o Chrome) y en la barra de dirección escribir

 193.146.75.191:8080

 Entrar con vuestras credenciales: USERNAME, (por ejemplo, Leonardo.Torres_Queue) y, en PASSWORD, la contraseña.

Teoría del endomorfismo

Ilustramos las primitivas de SAGE con el siguiente ejercicio contenido en el tema Teoría del Endomorfismo.

Ejercicio

Sea $B = \{ e_1, e_2, e_3 \}$ una base de un \mathbb{Q} espacio vectorial V, y sea $f \in \text{End}(V)$ dado por

$$
 f(e_1) = -e_1 + 3e_2 - 3e_3;
 f(e_2) = 2e_2;
 f(e_3) = -3e_1 + 3e_2 - e_3
$$

Estudia si es diagonalizable y en caso afirmativo diagonaliza f.

- Construimos la matriz A por columnas de f con respecto a la base B

 \[
 A = \begin{pmatrix}
 -1 & 0 & -3 \\
 3 & 2 & 3 \\
 -3 & 0 & -1
 \end{pmatrix}
 \]

- Calculamos el polinomio característico $p_A(x)$ y, también el polinomio mínimo de A, $m_A(X)$

 \[
 p_A(x) = \text{A.charpoly()};
 m_A(x) = \text{A.minpoly()}
 \]

- El método $A.fcp()$ devuelve la factorización del polinomio sobre los racionales, en particular los factores lineales son los valores propios o autovalores:

 \[
 A.fcp()
 \]

 Luego las raíces de $p_A(x)$ son 2 de multiplicidad 2 y, -4 de multiplicidad 1. También podemos utilizar la primitiva $A.eigenvalues()$ que devuelve directamente los valores propios:

 \[
 A.eigenvalues()
 \]

- La primitiva $A.eigenvectors_right()$ que devuelve los vectores propios o autovectores
Consecuentemente la matriz es diagonalizable, y por lo tanto existe una matriz P invertible tal que $P^{-1}AP$ es una matriz diagonal. La matriz P es la formada por las columnas de los auto vectores:

$$P = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

EJERCICIOS

1. Estudia y analiza si la matriz B es diagonalizable sobre el cuerpo de los racionales \mathbb{Q}, donde

$$B = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix}$$

¿Puede ser diagonalizable sobre los reales?

2. Estudia y analiza si la matriz C es diagonalizable sobre el cuerpo de los racionales \mathbb{Q}, donde

$$C = \begin{pmatrix} 0 & 0 & -1 & 1 \\ -1 & -1 & 0 & 0 \\ -2 & \frac{1}{2} & 0 & -2 \\ -1 & 0 & 0 & -1 \end{pmatrix}$$

¿Puede ser diagonalizable sobre los reales?

3. Se considera el endomorfismo real f de matriz $D = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ con respecto a la base canónica. Estudia si f es diagonalizable y encuentra dos sub espacios distintos f-invariantes de \mathbb{R}^4 y de dimensión 2.

4. Diseña un programa en SAGE que tenga como entrada una matriz A de un endomorfismo f y, un U subespacio generado por las columnas de una matriz B y decida si U es un subespacio f-invariante.

```python
def invariante(A, B):
    ........................................
```

5. Diseña un programa en SAGE que tenga como entrada dos matrices A y B del mismo tamaño y que decida si son matrices semejantes. Y en caso afirmativo, encontrar una matriz inversible P tal que $B = P^{-1}AP$

```python
def semejante(A, B):
    ........................................
```